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ABSTRACT

Deep Neural Networks (DNNs) have demonstrated superiority in learning various
patterns. However, DNNs are sensitive to label noises and would easily overfit
noisy labels during training. The early stopping strategy averts updating DNNs
during the early training phase and is widely employed as an effective method
when learning with noisy labels. Motivated by biological findings that the am-
plitude spectrum (AS) and phase spectrum (PS) in the frequency domain play
different roles in the animal’s vision system, we observe that PS, which captures
more semantic information, is more resistant to label noise than AS. Performing
the early stopping on AS and PS at the same time is therefore undesirable. In con-
trast, we propose early stops at different times for AS and PS. In order to achieve
this, we disentangle the features of some layer(s) into AS and PS using Discrete
Fourier Transform (DFT) during training. The AS and PS will be detached at
different training stages from the gradient computational graph. The features are
then restored via inverse DFT (iDFT) for the next layer. We term the proposed
method Phase-AmplituDe DisentangLed Early Stopping (PADDLES). Simple yet
effective, PADDLES outperforms other early stopping methods and obtains state-
of-the-art performance on both synthetic and real-world label-noise datasets.

1 INTRODUCTION

Learning from noisy labels (LNL) (Angluin & Laird (1988)) has revived as a hot research topic with
the development of deep learning (Reed et al. (2015); Goldberger & Ben-Reuven (2017); Malach
& Shalev-Shwartz (2017); Patrini et al. (2017); Thekumparampil et al. (2018); Zhang & Sabuncu
(2018); Kremer et al. (2018); Han et al. (2018); Ren et al. (2018); Yu et al. (2018); Jiang et al. (2018);
Xu et al. (2019); Yu et al. (2019); Liu & Guo (2020); Li et al. (2020b;a); Hu et al. (2020); Lyu &
Tsang (2020); Yao et al. (2020); Xia et al. (2020b); Yao et al. (2021); Cheng et al. (2021); Zhu et al.
(2021); Ghazi et al. (2021); Paul et al. (2021); Yang et al. (2022); Wu et al. (2022); Liu et al. (2022b);
Xia et al. (2022); Wei et al. (2022)). As noisy labels widely exist in real-world datasets (Welinder
& Perona (2010); Vijayanarasimhan & Grauman (2014); Xiao et al. (2015); Sun et al. (2021)), a
trustworthy AI system should be robust towards inaccurate labels or mislabels.

The memorization effect of deep models that DNNs learn the clean patterns first and then memorize
(overfit) the noise patterns (Arpit et al. (2017)), inspired many breakthroughs (Han et al. (2018);
Wang et al. (2018); Li et al. (2020a;b); Xia et al. (2020a); Liu et al. (2020; 2022a)) in LNL. A
representative training strategy is early stopping (ES), which stops the gradient-based optimization
at a particular early training step. Due to its effectiveness, ES is widely applied in current LNL
models and has achieved promising performance (Tanaka et al. (2018); Li et al. (2020a); Nguyen
et al. (2020); Bai et al. (2021); Liu et al. (2022a)).

The frequency and spatial domains are alternative codes for depicting signal data such as images and
text (Oppenheim et al. (1997); Szeliski (2010)). Different frequency components contain different
information. (Castleman (1996)) indicated that the amplitude spectrum (AS) prescribes how much
of each sinusoidal component is present, while the phase spectrum (PS) stipulates the location of
each sinusoidal component residing in the image. Biological justification and psychological patterns
testing (Simoncelli & Schwartz (1999); Guo et al. (2008)) demonstrated that the response of cells
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(a) Cleanly labeled examples
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(b) Wrongly labeled examples
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(c) Test accuracy with noisy labels

Figure 1: Results of training a ResNet-18 model on CIFAR-10 using original images, amplitude
spectrum, and phase spectrum (“Train IM”, “Train AS”, and “Train PS” in the Figure) on cleanly
and noisily labeled subsets. The curves are averaged across five random runs. The dotted vertical
lines indicate the best performance steps of different image components. The converging speed of
the deep model trained on AS and PS differs, especially on wrongly labeled examples. Approaching
the end of the training, when the wrong labels begin to be memorized, the model accelerates fitting
to AS, resulting in an intersection on the training curves of AS and PS, shown in Figure 1(b). Hence,
PS is more resistant to label noises than AS.

in the primary visual cortex (V1) is closely related to the local AS for specific image patterns (fre-
quency and orientation). That is, the AS component usually represents the intensity of the patterns
in the image. On the other hand, previous qualitative and quantitative studies (Castleman (1996);
Guo et al. (2008)) indicated that the PS is the key to locating salient object areas and holds visible
structured information for vision recognition (Oppenheim & Lim (1981); Ghiglia & Pritt (1998); Li
et al. (2015)), thus containing more semantic information than the AS.

Current deep models, such as Convolutional Neural Networks (CNNs), profit from human unper-
ceivable high-frequency components in images (Ilyas et al. (2019); Wang et al. (2020)). However,
without adequate regulations, CNNs perceive more AS than PS (Chen et al. (2021)), which is incon-
sistent with the human vision system of focusing on semantic parts (Oppenheim & Lim (1981); Guo
et al. (2008); Li et al. (2015)). The counterintuitive behavior of CNNs and the properties of different
frequency components of images invoke an interesting question: How can we train a robust model
using the frequency components when our supervision is the noisy-label data?

