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ABSTRACT

Molecular representation learning (MRL) is a powerful contribution by machine
learning to chemistry as it converts molecules into numerical representations, which
serves as fundamental for diverse biochemical applications, such as property pre-
diction and drug design. While MRL has had great success with proteins and
general biomolecules, it has yet to be explored for carbohydrates in the growing
fields of glycoscience and glycomaterials (the study and design of carbohydrates).
This under-exploration can be primarily attributed to the limited availability of
comprehensive and well-curated carbohydrate-specific datasets and a lack of ma-
chine learning (ML) techniques tailored to meet the unique problems presented
by carbohydrate data. Interpreting and annotating carbohydrate data is generally
more complicated than protein data, and requires substantial domain knowledge.
In addition, existing MRL methods were predominately optimized for proteins
and small biomolecules, and may not be effective for carbohydrate applications
without special modifications. To address this challenge, accelerate progress in
glycoscience and glycomaterials, and enrich the data resources of the ML com-
munity, we introduce GlycoNMR. GlycoNMR contains two laboriously curated
datasets with 2,609 carbohydrate structures and 211,543 annotated nuclear mag-
netic resonance (NMR) atomic-level chemical shifts that can be used to train ML
models for precise atomic-level prediction. NMR data is one of the most appealing
starting points for developing ML techniques to facilitate glycoscience and glyco-
materials research, as NMR is the preeminent technique in carbohydrate structure
research, and biomolecule structure is among the foremost predictors of functions
and properties. We tailored a set of carbohydrate-specific features and adapted
existing MRL models to effectively tackle the problem of predicting NMR shifts.
For illustration, we benchmark these modified MRL models on the GlycoNMR.

1 INTRODUCTION

Considerable efforts have been devoted to developing ML techniques for learning representations
of biomolecular structures (Wu et al., 2018; Rong et al., 2020; Méndez-Lucio et al., 2021; Jumper
et al., 2021; Wengert et al., 2021; Yan et al., 2022; Zhou et al., 2023; Guo et al., 2023). Most
attention has been devoted to proteins and small biomolecules, while limited progress has been made
on carbohydrates despite them being the most abundant biomaterials on earth (Oldenkamp et al.,
2019). There has been a recent acceleration of interest and progress in carbohydrates in various
fields, with findings emphasizing the role of carbohydrate structures in a list of essential medical
and scientific topics. Such topics include biological processes of cells (Apweiler et al., 1999; Hart &
Copeland, 2010; Varki, 2017), cancer research and treatment targets (Paszek et al., 2014; Tondepu &
Karumbaiah, 2022), novel glycomaterials development (Coullerez et al., 2006; Reichardt et al., 2013;
Huang et al., 2017; Pignatelli et al., 2020; Richards & Gibson, 2021; Cao et al., 2022) and carbon
sequestration in the context of climate change (Pakulski & Benner, 1994; Gullström et al., 2018).

Similar to other biomolecules, the functions and properties of carbohydrates highly depend on their
structures. Nevertheless, structure-function relationships remain relatively less understood in car-
bohydrates than other classes of biomolecules, partly stemming from the bottlenecks in theory and
limited structural data (Ratner et al., 2004; Hart & Copeland, 2010; Oldenkamp et al., 2019). In
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chemical sciences, nuclear magnetic resonance (NMR) is the primary characterization technique
used for determining atomic-level fine structures of carbohydrates. It requires correctly interpreting
solution-state NMR parameters, such as chemical shifts and scalar coupling constants (Duus et al.,
2000; Brown et al., 2018). NMR still relies on highly trained personnel and domain knowledge,
due to limitations in theoretical understanding (Lundborg & Widmalm, 2011; Toukach & Ananikov,
2013). This opens up an opportunity for ML research. ML methods are relatively under-explored
in carbohydrate-specific studies and especially for predicting the NMR chemical shifts of carbohy-
drates (Cobas, 2020; Jonas et al., 2022). Improving the efficiency, flexibility, and accuracy of ML
tools that relate carbohydrate structures to NMR parameters is well-aligned to recently launched re-
search initiatives such as GlycoMIP (https://glycomip.org), a National Science Foundation
Materials Innovation Platform that promotes research into glycomaterials and glycoscience, as well
as parallel efforts by the European Glycoscience Community (https://euroglyco.com).

ML methods have significant potential for generality, robustness, and high-throughput analysis of
biomolecules, as demonstrated by a plethora of previous works (David et al., 2020; Shi et al., 2021;
Jonas et al., 2022). Inspired by the recent successes of MRL in various fields and applications, such
as molecular property prediction (Rong et al., 2020; Yang et al., 2021a; Zhang et al., 2021), molecular
generation (Shi et al., 2020; Zhu et al., 2022; Zhou et al., 2023), and drug-drug interaction (Chen
et al., 2019; Lyu et al., 2021), we embarked on the journey toward building ML tools for predicting
carbohydrate NMR chemical shift spectra from the perspective of molecular representation learning.
The first and foremost technical barrier we encountered was the issues with the quality, size, and
accessibility of carbohydrate NMR datasets–ongoing problems which have been pointed out in recent
literature (Toukach & Ananikov, 2013; Toukach & Egorova, 2019; Ranzinger et al., 2015; Toukach
& Egorova, 2022; Böhm et al., 2019). Much of the current data limitations result from the fact that
carbohydrates are the most diverse and complex class of biomolecules. Their numerous chemical
properties and configurations make the annotation and analyses of their NMR data substantially more
complicated and uncertain than those for other biomolecules (Herget et al., 2009; Hart & Copeland,
2010). Particularly, existing structure-related carbohydrate NMR spectra databases are less extensive
and less accessible to ML researchers than databases for other classes of biomolecules and proteins,
leading to recent calls for improvement in standards and quality (Ranzinger et al., 2015; Paruzzo
et al., 2018; Böhm et al., 2019; Toukach & Egorova, 2022). Among all NMR signals, atomic 1D
chemical shifts are the most accessible and generally complete (Jonas et al., 2022) and provide rich
information to enable molecular identification and fingerprint extraction for carbohydrates.

To facilitate an initial convergence of ML, glycoscience, and glycomaterials, we have developed
GlycoNMR, a data repository of carbohydrate structures with curated 1D NMR atomic-level chemical
shifts. GlycoNMR includes two datasets. In the first one, we manually curated the experimental NMR
data of carbohydrates available at Glycosciences.DB (formerly SweetDB) (Loß et al., 2002;
Böhm et al., 2019). The second one was constructed by processing a large sample of NMR chemical
shifts we simulated using the Glycan Optimized Dual Empirical Spectrum Simulation (GODESS)
platform (Kapaev & Toukach, 2015; 2018), which was partly built on the Carbohydrate Structure
Database (CSDB) (Toukach & Egorova, 2019; 2022). Substantial domain expertise and efforts
were involved in both annotating and preprocessing the two datasets. To the best of our knowledge,
GlycoNMR is the first large, high-quality carbohydrate NMR dataset specifically curated for ML
research. Using GlycoNMR, we designed a set of features, particularly for describing the structural
dynamics of carbohydrates, and developed a baseline 2D GNN model for predicting carbohydrates’
1D NMR chemical shifts. In addition, we adapted four state-of-the-art 3D-based MRL models to align
with the atomic-level NMR shift prediction and benchmarked their performances on GlycoNMR.
The experimental results demonstrate the feasibility and promise of ML in analyzing carbohydrate
NMR data, and, more generally, in advancing the development of glycoscience and glycomaterials.

Summary of contributions:
• We develop GlycoNMR, a large, high-quality, ML-friendly carbohydrate NMR dataset that is freely

available online. Instructions for loading and fitting data to GNN models are in Appendix L.

