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ABSTRACT

Active learning methods aim to improve sample complexity in machine learning.
In this work, we investigate an active learning scheme via a novel gradient-free
cutting-plane training method for ReLU networks of arbitrary depth. We demon-
strate, for the first time, that cutting-plane algorithms, traditionally used in linear
models, can be extended to deep neural networks despite their nonconvexity and
nonlinear decision boundaries. Our results demonstrate that these methods pro-
vide a promising alternative to the commonly employed gradient-based optimiza-
tion techniques in large-scale neural networks. Moreover, this training method
induces the first deep active learning scheme known to achieve convergence guar-
antees. We exemplify the effectiveness of our proposed active learning method
against popular deep active learning baselines via both synthetic data experiments
and sentimental classification task on real datasets.

1 INTRODUCTION

Large neural network models are now core to artificial intelligence systems. After years of devel-
opment, current large NN training is still dominated by gradient-based methods, which range from
basic gradient descent method to more advanced online stochastic methods such as Adam (Kingma
& Ba, 2017) and AdamW (Loshchilov & Hutter, 2019). Recent empirical effort has focused on
cutting down storage requirement for such optimizers, see (Griewank & Walther, 2000; Zhao et al.,
2024); accelerating convergence by adding momentum, see (Xie et al., 2023); designing better step
size search algorithms, see (Defazio & Mishchenko, 2023). Despite its popularity, gradient-based
methods suffer from sensitivity to hyperparameters and slow convergence. Therefore, researchers
are persistently seeking for alternative training schemes for large NN models, including involve
zero-order and second-order algorithms.

Cutting-plane method is a classic optimization algorithm and is known for its fast convergence rate.
Research on cutting-plane type methods dates back to 1950s when Ralph Gomory (Gomory, 1958)
first studied it for integer programming and mixed-integer programming problems. Since then, this
method has also been heavily investigated for solving nonlinear problems. Different variations of
cutting-plane method emerge, including but not limited to center of gravity cutting-plane method,
maximum volume ellipsoid cutting-plane method, and analytic center cutting-plane method, which
mainly differ in their center-finding strategy.

Historically, deep NN training and cutting plane methods have developed independently, each with
its own audience. In this work, we bridge them for the first time by providing a viable cutting-plane-
based deep NN training and active learning scheme. Our method finds optimal neural network
weights and actively queries additional training points via a gradient-free cutting plane approach.
We show that an active learning scheme based on our newly proposed cutting-plane-based strategy
naturally inherits classic convergence guarantees of cutting-plane methods. We present synthetic
and real data experiments to demonstrate the effectiveness of our proposed methods.

2 NOTATION

We denote the set of integers from 1 to n as [n]. We use Bp := {u ∈ Rd : ∥u∥p ≤ 1} to
denote the unit ℓp-norm ball and ⟨·, ·⟩ to denote the dot product between two vectors. Given a
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Figure 1: Illustration of a single iteration of general cutting-plane method (Boyd & Vandenberghe, 2007).

hyperplane H := {x : xTw = 0}, we use H+ (H−) to denote the positive (negative) half-space:
H+(−) := {x : xTw ≥ (≤)0}. For ReLU, we use notation (x)+ = max(x, 0). We take 1{x ∈ S}
as the 1/0-valued indicator function with respect to the set S, evaluated at x.

3 PRELIMINARIES

Classic cutting-plane method’s usage in different optimization problems has been heavily studied.
To better demonstrate the problem and offer a more self-contained background, we start with de-
scribing basic cutting-plane method’s workflow below.

Cutting-Plane Method. Consider any minimization problem with an objective function f(θ),
where the solution set, denoted as Θ, is a convex set. Cutting-plane method typically assumes
the existence of an oracle that, given any input θ0, either confirms that θ0 ∈ Θ, thereby terminating
with θ0 as a satisfactory solution, or returns a pair (x, y) such that xT θ0 ≤ y while xT θ > y for
all θ ∈ Θ. If the cut is “good enough,” it allows for the elimination of a large portion of the search
space, enabling rapid progress toward the true solution set Θ. The classic convergence results of the
cutting-plane method are highly dependent on the quality of the cut in each iteration. For instance, if
the center of gravity of the current volume is removed, it guarantees a volume reduction of approx-
imately 63%. Similar results hold for the analytic center and the center of the maximum volume
ellipsoid. Figure 1 illustrates a single step of the cutting-plane method, showing how a “good” cut
near the center of the current volume induces a much larger volume reduction compared to a “bad”
cut near the edge.

Cutting-Plane-Based Active Learning (AL) with Linear Models (Louche & Ralaivola, 2015).
Cutting-plane method provides a natural active learning framework to localize a set of deep NN
classifiers with certain classification margins. Prior work (Louche & Ralaivola, 2015) has studied
the use of cutting-plane method in the context of active learning with linear models for binary clas-
sification. The setup is the following. One is given a set of unlabeled data {x1, · · · , xn} ∈ D. The
authors consider a linear binary classifier f(x; θ) := ⟨θ, x⟩ with prediction sign(f(x; θ)) for any in-
put x. Define the set of model parameters that correctly classify our dataset as TD, which is a set of
linear inequalities. The size of parameter set reflects the level of uncertainty in the classifier. Starting
at an initial set T 0, the goal is to query additional data points and acquire their labels to reduce the
size of T 0 to approach TD, which hopefully would have high test accuracy when the generalization
error is small. The cutting-plane-based active learning framework developed by Louche & Ralaivola
(2015) (Algorithm 3) starts with a localized convex set T 0. The algorithm is presented with a set
of unlabeled data. At each step t, it performs the following steps: (i) computes the center of the
current parameter space θtc := center(T t); (ii) queries the label yt for xt from the unlabeled dataset
D which has minimal prediction margin with respect to θtc; (iii) reduces the parameter space via a
cutting-plane in the case of mis-classification: T t+1 = T t ∩ {θ | yt⟨xt, θ⟩ > 0}. The algorithm ter-
minates when set T t is small enough or maximum iterations or data budget have been reached. This
active learning scheme has strong convergence result inherited from classic cutting-plane method,
which has been investigated in (Louche & Ralaivola, 2015).

Disentangling Model Training and Active Learning. Although Louche & Ralaivola (2015) pri-
marily focuses on the active learning setting, their method implicitly suggests a cutting-plane-based
training workflow for linear binary classifiers. To illustrate this, consider a set of training samples
{(x1, y1), . . . , (xn, yn)}. Each pair (xi, yi) induces a cut on the parameter space {θ | yi⟨θ, xi⟩ > 0}.
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The final center, i.e., θc = center({θ | yi⟨θ, xi⟩ > 0, i ∈ [n]}), accounts for all such cuts while
maintaining the desired property sign(f(x; θ)) = y for all training samples. This choice makes θc
not only an optimal solution, but also a robust choice, as it remains stable under data perturbations.

By disentangling the model training process from the active learning query strategy described in
(Louche & Ralaivola, 2015), we derive a gradient-free cutting-plane-based workflow for training
linear binary classifiers. However, this approach has several key limitations: (1) it is restricted to
linear models, (2) it requires the data to be linearly separable to ensure an optimal parameter set, and
(3) it only supports binary classification tasks. Our current work addresses all three limitations by
extending the cutting-plane method to train deep nonlinear neural networks for both classification
and regression tasks, without requiring linear separability of the data. Similar to the linear binary
classification case, our vanilla training scheme lacks desirable convergence guarantees, as the cuts
may occur at the edge of the parameter set. To overcome this, we focus on a cutting-plane-based
active learning scheme that enables cuts to be near the center of the parameter set. We provide
convergence results for this approach, which, to the best of our knowledge, is the first convergence
guarantee for active learning algorithms applied to deep neural networks.

Outline. The paper is organized as follows: in Section 4, we adapt the cutting-plane method for
nonlinear model training by transforming the nonlinear training process into a linear programming
problem. Section 5 introduces the general gradient-free cutting-plane-based training algorithm for
deep NNs. In Section 6, we explore the resulting cutting-plane AL framework and prove its con-
vergence. Section 7 demonstrates the practical effectiveness of our proposed training and active
learning methods through extensive experiments.

4 KEY OBSERVATION: TRAINING RELU NNS FOR BINARY CLASSIFICATION
IS LINEAR PROGRAMMING

The cutting-plane AL scheme proposed by Louche & Ralaivola (2015) (summarized in Section 3)
is designed for linear models like f(x; θ) = ⟨θ, x⟩. Extending this method to nonlinear models,
such as a two-layer ReLU network f(x; θ) = (xT θ1)+θ2, with θ1 ∈ Rd×m and θ2 ∈ Rm, presents
additional challenges. Specifically, for a mispredicted data pair (xi, yi), determining how to cut
the parameter space (θ1, θ2) is far more complex, whereas in the linear case, the cut is simply
yi⟨θ, xi⟩ > 0.

To break this bottleneck and extend the cutting-plane-based learning method to nonlinear models,
we observe that training a ReLU network for binary classification can be formulated as a linear
programming problem. This insight is crucial for extending the learning scheme in (Louche &
Ralaivola, 2015) to more complex models. We now develop our core idea of reframing binary
classification with ReLU models as linear programs. For clarity, we present our results in two
theorems: one for two-layer ReLU networks and another for ReLU networks of arbitrary depth. We
focus on the two-layer case in the main paper for detailed discussion, deferring the more abstract
general case to Appendix F.2. Since the general case is an extension of the two-layer model, focusing
on the two-layer case should provide a clearer understanding of the core concepts.

We start with writing the linear program corresponding to the linear model for binary classification
tasks as below,

find θ

s.t. yi⟨θ, xi⟩ ≥ 1 ∀i.
(1)

Note that intuitively, we want yi⟨θ, xi⟩ > 0 to be satisfied for our sign prediction. However, the set
{θ|yi⟨θ, xi⟩ > 0} is not compact and is thus not compliant with forms of standard linear programs.
This may raise technical issues. We observe that our training data is finite, and thus we can always
scale θ to achieve yi⟨θ, xi⟩ ≥ c for any positive constant c once yi⟨θ, xi⟩ > 0 holds, and yi⟨θ, xi⟩ ≥
c for c > 0 also guarantees yi⟨θ, xi⟩ > 0. We pick c = 1 in (1). With a two-layer ReLU model, we
obtain the following problem:

find W1,W2

s.t. yi(x
T
i W1)+W2 ≥ 1 ∀i.

(2)

Before showing that solving (2) is indeed equivalent to solving a linear program, we first introduce
the core concept of activation patterns which we will draw on heavily later. For data matrix X ∈

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Rn×d and any arbitrary vector u ∈ Rd, we consider the set of diagonal matrices

D := {diag(1{Xu ≥ 0})}.
We denote the carnality of set D as P , i.e., P = |D|. Thus {Di ∈ D, i ∈ [P ]} iterates over all
possible activation patterns of ReLU function induced by data matrix X . See Definition 3 for more
details. With this concept of activation patterns, we can reframe the training of two-layer ReLU
model for binary classification as the following linear program:
Theorem 4.1. When m ≥ 2P , Problem (2) is equivalent to

find ui, u
′
i

s.t. y

(
P∑
i=1

DiX(ui − u′i)

)
≥ 1,

(2Di − I)Xui ≥ 0,

(2Di − I)Xu′i ≥ 0.

(3)

Proof. See Appendix F.1.

The high-level rationality behind Theorem 4.1 is the observation that

(XW1)+W2 =

m∑
i=1

(XW1i)+ W2i =

m∑
i=1

diag(1{XW1i ≥ 0})XW1iW2i. (4)

By defining Ki := diag(1{XW1i ≥ 0}) and a set of {vi, v′i} vectors by setting vi := W1iW2i

when W2i ≥ 0 and 0 otherwise, v′i := −W1iW2i when W2i < 0 and 0 otherwise, we have
diag(1{XW1i ≥ 0})XW1iW2i = KiX(vi − v′i). The expression in (4) thus writes

(XW1)+W2 =

m∑
i=1

KiX(vi − v′i) where (2Ki − I)Xvi ≥ 0, (2Ki − I)Xv′i ≥ 0.

Therefore, if we iterate over all Di ∈ D, we are guaranteed to reach each Ki. The equivalence in
Theorem 4.1 holds in the sense that, which we prove rigorously in Appendix F.1, whenever there
is solution W1,W2 to Problem (2), there is always solution {ui, u

′
i} to problem (3) and vice versa.

Moreover, when an optimal solution {u⋆
i , u
′⋆
i } to problem (3) has been found, we can explicitly

create an optimal solution {W ⋆
1 ,W

⋆
2 } to Problem (2) from value of {u⋆

i , u
′⋆
i }, see Appendix F.1 for

details. Thereafter, for any test point x̃, our sign prediction is simply sign((x̃W ⋆
1 )+W

⋆
2 ), which will

have the same value as sign(
∑

i(x̃
Tu⋆

i )+ − (x̃Tu′⋆i )+).

We emphasize that our reframing of training a ReLU network for binary classification as linear pro-
gramming does not eliminate the nonlinearity of the ReLU activation. Instead, this approach works
because the ReLU activation patterns for a given training dataset are finite. By looping through
these activation patterns, we can explicitly enumerate them. At test time, the ReLU nonlinearity is
preserved, as our prediction sign(

∑
i(x̃

Tui)+ − (x̃Tu′i)+) depends on the sign of x̃Tui and x̃Tu′i,
ensuring that the expressiveness of the nonlinearity remains intact. A careful reader might note that
the number of patterns P increases with the size of the training data, meaning the number of vari-
ables in Problem (3) may also grow. Additionally, finding all activation patterns poses a challenge. In
Section 7, we demonstrate that subsampling a set of non-duplicate activation patterns performs well
in practice. For further grounding, Appendix F.4 outlines an iterative hyperplane filtering method
that guarantees the identification of all activation patterns with a reasonable complexity bound.

Now, let us consider ReLU network with n hidden layer for binary classification task

find W1,W2, · · · ,Wn+1

s.t. y ⊙ ((· · · (((XW1)+W2)+W3)+W4 · · · )+Wn)+Wn+1 ≥ 1.
(5)

We extend the activation patterns involved in Theorem 4.1 to (n + 1)-layer neural networks. Let
W1 ∈ Rd×m1 ,W2 ∈ Rm1×m2 ,W3 ∈ Rm2×m3 , · · · ,Wn ∈ Rmn−1×mn ,Wn+1 ∈ Rmn . Define
m0 := d and the activation pattern in i-th layer as

D(i) :=

{
diag(1{

(
· · · ((Xv1)+v2)+ v3 · · ·

)
+
vi ≥ 0})

∣∣∣∣vj ∈ Rmj−1×mj ∀ j < i, vi ∈ Rmi−1

}
.
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We denote the cardinality of set D(i) as Pi, i.e., Pi = |D(i)|. Thus {D(i)
j ∈ D(i), j ∈ [Pi]} iterates

over all possible activation patterns at the i-th hidden layer. We then reframe Problem (5) as below:

Theorem 4.2. When mi ≥ Πn
i 2Pi for each i ∈ [n], Problem (5) is equivalent to

find u
cncn−1cn−2···c1
jnjn−1jn−2...j1

s.t. y ⊙
Pn∑

jn=1

D
(n)
jn

(
T (n−1)
1 (D(n−1))− T (n−1)

2 (D(n−1))
)
≥ 1

(2D
(i)
ji
− I)T (n−1)(n−2)···(i−1)

cn−1cn−2···ci−1 (D(i−1)) ≥ 0, 2 ≤ i ≤ n

(2D
(1)
j1
− I)Xu

cncn−1···c1
jnjn−1···j1 ≥ 0,

(6)

where ci ∈ {1, 2} and

T (n−1)···(i)
cn−1···ci (D(i)) =

Pi∑
ji=1

D
(i)
ji

(
T (n−1)···(i)(i−1)
cn−1···ci1 (D(i−1))− T (n−1)···(i)(i−1)

cn−1···ci2 (D(i−1))
)
,∀ i ≤ n− 1,

T (n−1)(n−2)···(1)
cn−1cn−2···c1 (D(1)) =

P1∑
j1=1

D
(1)
j1

X
(
u
1cn−1cn−2···c1
jnjn−1···j1 − u

2cn−1cn−2···c1
jnjn−1···j1

)
.

Proof. See Appendix F.2.

5 TRAINING DEEP NEURAL NETWORKS VIA CUTTING-PLANES

Algorithm 1 Training NN with Cutting Plane Method

Input: ϵv, Tmax

Initialization: T 0 ← B2, t← 0
repeat

θtc ← center(T t)
Get new training data (xnt

, ynt
)

if ynt
f(xnt

, θtc) < 0 then
T t+1 ← T t ∩ cut(xnt

, z)
t← t+ 1

end if
until vol(T t) ≤ ϵv or t ≥ Tmax

return θtc

With the linear program reframing of
training deep ReLU models in place,
we now formally introduce our cutting-
plane-based NN training scheme for bi-
nary classification. We begin with a fea-
sible set of variables in our linear pro-
gram (6) that contains the optimal solu-
tion. For each training sample (xi, yi),
we add the corresponding constraints as
cuts. At each iteration, we select the
center of the current parameter set, stop-
ping when either the validation loss sta-
bilizes or after a fixed number of itera-
tions, similar to the stopping criteria in
gradient-based training of large models.

We present our cutting-plane-based NN
training algorithm here in main text. For

generalizations, such as (i) relaxing the data distribution to remove the linear separability require-
ment (Appendix E.1), and (ii) extending from classification to regression (Appendix E.2), we refer
readers to Appendix E. We emphasize that both the relaxed data constraint and the ability to handle
regression tasks are unique to our method and have not been achieved in prior work.

Algorithm 1 presents the general workflow of how we train deep NNs with gradient-free cutting-
plane method, which simply adds a cut corresponding to each training data (xnt

, ynt
). When the

stopping criterion is satisfied, center of current parameter set T t is returned. Here we start with the
parameter space as the unit 2-norm ball, which is guaranteed to contain optimal parameters due to
scale invariance.

After we get the final θtc, for any test point x̃, we can directly compute our sign prediction with θtc.
For example, for two-layer ReLU model, θtc will be of form {ut

i, u
′t
i }, our final sign prediction would

simply be sign(
∑

i(x̃
Tut

i)+ − (x̃Tu′ti )+). For deeper models, the prediction is a bit more complex
and is given in equation (17) in Appendix F.2. Notably, the computation of final sign prediction from
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value of θtc always takes a single step, just as one forward pass of original NN model formulation.
Moreover, one can also restore optimal NN weights from final θtc, see Appendix F.1 for two-layer
case reconstruction of optimal NN parameters and Appendix F.2 for general deep NN models.

