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ABSTRACT

Agents often have individual goals which depend on a group’s actions. If agents
trust a forecast of collective action and adapt strategically, such prediction can
influence outcomes non-trivially, resulting in a form of performative prediction.
This effect is ubiquitous in scenarios ranging from pandemic predictions to elec-
tion polls, but existing work has ignored interdependencies among predicted
agents. As a first step in this direction, we study a collective risk dilemma where
agents dynamically decide whether to trust predictions based on past accuracy.
As predictions shape collective outcomes, social welfare arises naturally as a met-
ric of concern. We explore the resulting interplay between accuracy and welfare,
and demonstrate that searching for stable accurate predictions can minimize so-
cial welfare with high probability in our setting. By assuming knowledge of a
Bayesian agent behavior model, we then show how to achieve better trade-offs
and use them for mechanism design.

1 INTRODUCTION

Recent frameworks such as performative prediction study how predictions influence the distribution
they aim to predict (Hardt & Mendler-Dünner, 2023). These have focused on accuracy for one
predictor and independent predicted agents: a spam producer changes its content to fool a spam
classifier (Dalvi et al., 2004; Hardt et al., 2016), or one loan applicant adapts to improve its credit
score ignoring adaptation by others (Perdomo et al., 2020).

Performative prediction typically considers a larger set of independent data points, but interde-
pendencies among predicted agents have been abstracted by the literature, and are not explicitly
modeled. Existing extensions to multi-agent performative prediction focus on multiple predictors
(Narang et al., 2022), but not on multiple interdependent predicted. However a plethora of examples
exists requiring a collective scale among predicted. In election polls, the aggregate prediction of
voters’ behaviour influences individuals’ actions (Simon, 1954; Blais et al., 2006). Other times pre-
diction is not directly about aggregate behaviour, but about its consequence. In pandemic modelling,
forecasts of disease spread can change real spread, as people infer the consequences of collective
action on the predicted outcome. Additionally, potentially accurate pandemic forecasts which were
not observed due to performative effects can erode public trust in future predictions (Van Basshuy-
sen et al., 2021). Collective action can also be shaped by predictions of a climate disaster, and
road traffic by estimated travel time. In financial markets, price is an aggregate consequence of ac-
tions steered by predictions (Soros, 1987). Such self-fulfilling prophecies may have actually deeply
harmed society in cases such as the British pound collapse in 1992 (Naef, 2022), illustrating how
welfare can be affected in multi-agent settings. Overall, these examples motivate a framework where
the predicted population is interdependent, has a utility that only depends indirectly on predictions,
trust varies with past accuracy, and welfare becomes an additional metric of concern.

To model a social dilemma such as pandemic containment or cooperation for climate change, here
we propose the first setting with inherent interdependence among predicted agents. Agents play
a cooperation game whose outcome depends locally on others’ actions, and decisions are influ-
enced by predictions of individuals’ actions. Moreover, we allow for spatial structure among agents
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through a graph, representing social connections or geographic locations of common goods. Pre-
dictions are provided about individuals’ actions, from which each one infers its group’s expected
behaviour. Each agent updates a Bayesian trust variable based on past accuracy, which determines
to what extent its actions are influenced by predictions.

Social welfare naturally emerges as a metric of interest in addition to accuracy. Welfare depends on
the population’s current actions, which are a consequence of predictions. Agents’ trust links accu-
racy and welfare, by limiting the influence of inaccurate predictions in the long-term. As in most
game theoretical settings, there is a tension between individual and collective interests, rendering
high-welfare states possibly unstable, while accuracy maximization remains oblivious to this issue.
Despite this, the broad goal of existing frameworks has been to minimize a single risk under per-
formativity, which typically represents accuracy (Perdomo et al., 2020). In our examples, welfare is
only influenced indirectly by the predictor, making it unsuitable for standard performative prediction
or supervised learning. Optimizing this kind of risk raises additional challenges (Miller et al., 2021),
rendering the problem hard to solve in general, without tailoring solutions to problem instances with
specific structures.

Despite a gap in the literature, having a secondary risk that does not depend directly on predictions
is common when predicted agents are not independent. Predictions of pandemic growth or climate
change can inform public policy, and become performative if risk is successfully reduced. In fi-
nancial markets, predictions may aim at maximizing profit instead of accuracy. In elections, each
candidate wishes to push the forecast whose collective reaction will benefit them the most. Even if
a neutral entity wishes to deploy an accurate election poll, its performative effect may have strong
unintended consequences (Westwood et al., 2020).

This highlights an aspect of mechanism design, which exists even when ignored. While deliberately
deploying a wrong prediction is not an ethical option, there may be multiple possible realities that
can be induced (Hardt et al., 2022) — therefore different predictions may be equally correct. Pro-
viding a snapshot of pre-prediction reality may be a way out of this dilemma, but can be wrongly
interpreted as a prediction of post-prediction reality. The choice of how many snapshots to pro-
vide before action will also influence arbitrarily the outcome. Providing counterfactual scenarios for
different population responses can improve transparency, but may risk an overly complex message
being ignored by the predicted (Van Basshuysen et al., 2021). Our work illustrates this problem and
difficult choices that arise from it, through the following contributions:

• We propose a novel performative setting where the predicted population is inherently in-
terdependent. For this, we adapt the Collective Risk Dilemma (CRD; Milinski et al., 2008)
to include a centralized predictor, together with a trust variable that reduces performative
effects over the predicted, as accuracy decreases.

• We show how a second risk, welfare, appears when agents have goals that do not depend
directly on the prediction. We also propose a trust model that ties welfare to accuracy, as it
hinders reaching states that require inaccurate predictions.

• We show in our setting how repeated risk minimization (RRM), a realistic algorithm to
maximize accuracy under performativity, can accidentally minimize welfare with high
probability over the initial predictions.

• We propose a method to learn how to use predictions as a mechanism to increase cooper-
ation and reach higher welfare states. We show experimentally that this mechanism can
achieve higher welfare in exchange for a drop in accuracy.

2 A MODEL FOR PREDICTING COLLECTIVE ACTION

We are interested in game-theoretic scenarios where a population is interdependent and possibly
influenced by predictions of collective behaviour. To that end, we propose a model where subgroups
from a larger population interact simultaneously in a given round, drawing inspiration from evolu-
tionary game theory on networks (Smith, 1982; Ohtsuki et al., 2006). Given a graph G = (V,E), for
any agent i, its group is composed of i (itself) and its neighbors in the graph N (i). For one round
of the game, agents simultaneously select an action, and each agent i receives a payoff πi(yi, yN (i))
depending on its own action yi and on neighbours’ yN (i). The game repeats for R rounds.
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To choose πi, we focus on CRD, suitable to study mechanism design (Góis et al., 2019). Each
round requires a critical mass of cooperators to achieve success and prevent collective losses. This
may represent the protection of common natural resources, the immunity of a partially vaccinated
group, and the collective development of tools like Wikipedia or Linux, among many others. If the
fraction of cooperators remains below a threshold T , collective success is not achieved and everyone
risks losing their endowment with probability r. Each agent chooses whether to defect (yi = 0) or
cooperate at a cost (yi = 1), with payoffs below:
Definition 2.1. (Defector’s payoff) Let 1[·] be the indicator function. ki =

∑
j∈N (i)∪{i} yj is the

number of cooperators in agent i’s group. Given an initial endowment B, ki cooperators in a group
of size Mi, threshold T where 0 ≤ T ≤ 1, and risk r, where 0 ≤ r ≤ 1, the expected payoff of
defector i is

πDi
(ki) = B · (1[ki ≥ ⌈TMi⌉] + (1− r)1[ki < ⌈TMi⌉]) (1)

In words, below threshold there is a disaster with probability r, while over the threshold each agent
gets B.
Definition 2.2. (Cooperator’s payoff) Given a cost cB of cooperating, where 0 ≤ c ≤ 1, the payoff
of cooperator i is

πCi(ki) = πDi(ki)− cB (2)

A CRD is used as payoff function π for all agents, using the same threshold value T and unique
Mi’s given by G. This leads to partially aligned incentives — each agent i gains from preventing a
disaster where ki

Mi
< T , but would rather avoid incurring cost cB of cooperating to increase ki.