• We design a set of chemically-informed features that are tailored specifically for carbohydrates. In
addition, we experimentally show that these features can intrinsically capture the unique structure
dynamics of carbohydrates and thus enhance the performance of graph-based MRL models.

• We adapted and benchmarked multiple 3D-based MRL methods on GlycoNMR and demonstrated
the potential usage of ML approaches in glycoscience research. Demos are provided in Appendix M.
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2 BACKGROUND AND RELATED WORK

Carbohydrates: Carbohydrates (examples in Figure 1), also called saccharides, are one of the
major biomolecule classes aside from proteins, lipids, and nucleic acids on earth. At the macroscale,
carbohydrates are common in sugars and digestive fibers in our diets, and at the microscale, they are
widespread on cell membranes and in metabolic pathways. Monosaccharides (introduced in Figure 1),
also known as simple sugars (Chaplin & Kennedy, 1986), are the base units of carbohydrates and
are typically composed of carbon, hydrogen, and oxygen atoms in specific ratios. Glycosidic bonds,
which link monosaccharides into chains or trees, are formed via condensation reactions between
the connected monosaccharides. Long chains of monosaccharides are also called polysaccharides.
Structure patterns closely relate to the NMR chemical shift spectra and functions (Blanco & Blanco,
2022) of carbohydrates. Importantly, five attributes are the minimum structural information necessary
to describe a monosaccharide in a given carbohydrate: (1) Fischer configuration, (2) stem type,
(3) ring size, (4) anomeric state, and (5) type and location of modifications (Herget et al., 2009),
additional features may be helpful, as discussed in Table 2 and Appendix B. Furthermore, the central
ring carbon atoms and their corresponding hydrogen atoms are labeled in a universal and formulaic
way in carbohydrates, which aids in building carbohydrate-specific features in the ML pipeline.

Figure 1: An example carbohydrate containing 5 monosaccharides (formula in the top): (a) The
topology; (b) The 3D structure with nodes and edges indicating atoms (gray: C, red: O, white: H,
blue: N) and bonds, respectively; (c) The graph representation. The big graph nodes indicate the
monosaccharide stems (yellow circle: Gal, blue circle: Glc, blue square: GlcNAc, and red triangle:
Fuc) connected by edges labeled with glycosidic linkages (“1-3” or “1-4”). “D”/“L” indicate isomers
information, “a”/“b” indicate anomers, and “p” indicates the ring size.
Nuclear Magnetic Resonance (NMR): NMR spectra provide key structural features of carbo-
hydrates, including the stereochemistry of monosaccharides, glycosidic linkage types, and confor-
mational preferences. Its non-destructive nature, high sensitivity, and ability to analyze samples in
solution make NMR an indispensable tool for carbohydrate research. Arguably, the most accessible
and complete NMR parameter for computational structural studies is the 1D chemical shifts (Jonas
et al., 2022), where in carbohydrates, usually only the hydrogen 1H and carbon 13C nuclei shifts are
measurable (Toukach & Ananikov, 2013). Figure 2 shows a simple carbohydrate and its 1H and
13C NMR spectra. As another challenge specific to carbohydrates, carbohydrate NMR peaks are
constrained to a much narrower region of spectra range than proteins, making them harder to separate
and leading to an over-reliance on manual interpretation (Toukach & Ananikov, 2013). Thus, the
development of theoretical and computational tools that can more automatically and accurately relate
a carbohydrate structure and its NMR parameters is a high priority for the field (Hart & Copeland,
2010; Herget et al., 2009; Toukach & Ananikov, 2013; Jonas et al., 2022).

Figure 2: D-Cellobiose (a) and its NMR spectra (b) & (c). D-Cellobiose comprises two glucose units
in beta (1-4) glycosidic linkage and is a natural product found in Aspergillus genus.
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Structure-related Chemical Shift Prediction Methods: The primary computational methods
for chemical shift prediction of carbohydrates can be grouped into four categories: ab initio meth-
ods, rules-based and additive increment-based methods, substructure codes, and data-driven ML
approaches (Jonas et al., 2022). Ab initio methods, such as density functional theory (DFT) methods,
are so far the most accurate as they are based on foundational physics and chemistry theory, but have
the lowest throughput and often require considerable expert parameter sweeping and tuning (Tantillo,
2018; Kevin et al., 2019). Additive increment-based approaches, such as CASPER (Jansson et al.,
2006; Lundborg & Widmalm, 2011), rely on carefully designed rules, which have limited generaliza-
tion power and have yet to be extensively validated against experimental data (Jonas et al., 2022).
Substructure codes, such as HOSE codes (Kuhn et al., 2008), are the oldest prediction method and
still can provide competitive performance in some cases (Jonas et al., 2022). However, substructure
code methods have limitations in encoding stereochemical information and distinguishing conformers
(though improvements were made recently in this area (Kuhn & Johnson, 2019)). Most HOSE code
methods are based on neighborhood search that requires closely similar examples to reach adequate
prediction quality (Kuhn et al., 2008). HOSE codes were tested with several large experimental
datasets containing assorted biomolecules, with accuracy ranging from approximately 1-3.5 ppm
for 13C and 0.15-0.30 ppm for 1H (mean absolute error) (Jonas et al., 2022) (performance of NMR
chemical shift prediction on carbohydrates has not been reported to our knowledge). GODESS is a
high-quality carbohydrate-specific hybrid of HOSE-like methods and rules-based methods for NMR
prediction (Kapaev & Toukach, 2015; 2018). GODESS is capable of generating both structure files
in standard carbohydrate format, and atomic-level NMR chemical shift predictions for central ring
carbon and hydrogen atoms as well as for some modification group atoms. In this study, we used
GODESS to produce the experimentally informed simulated data in GlycoNMR.Sim.

Lastly, ML methods, especially graph neural networks (GNNs) (Battaglia et al., 2018; Zhou et al.,
2020), have shown great potential for predicting NMR spectra for biomolecules (Jonas & Kuhn, 2019;
Kang et al., 2020; Yang et al., 2021b; McGill et al., 2021; Jonas et al., 2022). Nevertheless, they are
relatively unexplored in carbohydrates. To fill in this gap, this paper presents, to our knowledge, the
first ML-based attempt tailored specifically to predict NMR chemical shifts for carbohydrates.

Relation to ML in other biomolecules: A large range of papers exists for tackling problems in
NMR with ML broadly. Comprehensive general reviews of ML applications in NMR in recent years
include (Chen et al., 2020; Bratholm et al., 2021; Yokoyama et al., 2022; Kuhn, 2022; Li et al., 2022;
Cortés et al., 2023). The most extensive review of ML to predict NMR spectra of biomolecules
is (Jonas et al., 2022) (especially Table 1 in the review). CNNs, MPNNs, and δ machine were found
to have the best performance as a general recent trend in NMR for diverse biomolecules (Jonas &
Kuhn, 2019; Dračínskỳ et al., 2019; Kwon et al., 2020; Li et al., 2021), though large differences in
sample size and dataset composition make firm conclusions hard to draw (low statistics plague the
NMR field due to issues in public datasets). GNNs are by far the most commonly recently used ML
tools in this area, though, while feedforward networks dominated earlier work (Jonas et al., 2022).