Two key functions in our proposed training scheme are the “center” function and the “cut” function,
which we detail below:

• Center. The “center” function calculates the center of the convex set T t. There are a couple
of notions of centers, such as center of gravity (CG), center of maximum volume ellipsoid
(MVE), Chebyshev’s center, and analytic center (Boyd & Vandenberghe (2004)). Among
these, the analytic center is the easiest to compute and is empirically known to be effective
(Goffin et al. (1997), Atlason et al. (2008)). This is the notion of center that we will adopt
to compute the query point in our algorithm. See Appendix H.1 for details.

• Cut. The “cut” function determines the cutting planes we get from a specific train-
ing data (xnt

, ynt
). For two-layer model, “cut” function would return the constraint set

{ynt
(
∑

i Dint
xT
nt
(ui − u′i)) ≥ 1, (2Dint

− 1)xT
nt
ui ≥ 0, (2Dint

− 1)xT
nt
u′i ≥ 0}. For

deeper NNs, “cut” function would return constraints listed in Problem (6).

Compared to gradient-based NN training scheme, we take a cutting-plane cut for each data point
encountered while gradient-based method employs a gradient descent step corresponding to the data
query. Moreover, our training scheme is guaranteed to correctly classify all data points we have ever
encountered, while gradient-based method has no such guarantees.

6 CUTTING-PLANE-BASED ACTIVE LEARNING AND CONVERGENCE
GUARANTEES

6.1 ALGORITHM II: CUTTING-PLANE LOCALIZATION FOR ACTIVE LEARNING

Our proposed cutting-plane-based active learning algorithm adapts and extends the generic frame-
work discussed in Section 5 (Algorithm 3). For the sake of simplicity, we present in this section
the algorithm specifically for binary classification and with respect to two-layer ReLU NNs. We
emphasize that the algorithm can be easily adapted to the case of multi-class and regression, per
discussions in Appendix E.2, and for deeper NNs following our reformulation in Theorem 4.2.

Recall the problem formulation for cutting-plane AL with two-layer ReLU NN for binary classifi-
cation in Equation (3). Given a training dataset D, we use XD and yD to denote the slices of X and
y at indices D. Moreover, we succinctly denote the prediction function as:

f two-layer(X; θ) :=

P∑
i=1

(D(Si)X)D(u
′
i − ui) =

[
X1
D −X1

D . . . XP
D −XP

D
]
θ, (7)

where θ = (u′1, u1, . . . , u
′
P , uP ) with ui, u

′
i ∈ Rd, and Xi

D is a shorthand notation for
(D(Si)X)D. For the further brevity of notation, we denote the ReLU constraints in Equation 3,
i.e. ((2D(Si)− In)X)D ui ≥ 0, ((2D(Si)− In)X)D u′i ≥ 0 for all i, as C(D), C ′(D).

With Theorem 4.1 and the linearization of f two-layer(X; θ), cutting-plane-based active learning meth-
ods become well applicable. As in Algorithm 3, we restrict the parameter space Θ to be within the
unit 2-norm ball: B2 := {θ | ∥θ∥2 ≤ 1} = {θ|

∑P
i=1(∥ui∥22 + ∥u′i∥22) ≤ 1}. For computing the

center of the parameter space at each step for queries, we use the analytic center (Definition 1),
which is known to be easily computable and has good convergence properties. We refer to Section
6.2 for a more detailed discussion.
Definition 1 (Analytic center). The analytic center of polyhedron P = {z|aTi z ≤ bi, i = 1, ...,m}
is given by

AC(P) := argmin
z
−

m∑
i=1

log(bi − aTi z) (8)

We are now ready to present the cutting-plane-based active learning algorithm for deep NNs. For
breadth of discussion, we present three versions of the active learning algorithms, each correspond-
ing to the following setups:

6
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1. Cutting-plane AL with query synthesis (Algorithm 2). The cutting-plane oracle gains access
to a query synthesis. Therefore, the cut is always active until we have encountered the
optimal classifier(s), at which point the algorithm terminates.

2. Cutting-plane AL with limited queries (Algorithm 4). The cutting-plane oracle has access
to limited queries. The cut is only performed when the queried candidate mis-classifies the
data pair returned by the oracle.

3. Cutting-plane AL with inexact cuts (Algorithm 5). The cutting-plane oracle has access to
limited queries. However, the algorithm always performs the cut regardless of whether the
queried candidate mis-classifies the data pair returned by the oracle.

Algorithm 2 Cutting-plane AL for Binary Classifica-
tion with Query Synthesis

1: T 0 ← B2
2: t← 0
3: DAL ← 0
4: repeat
5: θtc ← center(T t)
6: for s in {1,−1} do
7: (xnt , ynt)← QUERY(θtc, s)
8: if ynt · f two-layer(xnt ; θ

t
c) < 0 then

9: DAL ← ADD(DAL, (xnt , ynt))
10: T t+1 ← T t ∩ {θ : ynt · f two-layer(xnt ; θ) ≥

0, C({nt}), C′({nt})}
11: t← t+ 1
12: end if
13: end for
14: until |DAL| ≥ nbudget
15: return θtc

1: function QUERY(θ, s)
2: (x, y)← argmin(xi,yi)∈DQS sf

two-layer(xnt ; θ)

3: return (x, y)
4: end function

For brevity, we present the algorithm for
the first setup here and refer the rest to
Appendix D. Algorithm 2 summarizes
the proposed algorithm under the first
setup, where we have used DQS to de-
note the query synthesis. We note that
Algorithm 4 for the second setup is ob-
tained simply by changing DQS to DLQ,
which denotes limited query.

The general workflow of Algorithm 2
follows that of Algorithm 3 but on
the transformed parameter space via the
ReLU networks. We highlight here two
key differences in our algorithm: (1) in
each iteration, for faster empirical con-
vergence, we query twice for the data
point that is classified positively and
the one that is classified negatively with
highest confidence, respectively. If one
or both of them turn out to be miss-
classifications, this informs the active
learner well and we expect a large cut.
(2) For two- and three-layer ReLU net-

works, Ergen & Pilanci (2021b) demonstrate that these models can be reformulated as exact convex
programs. This allows the option of incorporating a final convex solver into Algorithm 2, applied
after the active learning loop with the data collected thus far. This convex reformulation includes
regularization, which can improve the performance of our cutting-plane AL in certain tasks. For
more details, see Appendix H.2

6.2 CONVERGENCE GUARANTEES

We give theoretical examination of the convergence properties of Algorithm 2 and 4 with respect
to both the center of gravity (cg) and the center of maximum volume ellipsoid (MVE). Analysis of
Algorithm 5 for inexact cuts is given in Appendix G.2. As the analysis of MVE closely parallels
that of CG, we refer readers to Appendix G.3 for a detailed discussion, in the interest of brevity. For
both centers, we measure the convergence speed with respect to the volume of the localization set
T t and judge the progress in iteration t by the fractional decrease in volume: vol(T t+1)/vol(T t).

To start, we give the definitions of the center of gravity (Boyd & Vandenberghe, 2004).
Definition 2 (Center of gravity (CG)). For a given convex body (i.e. a compact convex set with
non-empty interior) C ⊆ Rd, the centroid, or center of gravity of C, denoted θG(C), is given by

θG(C) =
1

vol(C)

∫
x∈C

xdx.

Given convex set C, we use the abbreviated notation θG.

Our analysis on the center of gravity relies on an important proposition (Proposition 1) given by
Grünbaum (1960), which guarantees that in each step of cutting via a hyperplane passing through the
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centroid of the convex body, a fixed portion of the feasible set is eliminated. A recursive application
of this proposition shows that after t steps from the initial step, we obtain the following volume
inequality: vol(Tt) ≤ (1− 1/e)tvol(T0) ≈ (0.63)tvol(T0).
Observe that our proposed cutting-plane-based active learning method in Algorithm 2 and 4 uses
a modified splitting, where the weight vector in Proposition 1 is substituted by a mapping of the
parameters θ to the feature space via function f two-layer, which depends on point xnt

returned by the
oracle at the step, along with the associated linear constraints C({nt}), C′({nt}). Since f two-layer is
linear in θ as we recall that

f two-layer(xnt
; θ) = [x1

nt
− x1

nt
... xP

nt
− xP

nt
]θ,

the set defined by {θ|ynt · f two-layer(xnt ; θ) ≥ 0} forms a half-space in the parameter space.
Additionally, since the constraints C({nt}), C′({nt}) are linear in θ, the cutting set {θ : ynt

·
f two-layer(xnt

; θ) ≥ 0, C({nt}), C′({nt})} in Algorithm 2 and 4 defines a convex polyhedron. This
change suggests a non-trivial modification of the results given in Proposition 1. The following the-
orem is our contribution.
Theorem 6.1 (Convergence with Center of Gravity). Let T ⊆ Rd be a convex body and let θG
denote its center of gravity. The polyhedron cut given in Algorithm 2 and Algorithm 4 (assuming
that the cut is active), i.e.,

T ∩ {θ : yn · f two-layer(xn; θ) ≥ 0, C({n}), C′({n})},

where coupling (xn, yn) is the data point returned by the cutting-plane oracle after receiving queried
point θG, partitions the convex body T into two subsets:

T1 := {θ ∈ T : yn · f two-layer(xn; θ) ≥ 0, C({n}), C′({n})}
T2 := {θ ∈ T : yn · f two-layer(xn; θ) < 0, or ¬C({n}),¬C′({n})},

where ¬ denotes the complement of a given set. Then T1 satisfies the following inequality:

vol(T1) <
(
1− 1

e

)
· vol(T ).

Proof. See Appendix G.1.

7 EXPERIMENTS

We validate our proposed training and active learning methods through extensive experiments, com-
paring them with various popular baselines from scikit-activeml (Kottke et al., 2021) and
DeepAL (Huang, 2021). Synthetic data experiments are presented in Section 7.1, and real data ex-
periments are presented in Section 7.2. An overview of each baseline is given in Appendix H.3. For
implementation details and additional results, refer to Appendix H.

7.1 SYNTHETIC DATA EXPERIMENTS

In this section, we present small scale numerical experiments to verify the performance of our algo-
rithm on both classification and regression tasks.

Binary Classification on Synthetic Spiral. We use a synthetic dataset of two intertwined spirals
with positive and negative labels, respectively (see generation details in Appendix H.4). We generate
100 spiral data points with a 4:1 train-test split. Table 3 in Appendix H.4 presents the train and test
accuracy of our cutting-plane AL (Algorithm 4) compared to popular deep AL baselines, with all
methods evaluated with a query budget of 20 points (25% of train data). Our method achieved perfect
accuracy on both sets, outperforming all baselines. Notably, the strong performance of our cutting-
plane AL extends to the 3-layer case, achieving train/test accuracies of 0.71/0.60, while using only a
fraction of neurons per layer (57 and 34, resp.) compared to the two-layer cutting-plane AL, which
used 623 neurons. This result is illustrated in the corresponding decision boundary plot in Figure
2, where the 3-layer cutting-plane AL is one of the few methods to capture the spiral’s rough shape
despite using smaller embeddings, while the two-layer cutting-plane AL, with the same network
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Figure 2: Decision boundaries for binary classification on the spiral dataset for the cutting-plane AL method using a two-layer ReLU neural
network, alongside various deep AL baselines. For compactness, we also include the decision boundaries for the cutting-plane AL method
with a three-layer ReLU network in the collage to demonstrate its feasibility. For fairness of comparison, we use the same two-layer ReLU
network structure and embedding size of 623 for all methods. We enforce the same hyperparameters for all deep AL baselines and select the
best performing number of training epochs at 2000 and a learning rate at 0.001 to ensure optimal performance. See Appendix H.3 for details.

structure as the baselines, precisely traces the spiral. We emphasize that the superior performance of
our cutting-plane AL remains consistent across different random seeds. As shown in the error-bar
plot in Figure 15, our approach reliably converges to the optimal classifier faster than all the tested
baselines in the number of queries.

Quadratic Regression. We evaluate the performance of our method (Algorithm 6) against the
same seven baselines used in the spiral task, along with two additional popular regression AL meth-
ods from scikit-activeml: greedy sampling in target space (GreedyT) and KL divergence
maximization (kldiv), on a simple quadratic regression task. We generate 100 noise-free data points
from the function y = x2 and apply the AL methods on a 4:1 train-test split with a query budget
of 20 points. Table 5 in Appendix H.5 shows the root mean square error (RMSE) (see Definition
5), and left of Figure 3 provides a visualization of the final predictions of our method compared
with a selection of baselines. We refer readers to Figure 18 for the complete version. Our cutting-
plane AL achieves the lowest train/test RMSE of 0.01/0.01, representing an over 80%/75% reduction
compared to the next best-performing baseline.This superior performance remains consistent across
random seeds, as demonstrated in the train/test error-bar plots right of Figure 3, where our method
consistently converges faster to the optimal classifier in terms of the number of queries.

7.2 SENTIMENT CLASSIFICATION FOR REAL DATASETS USING LLM EMBEDDINGS

To demonstrate the viability of our method when applied to tackle real life tasks, we also explore
the concatenation of microsoft Phi-2 (Javaheripi et al., 2023) model with our two-layer ReLU bi-
nary classifier for sentiment classification task on IMDB (Maas et al., 2011) movie review datasets.
Specifically, the dataset contains 50k movie reviews collected online with each comment accompa-
nied with binary labels where +1 denoting a positive review and−1 denoting a negative review. See
Appendix H.6 for several training data examples. We test our proposed active learning algorithm
conjuncted with our cutting-plane training scheme as described in Section 5 and Section 6 respec-
tively. For our experiment, we first collect all last layer Phi-2 embeddings (corresponding to last
token), which is of size d = 2560, for our training and testing movie reviews as our feature vectors.
We follow the implementation details in Appendix H.1 and sample P = 500 activation patterns to
cater for the large dimension feature space.

Figure 4 demonstrates our experimental results involving our method and various baselines. The left
most figure compares the classification accuracy between our two-layer ReLU model and the linear
model studied in (Louche & Ralaivola, 2015). As it can be seen, our model achieves higher accuracy
within same query budget compared to the linear classifier, which demonstrates the effectiveness
of using a nonlinear model in this task. The middle plot compares our active learning method
and the random sampling method, both are with two-layer ReLU model. As expected, our active
sampling scheme identifies important data points in each iteration, which helps to train a better
network within same query budget. The right most plot compares between our newly-introduced

9
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Figure 3: Left: Predictions for the quadratic regression task using the cutting-plane AL method with a two-layer ReLU neural network,
alongside various deep AL baselines. For brevity, we present only the most representative examples here and refer to Figure 18 in Appendix
H.5 for the full result. Implementation details can be found in Appendix H.5. We note that the linear cutting-plane AL for regression (Algorithm
7) becomes infeasible when solving for the next center after the fourth query. This failure is expected, see Appendix D. Thus the reported
prediction for this method is based on 4 queries, while all other methods use 20 queries. Right: Logarithm of mean test/train RMSE across
seeds (0-4) versus the number of queries for the two-layer cutting-plane AL and various baselines. The linear cutting-plane method is omitted
from the plot due to its infeasibilty.

cutting-plane-based NN training scheme and classic stochastic gradient descent (SGD) method. For
SGD baselines, we take one gradient step corresponding to each data query. For NN trained with
SGD, people usually use batched data for gradient computation, thus within as few as 15 query
points, it is reasonable that SGD does not make good progress. On the contrary, our cutting-plane
training scheme achieves higher accuracy with this tiny training budget.

Figure 4: Sentiment analysis on IMDB movie review dataset with two-layer ReLU model. We take Phi-2 embedding as our training features
and compare with various baselines. The result shows that the introduction of non-linearity improves upon linear model performance, our
active sampling scheme effectively identifies valuable training points compared to random sampling, and our cutting-plane training scheme is
more effective than SGD in this setting. See Section 7.2 for details. Linear and our reframed two-layer models are initialized to predict zero
while two-layer NN trained with SGD has random weight initialization, thus starting from non-zero prediction.

8 CONCLUSION AND LIMITATION

In this work, we introduce a novel cutting-plane-based method for deep neural network training.
We also explore an active learning scheme built on our proposed training framework. Despite its
novelty, our current implementation has several key limitations that hinder its competitiveness with
large-scale models trained using gradient-based methods: (1) our hyperplane subsampling process is
not exhaustive; (2) our implementation relies on CPU-based convex program solver and is inefficient
for large-scale problems with many variables; (3) our approach has so far been applied only to
classification and regression tasks. Due to space constraints, the prior work section is deferred
to Appendix A and detailed conclusion and limitations section is deferred to Appendix B.
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9 REPRODUCIBILITY STATEMENT

We state that all the theoretical and experimental results presented in this paper are obtained with re-
producibility in mind. Detailed proofs of the theoretical results from Sections 4 and 6 are provided
in Appendices F and G, respectively. Furthermore, additional results, including the relaxation of
certain constraints (e.g., data distribution requirements) and key generalizations (such as the exten-
sion from classification to regression), are discussed in Appendix E. To reproduce the experimental
results, we provide detailed implementation procedures, including data generation and numerical
solver deployment, in Appendix H. Our code has been submitted as a zip file, along with instruc-
tions for reproducing the plots presented in the main text.
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A PRIOR WORK DISCUSSION

We emphasize the novelty of our work as the first to introduce both cutting-plane-based training
schemes and cutting-plane-based active learning methods to deep neural network models. To the
best of our knowledge, this work also provides the first convergence guarantees among existing
active learning methods for nonlinear neural networks. As discussed in Section 3, the most closely
related work is (Louche & Ralaivola, 2015), which also integrates the concepts of cutting-plane
methods, active learning, and machine learning for binary classification tasks. We are not aware of
any other studies that closely align with our approach. However, we review additional works that,
while less directly connected, share some overlap with our research in key areas.