For one round of CRD with c < r and one single group (where G is a fully-connected graph Gf ),
the Nash equilibria 1 are for everyone to defect (sub-optimal) or to have exactly ⌈TMi⌉ cooperators
(Pareto optimal 2). The challenge is in coordinating a group towards the Pareto optimal Nash, which
doesn’t happen spontaneously in the real world (Milinski et al., 2008).

2.1 AGENT MODEL

We model agents as computing a best-response, given expectations of other individuals’ actions. To
nudge behaviour, a predictor provides predictions of the population actions. Alternatively to corre-
lated equilibria (Aumann, 1974) we provide a public signal, which agents can choose to trust or not.
Since this signal is learned from global observations of the whole population (and not just locally)
it has the potential to bring additional information to agents. We assume agents observe a public
prediction of others’ actions, but stop trusting it if it is inaccurate. More specifically, they follow a
Bayesian update to compute the probability of trusting the prediction. Agent i has two competing
explanations for each neighbour j’s behaviour — the external prediction ŷj and an internal expec-
tation αi,j . Both ŷj and αi,j are Bernoulli parameters that estimate a hypothetical true P(yj = 1).
Li(ŷt,yt) is the likelihood of observing yt given parameter ŷt, and τt−1,i acts as the prior for i.
The posterior probability τt,i of i trusting the external predictor in timestep t is:

τt,i = P(trust|ŷ,y) = τt−1,iLi(ŷt,yt)
τt−1,iLi(ŷt,yt) + (1− τt−1,i)Li(αi,yt)

(3)

with Li(ŷt,yt) :=
∏

j∈N (i)

ŷ
yj,t
j,t (1− ŷj,t)

1−yj,t .

Given the expectation of others’ actions, i can compute a rational utility-maximizing action. As long
as c < r, it is rational for i to cooperate if and only if

∑
j∈N (i) yj = ⌈TMi⌉ − 1. In words, i coop-

erates when it is the only missing cooperator required to overcome the threshold in its group. Given
probability θN (i) = θ1...Mi−1 of each neighbour of i to cooperate, a Poisson binomial distribution
g(Ti|θN (i)) gives us the aggregate probability of having Ti = ⌈TMi⌉ − 1 cooperators in the group.
BestResponse is then argmaxyi EyN(i)∼g(θN(i))[π(yi, yN (i))].

1A state is a Nash equilibrium if no agent can unilaterally change her action to improve her payoff π.
2A state is Pareto optimal if there is no other state that improves one’s π without lowering another’s π.
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Proposition 2.3. (Best-response under competing models) Given two competing models (ŷ and α)
that explain the population’s behaviour, then BestResponsei(ŷt+1,N (i),θ; τt,i) is to cooperate if
τig(Ti|ŷj∈N (i)) + (1− τi)g(Ti|αi,j∈N (i)) >

c
r , and defect otherwise (Appendix A)

2.2 PERFORMATIVE PREDICTION IN COLLECTIVE ACTION

Perdomo et al. (2020) propose the framework of performative prediction, and analyze RRM, an
algorithm which retrains a model after each distribution shift. More formally, they assume a mapping
D(θ) from a predictor parameter θ into a distribution D. Considering this effect of θ, performative
risk becomes:

PR(θ) = E
Z∼D(θ)

ℓ(Z; θ)

As a baseline to optimize PF(θ) without knowledge of D(θ), they suggest RRM as a natural heuristic
— to repeatedly minimize risk using the distribution obtained from the previous model deployment:

θt+1 = argmin
θ

E
Z∼D(θt)

ℓ(Z; θ)

We now map their setting to our framework. We have a prediction ŷt ∈ [0, 1]|V | of each agent’s
probability of cooperating in time-step t, starting at t = 1. A trust variable τt,i ∈ [0, 1], starting at
t = 0, determines how much agent i trusts predictions, and therefore by what extend its next action
yt+1,i is influenced by ŷt+1. Finally, we have:

D(θ; τ) = {1[yt+1,i = BestResponsei(ŷt+1,N (i),θ; τt,i)] : i = 1, ..., |V |}

yielding a deterministic distribution.

The missing ingredient to apply RRM is which risk to use. We first consider accuracy maximization,
in the simplified case of a static τ = 1, a single-round game, and a new deployment of ŷ after each
round. The learner initializes ŷ1 ∈ [0, 1]|V |, after which each agent i computes deterministically
y1,i = BestResponsei(ŷ1,N (i),θ; τ0,i), corresponding to y1,i ∼ D(ŷ1,N (i); τ0,i). Unaware of
its own influence on y, an accuracy-maximizing learner minimizes risk by deploying ŷ2,i = y1,i,
staying in the discrete domain ŷt ∈ {0, 1}|V | from time-step t = 2 onwards. Note we will not
restrict ourselves to RRM or to τ = 1, but it will be the starting point of our analysis.

Accuracy fits naturally the definition of performative risk: PR(θ) := EZ∼D(θ)ℓ(Z; θ). On the other
hand, welfare is a metric that only depends on the actions taken by the population: EZ∼D(θ)ℓ

′(Z).
Minimizing such a loss raises optimization challenges, since θ only influences risk through D(θ).

3 MODEL DYNAMICS

To gain understanding of our model’s behaviour, here we study the impact of different components
in isolation. We explore two opposite scenarios: blindly trusting a predictor (τ = 1), in particular
the impact of T,G and RRM, and behaviour in the absence of a predictor (τ = 0). We then show
oscillatory behaviour for a particular G, T , when τ is dynamic.

3.1 THRESHOLD AND TOPOLOGICAL CONSTRAINTS

We adopt the following assumption:

Assumption 3.1. (Simple controllable setting) a) agents have a fixed trust τ = 1 ignoring their
internal beliefs α, and b) predictions are binary: ŷt ∈ {0, 1}|V |.

Let a self-fulfilling prophecy be when ∀i, yi = ŷi. Assuming binary predictions is useful in this
definition, since y’s need to match ŷ’s. Removing the interference of internal expectations α by
having τ0 = 1, predictions become static: ŷt = ŷ. With full trust guaranteed, there is no need
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(a) 3-node clique. Both a) and c) are
self-fulfilling prophecies with 100% accuracy
(an accuracy maximizer is indifferent between
them). However, in a) full success is achieved,
but in c) all fail. b) also maximizes group suc-
cess but at the expense of 0% accuracy.

(b) 3-node chain. Here there is no self-fulfilling prophecy
which maximizes group success, forcing a trade-off between
accuracy and group success. Only e) maximizes group suc-
cess, but the center node regrets having cooperated. Note
that, with T = 2

3
, groups of size Mi = 2 require both agents

to cooperate.

Figure 1: Predictions and resulting actions in a 3-player game, under different topologies. Dark
nodes have achieved success, and thick arrows are self-fulfilling prophecies.

to balance between trust and other goals through time. Under Assumption 3.1, if agents are never
indiferent between actions, predicting a strict Nash equilibrium is sufficient and necessary to have a
self-fulfilling prophecy (i.e. ∀i,BestResponse(ŷN (i)) = ŷi).