Relation to Graph-based MRL: Graph-based MRL has gained accelerating amounts of attention
due to its ability to capture local connectivity and topological information of biomolecules (Gilmer
et al., 2017; Kipf & Welling, 2017; Hamilton et al., 2017; Xu et al., 2019; Veličković et al., 2018). In
graph-based MRL, molecules can be encoded in either 2D or 3D graphs with atoms seen as nodes. In
a 2D molecular graph, edges can be pre-determined chemical bonds. In a 3D molecular graph, edges
are determined based on the 3D coordinates of atoms, to capture their atomic interactions. Several
message-passing schemes have been developed for GNNs to use spatial information such as atom
interactions (Schütt et al., 2017), bond rotations and angles between bonds (Gasteiger et al., 2020b;a;
Wang et al., 2022), spherical coordinate systems (Liu et al., 2022) and topological geometries (Fang
et al., 2022). We chose GNN-based MRL models as the baseline due to their strong expressive
power and promising performance on other kinds of biomolecules. For example, encoding bond
distance as continuous numbers is expensive computationally, so GNNs encode simplified bond
information to avoid the full computational cost (Yang et al., 2021b). Chemists also know that atoms
in carbohydrates interact non-negligibly up to 3-4 atoms away, and GNN node-edge structures are
well-posed to account for these interactions (Kapaev & Toukach, 2015). We thus formulated the
structure-related chemical shift prediction problem as a node regression task, and trained GNNs to
predict the chemical shifts of primary monosaccharide ring carbons and hydrogen atoms. We used
the Root-Mean-Square Error (RMSE) to evaluate the predicted and the ground truth chemical shifts.
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3 DATASETS AND BASELINE MODEL

We designed a pipeline specifically for annotating the NMR data that we gathered to facilitate the
development of ML techniques for predicting atomic NMR shifts of carbohydrates. Two ML-friendly
NMR chemical shift datasets GlycoNMR.Exp and GlycoNMR.Sim were constructed. They contain
both the 3D structures and the curated 1H and 13C NMR chemical shifts of the carbohydrates. The
data statistics are summarized in Table 1. In addition, Table 5 and Figure 5 (in Appendix) show the
list of covered monosaccharides and a histogram of carbohydrate sizes (number of monosaccharides)
in our datasets. A set of carbohydrate-specific features was engineered to describe the atom structure
dynamics in a carbohydrate. We incorporated the features to build a baseline model (see Section 3.2).

GlycoNMR.Exp: This dataset mainly contains the experimental NMR data obtained from Glyco-
sciences.DB (Böhm et al., 2019). Glycosciences.DB inherited data from the discontinued Complex
Carbohydrate Structure Database (CCSD/CarbBank) (Doubet & Albersheim, 1992). It was semi-
automatically populated (with moderator oversight) by the carbohydrate entries in the worldwide
Protein Data Bank (wwPDB) (Böhm et al., 2019). The NMR data was supplied by SugaBase (Vliegen-
thart et al., 1992) or manually uploaded by researchers. Glycosciences.DB contains around 3400
carbohydrate entries associated with NMR shifts (however, most only with partial annotation on
1H or 13C). We found 299 carbohydrates had both structures and complete (or near complete) 1H
and 13C shifts, and included them in GlycoNMR.Exp for further annotation and processing to make
the dataset ML-friendly (details in Section 3.1). This requires substantial domain expertise and
efforts on our part, due to the inconsistent and sometimes ambiguous labeling and organization of
the diversely-sourced data from this repository. For better illustration, we present a medium-sized
carbohydrate data, including both its raw data file 1, 2 and annotated and processed file. Notice that
raw data file 1, 2 records the carbohydrate structure and NMR shift separately.

GlycoNMR.Sim: This dataset contains the simulated NMR chemical shifts produced by using
GODESS (http://csdb.glycoscience.ru) (Toukach & Egorova, 2016). GODESS com-
bines incremental rule-based methods (called “empirical” simulation in GODESS) and/or HOSE-like
“statistical” methods, and is informed by the CSDB experimental data (Kapaev et al., 2014; Kapaev
& Toukach, 2016; 2018; Toukach & Egorova, 2022). GODESS recently demonstrated superior per-
formance in simulating certain carbohydrate NMR shifts and could sometimes perform comparably
to DFT (Kapaev et al., 2014; Kapaev & Toukach, 2016; 2018). Hence, we chose it to produce a
simulation dataset to amend the lack of publicly available experimental NMR data for carbohydrates.
GODESS requires the formula of carbohydrates to be written in the correct CSDB format (Toukach &
Egorova, 2019), and does not produce results for those formulas that it deems chemically impossible
or incorrect. Helpfully, GODESS scores the trustworthiness of each simulation result. We excluded
simulation results with low trustworthiness (error > 2 ppm). We were able to simulate and curate
NMR chemical shifts for ∼200,000 atoms in 2,310 carbohydrates. For a demonstration, we present a
large-sized carbohydrate, including both its simulated raw data files 1, 2, 3 and the annotated and
processed file. Raw data file 1 contains the structural information of the carbohydrate, while the 13C
and 1H NMR chemical shifts are stored separately in raw data file 2 and 3, respectively.

The GlycoNMR datasets are much larger than those used in most carbohydrate-specific studies, which
typically have < 100 molecules (Furevi et al., 2022). The size of our data is also comparable to those
of the protein or biomolecule NMR datasets, which usually number in the hundreds to low thousands
of molecules at best (see Table 1 in (Jonas et al., 2022), or (Yang et al., 2021b)).

Table 1: Dataset Statistics. In total, GlycoNMR contains 2,609 carbohydrate structures with 211,543
atomic NMR chemical shifts. The average molecular size of GlycoNMR.Exp is 91.2 and of Gly-
coNMR.Sim is 161.5, which is much larger than those of molecules that are commonly used in
MRL (Wu et al., 2018). In publicly available data, central ring carbons are the most consistently
reported. Hence, we focused on those central ring carbons and the attached hydrogen atoms in this
study. Additionally, we observed that the central ring atom-level shift values are often missing in the
NMR data files obtained from Glycosciences.DB as the original experimental data was sometimes
not completely interpreted, which is an ongoing issue in carbohydrate research using NMR.

Data source # Carbohydrate # Monosaccharide # Atom # labeled NMR shifts

GlycoNMR.Exp 299 1,130 27,267 11,848
GlycoNMR.Sim 2,310 16,030 372,958 199,695
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3.1 DATA ANNOTATION

We performed extensive data annotation to associate the 3D structure of each carbohydrate with
its NMR chemical shifts. GlycoNMR.Exp and GlycoNMR.Sim store the structure data for each
carbohydrate in the Protein Data Bank (PDB) format amended for carbohydrates, which contains
comprehensive 3D structural information, including atom types, ring positions, 3D atomic coordinates,
connectivity of the atom, and three-letter abbreviations for monosaccharides. The corresponding
NMR data for a given carbohydrate is stored in a separate file, which contains: (1) the hydrogen and
carbohydrate chemical shifts per atom per monosaccharide unit and (2) the lineage information of
each monosaccharide to its root. We first matched the monosaccharides in the PDB file with those in
the NMR file and then used the ring position information to match atoms across the PDB and NMR
files. Unfortunately, the order of the monosaccharides in the PDB file often does not match that in
the NMR file. The three-letter abbreviations of monosaccharides in PDB files increase the matching
difficulty due to the inherent ambiguity and inconsistency in carbohydrate naming convention across
time and labs (Toukach & Egorova, 2019). In addition, one carbohydrate can contain multiple
monosaccharide units of the same type. For example, in the Glycosciences.DB-sourced PDB files, a
single type of monosaccharide can manifest as multiple residues with identical three-letter coding
names or vice versa. Hence, we had to utilize domain knowledge to reduce such ambiguities as
much as possible when handling the Glycosciences.DB data. Furthermore, we validated topological
connections between monosaccharides using the PDB structure data (see Figure 3). We matched the
topological connections between monosaccharide units in the PDB files from Glycosciences.DB and
GODESS with the lineage information used by their corresponding NMR data files. This allowed
us to match the monosaccharides in the PDB files with those in the NMR files, and then use ring
positions to associate atoms in a PDB file with atoms in the corresponding NMR data file. Detailed
annotation process recorded in Appendix L, including GitHub repos and examples for data annotation.