Cutting-Plane Method. Cutting-plane methods are first introduced by Gomory (1958) for linear
programming. Though being considered as ineffective after it was first introduced, it has been later
shown by Balas et al. (1993) to be empirically useful when combined with branch-and-bound meth-
ods. Cutting-plane method is now heavily used in different commercial MILP solvers. Commonly
employed cutting planes for solving convex programs are tightly connected to gradient informa-
tion, which is also the underline logic for well-known Kelley’s cutting-plane method (Kelley, 1960).
Specifically, consider any minimization problem with objective f(θ) whose solution set, we denote
as Θ, is a convex set. Gradient-based cutting-plane method usually assumes the existence of an
oracle such that given any input θ0, it either accepts θ0 ∈ Θ - and thus terminates with a satisfactory
solution θ0 being found - or it returns a pair (x, y) such that xT θ0 ≤ y while xT θ > y for any θ ∈ Θ,
i.e., we receive a cutting plane that cuts between the current input θ0 and the desired solution set
Θ. Such cut is given by subgradient of f at query point θ0. Consider any subgradient g ∈ ∇f(θ0),
we have the inequality f(θ) ≥ f(θ0) + gT (θ − θ0), which then raises the cut gT (θ − θ0) ≤ 0
for minimization problem. Recent development of cutting-plane methods involves those designed
for convex-concave games (Jiang et al., 2020), combinatorial optimization (Lee et al., 2015), and
also application to traditional machine learning tasks such as regularized risk minimization, multiple
kernel learning, and MAP inference in graphical models (Franc et al., 2011).

Active Learning. With the fast growth of current deep learning model sizes, more and more data
is in need for training an effective deep NN model. Compared to just feeding the model with a set
of randomly-selected training samples, how to select the most informative data for each training
iteration becomes a valuable question. Efficient data sampling algorithm is thus increasingly impor-
tant, especially for current RL-based language model training scheme. With the increasing power
of current pretrained models, researchers found that since most of daily questions can be addressed
correctly by the model already, these questions are valueless for further boosting the language mod-
els’ capacity. Therefore, actively selecting questions that LLM cannot address correctly is key to
current LLM training (Lightman et al., 2023). Based on different learning settings, active learning
strategies can be divided into: stream-based selective sampling used when the data is generated con-
tinuously (Woodward & Finn, 2017); pool-based sampling used when a pool of unlabeled data is
presented (Gal et al., 2017b); query synthesis methods used when new samples can be generated
for labeling. Based on different information measuring schemes, active learning algorithms can be
further divided into uncertainty sampling (Lewis & Gale, 1994b) which selects data samples to re-
duce prediction uncertainty, query-by-committee sampling which involves multiple models for data
selection, diversity-weighted method which selects the most diverse data sample, and expected error
reduction method (Mussmann et al., 2022) which selects samples to best reduce models’ expected
prediction error.

Convex NN. We note that the idea of introducing hyperplane arrangements to derive equivalent
problem formulation for deep NN training task has also been investigated in prior convexification
of neural network research. For example, Ergen & Pilanci (2021b) has exploited this technique
to derive a convex program which is equivalent to two-layer ReLU model training task. More
developments involving (Ergen & Pilanci, 2021a) which derives convex programs equivalent to
training three-layer CNNs and (Zhang & Pilanci, 2024) which derives convex programs for diffusion
models. However, those work neither derive linear programs as considered in our case, nor did they
connect such reframed problems to active learning platform. On the contrast, they mainly focus on
solving NN training problem by solving the equivalent convex program (directly) they have derived
via convex program solver such as CVXPY (Diamond & Boyd, 2016).
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B LIMITATIONS AND CONCLUSION

In this work, we introduce a novel cutting-plane-based method for deep neural network training,
which, for the first time, enables the application of this approach to nonlinear models. Additionally,
our new training scheme removes previous restrictions on the training data distribution and extends
the method beyond binary classification to general regression tasks. We also explore an active learn-
ing scheme built on our proposed training framework, which inherits convergence guarantees from
classic cutting-plane methods. Through both synthetic and real data experiments, we demonstrate
the practicality and effectiveness of our training and active learning methods. In summary, our work
introduces a novel, gradient-free approach to neural network training, demonstrating for the first
time the feasibility of applying the cutting-plane method to neural networks, while also offering the
first deep active learning method with convergence guarantees.

Despite its novelty, our current implementation has several key limitations that hinder its competi-
tiveness with large-scale models trained using gradient-based methods. First, although we employ
subsampling of activation patterns and propose an iterative filtering scheme (see Appendix F.4), the
subsampling process is not exhaustive, which impacts model performance, especially with high-
dimensional data. Refining the activation pattern sampling strategy could significantly improve
results. Second, we rely on analytic center retrieval during training, which we solve using CVXPY.
However, this solution is CPU-bound and becomes inefficient for large-scale problems with many
variables. Developing a center-finding algorithm that leverages GPU parallelism is crucial to un-
locking the full potential of our training method. Finally, while current large language model (LLM)
training often involves cross-entropy loss, our approach has so far been applied only to classifica-
tion and regression tasks. Extending our method to handle more diverse loss functions presents an
exciting avenue for future research.

C KEY DEFINITIONS AND DEFERRED THEOREMS

C.1 KEY DEFINITION

A notion central to the linear programming reformulation which enables the feasibility of our pro-
posed cutting-plane based AL method is the notion of hyperplane arrangement. It has been briefly
introduced in Section 4. We now give a formal definition.

Definition 3 (Hyperplane Arrangement). A hyperplane arrangement for a dataset X ∈ Rn×d,
where X contains xi in its rows, is defined as the collection of sign patterns generated by the
hyperplanes. Let A denote the set of all possible hyperplane arrangement patterns:

A := ∪{sign(Xw) : w ∈ Rd}, (9)

where the sign function is applied elementwise to the product Xw.

The number of distinct sign patterns in A is finite, i.e., |A| < ∞. We define a subset S ⊆ A,
representing the collection of sets corresponding to the positive signs in each element of A:

S := {∪hi=1{i} : h ∈ A}. (10)

The cardinality of S, denoted by P , represents the number of regions in the partition of Rd created
by hyperplanes passing through the origin and orthogonal to the rows of X , or more birefly, P is
the number of regions formed by the hyperplane arrangement.

As the readers may see in the definition, P , the number of regions formed by the hyperplane arrange-
ment, increases with both the dimension and the size of the dataset X . To reduce computational costs
of our cutting-plane AL algorithm, as we will discuss in Appendix H.1, we sample the number of
regions in the partition instead of using the entire S.

In addition to center of gravity (Definition 2) and analytic center (Definition 1), another widely-
used notion for center is the center of maximum volume inscribed ellipsoid (MVE), which we also
referenced in the main text. We hereby give its definition (Boyd & Vandenberghe, 2004).
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Definition 4 (Maximum volume inscribed ellipsoid (MVE)). Given a convex body C ⊆ Rd, the
maximum volume inscribed ellipsoid inside C is found by solving the below optimization problem:

maximize log detB

subject to sup
∥u∥2≤1

1C(ε(u)) ≤ 0, (11)

where we have parametrized the ellipsoid as the image of the unit ball under an affine transforma-
tion:

ε(u) := {Bu+ c : ∥u∥2 ≤ 1}
with c ∈ Rd and B ∈ Sn

++. The optimal value of the variable u in the convex program in 11
gives the center of the maximum volume inscribed ellipsoid of the convex body C, which is affine
invariant. We denote it as θM (C), or θM as abbreviation.

A metric important to our evaluation for the regression prediction in Section 7 is the notion of root
mean square error, or RMSE.
Definition 5 (Root Mean Square Error). The root mean square error (RMSE) is a metric used to
measure the difference between predicted values and the actual values in a regression model. For a
set of predicted values ŷi and true values yi, the RMSE is given by:

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2

where n is the total number of data points, ŷi is the predicted value, and yi is the actual value.
RMSE provides an estimate of the standard deviation of the prediction errors (residuals), giving an
overall measure of the model’s accuracy.

C.2 KEY THEOREMS

Key Theorems in Section 6.2. We present the cornerstone theorem to our results in Section 6.2
given by Grünbaum (1960) on the bounds relating to convex body partitioning.
Proposition 1 (Grünbaum’s Inequality). Let T ∈ Rd be a convex body (i.e. a compact convex set)
and let θG denote its center of gravity. Let H = {x ∈ Rd : wT (θ − θG) = 0} be an arbitrary
hyperplane passing through θG. This plane divides the convex body T in the two subsets:

T1 := {θ ∈ T : wT θ ≥ wT θG},
T2 := {θ ∈ T : wT θ < wT θG}.

Then the following relations hold for i = 1, 2:

vol(Ti) ≤ (1− (
d

d+ 1
)1/d)vol(T ) ≤ (1− 1/e)vol(T ). (12)

Proof. See proof of Theorem 2 in Grünbaum (1960).

D DEFERRED ALGORITHMS

D.1 MORE ON CUTTING-PLANE AL FOR BINARY CLASSIFICATION

D.1.1 LINEAR MODEL

Algorithm 3 describes the original cutting-plane-based learning algorithm proposed by Louche &
Ralaivola (2015). This algorithm, despite having pioneered in bridging the classic cutting-plane
optimization algorithm with active learning for the first time, remains limited to linear decision
boundary classification and can only be applied to shallow machine learning models. We have
demonstrated its inability to handle nonlinear decision boundaries and simple regression tasks in
Section 7, where the linearity of the final decision boundary and prediction returned by the cutting-
plane AL algorithm is evident. Nevertheless, Algorithm 3 establishes a crucial foundation for the
development of our proposed cutting-plane active learning algorithms (Algorithm 2, 5, 4, and 6).
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Algorithm 3 Generic (Linear) Cutting-Plane AL

1: T 0 ← B2
2: t← 0
3: repeat
4: θtc ← center(T t)
5: xnt , ynt ← QUERY(T t,D)
6: if ynt⟨θtc, xnt⟩ < 0 then
7: T t+1 ← T t ∩ {z : ynt

⟨z, xnt
⟩ ≥ 0}

8: t← t+ 1
9: end if

10: until T t is small enough
11: return θtc

1: function QUERY(T ,D)
2: Sample M points s1, . . . , sM from T
3: g ← 1

M

∑M
k=1 sk

4: x← argminxi∈D⟨g, xi⟩
5: y ← get label from an expert
6: return x, y
7: end function

D.1.2 NN MODEL WITH LIMITED QUERIES

We begin with Algorithm 4, which summarizes our proposed cutting-plane active learning algorithm
under the second setup discussed in Section 6.1. In this case, the cutting-plane oracle has access to
limited queries provided by the user and, in contrast to its query synthesis alternative (Algorithm 2),
only makes the cut if the queried center mis-classifies the returned data point from the oracle. Hence,
the convergence speed associated with Algorithm 4 hinges on how often the algorithm queries a
center which incorrectly classifies the returned queried points before it reaches the optimal classifier.
Therefore, the performance of this algorithm in terms of convergence speed depends not only on the
geometry of the parameter version space but also on the effectiveness of the Query function to
identify points from the limited dataset which gives the most informative evaluation of the queried
center.

While Algorithm 4 still maintains similar rate and convergence guarantees as Algorithm 2, to op-
timize the empirical performance of Algorithm 4 (see discussions in Section 6.2), we therefore
modify the Query function to query twice, once for minimal margin and once for maximal mar-
gin, to maximize the chances of the oracle returned points in correctly identifying mis-classification
of the queried center. This modification greatly aids the performance of Algorithm 4, allowing
the algorithm to make effective classification given very limited data. This is demonstrated in our
experiment results in Section 7.

D.1.3 NN MODEL WITH INEXACT CUT

Algorithm 5 summarizes our proposed cutting-plane active learning algorithm under the third setup
metioned in Section 6.1. Under this scenario, the cutting-plane oracle has access to limited queries.
However, in contrast to Algorithm 4, this cutting-plane AL algorithm always performs the cut re-
gardless of whether the queried center mis-classifies the data point returned by the oracle. This
is an interesting extension to consider. On the one hand, it can possibly speed up Algorithm 4 in
making a decision boundary as the cut is effective in every iteration. On the other hand, however,
the algorithm’s lack of discern for the correctness of the queried candidate presents a non-trivial
challenge to evaluate its convergence rate and whether it still maintains convergence guarantees. It
turns out that we can still ensure convergence in the case of Algorithm 5, and the convergence rate
can be quantified by measuring the “inexactness” of the cut in relation to a cut which directly passes
through the queried center. We refer the readers to a detailed discussion on this matter in Appendix
G.2. We would also like to emphasize that Algorithm 2, 5, and 4, although written for binary clas-
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Algorithm 4 Cutting-plane AL for Binary Classification with Limited Queries

1: T 0 ← B2

2: t← 0
3: DAL ← 0
4: repeat
5: θtc ← center(T t)
6: for s in {1,−1} do
7: (xnt , ynt)← QUERY(T t,D \ DAL, s)
8: if ynt · f two-layer(xnt ; θ

t
c) < 0 then

9: DAL ← ADD(DAL, (xnt , ynt))
10: T t+1 ← T t ∩ {θ : ynt · f two-layer(xnt ; θ) ≥ 0, C({nt}), C′({nt})}
11: t← t+ 1
12: end if
13: end for
14: until |DAL| ≥ nbudget
15: return θtc

1: function QUERY(θ, s)
2: (x, y)← argmin(xi,yi)∈DQS sf

two-layer(xnt ; θ)

3: return (x, y)
4: end function

sification, can be easily extended to multi-class by using, for instance, the “one-versus-all” strategy.
See Appendix E.2 for details.

While it may be intuitive for the optimal performance of the cutting-plane AL algorithms to translate
from binary classification to the multi-class case, it is not entirely evident for us to expect similar
performance of the algorithms for regression tasks, where the number of classes K → ∞. What is
surprising is that our cutting-plane AL still maintains its optimal performance on regression tasks, as
evidenced by the synthetic toy example using quadratic regression in Section 7. Nevertheless, one
can argue that the result is not so surprising after all as it is to be expected in theory due to intuition
explained in Appendix E.2.

Algorithm 5 Cutting-plane AL for Binary Classification with Inexact Cutting

1: T 0 ← B2
2: t← 0
3: DAL ← 0
4: repeat
5: θtc ← center(T t)
6: for s in {1,−1} do
7: (xnt

, ynt
)← QUERY(T t,D \ DAL, s)

8: DAL ← ADD(DAL, (xnt
, ynt

))
9: T t+1 ← T t ∩ {θ : ynt

· f two-layer(xnt
; θ) ≥ 0, C({nt}), C′({nt})}

10: t← t+ 1
11: end for
12: until |DAL| ≥ nbudget
13: return θtc

1: function QUERY(θ, s)
2: (x, y)← argmin(xi,yi)∈DQS sf

two-layer(xnt ; θ)

3: return (x, y)
4: end function
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D.2 MORE ON CUTTING-PLANE AL FOR REGRESSION

D.2.1 NN MODEL WITH LIMITED QUERIES

To generalize our classification cutting-plane AL algorithm to regression tasks, we need to make
some adaptations to the cutting criterion and to how the cuts are being made. As the main body of
the algorithm is the same across different setups (e.g. query synthesis, limited query, and inexact
cuts) except for minor changes as the reader can see in Algorithm 2, 4, and 5, we only present
the cutting-plane AL algorithm for regression under limited query. Algorithm 6 summarizes our
proposed algorithm for training regression models via cutting-plane active learning. Here ϵ > 0 is
a threshold value for the L2−norm error chosen by the user. Observe that the new L2-norm cut of
step

T t+1 ← T t ∩ {θ : ∥ynt
− f two-layer(xnt

; θ)∥2 ≤ ϵ, C({nt}), C′({nt})}
consists simply of two linear cuts:

−ϵ ≤ ynt − f two-layer(xnt ; θ) ≤ ϵ.

We can hence still ensure that the version space remains convex after each cut.

Algorithm 6 Cutting-plane AL for Regression with Limited Queries

1: T 0 ← B2

2: t← 0
3: DAL ← 0
4: repeat
5: θtc ← center(T t)
6: for s in {1,−1} do
7: (xnt , ynt)← QUERY(T t,D \ DAL, s)
8: if ∥ynt − f two-layer(xnt ; θ

t
c)∥2 > ϵ then

9: DAL ← ADD(DAL, (xnt , ynt))
10: T t+1 ← T t ∩ {θ : ∥ynt − f two-layer(xnt ; θ)∥2 ≤ ϵ, C({nt}), C′({nt})}
11: t← t+ 1
12: end if
13: end for
14: until |DAL| ≥ nbudget
15: return θtc

1: function QUERY(θ, s)
2: (x, y)← argmin(xi,yi)∈DQS sf

two-layer(xnt ; θ)

3: return (x, y)
4: end function

D.2.2 LINEAR MODEL

Following the adaptation of our cutting-plane AL from classification to regression tasks, we similarly
attempt to adapt the original linear cutting-plane AL (Algorithm 3) for regression. Algorithm 7
introduces an ϵ > 0 threshold to account for the L2-norm error between the predicted value and
the actual target. This threshold controls both when a cut is made and the size of the cut. We
applied this version of the algorithm (Algorithm 7) in the quadratic regression experiment detailed
in Section 7. However, for nonlinear regression data—such as quadratic regression—this approach
will necessarily fail. The prediction model ⟨θ, x⟩ in Algorithm 7 is linear, whereas the underlying
data distribution follows a nonlinear relationship, i.e., y = x2. As a result, once the query budget
starts accumulating nonlinearly distributed data points, no linear predictor can satisfy the regression
task’s requirements for small values of ϵ.

In particular, after a certain number of iterations t, the cut

T t ∩ {θ : ∥ynt − ⟨θ, xnt⟩∥2 ≤ ϵ}
will eliminate the entire version space (i.e., T t+1 = ∅). This occurs because the error between the
linear prediction and the nonlinear true values (e.g., y = x2) cannot be reduced sufficiently, disqual-
ifying all linear predictors. This is precisely what we observed in our quadratic regression example
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in Section 7. After four queries, the algorithm reported infeasibility in solving for the version space
center, as the remaining version space had been reduced to an empty set. This infeasibility is a direct
consequence of the mismatch between the linear model’s capacity and the data’s nonlinear nature.

Algorithm 7 Linear Cutting-Plane AL for Regression

1: T 0 ← B2
2: t← 0
3: DAL ← 0
4: repeat
5: θtc ← center(T t)
6: xnt , ynt ← QUERY(T t,D)
7: if ∥ynt − ⟨θtc, xnt⟩∥2 > ϵ then
8: T t+1 ← T t ∩ {θ : ∥ynt − ⟨θ, xnt⟩∥2 ≤ ϵ}
9: t← t+ 1

10: end if
11: until |DAL| ≥ nbudget
12: return θtc

1: function QUERY(T ,D)
2: Sample M points s1, . . . , sM from T
3: g ← 1

M

∑M
k=1 sk

4: x← argminxi∈D⟨g, xi⟩
5: y ← get label from an expert
6: return x, y
7: end function

D.3 MINIMAL MARGIN QUERY STRATEGY

Here we note that in our main algorithm 2, we always query points with highest prediction confi-
dence by setting

(x, y)← argmin
(xi,yi)∈DQS

sf two-layer(xnt
; θ).