Whether there is a Nash equilibrium that maximizes welfare determines whether the predictor must
compromise accuracy to maximize it. Note that, as long as ∀i, ⌈TMi⌉ > 1, all-defecting is always a
self-fulfilling prophecy. Using Assumption 3.1, the topology of G and threshold T become the only
constraints determining whether a given system state is attainable.
Proposition 3.2. (Sufficient conditions for self-fulfilling success) Let “full success” be the setting
where ∀i, kiMi

≥ T . Under Assumption 3.1 and c < r, each of the following is a sufficient condition
so that ∃ ŷ =⇒ full success, where ŷ is a self-fulfilling prophecy:

1. G = Gf , where Gf is a clique or a fully-connected graph: Assume ŷ predicts a configu-
ration with ki = ⌈TMi⌉. Since all agents share the same group, it is not possible for one
agent to deviate from ŷ without lowering its π;

2. T=1: no agent can free-ride, since all are required to cooperate;

3. T=0: full success is guaranteed by default.

Figure 1a illustrates the previous remarks, over a 3-node clique. a) and c) are Nash equilibria and
self-fulfilling prophecies, while b) and d) are not. An accuracy maximizer would choose a) or c),
while a welfare maximizer would choose a) or b). Here it is possible to maximize both quantities
through a).

However, both goals may be at odds in other settings. In Figure 1b there is no prediction that satisfies
simultaneously an accuracy maximizer and a welfare maximizer. The only self-fulfilling prophecy
is a), reaching full-defection. Only e) reaches full success, but since it is not a Nash it is not self-
fulfilling. This is because the center node could have achieved success while defecting, but would
have prevented success in groups of size 2. In general, full success is not always achievable, even if
we do not require a self-fulfilling prophecy:
Proposition 3.3. (Necessary condition for success) Under Assumption 3.1, a game must not obey
simultaneously the three conditions below, otherwise full success is not attainable, even with a
prediction that is not self-fulfilling (proof in Appendix B):

1. graph G has a “hub” node H whose degree MH − 1 is higher than any of its neighbours:
∀i ∈ N (H) :Mi < MH .

2. Threshold T ∈ [0, 1] is set to MH−1
MH

.

3. ∀i ∈ N (H),∃j ∈ N (i) :Mj < MH .

This shows how T,G can condition which states are reachable. The examples also illustrate how
different predictions induce different realities in this model. As a consequence, seeking only high-
accuracy predictions may inadvertently induce low-cooperation states, as the next section will show.
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k=0 k=T-1 k=
N-T+1... k=T ... ... k=N

Figure 2: Markov chain describing the evolution of a population with k out of N cooperators, τ = 1
and Gf following RRM, for N > 2T − 1, T ̸= 1. (details in Appendix C)

3.2 CONVERGENCE TO LOW WELFARE

We now show theoretically that repeatedly maximizing accuracy can minimize welfare with high
probability, even when some regions of the optimization landscape allow to optimize for both met-
rics. As the previous section illustrates, the alignment between welfare and accuracy depends non-
trivially on game parameters T and G, even in the simplified case of τ = 1. The choice of optimiza-
tion algorithm introduces further complexity. Depending on it, even when it is possible to jointly
optimize accuracy and welfare (e.g. Figure 1a), an accuracy maximizer is not guaranteed to pick the
best solution for both metrics.

Assume a predictor is trained to maximize accuracy through RRM, following § 2.2 with G = Gf .
RRM becomes a Markov chain, where each state is defined only by the number of cooperators in the
population, kt =

∑
i yt,i in the fully-connected case. The initialization of ŷ1 will determine which

k1 is induced. From there on RRM will imitate each player’s previous best-response, to which
players will best-respond until convergence or reaching a cycle. This is equivalent to synchronous
best-response dynamics (Chellig et al., 2022). Interestingly, this prevents agents from overcoming
the threshold with high probability.
Theorem 3.4. (Convergence to low welfare) Assume ∀i, ⌈TMi⌉ > 1, and G = Gf . Predic-
tions ŷ1 ∈ {0, 1}|V | can be described by k̂1 =

∑
i ŷ1,i since G = Gf . Let k̂1 ∼ Bin(θ,N) and

θ ∼ Beta(α, β), where N = |V |. RRM always converges to a stable point in terms of kt in at most
2 steps, and P(kt = 0) ≥ 1−O(1/N) , ∀t ≥ 2. (proof in Appendix C)

Empirically, convergence to low welfare holds for other kinds of G’s. In particular, we study the
configuration after convergence of scale-free networks, showing that most time is spent on low
cooperation states, as size increases. Cycles become more frequent than a single steady state, in
larger scale-free graphs (Fig 3).
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Figure 3: Average proportion of time spent below threshold, after convergence, and proportion of
cycles. Each point is the average of 5 scale-free G’s, with 10 random ŷ1 per G, and T = 0.5. Shaded
areas are standard deviation among G’s. Find histograms for time in each state in Appendix C.

3.3 SELF-ORGANIZATION WITHOUT PREDICTOR

So far we have explored scenarios with full trust (τ = 1) where an external predictor dictates
population actions, studying limitations on how much welfare can be obtained and behaviour under
RRM. Now we focus on the opposite scenario, in the absence of a predictor.
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Figure 4: Proportion of successful groups with τ = 0, for a fully-connected graph (left) and scale-
free networks (right) with varying α and population size N. cr = 1

6 , T = 0.5 and scale-free’s average
degree m = 2.

For G = Gf it is possible to compute the price of anarchy (Koutsoupias & Papadimitriou, 2009),
which is the ratio between the welfare of the best state and the welfare of the worst equilibrium.

Defining welfare as Welf(y) =
∑
i πyi(ki), we obtain the price of anarchy PoA =

1−c ⌈NT⌉
N

1−r ≈
1−cT
1−r . We are interested in regimes where r > c, and we note that PoA increases with higher r and

lower c, worsening the gap between best state and worst equilibrium.

PoA however does not consider to which equilibrium we arrive at without an external entity, focusing
on the worst case. Figure 4 shows results without trust (τ = 0), where agents behave according to
their internal expectation α of others. For a fully-connected population of size N , each agent’s best-
response is to cooperate if Bin(⌈TN⌉ − 1;α,N) > c

r . From this equation we see that as c
r drops,

PoA increases but agents choose to cooperate for a wider range of T,N, α. For the remaining of the
paper, we focus on regimes where high Welf(y) does not happen spontaneously.

3.4 TRUST DYNAMICS

When trust varies with accuracy, our system becomes stateful. The same prediction may induce
different responses depending on how much each agent currently trusts predictions. Here we present
a simplified analysis for the G, T described in Figure 1b, assuming an infinite horizon discounted
reward criterion.

An optimal accuracy-maximizer will trivially predict all-defect, inducing a stable low-welfare state
with perfect accuracy, and trust approaching 100%. However an optimal welfare-maximizer must
handle the tension between accuracy and welfare, resulting from the trust variable. Unless there is a
discount factor γ that is so high that the predictor indefinitely increases trust for a higher future re-
ward, this will lead to oscillatory behaviour in trust. While a prediction of all-cooperate matches the
best-response of both left and right nodes, it does not for the center node. To induce all-cooperate,
the prediction must distribute error in a way that minimally harms accuracy, while maintaining the
welfare-maximizing outcome. We derive and prove in Appendix D the optimal welfare-maximizing
policy, for different values of γ. This results in gradually lower confidence for the center node until
it is necessary to boost it. For certain γ’s, the optimal boost is to induce the most surprising outcome
for a given α, causing an abrupt trust increase (Figure 5).

4 LEARNED PREDICTOR AND SIMULATIONS

As the population size |V | grows, analysis becomes more complex. We resort to simulations and
learned predictors to study larger systems.