Figure 3: A key task in data annotation is matching monosaccharides in each carbohydrate’s PDB
and NMR files. Conceptually, matching is done by linking monosaccharides in the PDB file (top left)
and the NMR file (top right) to their topological positions in the carbohydrate (top middle). The
"Residue" column in the PDB file contains the 3-letter abbreviations of monosaccharides. Once this
matching is established, we can use atom types and their ring positions to assign the chemical shifts
in the NMR file to their atoms in the PDB file (bottom left). All features are encoded at the atom
level (bottom middle), and the model predicts the atomic shifts (bottom right).
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Table 2: Features designed for carbohydrates.

Feature Explanation Example values

Monosaccharide
Configuration Fischer convention D, L
Stem type Basic monosaccharide unit Gal, Glc, Man, ..
Ring size Number of ring carbons Pyranose (p), Furanose (f)
Anomer Anomeric orientation α, β

hydroxyl group
Modifications Modification groups Ac, Sulfate, Me, Deoxygenation

Atom
Ring position Atom position in carbon ring C1, C2, C3, C4, ...
Atom type Chemical elements C, H, N, O, ...

3.2 GLYCOSCIENCE-INFORMED FEATURE ENGINEERING

We derived a set of structural features for the atoms in carbohydrates, which are categorized into
monosaccharide-level and atom-level (see Table 2). The monosaccharide-level features describe
the monosaccharide context of an atom, including the stem type, configuration, ring size, anomeric
status of the monosaccharide, and modifications to the monosaccharide. These features encode the
stereochemistry properties and structural dynamics of a monosaccharide and provide information
about the overall electronic environment of each atom. The atom-level features include the ring
position (wherein the ring the atom is located or is attached) and atom type. To briefly introduce
the ring position of an atom, monosaccharide units are classified as either aldoses or ketoses. The
aldehyde carbon in aldoses is always numbered as C1 and the ketone carbon in ketoses is labeled as
the lowest possible number (Fontana & Widmalm, 2023). The ring position provides information
about what other atoms and/or functional groups the atom interacts with. Both categories of features
play a significant role in determining the NMR chemical shift value of the atom. We enhanced the
carbohydrate PDB structure files by adding the above features and subsequently converted these
enriched files into a tabular format where each row describes an atom along with its 3D coordinate
and its features and the features associated with the monosaccharide it belongs to. Table 6 in the
Appendix describes the processed PDB file to illustrate the above feature engineering effort.

3.3 EVALUATION METRIC

To evaluate the performance of several MRL models in NMR shift prediction, we calculate the
Root-Mean-Square Error (RMSE) between the predicted NMR chemical shifts and the ground truth
NMR shifts. The formula for calculating the RMSE is provided in Appendix G. In addition, RMSE is
sensitive to outliers, and it can also help us find mismatches caused by humans, especially for the
experimental dataset that requires extensive data annotation. We repeatedly apply an outlier check by
comparing the ground truth NMR shift and the predicted NMR shift generated by the baseline model.

3.4 BASELINE MODEL

We adopted a 2D graph convolutional neural network (Kipf & Welling, 2017) as our baseline model, a
standard architecture that is easy to build off of. We added two linear layers (one for input and the other
for output). Each carbohydrate is represented as a graph, with nodes representing atoms and edges
representing bonds between atoms. Each node is associated with the features described above. If a
carbohydrate structure file does not provide information about the bond connectivity between atoms,
we added edges between atom nodes based on their distances. The distance thresholds are 1.65Å for
C-C (Liu et al., 2021), 1.18Å for H-X (Guzmán-Afonso et al., 2019), and 1.5Å for X-X (Gunbas
et al., 2012), where X stands for other atoms. For each of the GlycoNMR.Exp and GlycoNMR.Sim
datasets, we randomly split the carbohydrates into the 80/20 train/validation subsets. Using the
training subset, a model was trained to predict 13C or 1H NMR chemical shifts and was evaluated on
the corresponding validation subset. The validation results are presented in Figure 4, showing that
the baseline model performs reasonably well despite its relatively simple model architecture.
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Figure 4: Validation results of the 2D baseline model. In all plots, the horizontal and vertical axes
indicate the predicted atomic NMR chemical shifts and the ground truth, respectively (in chemical
shift units of ppm). Each point represents an in-ring atom of carbohydrates from the test subset.
We investigated the impact of individual features (described in Section 3.2) on the baseline model
by examining the change in the model performance after removing one single feature. We reported
the results in Table 3. We observed that the model performance dropped drastically after removing
the ring position feature. Furthermore, when either the stem type feature or the anomer feature is
removed, the model performance on carbon drops by a relatively large margin. Other features also had
impacts, although their effects are relatively mild. This observation resonates with our expectation
when designing the features that the ring position should encode important information about the
local context of an atom. Note that removing the 3D-related feature "configuration" improves the
performance of the 2D model slightly. The results here provide a direction for improvements, for
example, designing new structural features and increasing the interpretability of the model.

Table 3: Ablation study on the carbohydrate-informed features for the baseline model on the Gly-
coNMR.Sim and GlycoNMR.Exp datasets. Each column reports the RMSE after removing the
feature indicated by the column header. Due to atom-to-modification matching ambiguity in the more
inconsistent PDB files used for annotating GlycoNMR.Exp, feature ’Modification’ is not used.

GlycoNMR.Exp Ring position Modification Stem type Anomer Configuration Ring size None
1H 0.376 N/A 0.271 0.240 0.206 0.220 0.205
13C 20.218 N/A 4.475 3.749 3.461 3.575 3.541

GlycoNMR.Sim Ring position Modification Stem type Anomer Configuration Ring size None
1H 0.507 0.137 0.185 0.187 0.136 0.135 0.134
13C 20.5529 1.991 2.827 2.258 1.910 1.977 1.924

4 BENCHMARK STUDY ON GLYCONMR

To investigate the benefits of encoding 3D structural information, we adapted and benchmarked
four state-of-the-art 3D graph-based MRL methods on our datasets: SchNet (Schütt et al., 2017),
DimeNet++ (Gasteiger et al., 2020a), ComENet (Wang et al., 2022) and SphereNet (Liu et al.,
2022). These models were originally designed to predict the graph-level quantum properties of
small molecules from their structures. To apply them to our tasks, we replaced their global pooling
layer, which is needed for predicting the properties of whole molecules, and added a layer that maps
the learned embedding of each atom to its NMR chemical shift. We fixed the hidden embedding
size across all models for a fair comparison. We trained two models for each dataset: one for
predicting the 13C NMR shifts and the other for predicting the 1H NMR shifts. For both datasets,
we randomly partitioned the carbohydrates into an 80/10/10 split for training, validation, and testing.
Additionally, for the GlycoNMR.Exp dataset, given its smaller sample size, to prevent overfitting,
we split the training subset into 60% and 20%. We trained the model on the 60% and fine-tuned its
hyperparameters on the 20% of the training data. Then, the whole training subset is used to retrain
the model using the fine-tuned hyperparameters. Early stopping based on the performance of the
validation subset was used during training in both cases, and the RMSE on the test subset is reported.