However, we indeed allow more custom implementation of query selection. For example, an alter-
native approach is to select data with minimal prediction margin, i.e.

(x, y)← argmin
(xi,yi)∈DQS

|f two-layer(xnt ; θ)|.

We experiment with this query strategy in our real dataset experiments.

E KEY GENERALIZATION TO CUTTING-PLANE AL

In this section, we discuss two important generalizations of our cutting-plane AL method: (i). the
relaxation in data distribution requirement and (ii). the extension from classification to regression.

E.1 RELAXED DATA DISTRIBUTION REQUIREMENT

For linear classifier f(x; θ) = xT θ, the training data is expected to be linearly separable for an
optimal θ⋆ to exist. However, this constraint on training data distribution is too restrictive in real
scenarios. With ReLU model, due to its uniform approximation capacity, the training data is not
required to be linearly separable as long as there is a continuous function h such that sign(h(x)) = y
for all (x, y) pairs. Due to the discrete nature of sampled data points, this is always satisfiable, thus
we can totally remove the prerequisite on training data. For sake of completeness, we provide a
version of uniform approximation capacity of ReLU below, with an extended discussion about a
sample compression perspective of our cutting-plane based model training scheme thereafter. Given
the fact that two-layer model has weaker approximation capacity compared to deeper models, we
here consider only two-layer model without loss of generality. Uniform approximation capacity of
single hidden layer NN has been heavily studied (Chen & Chen, 1993; Chui & Li, 1992; Costarelli
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et al., 2013; Cotter, 1990; Cybenko, 1989; ichi Funahashi, 1989; Gallant & White, 1988; Hornik,
1991; Mhaskar & Micchelli, 1992; Leshno et al., 1993; Pinkus, 1999), here we present the version
of ReLU network which we find most explicit and close to our setting.
Theorem E.1. (Theorem 1.1 in (Shen et al., 2022)) For any continuous function f ∈ C([0, 1]d),
there exists a two-layer ReLU network ϕ = (xW1 + b1)+W2 + b2 such that

∥f − ϕ∥Lp([0,1]d) ∈ O
(√

dωf

(
(m2 logm)−1/d

))
where ωf (·) is the modulus of continuity of f .

The above result can be extended to any f ∈ C([−R,R]d), see Theorem 2.5 in Shen et al. (2022) for
discussion. Therefore, for any fixed dimension d, as we increase number of hidden neurons, we are
guaranteed to approximate f a.e. (under proper condition on ωf ). Thus the assumption on training
data can be relaxed to existence of some {W1, b1,W2, b2} such that sign(ϕ(x)) = y, which happens
almost surely. A minor discrepancy here is that the ϕ being considered in above Theorem incorpo-
rates the bias terms b1, b2 while our Theorem 4.1 considers two-layer NN of form (xW1)+W2. We
note here that (xW1)+W2 is essentially the same as the one with layer-wise bias. To see this, we can
append the data x by a 1-value entry to accommodate for b1. After this modification, we can always
separate a neuron of form (XW1i)+W2i, set W1(d+1) = 1 and zeros elsewhere, and W2i would
then accommodate for bias b2. Therefore, our relaxed requirement on training data still persists. For
deeper ReLU NNs, similar uniform approximation capability has been established priorly and fur-
thermore the general NN form we considered in Theorem 4.2 incorporates the form with layer-wise
bias and thus we still have such relaxation on training data distribution, see Appendix F.3 for more
explanation.

E.2 FROM CLASSIFICATION TO REGRESSION

Algorithm 2 shows how we train deep NN for binary classification task with cutting-plane method.
Nevertheless, it can be easily extended to multi-class using, for instance, the so-called “one-versus-
all” classification strategy. To illustrate, to extend the binary classifier to handle K classes under
this approach, we decompose the multi-class problem into K binary subproblems. Specifically, for
each class Ck, we define a binary classification task as:

Classify between Ck and
⋃
i ̸=k

Ci,

where we classify Ck against all other classes combined as a single class. This creates K binary
classification problems, each corresponding to distinguishing one class from the rest.

In fact, our cutting-plane AL can be even applied to the case of regression, where the number of
classes K → ∞. The core intuition behind this is still the uniform approximation capability of
nonlinear ReLU model. Given any training data x with its label y, we want a model f(x; θ) to be
able to predict y exactly. Here the data label is no longer limited to plus or minus one and can be
any continuous real number. For linear model f(x; θ) = xT θ considered in (Louche & Ralaivola,
2015), train such a predictor is almost impossible since it is highly unlikely there exists such a θ for
real dataset. However, with our ReLU model, we are guaranteed there is a set of NN weights that
would serve as a desired predictor due to its uniform approximation capacity.

Therefore, for regression task, the training algorithm will be exactly the same as Algorithm 3 instead
that the original classification cut yntf(xnt ; θ) ≥ 1 will be replaced with f(xnt ; θ) = ynt . All
other activation pattern constraints are leaved unchanged. A minor discrepancy here is that though
theoretically sounding, the strict inequality f(xnt ; θ) = ynt may raise numerical issues in practical
implementation. Thus, we always include a trust region as ynt− ϵ ≤ f(xnt ; θ) ≤ ynt + ϵ with some
small ϵ for our experiments. See Algorithm 6 for our implementation details.

F DEFERRED PROOFS AND EXTENSIONS IN SECTION 4

F.1 PROOF OF THEOREM 4.1

We prove the equivalence in two directions, we first show that if there exists W1,W2 to y ⊙
((XW1)+W2) ≥ 1, then we can find solution {ui, u

′
i} to Problem (3); we then show that when
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there is solution {ui, u
′
i} to Problem (3) and the number of hidden neurons m ≥ 2P , then there ex-

ists W1,W2 such that y⊙ ((XW1)+W2) ≥ 1. We last show that given solution {ui, u
′
i} to Problem

(3), after finding correspondent W1,W2, the prediction for any input x̃ can be simply computed by∑P
i=1(x̃ui)+ − (x̃u′i)+. We now start with our first part and assume the existence of W1,W2 to

y ⊙ ((XW1)+W2) ≥ 1, i.e.,

y ⊙
m∑
j=1

(XW1j)+W2j ≥ 1,

from which we can derive

y ⊙
m∑
j=1

D1
jXW1jW2j ≥ 1, (13)

where D1
j = diag(1{XW1j ≥ 0}) ∈ Rn×n. Now consider set of pairs of {uj , u

′
j} given by

uj = W1jW2j , u
′
j = 0 for j ∈ {j|W2j ≥ 0} and uj = 0, u′j = −W1jW2j for j ∈ {j|W2j < 0}.

We thus have by (13)

y ⊙
m∑
j=1

D1
jX(uj − u′j) ≥ 1, (2D1

j − I)Xuj ≥ 0, (2D1
j − I)Xu′j ≥ 0.

The only discrepancy between our set of {uj , u
′
j} pairs and our desired solution to Problem (3) is

we want to match D1
j ’s in equation (13) to Di’s in Problem (3). This is achieved by observing that

whenever we have D1
a = D1

b = D(a,b) for some a, b ∈ [m], we can merge them as

D1
aX(ua − u′a) +D1

bX(ub − u′b)

= D(a,b)X((ua + ub)− (u′a + u′b))

= D(a,b)X(ua+b − u′a+b),

with (2D(a+b)− I)Xua+b ≥ 0 and (2D(a+b)− I)Xu′a+b ≥ 0 still hold. We can keep this merging
for all activation patterns {D1

j |j ∈ [m]}. We are guaranteed to get

y ⊙
m̃∑
j=1

D̃jX(ũj − ũ′j) ≥ 1, (2D̃j − I)Xũj ≥ 0, (2D̃j − I)Xũ′j ,≥ 0

where all D̃j , j ∈ [m̃] are different. Note since our {Di|i ∈ [P ]} in Problem (3) loop over all
possible activation patterns corresponding to X , it is always the case that m̃ ≤ P and D̃j = Di for
some i ∈ [P ]. Thus we get a solution {ui, u

′
i} to Problem (3) by setting ui = ũk, u

′
i = ũ′k when

Di = D̃k for some k ∈ [m̃]. Otherwise we simply set ui = u′i = 0. This completes our proof of the
first direction, we now turn to prove the second direction and assume that there is solution {ui, u

′
i}

to Problem (3) as well as the number of hidden neurons m ≥ 2P . We aim to show that there exists
W1,W2 such that y ⊙ ((XW1)+W2) ≥ 1. Since we have

y ⊙
P∑
i=1

(DiX(ui − u′i)) ≥ 1, (2Di − I)Xui ≥ 0, (2Di − I)Xu′i ≥ 0,

we are able to derive the below inequality by setting vi = ui, αi = 1 for i ∈ [P ] and vi =
u′i−P , αi = −1 for i ∈ [P + 1, 2P ],

y ⊙
2P∑
i=1

(Xvi)+αi ≥ 1.

Therefore, consider W1 ∈ Rd×m defined by W1j = vj for j ∈ [2P ] and W1j = 0 for any j > 2P ,
W2 ∈ Rm defined by W2j = αj for j ∈ [2P ] and W2j = 0 for any j > 2P. Then we achieve

y ⊙ ((XW1)+W2) = y ⊙
2P∑
i=1

(Xvi)+αi ≥ 1,

as desired. Lastly, once a solution {ui, u
′
i} to Problem (3) is given, we can find corresponding

W1,W2 according to our analysis of second direction above. Then for any input x̃, the prediction
given by (x̃W1)+W2 is simply

∑P
i=1(x̃ui)+ − (x̃u′i)+.
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F.2 PROOF OF THEOREM 4.2

Similar to proof of Theorem 4.1, we carry out the proof in two directions. We prove first that if
there exists solution to Problem (5), then there is also solution to Problem (6). We then show that
whenever there exists solution to Problem (6), there is also solution to Problem (5). Concerned with
that the notation complexity of (n+ 1)-layer NN might introduce difficulty to follow the proof, we
start with showing three-layer case as a concrete example, we then move on to (n + 1)-layer proof
which is more arbitrary.

Proof for three-layer. The three-layer ReLU model being considered is of the form
((XW1)+W2)+W3. The corresponding linear program is given by

find uij , u
′
ij , vij , v

′
ij

s.t. y ⊙
P2∑
j=1

D
(2)
j

(
P1∑
i=1

D
(1)
i X(uij − u′ij)−

P1∑
i=1

D
(1)
i X(vij − v′ij)

)
≥ 1,

(2D
(1)
i − I)Xuij ≥ 0, (2D

(1)
i − I)Xu′ij ≥ 0, (2D

(1)
i − I)Xvij ≥ 0, (2D

(1)
i − I)Xv′ij ≥ 0,

(2D
(2)
j − I)

(
P1∑
i=1

D
(1)
i X(uij − u′ij)

)
≥ 0, (2D

(2)
j − I)

(
P1∑
i=1

D
(1)
i X(vij − v′ij)

)
≥ 0,

which is a rewrite of (6) with n = 2. Firstly, assume there exists solution {W1,W2,W3} to the
problem y ⊙ ((XW1)+W2)+W3 ≥ 1. We want to show there exists {uij , u

′
ij , vij , v

′
ij} solves the

above problem. Note that by y ⊙ ((XW1)+W2)+W3 ≥ 1, we get

y ⊙

(
m1∑
i=1

(XW1i)+W2i

)
+

W3 ≥ 1.

Let Ki denote sign(XW1i), i.e, (2Ki − I)XW1i ≥ 0, we can write

y ⊙

(
m1∑
i=1

KiXW1iW2i

)
+

W3 ≥ 1.

Expand on the outer layer neurons, we get

y ⊙
m2∑
j=1

(
m1∑
i=1

KiXW1iW2ij

)
+

W3j ≥ 1.

Construct cij = W1iW2ij whenever W2ij ≥ 0 and 0 otherwise, c′ij = −W1iW2ij whenever W2ij <
0 and 0 otherwise, we can write

y ⊙
m2∑
j=1

(
m1∑
i=1

KiX(cij − c′ij)

)
+

W3j ≥ 1, (2Ki − I)Xcij ≥ 0, (2Ki − I)Xc′ij ≥ 0.

Denote sign(
∑m1

i=1 KiX(cij − c′ij)) as K(2)
j , we thus have

y ⊙
m2∑
j=1

K
(2)
j

(
m1∑
i=1

KiX(cij − c′ij)

)
W3j ≥ 1,

with (2Ki − I)Xcij ≥ 0, (2Ki − I)Xc′ij ≥ 0, (2K
(2)
j − I)(

∑m1

i=1 KiX(cij − c′ij)) ≥ 0. We
construct {dij , d′ij , eij , e′ij} by setting dij = cijW3j , d

′
ij = c′ijW3j when W3j ≥ 0 and 0 otherwise,

setting eij = −cijW3j , e
′
ij = −c′ijW3j when W3j < 0 and 0 otherwise, and we will arrive at

y ⊙
m2∑
j=1

K
(2)
j

(
m1∑
i=1

KiX(dij − d′ij)−
m1∑
i=1

KiX(eij − e′ij)

)
≥ 1,
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where

(2Ki − I)Xdij ≥ 0, (2Ki − I)Xd′ij ≥ 0, (2Ki − I)Xeij ≥ 0, (2Ki − I)Xe′ij ≥ 0

(2K
(2)
j − I)

m1∑
i=1

KiX(dij − d′ij) ≥ 0, (2K
(2)
j − I)

m1∑
i=1

KiX(eij − e′ij) ≥ 0,

which is already of form we want. We are left with matching mi with Pi for i ∈ {1, 2} and matching
D

(2)
j to K

(2)
j , D(1)

i to Ki, {uij , u
′
ij , vij , v

′
ij} to {dij , d′ij , eij , e′ij}. We achieve this by observing that

whenever there is duplicate K
(2)
j1

= K
(2)
j2

, we can merge the corresponding terms as

K
(2)
j1

(
m1∑
i=1

KiX(dij1 − d′ij1)−
m1∑
i=1

KiX(eij1 − e′ij1)

)
+K

(2)
j2

(
m1∑
i=1

KiX(dij2 − d′ij2)−
m1∑
i=1

KiX(eij2 − e′ij2)

)

= K
(2)
(j1,j2)

(
m1∑
i=1

KiX
(
(dij1 + dij2)− (d′ij1 + d′ij2)

)
−

m1∑
i=1

KiX
(
(eij1 + eij2)− (e′ij1 + e′ij2)

))

= K
(2)
(j1,j2)

(
m1∑
i=1

KiX(di(j1+j2) − d′i(j1+j2)
)−

m1∑
i=1

KiX(ei(j1+j2) − e′i(j1+j2)
)

)
,

where K
(2)
(j1,j2)

:= K
(2)
j1

, di(j1+j2) := dij1 + dij2 , d
′
i(j1+j2)

= d′ij1 + d′ij2 , ei(j1+j2) = eij1 + eij2 ,

e′i(j1+j2)
= e′ij1 + e′ij2 . We have as constraints

(2K
(2)
(j1,j2)

− I)

(
m1∑
i=1

KiX(di(j1+j2) − d′i(j1+j2)
)

)
≥ 0,

(2K
(2)
(j1,j2)

− I)

(
m1∑
i=1

KiX(ei(j1+j2) − e′i(j1+j2)
)

)
≥ 0,

(2Ki − I)Xdi(j1+j2) ≥ 0, (2Ki − I)Xd′i(j1+j2)
≥ 0,

(2Ki − I)Xei(j1+j2) ≥ 0, (2Ki − I)Xe′i(j1+j2)
≥ 0.

Keep such merging until all K(2)
j are different, we arrive at

y ⊙
m̃2∑
j=1

K
(2)

j

(
m1∑
i=1

KiX(dij − d′ij)−
m1∑
i=1

KiX(eij − e′ij)

)
≥ 1,

with

(2Ki − I)Xdij ≥ 0, (2Ki − I)Xd
′
ij ≥ 0, (2Ki − I)Xeij ≥ 0, (2Ki − I)Xe′ij ≥ 0,

(2K
(2)

j − I)

(
m1∑
i=1

KiX(dij − d
′
ij)

)
≥ 0, (2K

(2)

j − I)

(
m1∑
i=1

KiX(eij − e′ij)

)
≥ 0,

where m̃2 ≤ P2,K
(2)

j ∈ {D(2)} and K
(2)

j all different. We now proceed to match Ki and D
(1)
i .

Consider
∑m1

i=1 KiX(dij − d
′
ij), if Kv = Kq for some v, q, we can merge them as

KvX(dvj − d
′
vj) +KqX(dqj − d

′
qj) = K(v,q)X(d(v+q)j − d

′
(v+q)j),

where K(v,q) := Kv, d(v+q)j := dvj+dqj , d
′
(v+q)j := d

′
vj+d

′
(v+q)j . The constraints are (2K(v,q)−

I)Xd(v+q)j ≥ 0, (2Kv,q − I)Xd
′
(v+q)j ≥ 0, and we still have

(2K
(2)

j − I)

 ∑
i∈[m1],i̸=v,i̸=q

KiX(dij − dij′) +K(v,q)X(d(v+q)j − d
′
(v+q)j)

 ≥ 0.
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Continue such merging and also for {eij , e′ij}, we finally arrive at

y ⊙
m̃2∑
j=1

K
(2)

j

(
m̃1∑
i=1

K̂iX(d̂ij − d̂
′
ij)−

m̃1∑
i=1

K̂iX(êij − ê
′
ij)

)
≥ 1,

with

(2K̂i − I)Xd̂ij ≥ 0, (2K̂i − I)Xd̂
′
ij ≥ 0, (2K̂i − I)Xêij ≥ 0, (2K̂i − I)Xê

′
ij ≥ 0,

(2K
(2)

j − I)

(
m̃1∑
i=1

K̂iX(d̂ij − d̂
′
ij)

)
≥ 0, (2K

(2)

j − I)

(
m̃1∑
i=1

K̂iX(êij − ê
′
ij)

)
≥ 0.