We choose to represent the predictor through a neural network, which receives as input the popula-
tion’s actions in the previous time-step: ŷt = fϕ(at−1) : {0,1,∅}|V | → [0, 1]|V |. The loss is either
cross-entropy for accuracy maximization, a differentiable proxy of number of successful groups for
welfare maximization, or a combination of both. To combine both in a multi-task objective, we fol-
low the approach of Sener & Koltun (2018) (see Appendix F). Here we consider a finite horizon of
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Figure 5: Trust oscillation induced by the optimal welfare maximizer. T = 2
3 and G is a 3-node

chain (as seen in Figure 1b). Parameters are c = 0.3, r = 0.5, B = 1, α = 0.8, τ0 = 0.5. The above
strategy is optimal for at least γ ∈ [0.4, 0.5] (see Appendix D for details and other γ).

20 rounds per game with no discounting. A predictor with access to multiple games performs gradi-
ent descent after each, assuming access to the inner behaviour of agents. To maximize the number
of successful groups, it backpropagates through a differentiable version of their decision rule and
payoff (Appendix E).

When optimizing for social welfare, the predictor still needs to consider prediction accuracy in
order to maintain agents’ trust. Let ỹi,t = σ(πCi,t − πDi,t) be a differentiable proxy of agents’ true
decision rule yi,t = 1[πCi,t − πDi,t > 0]. We analyze here a proxy goal ÛC =

∑T
t=1

∑N
i=1 ỹi,t

whose gradient can be decomposed in two components:

∇ϕÛC =

T∑
t=1

N∑
i=1

ψt,i(ϕ)[

(g(Ti|ŷj∈N (i)(ϕ))− g(Ti|αi,j∈N (i)))∇ϕτt,i(ϕ)︸ ︷︷ ︸
accuracy

+τt,i(ϕ)∇ϕg(Ti|ŷj∈N (i)(ϕ))︸ ︷︷ ︸
steering

] (4)

ψt,i(ϕ) = ỹt,i(1− ỹt,i)rB is a scalar which is higher when agents are closer to flipping their choice
of action between cooperation and defection. An optimizer using this goal needs to control accuracy
to keep trust high, and steer towards higher cooperation when trust is high. In practice we use a
slightly more complex goal ÛPop that is closer to true social welfare, leading to qualitatively similar
empirical results and amenable to a similar analysis (Appendix E).

In Figure 6 we observe the result of training either for accuracy or welfare maximization, for differ-
ent values of threshold (details in Appendix F). Unless the threshold is very low (T ∈ {0.2, 0.3}), a
predictor maximizing accuracy will induce states of very low cooperation (find a related discussion
in Appendix B). A predictor maximizing welfare can prevent this, but at the expense of accuracy.
This is in line with § 3.1, where both metrics may be impossible to maximize simultaneously. To
overcome this, we follow Sener & Koltun (2018) to jointly optimize for both metrics. For T = 0.5,
we compute the Pareto front in this way.

Regarding architecture choices, we use a multilayer perceptron (MLP), a graph neural network
(GNN), GNN+MLP and GNN+linear (Figure 7). For an MLP, a concatenation of all nodes’ ac-
tions is provided as input, and their actions for the next step are jointly predicted. Having a GNN
followed by an MLP or a linear layer provides a gain over MLP alone, by adding information about
G. Interestingly, GNNs alone, being the only model unable to do centralized coordination, are not
able to promote cooperation. For two equal nodes, some settings may require one to cooperate and
the other to defect. A GNN however is unable to provide different outputs to equal nodes. When
optimizing for accuracy, this limitation of GNNs goes by unnoticed (Appendix F). We also provide
in Appendix F an ablation study of the performative gradient used to maximize cooperation. We
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Figure 6: Accuracy vs. social welfare trade-off for different threshold values. Pareto front computed
through multi-objective optimization for T = 0.5. All experiments were conducted using a scale-
free G with 20 nodes and mean degree of 2 (Barabási & Albert, 1999), c = 0.2, B = 1, r = 0.4,
αi,j = 0.8 and τ0 = 0.5.

show the importance of different components, to guide future research in estimating performative
gradients dependent on trust.
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Figure 7: Performance of different architectures, when optimized to maximize social welfare. T =
0.5 and other parameters follow Figure 6.

5 RELATED WORK

Machine learning began considering performative effects by assuming explicit models of adaptation
(Dalvi et al., 2004). This line of work became known as strategic classification (Hardt et al., 2016),
initially considering samples with static outcomes y and adaptive features x. Later works consider
indirect changes in y from causal effects of x on y (Miller et al., 2020; Horowitz & Rosenfeld,
2023). In our setting we predict actions y which agents select to maximize their utility. Predictions
are based on past observations of actions, modeling P(Y ) for single-round games and P(Yt|Yt−1)
or P(Yt|Y1:t−1) for multiple rounds.

The framework of performative prediction (Perdomo et al., 2020) provides theory for a class of
adaptation behaviours, showing convergence of RRM, an algorithm which retrains a model after
each distribution shift. However they require strong smoothness assumptions not verified in our
setting, and do not model explicit interdependencies among predicted. We show, in our setting, how
RRM can impact welfare, identifying issues ignored when monitoring accuracy alone.

In existing literature, the utility of predicted agent i depends directly and exclusively on predicted
label ŷi. In our setting utility depends on others’ actions, hence only indirectly on predictions. This
is a realistic setting which has not been studied before, raising optimization challenges since RRM
is not applicable (Miller et al., 2021; Izzo et al., 2021). Interestingly, Izzo et al. (2021) decompose
the performative gradient ∇θL(θ) into an “easy” component ∇1L(θ) assuming the distribution is
static, and a “hard” component ∇2L(θ) = ∇θL(θ) − ∇1L(θ) which is the remaining part that
requires knowledge of the adaptation. RRM only uses ∇1L(θ), but maximizing welfare in our
setting requires ∇2L(θ), since ∇1L(θ) = 0.

9



Published at the ICLR 2025 Workshop on Human-AI Coevolution (HAIC)

Multi-agent extensions of performative prediction have focused mostly on multiple predictors (Li
et al., 2022; Piliouras & Yu, 2023; Wang et al., 2023). In Eilat et al. (2023) predicted outcomes de-
pend on a graph G because the classifier assumes it. Mendler-Dünner et al. (2022) mention spill-over
effects as a way to give a causal treatment to social influence. Hardt et al. (2023) consider predicted
agents that coordinate to influence the training of a classifier. Hardt et al. (2022) propose a lower
bound on how much a predictor can influence reality, both for single and multiple predictors. Brown
et al. (2022) consider a stateful version of performative prediction where the previous distribution is
enough to define a state, unlike in our setting, where ŷt does not contain all information about τt.
Surprisingly we have not found any existing work on the role of trust in performativity, highlighting
a need for future work in this direction.

Regarding alternative goals to accuracy, recommender systems may wish to preserve content diver-
sity (Eilat & Rosenfeld, 2023), and schools can use predictions in an attempt to improve graduation
rates (Perdomo et al., 2023). Vo et al. (2024) consider a trade-off between selecting good candidates
and maximizing their improvement, with consequences for agent welfare. Levanon & Rosenfeld
(2021) balance accuracy and user utility through regularization. Kim & Perdomo (2023) suggests
learning a single predictor for many possibly-competing goals.

Behavioural economics has studied cooperation in non-linear social dilemmas (Milinski et al., 2008),
which were modelled using evolutionary game theory (Santos & Pacheco, 2011) and used to study
mechanism design (Góis et al., 2019). Another evolutionary model describes adherence to pandemic
mitigation measures, showing oscillatory behaviour (Glaubitz & Fu, 2020). When predictions are
used for downstream tasks, the cost of obtaining a prediction can also be considered in the final goal
(Perdomo, 2024; Shirali et al., 2024).