We evaluate the adapted 3D-based MRL methods in carbohydrate NMR shift prediction under two
settings. In the first setting, the representation of each atom is initialized with only the atomic-level
features. This adheres to the initialization method outlined in numerous existing publications on MRL,
including (Zhou et al., 2023; Liu et al., 2022). In the second setting, we incorporated monosaccharide-
level features into the initial atom representation, which we introduced in Table 2, detailed in and

8



Under review as a conference paper at ICLR 2024

further discussed in Table 3. The test results are reported in Table 4 (rows 1-4 show the results of the
first setting, and rows 5-8 for the second setting). The running time comparison table is provided
in Appendix J. We also provided additional multi-task learning benchmarks in Appendix I, where we
trained one MRL model for each dataset to predict the 13C and 1H shifts jointly.

In general, under the first setting, the 3D-based MRL methods perform better than the 2D-baseline
model (see Figure 4). SphereNet achieves the lowest RMSE on the GlycoNMR.Sim dataset, while
SchNet has the lowest RMSE on the GlycoNMR.Exp dataset for both 13C and 1H NMR chemical
shift prediction. Direct incorporation of 3D structural information into GNNs yields promising results
in predicting NMR chemical shifts. In addition, under the second setting, we notice a marginal overall
improvement in model performance with additional incorporation of monosaccharide-level features.

Table 4: NMR chemical shift prediction benchmark using 3D MRL methods (in RMSE).
GlycoNMR.Sim GlycoNMR.Exp
13C 1H 13C 1H

ComENet (Wang et al., 2022) + atom feat. 1.749 0.130 3.316 0.162
DimeNet++ (Gasteiger et al., 2020a) + atom feat. 2.114 0.132 4.324 0.160
SchNet (Schütt et al., 2017) + atom feat. 1.633 0.136 3.217 0.170
SphereNet (Liu et al., 2022) + atom feat. 2.082 0.129 2.993 0.213

ComENet (Wang et al., 2022) + extra feat. 1.431 0.116 2.938 0.168
DimeNet++ (Gasteiger et al., 2020a) + extra feat. 1.449 0.113 2.550 0.145
SchNet (Schütt et al., 2017) + extra feat. 1.487 0.118 2.492 0.140
SphereNet (Liu et al., 2022) + extra feat. 1.353 0.110 3.044 0.146

In the recent protein and small biomolecule computational studies, the MAEs of NMR chemical
shift prediction tasks range from 0.1-0.3 ppm for 1H and 0.7-4 ppm for 13C (Jonas et al., 2022),
which depend on specifics of models and datasets (e.g., molecular characteristics, sample size and
diversity, simulated or experimental data). SphereNet results from our carbohydrate-specific data are
comparable to the reported results on other classes of biomolecules. This computational error range
can be compared to an experimental error reported for NMR data collection, which was estimated to
be 0.51 ppm for 13C and 0.09 ppm for 1H, according to the mean absolute error across 50,000 shifts
in the nmrshiftdb2 (which contains a wide variety of biomolecules) (Jonas & Kuhn, 2019). Although
it is difficult to compare errors across studies on different molecule classes, and across laboratory
conditions and NMR instruments (Stavarache et al., 2022), these observations suggest that the results
reported in Table 4 could serve as a useful reference for future efforts in MRL on carbohydrates.

5 DISCUSSION AND CONCLUSIONS

Carbohydrate research has historically lagged behind other major molecular classes (e.g. proteins,
small molecules, DNA, etc.) due to theoretical bottlenecks and data quality issues. To help improve
this situation, we introduced the first ML-friendly, carbohydrate-specific NMR dataset (GlycoNMR)
and pipelines for encoding carbohydrates in predictively powerful GNNs. We hope this study
immediately provides useful resources for ML researchers to engage in this new frontier and form a
new force to make glyco-related sciences one of the main applications that drive ML research.

As a limitation of the current dataset, most experimentalists only upload NMR spectra peak positions
(which is what we predicted), and raw spectral files are rarely openly provided in carbohydrate
research. However, the full peak shapes (e.g., widths, heights) and broader spectral patterns also
encode rich structural information, but major changes in open data norms must occur in glycoscience
to make such data available to ML researchers. Additionally, many properties (e.g., functional,
immunological, solvent-related, etc.) or multimodal datasets can be incorporated into future data
and models to expand ML applications in this realm (Burkholz et al., 2021). Solvent-carbohydrate
interactions, for example, remain poorly understood and theoretically important for understanding
NMR data, but most public data remains in water (Klepach et al., 2015; Kirschner & Woods, 2001;
Hassan et al., 2015). Future work should also explore more hierarchical structure graphs specifically
tailored towards carbohydrates (Mohapatra et al., 2022). Overall, increasingly strong collaboration
between glyco-focused scientists and ML-focused researchers is essential over the next decade in
the field of glycoscience, as the quality and scope of structural and functional carbohydrate-specific
databases must continue to improve and grow in parallel with the power of ML tools that utilize them.
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A FURTHER DESCRIPTIVE ANALYSES OF EACH DATASET

In this section, we provide a detailed data analysis of GlycoNMR, focusing on both the quantity and
variety of monosaccharides within our dataset.

A.1 HISTOGRAM DISTRIBUTION OF CARBOHYDRATE LENGTHS IN BOTH DATASETS

We further analyze the data volume of GlycoNMR. We plot the distributions of the number of
monosaccharides that every carbohydrate contains in both GlycoNMR.Exp and GlycoNMR.Sim.
In Figure 5, we use ’length of glycan’ to denote the number of monosaccharides that the carbohydrate
contains. We observe both histograms exhibit a right-skewed distribution in the length of the
glycan. This indicates that GlycoNMR.Exp contains a greater proportion of small and middle-sized
carbohydrates than large-sized carbohydrates. Therefore, existing MRL methods may be biased
towards smaller carbohydrates.

Figure 5: Distribution of glycan length in both datasets. The horizontal axis indicates the number
of monosaccharides in the carbohydrate, the vertical axis indicates the corresponding number of
carbohydrates presented in the dataset.

A.2 PERCENTAGE OF MONOSACCHARIDE TYPES IN BOTH DATASETS

We investigate the diversity of monosaccharide types in GlycoNMR. For each dataset, we count
the occurrence of all monosaccharides and present the percentage of the top eight most frequently
appearing monosaccharides in Table 5. The entry "Others" represents the category of relatively
infrequently appeared monosaccharides, including stem type: ManA, Neu, GalN, Ara, etc. We
demonstrate that GlycoNMR covers the most commonly occurring stems of monosaccharides as
introduced in (Chaplin & Kennedy, 1986) for example.

Table 5: Percentage of the most common monosaccharide unit types in the two datasets
GlycoNMR.Sim GlycoNMR.Exp

Monosaccharide Percentage Monosaccharide Percentage

Glc 18.86% Gal 19.73%
Gal 17.5% Glc 17.7%

GlcNAc 12.18% GlcNAc 12.21%
Fuc 12.1% Rha 11.06%
Xyl 8.51% Man 6.81%
Man 6.23% Fuc 4.87%
GlcA 6.19% Kdo 4.78%
GalA 5.49% GlcA 4.42%
Others 12.94% Others 18.42%
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A.3 FEATURE STATISTICS

In this section, we present detailed feature statistics for both GlycoNMR.Exp and GlycoNMR.Sim.
Specifically, we show the percentage of atom-level features and monosaccharide-level features. For
the atom level feature (first-row and the third-row of Figure 6), we present the proportional distribution
of values for atom type, carbon atom position, and hydrogen atom position. For the description of
atom identity (top left), ’other’ indicates other types of atoms, including nitrogen, phosphorus, and
sulfur. For the description of carbon atom position (top middle), ‘Other’ indicates the off-ring carbons.
Similarly, for the description of the hydrogen atom position (top right), ‘Other’ indicates off-ring
hydrogens. For the monosaccharide level feature (the second row and the fourth row of Figure 6),
we included Amomer (bottom left, indicates the hydroxyl group), Configuration (bottom middle,
indicates Fischer project information), and Ring Size (bottom right, number of in-ring carbons) as
introduced in Table 2. The ‘N/A’ of each pie chart indicates that the information is not contained in
the PDB file.