Now, for any D
(2)
j ̸∈ {K(2)}, we set all uij = u′ij = vij = v′ij = 0. For D(2)

j = K
(2)

j′ , for any

D
(1)
i ̸∈ {K̂}, we set all uij = u′ij = vij = v′ij = 0. For D(2)

j = K
(2)

j′ , D
(1)
i = K̂i′ , we set

uij = d̂i′j′ , u
′
ij = d̂

′
i′j′ , vij = êi′j′ , v

′
ij = ê

′
i′j′ . Then we get exactly

y ⊙

 P2∑
j=1

D
(2)
j

(
P1∑
i=1

D
(1)
i X(uij − u′ij)−

P1∑
i=1

D
(1)
i X(vij − v′ij)

) ≥ 1,

and

(2D
(1)
i − I)Xuij ≥ 0, (2D

(1)
i − I)Xu′ij ≥ 0, (2D

(1)
i − I)Xvij ≥ 0, (2D

(1)
i − I)Xv′ij ≥ 0,

(2D
(2)
j − I)

(
P1∑
i=1

D
(1)
i X(uij − u′ij)

)
≥ 0, (2D

(2)
j − I)

(
P1∑
i=1

D
(1)
i X(vij − v′ij)

)
≥ 0,

which completes the proof of our first direction. We now turn on to prove the second direction,
assume there exists uij , u

′
ij , vij , v

′
ij such that

y ⊙

 P2∑
j=1

D
(2)
j

(
P1∑
i=1

D
(1)
i X(uij − u′ij)−

P1∑
i=1

D
(1)
i X(vij − v′ij)

) ≥ 1,

with

(2D
(1)
i − I)Xuij ≥ 0, (2D

(1)
i − I)Xu′ij ≥ 0, (2D

(1)
i − I)Xvij ≥ 0, (2D

(1)
i − I)Xv′ij ≥ 0,

(2D
(2)
j − I)

(
P1∑
i=1

DiX(uij − u′ij)

)
≥ 0, (2D

(2)
j − I)

(
P1∑
i=1

DiX(vij − v′ij)

)
≥ 0.

We want to show that there exists W1,W2,W3 such that

y ⊙ ((XW1)+W2)+W3 ≥ 1.

We are able to derive

y ⊙

 P2∑
j=1

(
P1∑
i=1

DiX(uij − u′ij)

)
+

−

(
P1∑
i=1

DiX(vij − v′ij)

)
+

 ≥ 1,

and furthermore

y ⊙

 P2∑
j=1

(
P1∑
i=1

(Xuij)+ − (Xu′ij)+

)
+

−

(
P1∑
i=1

(Xvij)+ − (Xv′ij)+

)
+

 ≥ 1.

We thus construct {κij , αij} by setting κij = uij , αij = 1 for i ∈ [P1], κij = u′(i−P1)j
, αij = −1

for i ∈ [P1 + 1, 2P1]. We similarly construct {κ′ij , α′ij} with {vij , v′ij}, we thus get

y ⊙

 P2∑
j=1

(
2P1∑
i=1

(Xκij)+αij

)
+

−

(
2P1∑
i=1

(Xκ′ij)+α
′
ij

)
+

 ≥ 1.
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We construct {uj} by setting uj = 1 for j ∈ [P2] and uj = −1 for j ∈ [P2 + 1, 2P2]. We construct
also {κ̃ij , α̃ij} such that κ̃ij = κij , α̃ij = αij for i ∈ [2P1], j ∈ [P2], κ̃ij = κ′i(j−P2)

, α̃ij =

α′i(j−P2)
for i ∈ [2P1], j ∈ [P2 + 1, 2P2], we thus get

y ⊙

2P2∑
j=1

(
2P1∑
i=1

(Xκ̃ij)+α̃ij

)
+

uj

 ≥ 1.

Therefore, we arrive at y⊙((XW1)+W2)+W3 ≥ 1 by focusing on j ≤ 2P2, i ≤ 4P1P2, i.e., setting
parameters with (i, j) indices exceeding these thresholds to be all zero. We then set W1i = κ̃ab for
a = ⌊ i−12P1

⌋ + 1, b = (i − 1)%2P1 + 1, W2ij = α̃(i−1)%2P1+1 for i ∈ [(j − 1) ∗ 2P1 + 1, j ∗ 2P1]
and 0 otherwise, W3j = uj .

Proof for n+1-layer. We now provide proof for ReLU model of arbitrary depth. The logic follows
the three-layer case proof above, despite the notation now represents n+1-layer model for arbitrary
n. We first assume that there exists W1,W2, · · · ,Wn+1 that satisfies problem (5). We want to show
that there exists {acn···c1jn···j1 } which satisfies problem (6). We first span the inner most neuron to get

y ⊙

· · ·
( m1∑

i1=1

(XW1i1)+W2i1

)
+

W3


+

W4


+

W5 · · ·


+

Wn+1 ≥ 1.

Denote sign(XW1i) as K(1)
i1

, i.e., (2K(1)
i1
−I)XW1i1 ≥ 0. We can then rewrite the above inequality

as

y ⊙

· · ·
( m1∑

i1=1

K
(1)
i1

XW1i1W2i1

)
+

W3


+

W4


+

W5 · · ·


+

Wn+1 ≥ 1.

We then expand the second last inner layer as

y ⊙

· · ·
 m2∑

i2=1

(
m1∑
i1=1

K
(1)
i1

XW1i1W2i1i2

)
+

W3i2


+

W4


+

W5 · · ·


+

Wn+1 ≥ 1.

We construct {b(1)i1i2
, b′

(1)
i1i2
} such that b(1)i1i2

= W1i1W2i1i2 when W2i1i2 ≥ 0 and 0 otherwise, b′(1)i1i2
=

−W1i1W2i1i2 when W2i1i2 < 0 and 0 otherwise. Therefore we get

y ⊙

· · ·
 m2∑

i2=1

(
m1∑
i1=1

K
(1)
i1

X
(
b
(1)
i1i2
− b′

(1)
i1i2

))
+

W3i2


+

W4


+

W5 · · ·


+

Wn+1 ≥ 1,

with constraints (2K
(1)
i1
− I)Xb

(1)
i1i2

≥ 0, (2K
(1)
i1
− I)Xb′

(1)
i1i2

≥ 0. Let K
(2)
i2

denote

sign(
∑m1

i=1 K
(1)
i1

X(b
(1)
i1i2
− b′

(1)
i1i2

)), i.e., (2K(2)
i2
− I)(

∑m1

i1=1 K
(1)
i1

X(b
(1)
i1i2
− b′

(1)
i1i2

)) ≥ 0, we thus
have

y ⊙

· · ·
( m2∑

i2=1

K
(2)
i2

(
m1∑
i1=1

K
(1)
i1

X
(
b
(1)
i1i2
− b′

(1)
i1i2

))
W3i2

)
+

W4


+

W5 · · ·


+

Wn+1 ≥ 1,

with constraints

(2K
(1)
i1
− I)Xb

(1)
i1i2
≥ 0, (2K

(1)
i1
− I)Xb′

(1)
i1i2 ≥ 0, (2K

(2)
i2
− I)

(
m1∑
i1=1

K
(1)
i1

X(b
(1)
i1i2
− b′

(1)
i1i2)

)
≥ 0.

Expand one more hidden layer

y⊙

· · ·
 m3∑

i3=1

(
m2∑
i2=1

K
(2)
i2

(
m1∑
i1=1

K
(1)
i1

X
(
b
(1)
i1i2
− b′

(1)
i1i2

))
W3i2i3

)
+

W4i3


+

W5 · · ·


+

Wn+1 ≥ 1.
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Construct {b(11)i1i2i3
, b′

(11)
i1i2i3

} by setting b
(11)
i1i2i3

= b
(1)
i1i2

W3i2i3 and b′
(11)
i1i2i3

= b′
(1)
i1i2

W3i2i3 when

W3i2i3 ≥ 0 and 0 otherwise. Construct {b(12)i1i2i3
, b′

(12)
i1i2i3

} by setting b
(12)
i1i2i3

= −b(1)i1i2
W3i2i3

and b′
(12)
i1i2i3

= −b′(1)i1i2
W3i2i3 when W3i2i3 < 0 and 0 otherwise. Let K

(3)
i3

denotes

sign(
∑m2

i2=1 K
(2)
i2

(
∑m1

i1=1 K
(1)
i1

X(b
(1)
i1i2
− b′

(1)
i1i2

))W3i2i3). Thus we have

y ⊙

(
· · ·

(
m3∑
i3=1

K
(3)
i3

(
m2∑
i2=1

K
(2)
i2

(
m1∑
i1=1

K
(1)
i1

X
(
b
(11)
i1i2i3

− b′
(11)
i1i2i3

))

−
m2∑
i2=1

K
(2)
i2

(
m1∑
i1=1

K
(1)
i1

X
(
b
(12)
i1i2i3

− b′
(12)
i1i2i3

)))
W4i3

)
+

W5 · · ·


+

Wn+1 ≥ 1,

with constraints

(2K
(1)
i1
− I)Xb

(11)
i1i2i3

≥ 0, (2K
(1)
i1
− I)Xb′

(11)
i1i2i3 ≥ 0

(2K
(1)
i1
− I)Xb

(12)
i1i2i3

≥ 0, (2K
(1)
i1
− I)Xb′

(12)
i1i2i3 ≥ 0,

(2K
(2)
i2
− I)

(
m1∑
i1=1

K
(1)
i1

X
(
b
(11)
i1i2i3

− b′
(11)
i1i2i3

))
≥ 0, (2K

(2)
i2
− I)

(
m1∑
i1=1

K
(1)
i1

X
(
b
(12)
i1i2i3

− b′
(12)
i1i2i3

))
≥ 0,

(2K
(3)
i3
− I)

(
m2∑
i2=1

K
(2)
i2

(
m1∑
i1=1

K
(1)
i1

X
(
b
(11)
i1i2i3

− b′
(11)
i1i2i3

))
−

m2∑
i2=1

K
(2)
i2

(
m1∑
i1=1

K
(1)
i1

X
(
b
(12)
i1i2i3

− b′
(12)
i1i2i3

)))
≥ 0.

For cleanness, we introduce the following notation, for any ci ∈ {1, 2} and 2 ≤ s ≤ n− 1,

T (n−1)(n−2)···(s)
cn−1cn−2···cs (K(s)) =

ms∑
is=1

K
(s)
is

(
T (n−1)(n−2)···(s)(s−1)
cn−1cn−2···cs[cs−1=1] (K

(s−1))− T (n−1)(n−2)···(s)(s−1)
cn−1cn−2···cs[cs−1=2] (K

(s−1))
)
.

When s = 1,

T (n−1)(n−2)···(2)(1)
cn−1cn−2···c2c1 (K(1)) =

m1∑
i1=1

K
(1)
i1

X
(
b
(cn−1cn−2···c1)
inin−1···i1 − b′

(cn−1cn−2···c1)
inin−1···i1

)
.

Proceed with the above splitting, under the newly defined notation, we will get

y ⊙
mn∑
in=1

K
(n)
in

(
T (n−1)
1 (K(n−1))− T (n−1)

2 (K(n−1))
)
≥ 1

with constraints

(2K
(s)
is
− I)T (n−1)(n−2)···(s)(s−1)

cn−1cn−2···cscs−1 (K(s−1)) ≥ 0,∀2 ≤ s ≤ n− 1,

(2K
(1)
i1
− I)Xb

(cn−1cn−2···c1)
inin−1···i1 ≥ 0, (2K

(1)
i1
− I)Xb′

(cn−1cn−2···c1)
inin−1···i1 ≥ 0.

Note we already have the form of (6) by combine {b(cn−1cn−2···c1)
inin−1···i1 } and {b′(cn−1cn−2···c1)

inin−1···i1 } into

{b(cncn−1cn−2···c1)
inin−1···i1 }, the only thing left is to match {K(s)} with {D(n)}, we do this by recursion.

Consider any layer l, assume all {K(s)}, s ≤ l can be matched with {D(n)}, n ≤ l. Now we consider
the (l + 1)-th layer. Note that all K(l+1)

il+1
∈ {D(l+1)} for any il+1 ∈ [ml+1]. If there is duplicate

neuron activation patterns, i.e., K(l+1)
a = K

(l+1)
b for some a ̸= b, a, b ∈ [ml+1]. Then we merge all

lower-level neurons corresponding to K
(l+1)
a and K

(l+1)
b by summing up the corresponding (with

respect to i1, i2, . . . , il indices) b vectors. Both the layer output and ReLU sign constraints will
be preserved for all layers up to (l + 1)-th layer, and we thus get, after the merging, a new set of
{K̃(l+1)} and {b̃} that matches the problem (6) up to layer (l+ 1), where we just set all parameters
to be zero for any jl+1 ∈ [Pl+1] such that Djl+1

̸∈ {K̃(l+1)}. Now, we only need to verify that the
last inner layer’s neuron can be matched. By the symmetry between b

(cn−1cn−2···c1)
inin−1···i1 terms, consider

without loss of generality the neuron
m1∑
i1=1

K
(1)
i1

Xb
[cn−1=1][cn−2=1]···[c1=1]
inin−1···i1 , (14)
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which we want to match with

P1∑
j1=1

D
(1)
j1

Xu
[cn=1][cn−1=1][cn−2=1]···[c1=1]
jnjn−1···j1 . (15)

Note by construction we know K
(1)
i1
∈ {D(1)} for any i1 ∈ [m1]. If there is any duplicate neu-

rons K
(1)
c = K

(1)
d for some c ̸= d, c, d ∈ [m1]. We denote K

(1)
(c,d) = K

(1)
c = K

(1)
d . Let

b11···1inin−1···[i1←(c,d)] = b11···1inin−1···[i1=c] + b11···1inin−1···[i1=d]. Then we merge K
(1)
c and K

(1)
d by replac-

ing them with only one copy of K(1)
(c,d), and set the corresponding b vector to be binin−1···[i1=(c,d)].

Continue this process until there is no duplicate neurons in the last inner layer. We are guaran-
teed to get a set of {K̃(1)

i1
} and corresponding {b̃11···1inin−1···i1} such that K̃(1)

i1
belong to {D(1)} and

are all different. Now assume all outer layers have already been merged by the scheme of sum-
ming up corresponding b vectors mentioned above. Using {m̂s, K̂

(s), b̂} to represent the new set
of parameters. Then is ∈ [m̂s] with m̂s ≤ Ps. The expressions (14) and (15) can be matched by
setting u111···1

jnjn−1···j1 = b̂11···1inin−1···i1 for (js, is) pairs satisfying D
(s)
js

= K̂
(s)
is

, and setting to zero if

D
(s)
js
̸∈ [K̂(s)]. This completes our first direction proof.

We now assume that there exists {ucncn−1···c1
jnjn−1···j1 } which satisfies problem (6), our goal is to find

(n + 1)-layer NN weights W1,W2, · · · ,Wn+1 satisfying (5). Since our {ucncn−1···c1
jnjn−1···j1 } satisfies all

plane arrangement constraints in (6), we thus have, based on the inner most layer’s activation pattern
constraint and splits {ucncn−1···c1

jnjn−1···j1 } into u
cn−1cn−2···c1
jnjn−1···j1 := u

[cn=1]cn−1cn−2···c1
jnjn−1···j1 , u′

cn−1cn−2···c1
jnjn−1···j1 :=

u
[cn=2]cn−1cn−2···c1
jnjn−1···j1 ,

y ⊙
Pn∑

jn=1

D
(n)
jn

 Pn−1∑
jn−1=1

D
(n−1)
jn−1

· · · P1∑
j1=1

(Xu1···1
jn···j1)+ − (Xu′

1···1
jn···j1)+ · · ·

−
Pn−1∑

jn−1=1

D
(n−1)
jn−1

· · · P1∑
j1=1

(Xu2···1
jn···j1)+ − (Xu′

2···1
jn···j1)+ · · ·

 ≥ 1.

Thus we can find some vjnjn−1···j2j1 ∈ Rd, S
(1)
j1

, S
(2)
j2

, · · · , S(n)
jn
∈ {−1, 1} such that

Pn∑
jn=1

D
(n)
jn

(
T (n−1)
1 (D(n−1))− T (n−1)

2 (D(n−1))
)

=

2Pn∑
jn=1

 2Pn−1∑
jn−1=1

 2Pn−2∑
jn−2=1

· · · 2P2∑
j2=1

 2P1∑
j1=1

(Xvjnjn−1···j1)+S
(1)
j1


+

S
(2)
j2
· · ·
)
+
S
(n−2)
jn−2

)
+

S
(n−1)
jn−1

)
+

S
(n)
jn

.

(16)

Though the process of finding {vjnjn−1···j1 , S
(i)
ji
} has been outlined in three-layer case proof

above and can be extended to (n + 1)-layer case, we present here an outline of finding such
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{vjnjn−1···j1 , S
(i)
ji
} for five-layer NN for demonstration. For n = 5, we have the following

P4∑
j4=1


 P3∑

j3=1

 P2∑
j2=1

 P1∑
j1=1

(Xa111j4j3j2j1)+ − (Xa′
111
j4j3j2j1)+


+

−

 P1∑
j1=1

(Xa112j4j3j2j1)+ − (Xa112j4j3j2j1)+


+


+

−

 P2∑
j2=1

 P1∑
j1=1

(Xa121j4j3j2j1)+ − (Xa′
121
j4j3j2j1)+


+

−

 P1∑
j1=1

(Xa122j4j3j2j1)+ − (Xa′
122
j4j3j2j1)+


+


+


+

−

 P3∑
j3=1

 P2∑
j2=1

 P1∑
j1=1

(Xa211j4j3j2j1)+ − (Xa′
211
j4j3j2j1)+


+

−

 P1∑
j1=1

(Xa212j4j3j2j1)+ − (Xa′
212
j4j3j2j1)+


+


+

−

 P2∑
j2=1

 P1∑
j1=1

(Xa221j4j3j2j1)+ − (Xa′
221
j4j3j2j1)+


+

−

 P1∑
j1=1

(Xa222j4j3j2j1)+ − (Xa′
222
j4j3j2j1)+


+


+


+

 .