Directly adapting the ES strategy to stop the optimization of CNNs on all image components simul-
taneously will ignore their different sensitivity towards noisy labels, which may lead to sub-optimal
solutions. However, solely depending on training with one component will lose the complemen-
tary information from other components, resulting in overall performance degradation. In Figure 1,
we investigate the impact of label noise on deep models trained with different image components.
We generate symmetric label noise (Van Rooyen et al. (2015); Han et al. (2018)) with a 50% noise
rate. As shown in Figures 1(a) and 1(b), the convergence speed of CNNs on AS and PS is different.
When CNNs start to overfit the noisy labels, they fit AS much faster than PS (Figure 1(b)), resulting
in test performance degradation. Meanwhile, the learning speed on PS is slower than AS as well
as the raw images, which indicates that PS maybe more robust than AS or raw inputs. Note that
the model trained with only AS or PS performs worse than the one trained with the original images
(Figure 1(c)). This is fair as either AS or PS could miss some information of the original image data.
Therefore, how to utilize AS and PS separately but also prevent information loss is challenging.

To tackle this challenge, we propose to disentangle the deep image features into AS and PS at dif-
ferent training steps by Discrete Fourier Transform (DFT). We first detach the AS component from
the gradient computational graph to stop its involvement in the model update, which can alleviate
the potential negative effects of AS in the later training stage. With AS being detached, we continue
train the deep model with PS components which are more robust to the noisy labels. We eventually
stop optimization on the PS component as well after few training epochs. Notice that the detached
components will regenerate the deep features in the spatial domain through inverse DFT (iDFT).
This is efficient as there is no modification to the original architecture. Moreover, complete infor-
mation is used for training. We call the proposed method as Phase-AmplituDe DisentangLed Early
Stopping (PADDLES). To the best of our knowledge, PADDLES is the first method to consider fea-
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tures learned with noisy labels in the frequency domain and thus is orthogonal to existing methods
that mainly focus on the spatial domain. Our contributions are summarized as follows:

• We study learning with noise labels from the frequency domain and find that the phase
spectrum is more resistant to label noise than the amplitude spectrum.

• We propose to early stop training at different stages for amplitudes and phase spectrums.
We show that this can utilize the robustness of the phase spectrum without losing informa-
tion on phase during model training.

• Extensive experiments on benchmark datasets such as CIFAR-10, CIFAR-100, CIFAR-
10N, CIFAR-100N, Clothing-1M, and NEWS datasets validate the effectiveness of the
proposed method.

The rest of the paper is organized as follows. In Section 2, we introduce the proposed PADDLES
method. In Section 3, we give empirical evaluations of our method, followed by Conclusions. Due
to the page limit, we review the related works in Appendix A, and more details and additional
experiments in Appendix B and C.

2 METHODOLOGY

In this section, we present the proposed Phase-AmplituDe DisentangLed Early Stopping (PAD-
DLES). We first introduce the problem definition, followed by the detailed learning methods.

2.1 PROBLEM DEFINITION

In the learning with noisy labels, the real training data distribution can be defined as D =
{(x, y) |x ∈ X , y ∈ {1, . . . ,K}}, where X is the sample space, and {1, . . . ,K} denotes the la-
bel space with K classes. However, the actual distribution of the label space is usually inaccessible
since the data collection and dataset construction will inevitably import label errors. We can only
use the accessible noisy dataset D̂ = {(x, ŷ) |x ∈ X , ŷ ∈ {1, . . . ,K}} to train the model, where ŷ
denotes the corrupted noisy labels. The goal of our algorithm is to learn a robust deep classifier from
the noisy data that can perform accurately on the query samples.

2.2 PHASE-AMPLITUDE DISENTANGLED EARLY STOPPING

Training a deep model with a noisy dataset D̂ is challenging as the model will fit the clean labels
first and then overfit the noisy labels, as shown in Figure 1. This memorization effect motivates
previous methods to adapt the early stopping to cease the optimization of deep models at a specific
step. Namely, the early stopping method aims to choose a suitable step tp in training a deep model
fΘ. The training process is to learn an optimal Θ∗:

Θ∗ = argmin
Θ={ΘT ,ΘT−1,...,Θ0}

1

N

N∑
i=1

L
(
ŷi, fΘT

◦ fΘT−1
◦ · · · ◦ fΘ0 (xi)

)
, (1)

where Θ = {ΘT ,ΘT−1, . . . ,Θ0} denotes the parameter(s) of the deep model, and ◦ denotes the
operator of the function composition. The deep model fΘ(·) is rewritten as fΘT

◦fΘT−1
◦· · ·◦fΘ0 (·)

since the deep neural networks can be viewed as a stack of non-linear functions. xi, ŷi represent the
ith sample and its label, and L is the cross-entropy training loss.