Figure 6: Data statistics for GlycoNMR.Exp and GlycoNMR.Sim.
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A.4 RING POSITION VS. SHIFT RELATIONSHIP

We investigate the relationship between the ring position and the NMR shift values. We plot the
distribution of the NMR shift values by carbon and hydrogen ring positions. For both Figure 7
and Figure 8, the x-axis indicates the ring position of the atom (Carbon / Hydrogen), and the y-axis
indicates the NMR shift values of the corresponding atoms. We notice that the distribution of NMR
shift values for the ring positions C1 and C6 significantly vary from those of C2, C3, C4, and C5,
similarly of H1 and H6 to H2, H3, H4, and H5. A fundamental factor that determines the NMR shift
value is the atom’s electronic environment, especially bonded or non-bonded interactions within 1-3
atom distances away from the atom of interest.

Figure 7: NMR shift value by ring position for GlycoNMR.Exp

Figure 8: NMR shift value by ring position for GlycoNMR.Sim

B DETAILS ON FEATURES TABLES

In this section, we present a comprehensive description of the processed PDB file, including the
curated features mentioned in Section 2 and Section 3.2. For each feature, we provide its data type
along with a detailed explanation. Lines 1-8 in Table 6 record attributes presented in the original PDB
file. We incorporate the Atom_name and Atom_type as components of the node features. Coordinate
x, y, and z is used as spatial information to construct the MRL models. Lines 9-15 record the
processed node features as introduced Table 2. Lines 15-25 describe the feature: Modifications, that

18



Under review as a conference paper at ICLR 2024

are used in GlycoNMR.Sim. On curating the feature Modification, we first identify the modification
group using Lineage, Atom_num, Residue_name, and atom connectivity. Then, we calculate each
atom’s distance(atom path) to the identified modification group, set up several distance thresholds
to convert them into categorical values and incorporate them as node features. Notice that the
atom connectivity information is generally missing in GlycoNMR.Exp, thus it can be ambiguous to
match the atoms to their corresponding modification groups, and we omitted this feature for now
in the smaller Glycosciences.DB-sourced dataset only (in contrast, Modification was included in
the GODESS-sourced dataset). Future databases of new experimental results in carbohydrate NMR
spectra should seek to improve the clarity in this area, such as with more uniform standards in data
annotation by the original uploaders. Last, we use the labeled in-ring atoms’ NMR shift as ground
truth values.

Table 6: Detailed feature description
Value Datatype Descriptions

Atom_num Numerical Atom index number in the carbohydrate
Atom_name Categorical Atom name that also indicates its within-monosaccharide position index
Residual_name Categorical Three letters abbreviation of monosaccharide name
Residual_num Numerical Monosaccharide order number assigned
x Numerical X coordinate of the atom
y Numerical Y coordinate of the atom
z Numerical Z coordinate of the atom
Atom_type Categorical Chemical element type of the atom

Residual_accurate_name Categorical Full name of monosaccharide or modification group that atom belongs to
Lineage String Lineage (linkage) information of the current residue
Ac_component Categorical Whether atom is in an Ac modification
bound_AB Categorical Anomeric orientation of hydroxyl group
fischer_projection_DL Categorical Fischer convention
reformulated_standard_mono Categorical Monosaccharide stem name
carbon_number_PF Categorical Number of ring carbons (ring size)

Me_min_atom_distance Numerical Distance of the shortest atom path to Me modification group
Me_min_atom_path Categorical list The shortest atom path to Me modification
Ser_atom_distance Numerical Distance of the shortest atom path to Ser modification group
Ser_atom_path Categorical list The shortest atom path to Ser modification
Ac_min_atom_distance Numerical Distance of the shortest atom path to Ac modification group
Ac_min_atom_path Categorical list The shortest atom path to Ac modification
S_min_atom_distance Numerical Distance of the shortest atom path to S-related modification group
S_min_atom_path Categorical list The shortest atom path to S-related modification
Gc_min_atom_distance Numerical Distance of the shortest atom path to Gc modification group
Gc_min_atom_path Categorical list The shortest atom path to Gc modification

main_ring_shift Numerical Chemical shift values of all labeled main ring atoms
shift Numerical Chemical shift values of all labeled atoms

C SHAPLEY ANALYSIS OF FEATURE CONTRIBUTIONS

We calculate the Shapley values in Table 7 for the atomic-level and monosaccharide-level features as
we introduced in Table 2, following the implementation method if (Štrumbelj & Kononenko, 2014).
We noticed that, in general, all Shapley values are positive. Among all the features, the ring position
of both carbon and hydrogen atoms plays a significant role in the NMR shift prediction. In addition,
incorporating the stem type of the monosaccharides in the 2D GNN can marginally decrease the
prediction error. The remaining features, such as modification group, anomer, configuration, and ring
size, have a relatively minor impact on overall model performance.

Table 7: Shapley value of the carbohydrate-informed features for the 2D-based GNN models on
GlycoNMR.Exp and GlycoNMR.Sim. Each column reports the Shapley value of the corresponding
features.

GlycoNMR.Exp Ring position Modification Stem type Anomer Configuration Ring size
1H 0.457 N/A 0.088 0.061 0.009 0.008
13C 16.852 N/A 2.640 0.515 0.257 0.085

GlycoNMR.Sim Ring position Modification Stem type Anomer Configuration Ring size
1H 0.387 0.014 0.112 0.187 0.051 0.014
13C 13.007 0.321 3.619 0.465 0.199 0.055
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D POSSIBLE FUTURE RESEARCH TOPICS

In this section, we provide several unexplored glycoscience-related research topics that GlycoNMR
can be used for. We believe these topics can potentially benefit the overall ML and glycoscience
community.

Overview: A common problem in glycosciences is matching structure to NMR spectra. For
example, a scientist may want to verify they have generated the correct structure in the laboratory, by
examining a compound’s spectra after synthesis. NMR spectral peak positions provide key features for
carbohydrate structure identification, including the stereochemistry of monosaccharides, glycosidic
linkage types, atomic interactions and couplings, and conformational preferences. Individual atoms
(with net spin) in a carbohydrate generate the key spectral peaks for structure interpretation, which
in practice in carbohydrates is typically the central ring carbon and hydrogen atoms, plus certain
modification groups. Chemical shift values reported in ppm units are also independent of spectrometer
frequency and thus comparable across labs and equipment settings. In carbohydrates, usually, only
the hydrogen 1H and carbon 13C nuclei shifts are measurable, making spectra harder to interpret than
protein spectra where nitrogen and phosphorus shifts are also accessible (Toukach & Ananikov, 2013).
As another challenge specific to carbohydrates, carbohydrate NMR peaks are constrained to a much
narrower region of spectra range than proteins, making them harder to separate and leading to an
over-reliance on manual interpretation (Toukach & Ananikov, 2013). The development of theoretical
and computational ML-based tools that can utilize large datasets to find and predict relationships
between carbohydrate structure and its NMR parameters is a high priority for the field.