Let v111j4j3j2j1
= {a111j4j3j2j1

} ∪ {a′111j4j3j2j1} and similarly construct v112j4j3j2j1
, v121j4j3j2j1

, v122j4j3j2j1
,

v211j4j3j2j1
, v212j4j3j2j1

, v221j4j3j2j1
, v222j4j3j2j1

. Let S111
j1

, S112
j1

, S121
j1

, S122
j1

, S211
j1

, S212
j1

, S221
j1

, S222
j1

to be 1 for
j1 ∈ [P1] and to be −1 for j1 ∈ [P1 + 1, 2P1]. Thus, the above expression is equivalent to

P4∑
j4=1


 P3∑

j3=1

 P2∑
j2=1

 2P1∑
j1=1

(Xv111j4j3j2j1)+S
111
j1


+

−

 2P1∑
j1=1

(Xv112j4j3j2j1)+S
112
j1


+


+

−

 P2∑
j2=1

 2P1∑
j1=1

(Xv121j4j3j2j1)+S
121
j1


+

−

 2P1∑
j1=1

(Xv122j4j3j2j1)+S
122
j1


+


+


+

−

 P3∑
j3=1

 P2∑
j2=1

 2P1∑
j1=1

(Xv211j4j3j2j1)+S
211
j1


+

−

 2P1∑
j1=1

(Xv212j4j3j2j1)+S
212
j1


+


+

−

 P2∑
j2=1

 2P1∑
j1=1

(Xv221j4j3j2j1)+S
221
j1


+

−

 2P1∑
j1=1

(Xv222j4j3j2j1)+S
222
j1


+


+


+

 .

Let v11j4j3j2j1 = {v111j4j3j2j1
} ∪ {v112j4j3j2j1

} and S̃11
j1

= S111
j1

. Let S11
j2

= 1 for j2 ∈ [P2] and
S11
j2

= −1 for j2 ∈ [P2 + 1, 2P2]. Similarly construct v12j4j3j2j1 , S̃
12
j1
, S12

j2
, v21j4j3j2j1 , S̃

21
j1
, S21

j2
,

v22j4j3j2j1 , S̃
22
j1
, S22

j2
. Thus the above expression is equivalent to

P4∑
j4=1


 P3∑

j3=1

 2P2∑
j2=1

 2P1∑
j1=1

(Xv11j4j3j2j1)+S̃
11
j1


+

S11
j2


+

−

 2P2∑
j2=1

 2P1∑
j1=1

(Xv12j4j3j2j1)+S̃
12
j1


+

S12
j2


+


+ P3∑

j3=1

 2P2∑
j2=1

 2P1∑
j1=1

(Xv21j4j3j2j1)+S̃
21
j1


+

S21
j2


+

−

 2P2∑
j2=1

 2P1∑
j1=1

(Xv22j4j3j2j1)+S̃
22
j1


+

S22
j2


+


+

 .

Let v1j4j3j2j1 = {v11j4j3j2j1} ∪ {v
12
j4j3j2j1

}, v2j4j3j2j1 = {v21j4j3j2j1} ∪ {v
22
j4j3j2j1

}. Let ˆ̃S
(1)

j1 = S̃11
j1
,

ˆ̃S
(2)

j1 = S̃21
j1
. Let Ŝ(1)

j2
= S11

j2
, Ŝ

(2)
j2

= S21
j2
. Let further S(1)

j3
, S

(2)
j3

to take value 1 for j3 ∈ [P3] and
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take value −1 for j3 ∈ [P3 + 1, 2P3]. Therefore the above expression is equivalent to

P4∑
j4=1


 2P3∑

j3=1

 2P2∑
j2=1

 2P1∑
j1=1

(Xv1j4j3j2j1)+
ˆ̃S
(1)

j1


+

Ŝ
(1)
j2


+

S
(1)
j3


+

−

 2P3∑
j3=1

 2P2∑
j2=1

 2P1∑
j1=1

(Xv2j4j3j2j1)+
ˆ̃S
(2)

j1


+

Ŝ
(2)
j2


+

S
(2)
j3


+

 .

We once again repeat the above procedure for the outer most layer and we arrive

P4∑
j4=1

 2P3∑
j3=1

 2P2∑
j2=1

 2P1∑
j1=1

(Xv1j4j3j2j1)+
ˆ̃S
(1)

j1


+

Ŝ
(1)
j2


+

S
(1)
j3


+

S′j4 ,

where S′j4 = 1 for j4 ∈ [P4] and −1 otherwise. This completes our construction of

{vjnjn−1···j1 , S
(i)
ji
} for n = 5. Now, we are left with matching the following two expressions

2Pn∑
jn=1

 2Pn−1∑
jn−1=1

 2Pn−2∑
jn−2=1

· · · 2P2∑
j2=1

 2P1∑
j1=1

(Xvjnjn−1···j1)+S
(1)
j1


+

S
(2)
j2
· · ·


+

S
(n−2)
jn−2


+

S
(n−1)
jn−1


+

S
(n)
jn

,

and

mn∑
in=1

 mn−1∑
in−1=1

 mn−2∑
in−2=1

· · · m2∑
i2=1

(
m1∑
i1=1

(XW1i1)+W2i2i1

)
+

W3i3i2 · · ·


+

W(n−1)in−1in−2


+

Wninin−1


+

W(n+1)in .

This can be done by setting all weights corresponding to indices {in > 2Pn, in−1 >
4PnPn−1, · · · , ik > Πn

c=k2Pc} to be all zeros, then for the outer most layer, we set W(n+1)in =

S
(n)
in

, for 2 ≤ k ≤ n, we set Wkikik−1
= S

(k−1)
((ik−1−1)%2Pk−1)+1 for ik−1 ∈ [(ik−1)∗2Pk−1+1, ik ∗

2Pk−1] and 0 otherwise. For the inner most layer, we set W1i1 = vjnjn−1···j1 with

jn = ⌊(i1 − 1)/Πn−1
k=12Pk⌋+ 1,

jn−1 = ⌊((i1 − 1)%Πn−1
k=12Pk)/Π

n−2
k=12Pk⌋+ 1,

jn−2 = ⌊(((i1 − 1)%Πn−1
k=12Pk)%Πn−2

k=12Pk)/Π
n−3
k=12Pk⌋+ 1,

· · ·
j2 = ⌊((· · · )%Π2

k=12Pk)/2P1⌋+ 1,

j1 = ((· · · )%Π2
k=12Pk)%2P1 + 1.

Given any test point x̃ ∈ Rd, the final prediction can be computed by

ỹ =

Pn∑
jn=1

(
T (n−1)
1 (D(n−1))

)
+
−
(
T (n−1)
2 (D(n−1))

)
+
, (17)

where

T (n−1)···(i)
cn−1···ci (D(i)) =

Pi∑
ji=1

(
T (n−1)···(i)(i−1)
cn−1···ci1 (D(i−1))

)
+
−
(
T (n−1)···(i)(i−1)
cn−1···ci2 (D(i−1))

)
+
,

T (n−1)(n−2)···(1)
cn−1cn−2···c1 (D(1)) =

P1∑
j1=1

(
x̃Ta

1cn−1···c1
jnjn−1···j1

)
+
−
(
x̃Ta

2cn−1···c1
jnjn−1···j1

)
+
.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

F.3 EXPLANATION OF BIAS TERM FOR GENERAL CASE

To show that the n-layer NN of form ((· · · ((XW1)+W2)+W3 · · · )+Wn−1)+Wn preserves
the same approximation capacity as the biased version ((· · · ((XW1 + b1)+W2 + b2)+W3 +
b3 · · · )+Wn−1 + bn−1)+Wn + bn, we show that the biased version is incorporated in the form
((· · · ((XW1)+W2)+W3 · · · )+Wn−1)+Wn when the constraint on number of hidden neurons is
mild. First note that we can always append the data matrix X with a column of ones to incorporate
the inner most bias b1. Then for each outer layer, we can always have an inner neuron to be a pure
bias neuron with value one. Then the corresponding outer neuron weight would serve as an outer
layer bias.

F.4 ACTIVATION PATTERN SUBSAMPLING AND ITERATIVE FILTERING.

Here we detail more about our hyperplane selection scheme. Take two-layer ReLU model for exam-
ple, in order to find the activation pattern D corresponding to the hidden layer, one needs to exhaust
the set {diag(1{Xu ≥ 0})} for all u ∈ Rd. In our experiments, we adopt a heuristic subsampling
procedure, i.e., we usually set a moderate number of hidden neurons m1, and we sample a set of
Gaussian random vectors {u1, u2, · · · , un1

} with some random n1 > m1. Then we take the set
{diag(1{Xui ≥ 0})|i ∈ [n1]}. If |{diag(1{Xui ≥ 0})|i ∈ [n1]}| > m1, we take a subset of m1

activation patterns there, if not, we increase n1 and redo all prior steps until we hit some satisfactory
n1. This heuristic method always works well in our experiments, see Appendix H.1 for more about
our implementation details.

A more rigorous way which exhausts all possible activation patterns can be done via an iterative
filtering procedure. We demonstrate here for a toy example. Consider still two-layer model as
before, when we are given a data set X of size n, a loose upper bound on |D| is given by 2n, i.e.,
each piece of data can take either positive and negative values and they are all independent. Thus
one can find all possible Di’s by solving

find
2n∑
i

∥ui∥2

s.t. (2Di − I)Xui ≥ 0, ∥ui∥2 ≤ 1

where Di’s loop over all 2n possibilities. Then the Di’s correspond to non-zero ui’s in the solution
are feasible plane arrangements. However, this method induces 2n ∗ d variables. A more economic
way to find all feasible arrangements is to do an iterative filtering with each newly added data. When
there is only one non-zero data point X1, there always exists u1, u2 vectors such that XT

1 u1 > 0 and
XT

1 u2 < 0. Thus D1 = {[1] , [0]} represent all possible sign patterns for this single training data.
After the second data point has been added, we know

D2 ⊆
{[

1 0
0 1

]
,

[
1 0
0 0

]
,

[
0 0
0 1

]
,

[
0 0
0 0

]}
.

Therefore, an upper bound on cardinality of D2 is given by 22 = 4. However, this upper bound
might be pessimistic, for example, if X1 = X2, then we would expect

D2 =

{[
1 0
0 1

]
,

[
0 0
0 0

]}
⊂
{[

1 0
0 1

]
,

[
1 0
0 0

]
,

[
0 0
0 1

]
,

[
0 0
0 0

]}
.

Since XT
1 u = XT

2 u for any u, they will always have the same sign pattern. Things get more
complicated with more data points, say for n data points X1, X2, · · · , Xn, it is possible that sign
pattern of XT

n u can be determined by sign patterns of XT
1 u,X

T
2 u, · · · , XT

n−1u when there are linear
dependency between the data points, which happens more often with larger set of training data. Thus
the true cardinality of Dn might be far smaller than 2n. Indeed, one can show that, with r denoting
rank of the training data matrix consisting of the first n data points (Pilanci & Ergen, 2020; Stanley
et al., 2004),

|Dn| ≤ 2r

(
e(n− 1)

r

)r

,

which can be much smaller than our pessimistic bound 2n especially when training data has small
rank. To stay close to the optimal cardinality and avoid solving an optimization problem with 2n ∗ d
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number of variables, what one can do is to find the feasible plane arrangements iteratively at the
time when each single data point is added. The underline logic is that plane arrangement patterns
which are infeasible to X[1:t−1] will also be infeasible to X[1:t]. Therefore, assume one has already
found the optimal sign patterns Dt−1 for the first t− 1 training samples which has cardinality ct−1,
when Xt arrives, one needs to solve the following auxiliary problem

find
2ct−1∑

i

∥ui∥2

s.t.
(
2

[
D(t−1)i 0

0 0

]
− I

)
Xui ≥ 0, i ∈ [1, · · · , ct−1](

2

[
D(t−1)i−ct−1

0
0 1

]
− I

)
Xui ≥ 0, i ∈ [ct−1 + 1, · · · , 2ct−1]

∥ui∥2 ≤ 1,

which has only (2 ∗ ct−1) ∗ d number of variables and can be far fewer than 2t ∗ d. This scheme can
also be done lazily each fixed T iterations, one just add all {0, 1}-patterns for the last T data points.

G DEFERRED PROOFS AND EXTENSIONS IN SECTION 6

G.1 DEFERRED PROOF OF THEOREM 6.1

Proof. Notice that the polyhedron cut is simply three consecutive cuts with three hyperplanes:

• H1 := {θ : yn · f two-layer(xT
n ; θ) = 0};

• H2 := {θe : (2D(Si)− I)nx
T
nθ

e = 0};

• H3 := {θo : (2D(Si)− I)nx
T
nθ

o = 0},

where θo (θe) denotes the reduced θ vector containing only the odd (even) indices. Since the cuts
imposed by the linear inequality constraints Cn and C′n via hyper-planesH2,H3 only reduce the re-
maining set T , examining the volume remained after just the cut viaH1 suffices for the convergence
analysis as it bounds vol(T1) from above.

Assuming the cut is active, it follows that θG misclassifies (xn, yn), so yn · f two-layer(xn; θ) < 0.
Thus, the cut is deep and θG is in the interior of T2. By Proposition 1, it follows that

vol(T ∩ H+
1 ) < vol(T ∩ H+

G) ≤ (1− 1/e)vol(T ),
whereHG is any hyperplane that goes through θG which is parallel toH1. Therefore, at each step t
where the cut is active, at least volume of magnitude 1

evol(T t) is cut away. The volume of T t after
t iterations is bounded by:

vol(T t) < (1− 1/e)t · vol(T 0).

Then as t → ∞, (1 − 1/e)t → 0, it follows that vol(T t) converges to zero and the feasible region
shrinks to point(s).

Notice that since T is a convex body and {T t} is a nested decreasing sequence of convex set with
T t+1 ⊆ T t, by the finite intersection property, the intersection of all T t sets is non-empty and
contains the optimal solution θ∗:

∩∞t=0T t = {θ∗}.
It remains to justify that what the intersection contains is indeed the optimal solution. To see this,
observe that the problem that Algorithm 4 is simply a feasibility problem. Since every time the
convex set shrinks by intersecting with the constraint set containing feasibility criteria given each
new acquired data point (xnt , ynt), i.e.,

{θ ∈ T : yn · f two-layer(xn; θ) ≥ 0, C({n}), C′({n})},
the set shrinks to a finer set that satisfies increasingly more constraints posed by additional acquired
data points. This monotonic improvement with the shrinking feasible region implies that the se-
quence of classifiers θt converges to the set of optimal classifiers {θ∗}.
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G.2 EXTENSION TO ALGORITHM 4: THE CASE OF INEXACT CUTS AND CONVERGENCE

In this section, we discuss convergence results of Algorithm 5 under the third setup described in
Section 6.1.

Note that the cut made by both Algorithm 4 and Algorithm 2 are exact in the sense that cuts are only
made when the computed center mis-classifies the data points returned by the oracle and is therefore
always discarded via the cutting hyperplanes. Algorithm 5, on the other hand, implements inexact
cut: cuts are always made regardless of whether the queried center mis-classifies. Nice convergence
rate similar to that of Theorem 6.1 can still be guaranteed, as we shall see in the following theorem,
as long as the cut is made within a certain neighborhood of the centroid at each step.

First, let us quantify the inexactness of the cut. At each iteration, given a cutting hyperplane Ha

of normal vector a, which passes through the origin by design, and the computed center θ, the
Euclidean distance between θ and the hyperplane is given by

h = ∥θ∥2| cos(α)|, (18)

where

α = arccos(
θ · a

∥θ∥2∥a∥2
) (19)

is the angle between θ and the normal vector a. For simple notation, let us denote the angle between
θ and the cutting planeHa as β. Then

β =
π

2
− α. (20)

Next, we introduce an important extension to Proposition 1 given in Louche & Ralaivola (2015).
Proposition 2 (Generalized Partition of Convex bodies). Let T ⊆ Rd be a convex body. Let Ha be
a hyperplane of normal vector a. We define the positive (negative) halfspace T + (resp. T −) of T
with respect toHa as

T + := T ∩ {θ ∈ Rd : ⟨a, θ⟩ ≥ 0}
T − := T ∩ {θ ∈ Rd : ⟨a, θ⟩ < 0}

The following holds true: if θG + Λa ∈ T + then

vol(T +)/vol(T ) ≥ e−1(1− λ)d,

where

Λ = λΘd
vol(T )HT +

RdHT −
,

with λ ∈ R an arbitrary real such that λ ≤ 1, Θd a constant depending only on d, R the radius of
the (d− 1)-dimensional ball B2 of volume vol(B2) := vol(T ∩ {θ ∈ Rd : ⟨a, θ⟩ = 0}) and

HT + := max
b∈T +

bTa (resp. HT − := min
b∈T −

bTa).

Note that by symmetry of partitioned convex body with respect to the centroid (an application of
Proposition 1), one can similarly establish a bound in the case that

θG + Λa ∈ T −,

where Λ is defined as in Proposition 2. Then

vol(T −)/vol(T ) ≥ e−1(1− λ)d. (21)

Proposition 2 generalizes Grünbaum’s inequality in Proposition 1 by allowing a cut that is of dis-
tance (greater than or equal to) Λ along the direction of the normal vector a from the actual center
of gravity. To apply Proposition 2, we need to establish an equivalence relation between our quan-
tifiation of the inexactness through the Euclidean distance h (or angle α and or β) with Λ.

We are now ready to bound the volume reduction factor for inexact cuts with respect to the center
gravity in Algorithm 5.
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Theorem G.1 (Convergence with Inexact Cuts of Center of Gravity). Let T ⊆ Rd be a convex body
and let θG denote its center of gravity. Given oracle returned data point (xn, yn), define hyperplane

Ha := {θ ∈ Rd : yn · f two-layer(xn; θ) = 0},
where

a := yn · [x1
n − x1

n ... xP
n − xP

n ]

is its associated normal vector. Then Ha divides T into a positive half-space T + and a negative
half-space T −,

T + := T ∩ {θ ∈ Rd : ⟨a, θ⟩ ≥ 0}
T − := T ∩ {θ ∈ Rd : ⟨a, θ⟩ < 0},

and h :=
|θT

Ga|
∥a∥2 is the Euclidean distance between θG and Ha. The inexact polyhedron cut given in

Algorithm 5 partitions the convex body T into two subsets:

T1 := {θ ∈ T : T +, C({n}), C′({n})}
T2 := {θ ∈ T : T −, or ¬C({n}),¬C′({n})},

where ¬ denotes the complement of a given set. The following holds:

vol(T1) < (1− e−1(1− λ̃)d)vol(T ),
with

λ̃ = − RdHT −

Θdvol(T )HT +

h > 0,

where Θd is a constant depending only on d, R is the radius of the (d − 1)-dimensional ball B2 of
volume vol(B2) := vol(T ∩ Ha) and

HT + := max
θ∈T +

θTa (resp. HT − := min
θ∈T −

θTa).