6 DISCUSSION

The proposed setup points to difficult choices that arise in multi-agent performative scenarios. Op-
timizing for something other than accuracy raises ethical questions, even when the predictor acts in
the predicted’s interest. However, this work shows that focusing only accuracy is not neutral and
can have negative consequences for the predicted. This is an active topic of research in philosophy
(Van Basshuysen et al., 2021). Khosrowi (2023) proposes two opposing views: mitigation and ap-
praisal. The appraisal view suggests that model evaluation should consider performative effects —
e.g. a reduced death toll after a pandemic prediction, and possibly higher accuracy had there been
no performativity. However, evaluating models by their consequences undesirably injects moral val-
ues into model choice (e.g., prioritizing individual freedom vs. public health). The mitigation view
seeks stable, accurate predictions by endogenizing causes of performativity, though this choice may
also reflect moral values and has negative impact in our setting. Appraisal corresponds to welfare-
maximization and mitigation to accuracy in our model. While this is an open question in philosophy,
we emphasize that current machine learning approaches overlook such effects, leading to potential
harm — an example would be recommendation systems increasing anxiety to boost engagement. If
a predictor does not act in the predicted’s interest, it could exploit performative effects for manipu-
lation, which is outside our model’s scope. Even then, we argue that making this research open is
in the public’s interest, to raise awareness and develop defenses. We hope our results inspire future
work on better guidelines and algorithms.

7 CONCLUSION

We have introduced a framework to study performative effects under game-theoretic settings on
a network of predicted agents. We show theoretically how social welfare and accuracy can be in
conflict, and empirically compute their Pareto front. Although accuracy may seem like a way to
avoid manipulating reality, multiple accurate outcomes with different social welfare can be induced
when performativity is strong enough. Ignoring side-effects may be more harmful than considering
them, making it inevitable to regard performative prediction (partly) as mechanism design in our
examples. This brings connections to active research directions in philosophy, with practical impact
in existing systems. Finally, our model opens up opportunities for future work on the roles of trust,
information design, welfare and graphs in performativity.
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A BEST RESPONSE

An agent’s best response selects the action with highest expected payoff, between cooperation and
defection. Let k′i =

∑
j∈N (i) yj be the number of cooperators in i’s group, excluding i itself. The

payoff gain of switching from defection to cooperation is

πCi(k
′
i + 1)− πDi(k

′
i) =

{
(r − c)B if k′i = ⌈TMi⌉ − 1

−cB otherwise

In words, i gains (r − c)B from cooperating when it is the last member required to overcome the
threshold in its group. It loses cB for any other group configuration. Its best response is then to
cooperate when it is “at the threshold” (k′i = ⌈TMi⌉ − 1) and defect otherwise, as long as c < r.

Its expectation of others’ actions depends on two competing explanations g(Ti|ŷj∈N (i)) and
g(Ti|αi,j∈N (i)), and the likelihood τi of trusting the first option. Each explanation provides the
likelihood P(k′i = ⌈TMi⌉ − 1) = g(Ti|θj∈N (i)), by using a Poisson binomial distribution to aggre-
gate individual likelihoods θj of each neighbour to cooperate. It should then cooperate if

Eτi [Eg(ŷj∈N(i))[Eg(αi,j∈N(i))[πCi
(k′i + 1)− πDi

(k′i)]]] > 0 (=)

τig(Ti|ŷj∈N (i)) + (1− τi)g(Ti|αi,j∈N (i)) >
c

r
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B FULL SUCCESS IS NOT ALWAYS ACHIEVABLE
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Figure 8: Achieving full success is not possible for all configurations of G and T . In this counter-
example, node c requires ⌈TMc⌉ = 3 cooperators out of Mc = 4, meaning one node in c’s group
can defect without preventing success. As a consequence c will cooperate only if one of b, d, e is
predicted to defect. All the other groups require 100% of cooperators since they have Mi < 4
and T = 3

4 . If c doesn’t cooperate (ex. 1), it’ll prevent success for its neighbours. If any of
b, d, e is predicted to defect (ex. 2 and 3), it’ll also prevent someone’s success. These contradicting
requirements make it impossible to reach full success for any given prediction ŷ.

Under Assumption 3.1 there exist combinations of T and G for which full success is unattainable,
even without requiring a self-fulfilling prophecy. This is due to contradicting requirements in neigh-
bour nodes, which cannot be simultaneously satisfied through any prediction ŷ. One example is
Figure 8.

From it, we can formulate sufficient condition for full success to be unattainable, or conversely
(through its negation) a necessary condition for full success to be attainable.

1. graph G has a “hub” node H whose degree MH − 1 is higher than any of its neighbours:
∀i ∈ N (H) :Mi < MH .

2. Threshold T ∈ [0, 1] is set to MH−1
MH

.

3. ∀i ∈ N (H),∃j ∈ N (i) :Mj < MH .

With condition 2, for H to overcome threshold, one out of MH agents does not need to cooperate
(since Mk ∈ N and ⌈TMH⌉ = ⌈MH−1

MH
MH⌉ = MH − 1). However, all neighbours i ∈ N (H)

require 100% cooperators since they haveMi < MH =⇒ ⌈TMi⌉ =Mi. Condition 3 ensures each
neighbour of H is connected to another neighbour j with low degree Mj < MH . This combination
requires all i ∈ N (H) to be predicted to cooperate (i.e. ∀i ∈ N (H), ŷi = 1), otherwise their
neighbours j ∈ N (i)/{H} will not cooperate (since they require 100% cooperators). However,
∀i ∈ N (H), ŷi = 1 =⇒ yH = 0 since H can afford one defector in its group. Since yH = 1 is
a requirement for the success of i ∈ N (H), but that requires ∃!i ∈ N (H) : ŷi = 0, we arrive at
contradicting requirements.

This proves Proposition 3.3, since a graph must not obey the condition above, for a prediction to
exist which induces full success.

This condition matches empirical observations in Figure 6. Thresholds that are close to but be-
low 100% yield low success, even when maximizing welfare. This indicates that there may be no
configuration which allows for high success, for settings (G, T ) with high T .

Other counter-examples may be derived from this sufficient condition, such as those in Figure 9.
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T = 3/4T = 4/5 T = 4/5

Figure 9: Other counter-examples where full success is not attainable.

This illustrates that there are cases where we cannot achieve cooperation in our model, even at the
expense of lower accuracy. In less restrictive topologies discussed in the main paper (e.g. Figure 1b)
it is possible to achieve high cooperation, but not maintain it together with accuracy in the long
term. In simpler cases (e.g. Figure 1a) it is possible to aim for high cooperation, and then maintain
it together with high accuracy.

C CONVERGENCE TO LOW WELFARE UNDER RRM

We begin by analyzing the probability of inducing any initial state, from a random initialization of
ŷt=1.

Lemma C.1. (Initial state probability) Assume ŷ1 ∈ {0, 1}|V |, which can be described by k̂1 =∑
i ŷ1,i if G is fully-connected. Let n = |V |, k̂1 ∼ Bin(θ, n) and θ ∼ Beta(α, β). The probability of

being initialized at a given state k is:

P(k̂1 = k) = n!
k!(n−k)!

Γ(k+α)Γ(n−k+β)
Γ(n+α+β)

Γ(α+β)
Γ(α)Γ(β)

Proof. we have that

P(k̂1 = k) =

∫ 1

0

(
n

k

)
θk(1− θ)n−k

θα−1(1− θ)β−1

B(α, β)
dθ (5)

=
n!

k!(n− k)!

1

B(α, β)

∫ 1

0

θk+α−1(1− θ)n−k+β−1 dθ (6)

=
n!

k!(n− k)!

B(k + α, n− k + β)

B(α, β)
(7)

=
n!

k!(n− k)!

Γ(k + α)Γ(n− k + β)

Γ(n+ α+ β)

Γ(α+ β)

Γ(α)Γ(β)
(8)

Corollary C.2. (Probability with increasing population size) under the conditions of C.1

lim
n→0

P(k̂1 = k) = 0

Proof. Let α̂ = α− 1. Using Stirling’s formula, we have that Γ(x+ α) ∼ xαΓ(x).