Customized models for carbohydrate data: Models specifically designed to accommodate the
unique characteristics and structure of the carbohydrate data are important to develop. As introduced
in Section 2, carbohydrates are a special type of biomolecule that is formed via the condensation
reactions of monosaccharides. We conduct heavy feature engineering to extract the monosaccharide-
related features, and our experimental results in Table 3 have already demonstrated the usefulness of
monosaccharide information (stem type) in NMR shift prediction. However, we incorporate them as
atom-level features in our baseline and the 3D-based MRL models. In this case, the existing models
may fail to capture the spatial information between monosaccharides, and more neural network
layers corresponding to the structural hierarchies inherent to carbohydrates could improve prediction
quality in future work. On the other hand, a carbohydrate’s unique atoms-to-monosaccharides-to-
carbohydrate characteristic inherently satisfies a hierarchical graph structure, so the information is
partly captured in the current implementation. We believe that developing a customized MRL model
(e.g., learning representations for both atoms and monosaccharides) can help learn a better node
representation for accurate NMR shift predictions in future work.

Theoretically advancing NMR-based structural analysis approaches in ML directions requires having
a comprehensive database where the same base monosaccharide units have various neighboring units
or modification groups swapped out or removed across data entries, in order to see how the spectra
changes as various components are combined or removed to better train models. Such comprehensive
databases have been established and well-studied in protein ML research, but a lack of ML-friendly
databases and poor open access data norms have hindered parallel progress in carbohydrates. While
our database is certainly not comprehensive and complete, with carbohydrates being more diverse
and varied than any other class of biomolecule, our approximately 2600 NMR spectra and structure
files tailored for ease of use in ML pipeline is the first of its size for ML studies.

For additional ideas for boosting the data size and quality in future work: by our assessment, GODESS
provides the best balance of accuracy, efficiency, and accessibility for the simulation of 1D NMR of
carbohydrates. However, as with any simulation method, it likely has some biases and simplifications
not seen in experimental data which are difficult to reveal without a large experimental dataset for
comparison. Thus, it is important for future work to expand this dataset to include simulation datasets
from other sources (e.g. CASPER (Furevi et al., 2022)), as well as to expand the experimental dataset
for comparison to the theoretical predictions. The experimental dataset expansion will necessitate
a serious and concentrated effort on the part of glycoscience researchers to improve the open data
norms of their field.

Predicting NMR spectra: As presented in Section 3.1, extensive data annotation is required
for preparing the atom-level carbohydrate NMR chemical shift data. Notably, for annotating each
carbohydrate, the key step is to match the monosaccharides present in the PDB (Protein Data Bank)
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structure file to the monosaccharides present in the NMR (Nuclear Magnetic Resonance) chemical
shift file. This step not only demands significant effort but also necessitates domain expertise, but will
continue to do so at least until the experimental glycoscience field adopts more uniform standards in
data files.

In the field of glycosciences, the ideal scenario is to predict the full continuous spectrum (peak widths
and noise included) depicted in Figure 2 (b) and (c) directly from the carbohydrate structure. In our
case, the NMR chemical shift prediction problem of just peaks is reformulated as graph-regression
tasks with promising initial performance. The biggest improvements in this direction will necessitate
both increasingly larger and more diverse experimental datasets, as well as model innovations.

E MODEL SETUP AND COMPUTATION RESOURCES

To ensure a fair comparison, the hidden embedding size for all 3D GNN models is set to 128, and the
number of hidden layers is set to 4 in the GlycoNMR.Sim dataset. In the GlycoNMR.Exp dataset,
due to the limitations in data size and to prevent over-fitting, the number of hidden layers is set to 2.
It takes around 5-34 seconds to train a single epoch with a batch size of 4, depending on different
models. All data processing and model training is performed on a Linux workstation with an Intel
Core i7 CPU, 32GB memory, and two GeForce RTX 3090 GPUs. Our entire training time for all
models in aggregate was on the scale of several hours. Loading codes for the dataset will also be
provided in the linked anonymous GitHub after the completion of the peer review. We also provided
more detailed run-time information and epoch numbers in the anonymous GitHub repository.

F DISCLAIMER ON GLYCONMR LICENSING

Disclaimer on GlycoNMR.Exp GlycoNMR.Exp is freely available under CC BY 4.0 license
and can be downloaded within this link. GlycoNMR.Exp is laboriously curated from Glyco-
science.DB to facilitate machine learning research on NMR shift predictions of carbohydrates.
Glycosciences.DB experimental data uploaded from various labs can be downloaded within this
link. Glycosciences.DB (Böhm et al., 2019), as part of the Glycosciences.de (Toukach et al., 2007)
portal, is provided for the glycoscience community with unrestricted open access intent. According
to (Toukach et al., 2007): "All glycan-related scientific data of the GLYCOSCIENCES.de portal
are freely accessible via the Internet following the open access philosophy: ‘free availability and
unrestricted use’."

Disclaimer on GlycoNMR.Sim GlycoNMR.Sim is freely available under CC BY 4.0 license and
can be downloaded within this link. GlycoNMR.Sim is extensively curated from the simulation
software GODESS. The GODESS experimentally-informed simulation data without preprocessing
can be downloaded within this link. GODESS simulation output is free to use and does not have a
license (see https://glic.glycoinfo.org/software/), if proper attribution to the references is done.

G RMSE FORMULA FOR BENCHMARKS

The RMSE was calculated according to the usual equation in all results presented throughout the
manuscript:

RMSE =

√√√√ N∑
i=1

(yi − ŷi)2

N

Where yi is the recorded NMR chemical shift, ŷi is the prediction from our GNN model on the ith

atom from the test set, and N is the number of the test data points.

H RANDOM FOREST BASELINE

We conducted a traditional ML baseline experiment using random forest to predict atomic NMR
shifts. The features of each atom (represented as a node in its carbohydrate graph) follow the same
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Table 8: NMR chemical shift prediction benchmark using a random forest model (in RMSE). The
code is provided on the anonymous Github repository.

GlycoNMR.Sim GlycoNMR.Exp
13C 1H 13C 1H

Random Forest 2.446 0.132 4.117 0.178

initializing method as used for training the 2D GNN model. In addition, we follow the same splitting
method as we did in Section 3.4. In general, the baseline model slightly underperforms relative to the
2D GNN model. This demonstrates the effectivenss of our feature engineering step in Section 3.2.

I BENCHMARK FOR MULTI-TASK NMR SHIFT PREDICTION

We trained 3D GNN models to perform multi-task learning on both GlycoNMR.Sim and Gly-
coNMR.Exp. Each 3D-based model is trained to predict the carbon NMR shift and the hydrogen
shift jointly. The results are summarized in Table 9. We notice that there is an overall significant drop
in performance across all 3D GNN models.

Table 9: NMR chemical shift prediction benchmark using 3D MRL methods (in RMSE).

GlycoNMR.Sim GlycoNMR.Exp
13C 1H 13C 1H

ComENet (Wang et al., 2022) 1.987 0.157 3.006 0.411
DimeNet++ (Gasteiger et al., 2020a) 1.954 0.199 3.696 0.185
SchNet (Schütt et al., 2017) 1.523 0.590 3.187 0.946
SphereNet (Liu et al., 2022) 2.258 0.169 3.364 0.638

J RUNNING TIME COMPARISON

Table 10: Running time(s) comparisons for 3D GNNs
Dataset ComeNet DimeNet++ SchNet SphereNet

GlycoNMR.Sim 7.564 20.581 3.615 31.831
GlycoNMR.Exp 1.257 2.312 0.754 2.032

Running time comparison of 3D GNN models, the duration in seconds for each training epoch is
reported. For a fair comparison across the 3D-based GNN models, in GlycoNMR.Sim dataset, we
set the batch size to 4, the number of hidden channels to 128, and the number of layers to 4, in
GlycoNMR.Exp, we set the batch size to 2, the number of hidden channels to 64, and the number of
layers to 2.