Proof. Observe that at each iteration if θG mis-classifies the oracle returned data point (xn, yn),
then we have the same analysis as in Theorem 6.1. In such a case, we have guaranteed accelerated
cuts with a strictly better volume reduction rate bound than in the case when cuts are made exactly
through the centroid. This is because in this case the centroid is contained in the interior of the
eliminated region. On the other hand, when the cut is made such that the centroid is contained
in the interior of the positive half-space, we cut away smaller volume than when we make the cut
through the centroid. Therefore, to obtain a lower bound on the volume reduction rate for Algorithm
5, it suffices to examine only the latter case, i.e. when θG is contained in interior of the positive
half-space.

Suppose that θG ∈ T + \ Ha. Define real number Λ to be such that

Λ < −h := −|θ
Ta|
∥a∥2

,

then since θG − ha ∈ Ha, it follows that

θG + Λa ∈ T −.
By Proposition 2 and symmetry, it follows that

vol(T −)/vol(T ) ≥ e−1(1− λ)d,

where

λ = Λ(Θd
vol(T )HT +

RdHT −
)−1

is a real such that λ ≤ 1, Θd is a constant depending only on d, R is the radius of the (d − 1)-
dimensional ball B2 of volume vol(B2) := vol(T ∩ Ha) and

HT + := max
θ∈T +

θTa (resp. HT − := min
θ∈T −

θTa).
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Since

Λ = λΘd
vol(T )HT +

RdHT −
< −h,

or equivalently

0 < λ < − RdHT −

Θdvol(T )HT +

h,

it follows that

vol(T −) ≥ e−1(1− λ)dvol(T ) > e−1(1− λ̃)dvol(T ),
or equivalently

vol(T +) < (1− e−1(1− λ̃)d)vol(T ),
where

λ̃ = − RdHT −

Θdvol(T )HT +

h.

Since

T1 := {θ ∈ T : T +, C({n}), C′({n})} ⊆ T +,

we have that

vol(T1) ≤ vol(T +) < (1− e−1(1− λ̃)d)vol(T ).

To justify that the derived ratio vol(T1)/vol(T ) is valid, i.e. vol(T1)/vol(T ) ∈ [0, 1], it suffices to
show that e−1(1− λ̃)d ∈ [0, 1], or 0 < λ̃ ≤ 1.

Define coefficient

c(Ha, T , d) := Θd
vol(T )HT +

RdHT −
.

Since by definition HT + > 0, HT − < 0, with Θd, vol(T ), Rd > 0, it follows that c(Ha, T , d) < 0.

Since λ̃ := −c(Ha, T , d)−1h and h > 0, we have that λ̃ > 0. Next, to see λ̃ ≤ 1, observe that since
we have

Λ = λc(Ha, T , d) < −h,
it follows that

c(Ha, T , d) < −h ≤ −λ−1h,
where we have used the fact that 0 < λ ≤ 1. It follows that

λ̃ := −c(Ha, T , d)−1h < h−1h = 1.

Hence, 0 < λ̃ < 1. Then by Theorem 6.1, the volume reduction ratio 1 − e−1(1 − λ̃)d > 1 − e−1

offers a strict upper bound for each iteration of Algorithm 5, regardless of whether the centroid θG
is contained in the positive half-space or the negative half-space.

Given Theorem G.1, at each step t in Algorithm 5, at least a volume of magnitude e−1(1 −
λ̃)dvol(T t) is cut away. The volume of T t after t iterations is bounded by:

vol(T t) < (1− e−1(1− λ̃)d)t · vol(T 0).

Since 0 < λ̃ < 1, we have 0 < 1 − e−1(1 − λ̃)d ≤ 1. So as t → ∞, (1 − e−1(1 − λ̃)d)t → 0.
It follows that vol(T t) converges to zero as t → ∞, and the feasible region shrinks to the optimal
point(s), as in Theorem 6.1.

Theorem G.1 allows us to quantify the volume reduction rate as a function of the inexactness of cuts
through the Euclidean distance between the centroid and the cutting hyperplane, which is monitored
by the query sampling method. In particular, in the case of inexact cuts in Algorithm 5 with a
minimal margin query sampling scheme, the volume reduction rate converges asymptotically in the
number of training data supplied to the cutting-plane oracle to the rate in Proposition 1. This result
is stated in the following corollary.
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Corollary 1 (Asymptotic Convergence of Inexact Cuts with Center of Gravity). Assume that data
points xi’s are uniformly distributed across input space. Let the number of training data supplied to
the cutting-pane oracle in Algorithm 5 goes to infinity, i.e. |D| → ∞. Then the volume of T t after
t iterations with the polyhedron cut in Algorithm 5 under minimal margin query sampling method
converges asymptotically to bound

vol(T t) < (1− e−1)t · vol(T 0).

Proof. Let us begin with analyzing a single iteration with convex body T ⊂ Rd and its centroid
θG. Notice that as |D| increases, data points xi’s become more densely distributed across the input
space. So for any ϵ > 0, there exists a sufficiently large N such that for all |D| > N , there exists at
least one data point xi ∈ D, for which |f two-layer(xi; θG) := [x1

i − x1
i ... xP

i − xP
i ] · θG| < ϵ. As

|D| → ∞, ϵ can be made arbitrarily small, implying that

argmin
xi∈Dx

|f two-layer(xi; θG)| → 0.

This suggests that the Euclidean distance between θG and the oracle returned cutting plane Ha

diminishes to 0 as |D| → ∞.

By Theorem G.1, given an inexact polyhedron cut in Algorithm 5 distance h away from the centroid,
the volume of the remaining set is upper bounded by the following:

vol(T1) ≤ (1− e−1(1− λ̃)d)vol(T ),
where λ̃ := −c(Ha, T , d)−1h and

c(Ha, T , d) := Θd
vol(T )HT +

RdHT −
.

Then to show that ratio (1−e−1(1− λ̃)d)→ 1−e−1, or equivalently λ̃→ 0, as h→ 0, it suffices to
show that the coefficient term −c(Ha, T , d) = |c(Ha, T , d)| is lower bounded by a constant Mmin
so that its inverse is upper bounded. This is easy to show. First observe that dimension dependent
constant Θd and vol(T ) is fixed and finite regardless of the cutting planeHa. Because convex body
T is by definition closed, variables R, |HT − | are bounded from above. By the same reasoning, HT +

is bounded from below and away from 0, for if HT + = 0, it follows that vol(T +) = 0, suggesting
the termination and convergence of the algorithm to the optimal solution(s). Hence, there exists a
constant Mmin such that

min
Hai

|c(Hai
, T , d)| ≥Mmin.

It follows that
0 ≤ lim

h→0
λ̃ := lim

h→0
−c(Ha, T , d)−1h ≤ lim

h→0
M−1minh = 0.

So as |D| → ∞, we have that h → 0, which results in λ̃ → 0. Therefore, the volume of T t after t
iterations in Algorithm 5 follows:

lim
|D|→∞

vol(T t) < lim
|D|→∞

(1− e−1(1− λ̃)d)t · vol(T 0) = (1− e−1)t · vol(T 0).

G.3 CONVERGENCE W.R.T. CENTER OF THE MAXIMUM VOLUME ELLIPSOID

Recall the definition for the center of MVE in Definition 4. We will now show that similar conver-
gence rate as that of the center of gravity can be achieved under center of MVE as well.
Theorem G.2 (Convergence with Center of MVE). Let T ⊆ Rd be a convex body and let θM
denote its center of the maximum volume inscribed ellipsoid. The polyhedron cut given in Algorithm
4 (assuming that the cut is active) and Algorithm 2, i.e.,

T ∩ {θ : yn · f two-layer(xn; θ) ≥ 0, C({n}), C′({n})},
where coupling (xn, yn) is the data point returned by the cutting-plane oracle after receiving queried
point θM , partitions the convex body T into two subsets as in Theorem 6.1. Then T1 satisfies the
following inequality:

vol(T2) < (1− 1

d
) · vol(T ).
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Proof. The proof follows similarly as the proof to Theorem 6.1. For the MVE cutting-plane method,
the bound on the volume reduction factor is given by:

vol(T k+1)

vol(T k)
≤ 1− 1

d
,

where k denotes the iteration (Boyd & Vandenberghe, 2004). Since f two-layer(xn; θ) is linear in θ
and by the design of the algorithm, the center θM is always contained in the interior of the discarded
set (or equivalently, the cut is deep), proof for the bound (1 − 1

d ) · vol(T ) follows similarly as the
proof of Theorem 6.1.

H EXPERIMENTS SUPPLEMENTALS

H.1 IMPLEMENTATION DETAILS

In this section, we provide an overview of the implementation details. For specific aspects, such as
baseline implementation and the cutting-plane AL method for regression, we direct readers to the
corresponding sections in Appendix H.

In our experiments, we follow exactly the same algorithm workflow as in Algorithm 1 for our model
training and Algorithm 4 for active learning with limited queries, which is the version we used
conducting all of our experiments in Section 7. In the training of Algorithm 4, we implement the
“center” function for analytic center retrieval due to its simple computation formula (see Definition
1). Since the center retrieval problem is of convex minimization form, we solve it with CVXPY
(Diamond & Boyd, 2016) and default to MOSEK (MOSEK ApS, 2024) as our solver. In our ex-
periments, MOSEK is able to handle all encountered convex optimization programs, given that
they are feasible. We involve all training data cuts while we note that some cut dropping method
may help alleviate computation overhead, i.e., one may keep the last several cuts only, see Sec-
tion 2.5 in (Parshakova et al., 2023) for a discussion on constraint dropping. For activation pattern
generation, for two-layer model experiment, say we want P = m patterns, we always generate a
set of standard Gaussian vectors {ui, i ∈ [n]} for some n > m, compute the induced pattern set
{Di = diag(1{Xui ≥ 0})}, and take m non-duplicate patterns out of it. Furthermore, in our im-
plementation of Algorithm 4, we included a few additional checks for computational efficiency, like
skipping the centering step when no cut has been performed before, or book-keeping of discarded
data points that should not be re-considered immediately. For IMDB experiments, we randomly pick
50 training data points and 20 test data points for ease of computation, and we use minimal margin
query strategy described in Appendix D.3. Through all our data experiments, random seed is fixed
to be 0 except for error bar plots, where we always take random seeds {0, 1, 2, 3, 4}.

H.2 FINAL SOLVE REGULARIZATION IN CUTTING-PLANE AL

In this section, we discuss an optional feature to our cutting-plane AL method via the two-or-three
layer ReLU network: the inclusion of a final convex solve which solves for the optimal parameter
of the equivalent convex program to the two-or-three layer ReLU network using the data acquired
by the AL thus far.

Convexifying a Two-layer ReLU Network. To introduce this final convex solve, we first briefly
overview the work of Pilanci & Ergen (2020). We will focus on the two-layer ReLU network case,
as the case for three-layer can be easily extended by referencing the exact convex reformulation of
the three-layer ReLU network given in the paper by Ergen & Pilanci (2021b).

Pilanci & Ergen (2020) first introduced a finite dimensional, polynomial-size convex program that
globally solves the training problem for two-layer fully connected ReLU networks. The convexifi-
cation of ReLU networks can be summarized into a two-step strategy:

1. Project original feature to higher dimensions using convolutional hyperplane arrangements.
2. Convexify using convex regularizers, such as convex variable selection models.

First, as per Step 1), we briefly recall and define a notion of hyperplane arrangements for the neural
network in Definition 3 and we can rewrite the ReLU constraint using the partitioned regions by the
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hyperplanes:

(2D(S)− In)Xw ≥ 0 (22)

Next, per Step 2), we define the primal problem and give its exact finite-dimensional convex formu-
lation. Given data matrix X ∈ Rn×d, we consider a two-layer network f(X; θ) : Rn×d → Rn with
m neurons:

f(X; θ) =

m∑
j=1

(Xwj)+αj , (23)

where wj ∈ Rd, αj ∈ R are weights for hidden and output layers respectively, and θ = {wj , αj}mj=1.
Supplied additionally with a label vector y ∈ Rn and a regularization parameter β > 0, the primal
problem of the 2-layer fully connected ReLU network is the following:

p∗ := min
{wj ,αj}mj=1

1

2
∥f(X; θ)− y∥22 +

β

2

m∑
j=1

(∥wj∥22 + α2
j ). (24)

The above non-convex objective is transformed into an equivalent convex program. For a detailed
derivation, please refer to Pilanci & Ergen (2020). We will give an overview of the key steps here.
First, re-represent the above optimization problem as an equivalent ℓ1 penalized minimization,

p∗ = min
∥wj∥2≤1∀j∈[m]

min
{αj}mj=1

1

2
∥f(X; θ)− y∥22 + β

m∑
j=1

|αj |. (25)

Using strong duality, the exact semi-infinite convex program to objective 24 is obtained:

p∗ = max
v∈Rn s.t. |vT (Xw)+|≤β∀w∈B2

−1

2
∥y − v∥22 +

1

2
∥y∥22. (26)

Under certain regularity conditions in Pilanci & Ergen (2020), the equivalent finite-dimensional
convex formulation is the following:

p∗ = min
{ui,u′

i}Pi=1,ui,u′
i∈Rd∀i

1

2
∥

P∑
i=1

D(Si)X(u′i − ui)− y∥22

+ β(

P∑
i=1

(∥ui∥2 + ∥u′i∥2))

(27)

subject to the constraints that

(2D(Si)− In)Xui ≥ 0, (2D(Si)− In)Xu′i ≥ 0, ∀i.
Here, β is a regularization parameter, and we denote {u∗i , u′

∗
i }Pi=1 as the solution to objective 27.

To see that the convex program outlined in 27 is indeed an exact reformulation of the two-layer
ReLU network, we run the convex solve on the spiral dataset and the quadratic regression dataset in
Section 7 and compare it with standard stochastic gradient descent technique. We also note here that
for the sake of brevity, we will be referring to the solving of the exact convex program with respect
to the two-or-three layer ReLU networks interchangeably as “convex solve” or “final solve”.

First, using the same spiral dataset of randomly selected 80 points from 100 points Spiral (k1 =
13, k2 = 0.5, nshape = 50) (detailed in Appendix H.4) and β = 0.001, the convex solve achieves an
objective value of 0.0008, while stochastic gradient descent levels out at an objective value greater
than 0.001. The final decision boundary on the spiral using the convex solve (left) and SGD (right)
is shown in Figure 5, where we have used marker “x” to indicate the train points passed into each
solver and triangle marker to indicate test points. While both methods capture the spiral perfectly
in this case, the advantage of the convex solve becomes more evident given more complex (e.g.
in terms of shape) data. This is demonstrated in Figure 6, where we have used a spiral dataset of
randomly selected 80 points from 100 points Spiral (k1 = 13, k2 = 0.5, nshape = 100). Similar
results hold for the regression case. The convex solve for the two-layer ReLU network returns an
objective value of 4.142× 10−5. This aligns with the result of Figure 7 as the final prediction of the
convex solves aligns perfectly with the actual quadratic function.

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1.0 0.5 0.0 0.5 1.0

Figure 5: Decision boundary made by convex solve (left) and stochastic gradient descent (right) on the Spiral Dataset of nshape = 50.
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Figure 6: Decision boundary made by convex solve (left) and stochastic gradient descent (right) on the Spiral Dataset of nshape = 100.
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Figure 7: Prediction made by convex solve (red) and stochastic gradient descent (cyan) on the regression dataset.
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Integration of the Final Convex Solve. Now we talk about how we can incorporate the convex
program in 27 into our cutting-plane AL method to potentially aid its performance. We first provide
some justifications.

As we have mentioned in Section 6, since the prediction function

P∑
i=1

D(Si)X(u′i − ui) := f two-layer(X; θ) = [X1 −X1 ... XP −XP ]θ,

is linear in θ := (u′1, u1, . . . , u
′
P , uP ) with ui, u

′
i ∈ Rd along with the ReLU cuts, we preserve the

convexity of the parameter space after each cut. And hence, the final solve becomes well applicable.
To introduce this step, we use the short-hand notations in Section 6 and also, for the sake of brevity,
we denote the exact convex objective in Equation 27 as the following:

f obj(D; θ, β) =min
θ

1

2
∥

P∑
i=1

(D(Si)X)D(u
′
i − ui)− yD∥22

+ β(

P∑
i=1

(∥ui∥2 + ∥u′i∥2)),

(28)

where XD and yD are the slices of X and y at indices D.

Algorithm 8 Cutting-plane AL for Binary Classifica-
tion with Limited Queries using Final Solve

1: T 0 ← B2

2: t← 0
3: DAL ← 0
4: repeat
5: θt ← center(T t)
6: for s in {1,−1} do
7: (xnt , ynt)← QUERY(T t,D \ DAL, s)
8: if ynt · f 2layer(xnt ; θ

t) < 0 then
9: DAL ← ADD(DAL, (xnt , ynt))

10: T t+1 ← T t ∩ {θ : ynt · f 2layer(xnt ; θ) ≥
0, C({nt}), C′({nt})}

11: t← t+ 1
12: end if
13: end for
14: until |DAL| ≥ nbudget

15: θt ← SOLVE(f obj(DAL; θ
t, β), {C(DAL), C

′(DAL)})
16: return θt

Algorithm 8 shows how the final convex
solve is incorporated into our cutting-
plane AL method via the two-layer
ReLU network with limited queries.
Other variations such as query synthesis
(Algorithm 2), inexact cuts (Algorithm
5), as well as regression (Algorithm 6)
can be adapted in the same way. In Al-
gorithm 8, SOLVE() is a convex solve
that solves the exact convex formula-
tion in Equation 27 with all the selected
training data pairs (xi, yi) | i ∈ DAL
from the active learning loop. In our im-
plementation, we use CVXPY and de-
fault to solver CLARABEL (Goulart &
Chen, 2024).

Upon examining Algorithm 8 and
the objective function of the equiv-
alent convex program f obj(DAL; θ

t, β)
in 27, a key difference is the intro-
duction of a regularization term, i.e.
β(
∑P

i=1(∥ui∥2+∥u′i∥2)). In more com-
plex tasks, the inclusion of the final convex solve, and thus an additional regularization, tends to aid
the cutting-plane AL method in achieving faster convergence in the number of queries. This is the
case, for example, for the spiral dataset in our experiment (see Appendix H.4). However, for simpler
tasks, such as the quadratic regression prediction, adding regularization could slow down the conver-
gence (see Appendix H.5). Therefore, in our experiments, we emphasize that we have used the best
cutting-plane AL method, chosen from the version with or without the final convex solve. This is
explicitly noted in the supplementary sections, namely Appendix H.4 for the spiral experiment and
Appendix H.5 for the quadratic regression task. We also remark that due to the limitation in theory
on the convexification of neural networks, such a convex solve is only viable up to a three-layer
ReLU network.