P(k̂1 = k) =
n!

k!(n− k)!

Γ(k + 1 + α̂)Γ(n− k + β)

Γ(n+ 1 + α̂+ β)

Γ(α+ β)

Γ(α)Γ(β)
(9)

∼
n→0
k=Tn

n-k=(1-T)n

n!

k!(n− k)!

Γ(k + 1)(k + 1)α̂Γ(n− k)(n− k)β

Γ(n+ 1)(n+ 1)α̂+β
Γ(α+ β)

Γ(α)Γ(β)
(10)

=
Γ(n− k)

(n− k)!

(k + 1)α̂(n− k)β

(n+ 1)α̂+β
Γ(α+ β)

Γ(α)Γ(β)
(11)

=
1

n− k

(k + 1)α̂(n− k)β

(n+ 1)α̂+β
Γ(α+ β)

Γ(α)Γ(β)
(12)

=
(k + 1)α̂(n− k)β−1

(n+ 1)α̂+β
Γ(α+ β)

Γ(α)Γ(β)
(13)
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=
(Tn+ 1)α̂((1− T )n)β−1

(n+ 1)α̂+β
Γ(α+ β)

Γ(α)Γ(β)
(14)

=
1

n+ 1

(T + 1−T
n+1 )

α̂((1− T )(1− 1
n+1 ))

β−1

T α̂+β
Γ(α+ β)

Γ(α)Γ(β)
(15)

=
1

n

T α̂(1− T )β−1

T α̂+β
Γ(α+ β)

Γ(α)Γ(β)
+O(1/n2)) (16)

→ 0 (17)

By Stirling’s formula, we have

Γ(x+ α)

Γ(x)
∼

(x+αx )x(x+ α)α

eα
=

(1 + α
x )
x(x+ α)α

eα
(18)

Now note that (1 + α
x )
x = exp(x log(1 + α

x )) ∼ eα, and (x+ α)α = xα(1 + α
x )
α ∼ xα thus,

Γ(x+ α)

Γ(x)
∼ xα (19)

We now prove that, for most initializations of ŷ and values of (N,T ), RRM converges to a stable
point D(ŷDefect) where everyone is predicted to defect and indeed defects, in a self-fulfilling fashion.
This leaves the population stuck in a severely suboptimal equilibrium.

Assume a predictor iterates through RRM, predicting a population playing in a fully-connected
graph Gf , with static τ = 1. The system becomes a Markov decision problem (MDP) with the
following states:

k=0 k=1 k=T k=N... ...

Figure 10: RRM for a single-round CRD with static τ = 1 becomes an MDP with N+1 states.

Let ki :=
∑
j∈−i Yj , k :=

∑
j∈[1..N ] Yj . In the context of this MDP we adopt a slight abuse of

notation by using T to denote ⌈TMi⌉. Since RRM copies the previous set of actions, agents play by
best-responding to the previous round. After initializing at some state k, each agent i cooperates if
and only if they observe ki = T − 1. Note that each agent can only observe ki = k or ki = k − 1,
depending on whether i is predicted to defect or cooperate, respectively.

Let us categorize states as:

1. k = T

2. k = T − 1

3. all others

States 3. move the system into k = 0, since no agent observes ki = T − 1.

For k = T , all cooperators i observe ki = T−1, choosing to cooperate next. All defectors j observe
kj = T , choosing to defect next. Therefore 1. is a stable point.

For k = T − 1, only defectors j observe kj = T − 1. Therefore defectors and cooperators flip, and
2. leads to k = N −T +1. The next step depends on whether k = N −T +1 puts us in 1., 2., or 3.:

1. If N − T + 1 = T (=)N = 2T − 1, we arrive in 1. and stabilize at k = T .
2. If N − T + 1 = T − 1(=)N = 2T − 2, we arrive back in 2. meaning we stabilize at
k = T − 1. At each step cooperators and defectors flip, but the count remains constant at
k = 1

2 .
3. Otherwise we are in 3., meaning we arrive at k = 0 in 2 steps.
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At k = 0:

• If k = 0 is 1. or 3., we stabilize at k = 0.

• If k = 0 is 2. then T − 1 = 0(=)T = 1. We cycle between k = 0 and k = N .

Therefore we have 1 state converging to k = T , or 2 in the particular case of N = 2T − 1. All other
states lead to a stable state of k = 0 in at most 2 steps, with two exceptions: a) with T = 1, there is
a cycle between k = 0 and k = N , and b) with N = 2T − 2 the state k = T − 1 is also stable. This
proves theorem 3.4, where minimizing welfare refers to stabilizing at any state below the threshold,
since we consider the cost cB of unnecessarily cooperating is negligible compared to the cost rB of
being below T .

Running simulations with scale-free networks, we observe the same pattern which theory predicts
for fully-connected graphs — the proportion of time spend below the threshold approaches 100% as
N grows. For runs that cycled instead of converging (which does not happen in a fully connected G),
we report the average proportion of time spent by each group in each state, for one cycle (Figure 11).

Figure 11: Cooperation per group after applying RRM on a scale-free network with 20 nodes (left),
30 nodes (middle), and 50 nodes (right). Each histogram is the average of 10 different initializations,
with a threshold value of 0.5. Each point on the histogram belongs to either a cycle of RRM or a
steady state after convergence.

D CONDITIONS FOR OSCILLATIONS IN TRUST

D.1 SETUP

Assume a 3-node chain and threshold T = 2
3 . Let us denote nodes in the chain by 0,1,2 (where 1 is

the center node), and actions by yt,i = 1 (cooperate) and yt,i = 0 (defect). A predictor maximizing
the number of successful groups can, at most, obtain the following rewards per time-step:

• Reward R = 3, if agents play 1—1—1 (all overcome threshold)

• Reward R = 2, if agents play 1—1—0 or 0—1—1 (only nodes 0,1 or 1,2 overcome thresh-
old)

• Reward R = 1, if agents play 1—0—1 (only 1 overcomes threshold)

• Reward R = 0, if agents play for instance 0—0—0 (no one overcomes threshold)

R = 3 is only possible if yt,1 = 1, which requires P(yt,0 = 0, yt,2 = 1)+P(yt,0 = 1, yt,2 = 0) > c
r .

We assume this does not happen spontaneously without the external predictor (τt,1 = 0). More

precisely, we discard values of α and c
r where 2α(1 − α) > c

r (=)
1−

√
1−2 c

r

2 < α <
1+

√
1−2 c

r

2 . In
this regime, we can only have R = 3 if τt,1 is high enough.

Due to symmetry between nodes 0 and 2, obtaining R = 2 (not show in Figure 1b) is not possible
with static τ = 1, since both observe the same ŷt,1, leading to yt,0 = yt,2. Even with dynamic
τt,i < 1, it is not possible unless τ0,0 ̸= τ0,2, which we do not consider here. R = 1 (with 1—0—1)
requires high enough α or τt,0, τt,2, and can be used to boost trust for node 1. States with R = 0
such as 0—0—0 can be used to boost everyone’s trust, if needed.
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Note that whether 0—0—0 or 1—0—1 provides the highest increase in τt,1 depends on how low is
the likelihood of the internal model L(α,yt) = (1−α)2 or L(α,yt) = α2, respectively. We assume
α > 0.5, where 0—0—0 provides the highest increase.

D.2 OPTIMAL PREDICTION FOR A GIVEN OUTCOME

When inducing a state that requires lowering trust, a rational predictor computes the prediction
which minimally reduces trust, to avoid future losses. We compute this for R = 1 and R = 3 below.