K HYPERPARAMETER SELECTION FOR GLYCONMR.EXP

We fine-tune the 3D-based GNN models on GlycoNMR.Exp to prevent overfitting, The hyperparame-
ter is selected from the following ranges: learning rate [0.001, 0.01], batch size: [2, 4, 8], number of
layers: [2, 3, 4], hidden channel size: [32, 64, 128, 256], and the cut-off distance for deciding the
interactions between atoms: [4.0, 5.0]. We unfortunately did not have time to do more substantial
hyperparameter tuning. We believe users of our dataset will be in better positions to provide better
results than us with the innovative design of the 3D-based MRL model and substantial hyperparameter
selection.
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L DATA ANNOTATION SUPPLEMENTS

In this section, we provide two supplemental repositories to help illustrate our data preprocess-
ing pipeline. One of our major contributions is to extensively curate the raw files from the
Glycosciences.DB- and GODESS-sourced datasets to make the GlycoNMR dataset friendly to
machine learning researchers. To achieve this, we have made significant efforts in data preprocessing
and provided a reproducible protocol for use in curating future carbohydrate-related NMR/structure
databases.

L.1 OVERVIEW

We summarize the data preprocessing pipelines on Glycosciences.DB in the following five steps. 1,
We manually and semi-automatically checked the carbohydrate data scraped from Glycosciences.DB,
and we applied exclusion criterion of only maintaining carbohydrates with complete or nearly
complete NMR peak shift lists. 2, We reformulated all the PDB files (as well as the NMR label files)
into an interpretable and consistent format, as they are uploaded from various labs. 3, We examined
the carbohydrates with branched monosaccharide chains, and manually matched the monosaccharide
IDs from the PDB file and the NMR label file. 4, We trained a simple 2D GNN model and predicted
the NMR chemical shifts for each annotated atom. 5, We examined the carbohydrates with the
highest ranked errors and applied an outlier check using domain knowledge over many iterations of
annotation debugging and validation, until we had a complete semi-automated pipeline that could
correct the most common reasons for annotation mismatch between the NMR and structure file. While
developing the annotation pipeline, if the error resulted from mismatches in monosaccharide IDs in
Step 4, we then go back to the previous steps 2, 3 and 4. The data preprocessing pipeline in GODESS
is relatively similar to the Glycoscience.DB. We constructed a more streamlined semi-automatic
pipeline to annotate the GODESS dataset since the dataset is generated from a single simulation
software with more consistent formatting. We introduced this pipeline in our released repository
provided below.

To further demonstrate our efforts, we released two repositories for reference on data cleaning,
processing, and annotating:

Creating GlycoNMR.Sim from the GODESS (https://anonymous.4open.science/r/
GODESS_preprocess-F9CD/README.md)

Creating GlycoNMR.Exp from the Glycosciences.DB (https://anonymous.4open.
science/r/GlycoscienceDB_preprocess-B678/README.md).

The data preprocessing steps are provided in detail in the README.md file.

L.2 AN ANNOTATION EXAMPLE FROM GLYCONMR.EXP

For carbohydrate file DB26380, we need to manually annotate the PDB file by assigning each
central ring carbon and hydrogen atoms with their corresponding shift values, which is stored
in the NMR label file. To achieve this, we need to associate the atoms’ parent monosaccharide
IDs between the two files. We first draw a sketch of the carbohydrate structure consisting of the
basic monosaccharide components from the CSV file using the linkage information. Atoms with
the same linkages are from the same monosaccharides. For example, atoms from lines 13-19
belong to monosaccharide B-D-GLCPN. We utilize linkage information to identify monosaccharide
components but not monosaccharide names such as ‘B-D-GLCPN’ because, in some scenarios, the
same monosaccharide name may indicate different monosaccharide components (i.e., there can be
multiple monosaccharide units with the same name in a carbohydrate, but the linkage information
can be used to tell them apart for NMR shift matching purposes). For example, lines 62-67, 68-73,
and 74-79 of the NMR label file refer to three separate monosaccharide unit components, that are
parents of different sets of atoms and appear in different locations of the carbohydrate chain, but still
have the same monosaccharide chemical name. DB26380’s sketch plot can be found on the 8th page
(plot number 23) of our annotation document for branched carbohydrates. Second, we again inspect
the PDB file and match the monosaccharide components with the help of the SWECON information
which provides additional secondary linkage information at the bottom of Glycosciences.DB PDB
file (lines 306-315) and our domain expertise. Then, for another example of a common issue causing
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mismatches between monosaccharide shift and structure, in DB26380, we noticed that the Phosphoryl
group ‘PO3’ (lines 39-42, 64-67) is treated as a monosaccharide component in the PDB file despite
not being a monosaccharide, therefore the monosaccharide shift file ID ordering 3 and 13 should be
disregarded when comparing to the PDB structure file, and the 4th monosaccharide residue in the
PDB file should instead be matched with the 3rd monosaccharide parent and its atom components
in the NMR label file. A detailed match is presented in our PDF document mentioned above. Then
last, when all parent monosaccharides are correctly matched between structure and shift files, we
assign the corresponding monosaccharide atoms’ shift from the label file to the PDB file by their
atom names.

L.3 AN ANNOTATION EXAMPLE FROM GLYCONMR.SIM

For glycan with name: ’aDXylp(1-6)bDGlcp(1-4)[aLFucp(1-2)bDGalp(1-2)aDXylp(1-6)]bDGlcp(1-
4)[aLFucp(1-2)bDGalp(1-2)aDXylp(1-6)]bDGlcp(1-4)xDGlca’ and its corresponding PDB file,
monosaccharide bond linkage ’(1-4)’ indicates the carbon with position number 1 is connected
to the carbon with position number 4 via a dehydration synthesis reaction, where ‘xDGlca’ is the
precursor monosaccharides (in other words ‘root’). From line 223 of the PDB file, we notice that
atom 1 is connected to atoms 28 and 2, this indicates that the monosaccharide with ID 2 is connected
to a monosaccharide with ID in the following bounds (C1 - O4 - C4), where C indicates the carbon
and O indicate the oxygen and the following number indicates the ring position. In this case, from the
3rd line of the label file, we can match the monosaccharides residue ‘b-D-Glcp’ from the label file
to the monosaccharides ID 2 in the PDB file using the linkage information ‘, 4’ which indicates the
following bounds (C1 - O4 - C4). Then, again, we assign the corresponding monosaccharide atom’s
shift from the NMR label file to the PDB file by its atom name.

M EXAMPLE CODES AND DEMOS

We provide four Jupyter Notebook demos in the anonymous GitHub repo for detailed instructions.
They introduce step by step on how to utilize the GlycoNMR.Sim and GlycoNMR.Exp datasets to
train a 3D or 2D GNN model.

Train a 2D-based GNN model on GlycoNMR.Sim: https://anonymous.4open.science/
r/GlycoNMR-D381/2D_example_Sim_GlycoNMR.ipynb.

Train a 2D-based GNN model on GlycoNMR.Exp: https://anonymous.4open.science/
r/GlycoNMR-D381/2D_example_Exp_GlycoNMR.ipynb.

Train a 3D-based GNN model on GlycoNMR.Sim: https://anonymous.4open.science/
r/GlycoNMR-D381/3D_example_Exp_GlycoNMR.ipynb.

Train a 3D-based GNN model on GlycoNMR.Exp: https://anonymous.4open.science/
r/GlycoNMR-D381/3D_example_Sim_GlycoNMR.ipynb.
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