H.3 ACTIVE LEARNING BASELINES

In this section, we introduce the various baselines used in the spiral task and the quadratic regression
task in Section 7. We also elaborate on the implementation details of each baseline discussed.

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

In addition to random sampling, which serves as a baseline for all other AL methods, and the linear
cutting-plane AL method (Algorithm 3 for classification and Algorithm 6 for regression), which
provides a baseline for our cutting-plane NN algorithm (Algorithm 4), demonstrating our extension
from linear to nonlinear decision boundaries in the cutting-plane AL framework, we also survey
popular AL algorithms from the scikit-activeml library (Kottke et al., 2021) and the DeepAL
package (Huang, 2021).

We first introduce the baselines we implemented from the DeepAL package.

• Entropy Sampling (Settles, 2009). This technique selects samples for labeling based on the
entropy of the predicted class probabilities. Recall that the entropy for a sample x with
predicted class probabilities p(y|x) is given by:

H(y|x) = −
∑
c

p(y = c|x) log p(y = c|x)

Higher entropy indicates greater uncertainty, making such samples good candidates for
active learning.

• Bayesian Active Learning Disagreement (BALD) with Dropout (Gal et al., 2017a). BALD
aims to choose samples that maximize the mutual information I[y, θ|x,Dtrain] between
predictions y and model parameters θ, given a sample x and training data Dtrain. Mathe-
matically, this is expressed as:

I[y, θ|x,Dtrain] = H[y|x,Dtrain]− Ep(θ|Dtrain)[H[y|x, θ]]

BALD with dropout extends this approach by using dropout during inference to approxi-
mate Bayesian uncertainty, allowing for efficient estimation of uncertainty in deep learning
models through Monte Carlo dropout.

• Least Confidence (Lewis & Gale, 1994a). This strategy selects the samples where the
model is least confident in its most likely prediction. For a given sample x, it is measured
by the confidence of the predicted class ŷ, as follows:

LC(x) = 1−max
c

p(y = c|x)

Samples with lower confidence values are considered more uncertain and thus more infor-
mative for labeling.

Next, we introduce the baselines surveyed from scikit-activeml.

• Query by Committee (QBC) (Seung et al., 1992). The Query-by-Committee strategy uses
an ensemble of estimators (a “committee”) to identify samples on which there is disagree-
ment. The committee members vote on the label of each sample, and the sample with the
highest disagreement is selected for labeling. This disagreement is often quantified using
measures like vote entropy:

Hvote(x) = −
∑
c

vc
C

log
vc
C

where vc is the number of votes for class c and C is the total number of committee mem-
bers. This strategy focuses on reducing uncertainty by selecting instances where committee
members are in conflict.

• Greedy Sampling on the Feature Space (GreedyX) (Wu et al., 2019). GreedyX implements
greedy sampling on the feature space, aiming to select samples that increase the diversity
of the feature space the most. The method iteratively selects samples that maximize the
distance between the newly selected sample and the previously chosen ones, ensuring that
the selected subset of samples represents diverse regions of the feature space. This is often
formulated as:

max
xi∈D

min
xj∈Q

∥xi − xj∥2

where D is the set of all data points and Q is the set of already selected query points.
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• Greedy Sampling on the Target Space (GreedyT) (Wu et al., 2019). This query strategy
initially selects samples to maximize diversity in the feature space and then shifts to maxi-
mize diversity in both the feature and target spaces. Alternatively, it can focus solely on the
target space (denoted as GSy). This approach attempts to increase the representativeness
of the selected samples in terms of both input features and target values. The optimization
can be formulated as:

max
xi∈D

min
xj∈Q

∥xi − xj∥2 and/or max
yi∈D

min
yj∈Q

∥yi − yj∥2

where D is the set of all data points and Q is the set of already selected query points,
applied either to the feature space, the target space, or both.

• KL Divergence Maximization (Kldiv) (Elreedy et al., 2019). This strategy selects samples
that maximize the expected Kullback-Leibler (KL) divergence between the predicted and
true distributions of the target values. In this method, it is assumed that the target proba-
bilities for different samples are independent. The KL divergence is a measure of how one
probability distribution diverges from a second, reference distribution, and is given by:

DKL(P ∥ Q) =
∑
i

P (xi) log
P (xi)

Q(xi)

where P is the true distribution and Q is the predicted distribution. This method balances
exploration and exploitation by focusing on the areas where the current model’s uncertainty
is greatest.

We used Query-By-Committee and Greedy Sampling on the Feature Space for both the spiral ex-
periment and the quadratic regression experiment, and used Greedy Sampling on the Target and KL
Divergence Maximization only for the regression task. As the readers may see in the descriptions
provided above, both KL Divergence Maximization and Greedy Sampling on the Target Space are
primarily suited for regression tasks due to the way they handle target distributions and diversity
in the target space, which are more relevant in regression scenarios where the output values are
continuous. Therefore, we have only included them for the regression task to offer a more robust
comparison to our AL method.

Algorithm 9 Deep Active Learning Baseline

1: DL ← SAMPLE(D, ninit)
2: DU ← D \ DL

3: θ0 ← TRAIN(DL)
4: t← 0
5: repeat
6: EU ← EMBEDDINGS(DU , θ

t)
7: {xnt , ynt} ← QUERY(EU ,DU )
8: DL ← ADD(DL, {xnt , ynt})
9: DU ← DU \ {xnt

, ynt
}

10: θt+1 ← TRAIN(DL)
11: t← t+ 1
12: until |DL| ≥ nbudget
13: return θt

We now discuss the implementation de-
tails for each of the aforementioned
baselines. We implement random sam-
pling and all DeepAL baselines us-
ing the DeepAL pipeline, while the
scikit-activeml baselines are im-
plemented within their respective frame-
work. We note that the original DeepAL
framework given by Huang (2021) only
implements active learning for classifi-
cation tasks. Thus, we modified the
pipeline to allow AL methods surveyed
from DeepAL to also be able to han-
dle regression tasks. Since the modifi-
cations are minor, such as changing the
loss criterion from cross-entropy to root
mean square error loss, but not struc-
tural, we omit this distinction here and
refer the readers to our submitted codes

for details. Algorithm 9 outlines the general workflow of a deep active learning baseline. Here, DL

and DU refer to the set of labeled and unlabeled training data respectively, and ninit is the number of
initial data to be randomly selected and labeled before the active learning loop.

It remains for us to discuss implementation details for scikit-activeml baselines. It is
noteworthy that the default scikit-activeml active learning method for both classifica-
tion and regression is implemented using its own classifiers or regressors, such as the mix-
ture model classifiers for classification and the normal inverse Chi kernel regressor, instead of
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trained using customizable deep neural nets, as in the case of DeepAL. For the sake of breadth
in surveying popular active learning baselines, we use the Python package skorch, a scikit-
learn compatible wrapper for PyTorch models (Viehmann et al., 2019), to integrate custom neu-
ral networks with scikit-activeml classifiers for the classification tasks, and used popular
scikit-activeml active learning methods trained with its default regressor, the normal inverse
Chi kernel regressor, for the regression tasks. In the classification case, we enforce the same ReLU
architecture on all baselines for fairness. And in the regression case, to ensure the optimal perfor-
mance of the scikit-activeml baselines for the robustness of comparison, we use the so-called
“bagging regressor” in scikit-activeml, which is an ensemble method that fits multiple base
regressors (in our case, 4) on random subsets of the original dataset using bootstrapping (i.e., sam-
pling with replacement) to update the base normal inverse Chi kernel regressor. This method is
known to improve query learning strategies by reducing variance and improving robustness, ensur-
ing that the baselines perform optimally (Abe & Mamitsuka, 1998).

Further further implementation details, such as how we implement the QBC method in the classi-
fication case using Skorch by creating an ensemble of 5 classifiers using the exact same ReLU
architecture with parameters in Table 2 but with different random state of 0-4 respectively, and
additional details on the specific implementation, please refer to our submitted codes.

Finally, we would like to again emphasize that towards a fair and robust comparison, we select the
best performing number of epochs (for a discussion on this, refer to Appendix H.4) and learning rate
for AL baselines using deep neural networks and use enhancements such as bagging regressors for
the scikit-activeml baselines trained on its default regressors.

H.4 SYNTHETIC SPIRAL EXPERIMENT

In this section, we provide additional implementation details and supplementary results on the syn-
thetic spiral binary classification experiment in Section 7.1.

Data Generation. We generate the two intertwined spiral used in Section 7 according to the fol-
lowing: the coordinates (x1, x2) for the i-th data point of the spiral with label y are generated as

x1 = r cos(ϕ)y
k1

+ k2, x2 = r sin(ϕ)y
k1

+ k2, r = k3

(
k4−i
k4

)
, ϕ = k5iπ,

where k1, . . . , k5 are positive coefficients. In the implementation, index i is normalized to lie within
the range from 0 to nshape − 1, where nshape controls the shape of the spiral, so that the shape is
independent of the total number of data points generated. The bigger nshape is, the more complex the
spiral (see for instance the spirals in Figure 5 versus Figure 6). In our experiment, we use the spiral
dataset with k1 = 13, k2 = 0.5, nshape = 50.

AL Implementation Details. To implement the cutting-plane AL method, we use 1000 simula-
tions to randomly sample the number of partitions in the hyperplane arrangements (Definition 3).
This determines the embedding size (or the number of neurons). Table 1 summarizes the statistics
with respect to each seed. In our implementation of the deep AL baselines, we adjust the embedding
size accordingly when using a different seed to ensure fair comparisons.

Seed 0 1 2 3 4

Neurons 623 607 605 579 627

Table 1: Number of neurons for each seed (0-4) sampled using 1000 simulations for the spiral dataset.

For all deep active learning baselines used in the Spiral case, we have set the hyper-parameters
to be according to Table 2. We empirically selected learning rate 0.001 from the choices
{0.1, 0.01, 0.001} as it tends to give the best result among the three for all baselines in both the
classification and regression tasks. We also choose the number of epochs to be 2000 as it also gives
the best result among choices {20, 200, 2000} and show significant improvement from both 20 and
200.

In fact, the performance of the deep AL baselines hinges much on the number of epochs in the train
step (see Algorithm 9. Even when the AL method gains access to the full data, if the number of
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Epochs Learning Rate Train Batch
Size

Test Batch
Size

Momentum Weight Decay

2000 0.001 16 10 0.9 0.003

Table 2: Hyper-parameters of deep AL baselines’ training networks with the Stochastic Gradient Descent (SGD) optimizer

epochs is small, we would still not obtain satisfactory classification result. In the following, we
explore the effect of number of epochs on classification accuracy for the baselines. We fix seed =
0 and use the same spiral data generation used in Section 7.1 with a 4:1 train/test split along with
a budget of 20 queried points. Figure 8 to Figure 13 show the classification boundary with varying
epochs = 20, 200, and 2000.
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Figure 8: Entropy Sampling (20 Queries)
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Figure 9: Random Sampling (20 Queries)

For most baselines, we observe a significant improvement in the decision boundary between 200 and
2000 epochs. To ensure a robust comparison across methods, we set the number of epochs to 2000.
This mini experiment also underscores the inefficiency of gradient-based training, as the accuracy
rate heavily depends on the number of training epochs, highlighting the need for a large number of
iterations to achieve satisfactory results.

Experiment Results. We now give the deferred supplementary experiment results in Section 7.1.
To start, per discussion in Appendix H.2, we would like to discuss the inclusion of regularization
through the final convex solve of the equivalent convex program of the two-layer ReLU networks.

Figure 14 shows the final decision boundary with (left) and without (right) the convex solve with the
same data and setup as in the spiral experiment in Section 7.1. We abbreviate “after final solve” as
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Figure 10: Least Confidence (20 Queries)
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Figure 11: BALD with Dropout (20 Queries)
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Figure 12: GreedyX (20 Queries)
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Figure 13: QBC (20 Queries)

AFS and “before final solve” as BFS. It is evident that the inclusion of regularization improves the
performance of our cutting-plane active learning method, increasing the accuracy rate on train/test
set from 0.84/0.60 to 1.00/1.00. This is therefore the method we use for our cutting-plane AL
algorithm. We will see that regularization with the final convex solve does not always speed up
the convergence of our cutting-plane AL method in the number of queries. It tends to work less
optimally when used on relatively simple dataset, as we will see in Appendix H.5.
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Figure 14: Decision boundary of cutting-plane AL via the two-layer ReLU network with (left) and without (right) final convex solve.

Table 3 presents the train and test accuracies on the binary spiral dataset. This corroborates the deci-
sion boundaries shown in Figure 2. Finally, to demonstrate the consistency of optimal performance

Method Train Accuracy Test Accuracy

Cutting-plane (ours) 1.00 1.00
Linear Cutting-plane 0.50 0.50
Random Sampling 0.73 0.70
Entropy Sampling 0.76 0.70

BALD with Dropout 0.71 0.65
Least Confidence Sampling 0.64 0.55

Greedy Sampling (GreedyX) 0.59 0.60
Query By Committee (qbc) 0.59 0.60

Table 3: Train and test accuracies of binary classification on the Spiral (k1 = 12, k2 = 0.5, nshape = 50) dataset for cutting-plane AL via
the 2-layer ReLU NN and various deep AL baselines using seed = 0.
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of our proposed method and to highlight its fast convergence, we plot the mean train/test accuracy
rates against the number of queries for our method and the baselines with error-bar generated by
running 5 experiments on seeds 0-4. Figure 15 demonstrates the result.
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Figure 15: Mean test and train accuracy rate across seeds (0-4) versus the number of queries for the 2-layer cutting-plane AL and various
baselines.

H.5 QUADRATIC REGRESSION EXPERIMENT

Data Generation and AL Implementation Details. We generate the experiment dataset in this
section simply according to the quadratic equation y = x2 without adding any noise. Since the
dimension of the regression dataset goes down from d = 3 in the spiral dataset (with the third
dimension acting as bias for the ReLU networks) to d = 2 in the regression dataset, we increase
the number of simulations to 2000 to randomly sample partitions for hyperplane arrangements to
maintain an adequate embedding size. As in the spiral task, Table 4 summarizes the number of
neurons sampled with respect to each seed. Once again, in our implementation of the deep AL
baselines, we adjust the embedding size accordingly when using a different seed to ensure fair
comparisons. As in the spiral experiment, we set the hyper-parameters for all deep active learning

Seed 0 1 2 3 4

Neurons 160 160 157 159 160

Table 4: Number of neurons for each seed (0-4) sampled using 2000 simulations for the quadratic regression dataset.

baselines according to Table 2. In the quadratic regression task, we similarly observe improved
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Figure 16: Prediction of quadratic regression with cutting-plane AL via a two-layer ReLU network with (left) and without (right) convex solve.

performance in deep AL baselines with a higher number of training epochs and a lower learning
rate of 1 × 10−3, ensuring that the baselines provide a robust comparison. For baselines from
scikit-activeml, we use the bagging regressor along with the default regressor to enhance
their performance (see Appendix H.3). For our cutting-plane AL method (Algorithm 6) and the
linear cutting-plane AL method (Algorithm 7), we choose the threshold value ϵ = 1× 10−3.

Experiment Results. We now present the deferred experiment results in the quadratic regression
experiment. To start, we discuss the performance of our cutting-plane AL method with and without
convex solve. While using the full 80 training data, the stand-alone convex solve achieves perfect
prediction of quadratic regression (see Figure 7), Figure 16 shows that including the regularization
in our cutting-plane AL method with a query budget of 20 leads to slightly suboptimal predictions
compared to the non-regularized version. This could be because of the reduced complexity in the
quadratic regression task, where the relationship between the features and the target is simple and
well-behaved and the model is less likely to overfit. Therefore, the incorporation of regularization
could slow down the parameter updates, leading to slower convergence.

Method Train RMSE Test RMSE

Cutting-plane (ours) 0.0111 0.0100
Linear Cutting-plane (infeasible) 0.7342 0.7184

Random Sampling 0.0824 0.0483
Entropy Sampling 0.0599 0.0529

BALD with Dropout 0.0568 0.0408
Least Confidence Sampling 0.0599 0.0529

Greedy Sampling (GreedyX) 0.0745 0.0447
Query By Committee (qbc) 0.1245 0.1366

KL Divergence Maximization (kldiv) 0.1356 0.0811
Greedy Sampling Target (GreedyT) 0.3296 0.3106

Table 5: Train and test RMSE for the quadratic regression task (y = x2) using the cutting-plane AL with a 2-layer ReLU neural network and
various deep AL baselines with seed = 0.

The trend plot in Figure 17 clearly illustrates the faster convergence of our cutting-plane AL method
without regularization (BFS), compared to the regularized version (AFS), and significantly outpac-
ing all other baselines. Therefore, for the quadratic regression task, we use the cutting-plane AL
method without final solve (BFS). Nevertheless, it is noteworthy that both AFS and BFS cutting-
plane AL method significantly outperforms all baselines and converging to the optimal prediction at
a considerably faster rate.

Now we present the deferred results for the quadratic regression experiment in Section 7.1. Ta-
ble 5 documents the train and test RMSE for our proposed cutting-plane AL against various deep
AL baselines. In addition, Figure 18 presents the corresponding prediction made by our proposed
method and the complete set of surveyed baselines.
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Figure 17: Logarithm of mean test and train RMSE across seeds (0-4) versus the number of queries for the 2-layer cutting-plane AL and various
baselines. This is an augmented error-bar plot as right of Figure 3, with an additional distinguishment between the AFS and BFS cutting-plane
AL method.

H.6 IMDB DATA EXAMPLES

Examples Content Label

Review 1 “If you like original gut wrenching laughter you will like this movie. positiveIf you are young or old then you will love this movie, hell even ...”

Review 2 “An American Werewolf in London had some funny parts, but this negativeone isn’t so good. The computer werewolves are just awful...”

Review 3 “”Ardh Satya” is one of the finest film ever made in Indian Cinema. positiveDirected by the great director Govind Nihalani...”

Table 6: Examples of IMDB movie reviews
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Figure 18: Predictions of various AL algorithms for quadratic regression task using the cutting-plane AL with a two-layer ReLU neural network
and various deep AL baselines (complete).
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