Obtaining 1—0—1 (R = 1) requires a ŷt,1 which induces nodes 0,2 to cooperate, and ŷt,0 = ŷt,2 =
1 ⇒ yt,1 = 0 (increasing τt+1,1). Assuming τ0,0 = τ0,2 :

argmax
ŷt,1

L0(ŷt,1, yt,1 = 0)

s.t. τt,0ŷt,1 + (1− τt,0)α >
c

r
0 ≤ ŷt,1 ≤ 1

(20)

Note L0(ŷt,1, yt,1 = 0) = L2(ŷt,1, yt,1 = 0) = 1 − ŷt,1. We can approximate the argmax with
ŷt,1 =

c
r−(1−τt,0)α

τt,0
+ ϵ, for a small ϵ. If the solution is unfeasible, R = 1 is not attainable.

Obtaining R = 3 requires ŷt,0, ŷt,2 which induce node 1 to cooperate, and ŷt,1 = 1 ⇒ yt,0 =
1, yt,2 = 1:

argmax
ŷt,0,ŷt,2

L1([ŷt,0, ŷt,2], [yt,0, yt,2] = [1, 1])

s.t. τt,1(ŷt,0(1− ŷt,2) + (1− ŷt,0)ŷt,2) + (1− τt,1)2 ∗ α ∗ (1− α) >
c

r
0 ≤ ŷt,0 ≤ 1

0 ≤ ŷt,2 ≤ 1

(21)

Note that L1(ŷt,0, ŷt,2, yt,0 = 1, yt,2 = 0) = ŷt,0ŷt,2. It can be shown that we can approximate the
argmax with ŷt,0 = 1−

c
r−(1−τt,1)2α(1−α)

τt,1
− ϵ, ŷt,2 = 1, for a small ϵ. If the solution is unfeasible,

R = 3 is not attainable.

D.3 EXISTENCE OF DISCOUNT RATES FOR DIFFERENT OPTIMAL PREDICTORS

Now we assume a predictor which maximizes the number of successful groups, for an infinite hori-
zon with a discount factor of γ:

• Low γ (Figure 12): Consider the scenario where predictor can only obtain R = 1 (small
increase in τt,1) or R = 0 (large increase in τt,1). The predictor prefers to receive R = 1
now, instead of R = 0 now and R = 3 for the next k steps.

• Medium γ (Figure 5): The predictor prefers to receive R = 3 now, instead of R = 0 now
and R = 3 for the next n step. It also prefers to receive R = 0 now to boost trust and
receive R = 3 for the next k steps, instead of receiving R = 1 now and R = 1 for the next
l-steps, followed by one R = 3.

• High γ: The predictor prefers to receive R = 0 to boost trust and receive R = 3 for the
next n steps, instead of receiving R = 3 now.

Low γ occurs for 0 ≤ γ < κ. Consider the extreme case of receiving R = 1 in t = 0 followed by
R = 0 forever, alternatively to receiving R = 0 in t = 0 followed by R = 3 forever. We get a lower
bound on κ, dubbed κl, given by 1 = 3

1−κl
− 3(=)κl = 0.25. For γ < 0.25, predictor picks R = 1

now even if R = 0 after (shown in Figure 12).

Medium γ occurs for κ < γ < ν. Similarly, we get a lower bound νl given by 3 = 3
1−νl − 3(=

)νl = 0.5. To show medium γ ∈ [κ, ν] exists, i.e. κ < ν, we introduce further assumptions.
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Figure 12: Trust oscillation induced by a welfare maximizer. T = 2
3 and G is a 3-node chain (as

seen in Figure 1b). Parameters are c = 0.3, r = 0.5, B = 1, α = 0.8, τ0 = 0.5. The above strategy
is optimal for at least γ ∈ [0, 0.25].

For the particular values of r = 0.5, c = 0.3, α = 0.8 we observe that l is at least 3 (in the best
case) and k is at least 2 (in the worst case). Therefore we compare two sequences of rewards:
1, 1, 1, 3, 1, 1, 1, 3, ... and 0, 3, 3, 0, 3, 3, .... The predictor prefers the latter for approximately γ ≥
0.4, yielding an upperbound κu ≈ 0.4. Therefore, with r = 0.5, c = 0.3, α = 0.8, we have a
“medium γ” at least for γ ∈ [0.4, 0.5], whose behaviour is shown in Figure 5.

For higher values of γ, predictor may prefer R = 0 followed by R = 3 n-times, instead of R = 3
now.

We note that, perhaps surprisingly, the posterior computation of trust τt doesn’t concentrate around
a specific value, as more evidence is gathered. This happens because there is not a static distribution
which we try to approximate with τt. Instead, whether α or ŷt is the correct model varies with time.
Additionally, our posterior is over a binary variable, unlike posteriors for continuous variables or
categorical with many values, where the tail of the distribution can be reduced over time. This allows
for large sudden changes in τt, even after several (possibly contradicting) evidence was gathered.

E GRADIENT DECOMPOSITION

We wish to maximize social welfare UPop = B
∑T
t=1

∑N
i=1(1[

ki
Mi

≥ T ] ∗ r − yi,t ∗ c). Note that
yi = 1[πCi

− πDi
> 0], meaning there are 2 step-functions 1[·] in UPop where gradient is zero.

Both can be replaced by sigmoids σ(·), leading to a differentiable approximation ÛPop. We first
analyse a further simplified ÛC, where the goal is to maximize the total number of cooperators in
the population.

UC =
∑T
t=1

∑N
i=1 yi,t =

∑T
t=1

∑N
i=1 1[πCi,t − πDi,t > 0]

Let ỹi,t = σ(πCi,t − πDi,t) and ÛC =
∑T
t=1

∑N
i=1 ỹi,t.

∇ϕÛC =
∑T
t=1

∑N
i=1 ∇ϕỹi,t

=
∑T
t=1

∑N
i=1 ∇ϕσ(rB[τt,i(ϕ)g(Ti|ŷj∈N (i)(ϕ)) + (1− τt,i(ϕ))g(Ti|αi,j∈N (i))]− cB︸ ︷︷ ︸

ht,i(ϕ)

)

=
∑T
t=1

∑N
i=1 σ(ht,i(ϕ))(1− σ(ht,i(ϕ)))∇ϕht,i(ϕ)

=
∑T
t=1

∑N
i=1 ỹi,t(ϕ)(1− ỹi,t(ϕ))rB︸ ︷︷ ︸

ψt,i(ϕ)

∇ϕ[τt,i(ϕ)g(Ti|ŷj∈N (i)(ϕ)) + (1− τt,i(ϕ))g(Ti|αi,j∈N (i))]
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=
∑T
t=1

∑N
i=1 ψt,i(ϕ)∇ϕ[τt,i(ϕ)(g(Ti|ŷj∈N (i)(ϕ))− g(Ti|αi,j∈N (i)))]

=
∑T
t=1

∑N
i=1 ψt,i(ϕ)∇ϕ[τt,i(ϕ)(g(Ti|fj∈N (i)(y

t−1
1:N (ϕ);ϕ))− g(Ti|αi,j∈N (i)))]

=
∑T
t=1

∑N
i=1 ψt,i(ϕ)[(g(Ti|fj∈N (i)(y

t−1
1:N (ϕ);ϕ))−g(Ti|αi,j∈N (i)))∇ϕτt,i(ϕ)︸ ︷︷ ︸

accuracy

+τt,i(ϕ)∇ϕg(Ti|fj∈N (i)(y
t−1
1:N (ϕ);ϕ))︸ ︷︷ ︸

steering

]

∇ϕτt,i(ϕ) can be interpreted as an accuracy component, where we are interested in having pre-
dictions that match past observations in order to increase trust. Interestingly, if the difference
g(Ti|fj∈N (i)(y

t−1
1:N (ϕ);ϕ)) − g(Ti|αi,j∈N (i)) becomes negative, it means the model’s current pre-

dictions are less cooperation-inducing than the agent’s innate behaviour. In this case, the gradient
will push to decrease accuracy, to incentivize agents to ignore predictions and instead follow their
innate behaviour.

The second gradient ∇ϕg(Ti|ŷj∈N (i)(ϕ)), or equivalently ∇ϕg(Ti|fj∈N (i)(y
t−1
1:N (ϕ);ϕ)), can be

interpreted as a steering component. If trust τt,i(ϕ) approaches zero, we won’t care about steering
since the agents are currently ignoring predictions.

The role of ψt,i(ϕ) is to scale the gradient. Gradients have a larger magnitude when ht,i(ϕ) is close
to zero, where the agent i is closer to flipping her action between cooperate and defect.

Now let success Si,t = 1[
ki,t
Mi

≥ T ], its differentiable version S̃i,t = σ(
ki,t
Mi

− T ) and ÛPop =

B
∑T
t=1

∑N
i=1(S̃i,t ∗ r − ỹi,t ∗ c).

∇ϕÛPop = B
∑T
t=1

∑N
i=1(r ∗ ∇ϕS̃i,t − c ∗ ∇ϕỹt,i)

∇ϕS̃i,t = S̃i,t(1 − S̃i,t)∇ϕ(
ki,t
Mi

− T ) = S̃i,t(1 − S̃i,t)
1
Mi

∇ϕki,t = S̃i,t(1 −
S̃i,t)

1
Mi

∑
j∈N (i)∪{i} ∇ϕỹj,t

where each ∇ϕỹj,t can be analyzed as in ∇ϕÛC .

Optimizing for either ÛPop or ÛC leads to qualitatively similar results empirically.
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F EXPERIMENT DETAILS

F.1 ACCURACY MAXIMIZATION

gnn gnn+linear gnn+mlp mlp
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Optimizing accuracy with different architectures
% of successful groups
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Figure 13: Performance of different architectures, when optimized to maximize accuracy. All pa-
rameters follow Figure 7.

Any of the used architectures (including a GNN alone) is able to reach perfect accuracy when op-
timizing for it, at the expense of a very low proportion of successful groups (Figure 13). These
experiments maximize accuracy through RRM. In this setting, by RRM we mean that a) we com-
pute the gradient which makes predictions closer to the observed actions for a game of 20 rounds,
b) update the model, c) deploy predictions for a new game, and d) observe new actions. This gra-
dient computation ignores the agents’ adaptive behaviour. However, if we assume knowledge of
agents’ adaptation, we observe empirically that results do not change qualitatively. There is an ad-
ditional component of the gradient which searches for predictions that push true actions towards the
predicted ones. However its effect is negligible.

F.2 TRAINING, TESTING AND PARETO FRONT COMPUTATION

Regarding the computation of the Pareto front, the method proposed in Sener & Koltun (2018)
searches for one arbitrary point in the Pareto front. However, due to instability in the training
procedure, in our setting we end up traversing a variety of points which do not Pareto dominate each
other. The Pareto front displayed in Figure 6 is obtained by training for 200 epochs and keeping
only pairs of values (for group success and accuracy) that are not Pareto dominated.

Since agents’ actions are deterministic, we only use one sample during training to compute each
gradient step, as well as one sample to evaluate the metric. This sample is a time-series of length 20
(number of rounds per game). We compute the accurary and/or welfare for this sample, and report
the max over the 200 epochs. This makes the model trainable on a laptop without the use of a GPU.
Future work may consider non-deterministic agent actions by using different assumptions about
agent behaviour or about information available to them. For each goal (accuracy, group success, or
multi-objective) we compute 3 runs of 200 epochs with different model initializations, and pick the
model parameter which yields the highest value. For multi-objective we choose as metric the product
of both goals, and display the entire Pareto front containing the point with the highest product.

F.3 ABLATION OF PERFORMATIVE GRADIENT

Maximizing welfare requires access to the performative gradient, since predictions only influence
welfare by changing the distribution. Future work estimating performative gradients under the in-
fluence of trust will need to consider which sub-components are most important to estimate. Here
we show the importance of different components of the gradient (Figure 14).

We consider a surrogate loss for simplicity, which maximizes number of cooperators, instead of
number of successful groups. Empirically we observe that maximizing either loss yields similar
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Figure 14: Ablation of cooperation maximizer, excluding components of the performative gradient.
Each curve is the average of 5 runs, and the shaded area corresponds to standard deviation.

results. We use a differentiable proxy where the predictor assumes each agent’s deterministic be-
haviour (yt,i = 1[E[πC −πD] > 0]) is replaced by a sigmoid (ỹt,i = σ(E[πC −πD]). We then have
the following loss per agent i, for time-step t:

ℓt(θ) = −ỹt = −σ(E[πC − πD]︸ ︷︷ ︸
eτt,θt,α

)

And the corresponding gradient:

∇θℓt(θ) = ∇eτt,θt,α
ℓt(θ)∇θeτt,θt,α = −σ(eτt,θt,α)σ(1− eτt,θt,α)∇θeτt,θt,α

Computing ∇eτt,θt,α
ℓt(θ) requires knowing τt and α, which can be estimated. Computing

∇θeτt,θt,α however, requires knowing how an agent updates its τt, as we show below:

∇θeτt,θt,α = ∇θrB[τtg(Ti|ŷt) + (1− τt)g(Ti|α)] =
∇g(Ti|ŷt)(eτt,θt,α)∇θ(g(Ti|ŷt)) +∇τt(eτt,θt,α)∇θ(τt)

• ∇θ(g(Ti|ŷt)) does not require knowledge of the agent adaptation.
• ∇g(Ti|ŷt)(eτt,θt,α) = rBτt

• ∇τt(eτt,θt,α) = rB(g(Ti|ŷt)− g(Ti|α))
• ∇θ(τt) = ∇τt−1

(τt)∇θ(τt−1)︸ ︷︷ ︸
recurrence

+∇L(ŷt,yt)(τt)∇θL(ŷt, yt)

To assess the need of knowing the agent adaptation, we set ∇θ(τt) = 0 (Figure 14, green curve).
Training reaches a peak of around 0.4, as it searches for predictions with increasingly higher like-
lihood of all agents being at the threshold. However, once we need to balance trust with accuracy,
this procedure drops to around 0.1 and does not recover.

In an intermediate scenario, we assume ∇τt−1
(τt) = 0 (Figure 14, red curve). This assumes knowl-

edge of how current accuracy L(Ŷt, Yt) influences current trust τt, but not how previous predictions
{ŷt′ : t′ < t} influence τt across time. In this setting we can recover after an initial drop in cooper-
ation, unlike with ∇θ(τt) = 0. However, it does not enable reaching significantly higher values of
cooperation. This illustrates the importance of knowing or estimating how predictions affect agents’
trust across time. When there is uncertainty or only partial knowledge of the population’s adaptive
behavior, efficient methods to estimate adaptation will be required for maximizing accuracy.
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G VISUALIZING A POPULATION PLAYING A CRD

Figure 15: Population playing the Performative Collective Risk Dilemma over a scale-free network
(Barabási & Albert, 1999). Circle borders indicate the agents’ last action (green for cooperate, red
for defect), and the filling indicates how much the agent currently trusts the predictor.

24


	Introduction
	A Model for Predicting Collective Action
	Agent Model
	Performative Prediction in Collective Action

	Model Dynamics
	Threshold and Topological Constraints
	Convergence to Low Welfare
	Self-Organization without Predictor
	Trust Dynamics

	Learned Predictor and Simulations
	Related Work
	Discussion
	Conclusion
	Best Response
	Full Success Is Not Always Achievable
	Convergence to Low Welfare Under RRM
	Conditions for Oscillations in Trust
	Setup
	Optimal Prediction for a Given Outcome
	Existence of Discount Rates for Different Optimal Predictors

	Gradient Decomposition
	Experiment Details
	Accuracy Maximization
	Training, Testing and Pareto Front Computation
	Ablation of Performative Gradient

	Visualizing a Population Playing a CRD