To obtain Θ∗, previous works (Liu et al. (2020); Xia et al. (2020a); Bai et al. (2021)) developed
various optimization policies from the perspective of robust loss function design (Liu et al. (2020)),
gradient regulation (Xia et al. (2020a)), and progressive architecture selection (Bai et al. (2021)).
These methods focus on the spatial domain, and treats the input data (images) as a whole. However,
as discussed in the Introduction section, different image components play different roles in the vision
system. It is unoptimized to stop the model optimization on these components simultaneously.

For this reason, we propose to investigate the early stopping on the input data components and
select different stop points for different parts. It is natural to consider the frequency domain due
to its equivalent representation of input data (Castleman (1996); Oppenheim et al. (1997)) on the
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Figure 2: The illustration of the proposed PADDLES strategy stops the amplitude spectrum’s in-
volvement in model training. “−→” denotes the forward propagation, while the “L99” represents
the backward propagation. Using Equations 2 3 and 4, we form a computational chain to disentangle
the frequency domain representation, and then we can stop the backward propagation of the target
component. In this way, we can control the model’s optimization with each component and choose
different stopping points.

spatial domain and the vision properties (Bian & Zhang (2008); Li et al. (2015)) of amplitude and
phase spectrum, as discussed previously. Specifically, for an input sample xi, the deep feature after
jth operation in fΘ can be represented as χ = fΘj

◦ · · · ◦ fΘ0
(xi), and its frequency domain

representation Fχ can be computed using DFT:

Fχ(u) =

M−1∑
p=0

χpe
−I·2π

M pu, (2)

which can be denoted as Fχ = DFT (χ). u represents a specific frequency, M is the number of sam-
pled points, I is the imaginary unit, and χp denotes the value at the position p of χ. We consider one
dimension here for simplicity, and the higher-dimensional DFT corresponds to successive Fourier
transforms along each dimension in sequence. Notice that the Fχ(u) is a complex-valued variable,
its real part can be denoted as RealFχ, and the imaginary part is ImagFχ. We then disentangle the
phase and amplitude components using the following rules:

PSχ(u) = arctan(
ImagFχ (u)

RealFχ (u)
),

ASχ(u) = |Fχ(u)|,
(3)

where PSχ represents the phase spectrum, ASχ represents the amplitude spectrum, arctan(·) is
the inverse trigonometric function, and | · | computes the absolute value. Using Equations 2 and 3,
the deep features are decomposed into amplitude and phase components during the model training.
Afterward, we restore the deep feature using iDFT:

χ′
p =

1

M

M−1∑
u=0

(eI·PSχ(u) ⊙ASχ(u))e
I·2π
M pu, (4)

which can be represented with χ′ = iDFT (eI·PSχ ⊙ ASχ). Notice that χ′ = χ, ⊙ indicates the
element-wise multiplication operation.

Through Equation 2, 3, and 4, we construct a computation chain disentangling the phase spectrum
PSχ and the amplitude spectrum ASχ from the original feature χ during the end-to-end model
training. Therefore, we can control the deep model’s optimization with each component. Specifi-
cally, the end-to-end training of the deep model fΘ consists of the forward and the backward prop-
agations, the forward propagation (right arrows in Figure 2) will generate the intermediate values
(χ,PSχ,ASχ, χ

′) with the input xi, and the backward propagation (left arrows in Figure 2) will
track the gradients for each intermediate value and model parameter. Finally, the model is updated
using the gradient descent with the tracked gradients. For the backward propagation of fΘ, we need
to compute the partial derivatives of loss function L with respect to PSχ ( ∂L

∂PSχ
) and ASχ ( ∂L

∂ASχ
)

1. Stopping computing these derivatives can detach the phase-related gradient or amplitude-related
gradient nodes from the gradient computational graph and thus control the model optimization on
each frequency component, as illustrated in Figure 2.

1Thanks to the automatic differentiation engine of deep learning frameworks, e.g., PyTorch and TensorFlow,
it is convenient to obtain the derivatives and gradient for each variable. Therefore, we omit the derivatives
computation of PS and AS here.
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Algorithm 1: PADDLES

Input : A noisy set D̂, Deep Model fΘ={ΘT ,ΘT−1,...,Θ0}, Disentangle point j, ASχ training
epoch TA, PSχ training epoch TP , Additional epoch T0, Epochs for remaining part:
Tj+1, . . . , TT , Epoch Tr for learning with confident samples (semi).

1 for i = 1 to TA do
2 Update network parameter Θ using Equation 1;
3 end
4 for i = 1 to TP do
5 Extract χ at fΘj , disentangle χ into ASχ and PSχ using Equation 2 and 3;
6 Detach gradient computation of ASχ in Equation 3;
7 Restore deep feature χ′ using Equation 4;
8 Update network parameter Θ using Equation 1;
9 end

10 for i = 1 to T0 do
11 Extract χ at fΘj , disentangle χ into ASχ and PSχ using Equation 2 and 3;
12 Detach gradient computation of PSχ in Equation 3;
13 Restore deep feature χ′ using Equation 4;
14 Update network parameter Θ using Equation 1;
15 end
16 Hook ASχ and PSχ to the gradient computation graph during backpropagation;
17 for l = j + 1 to T do
18 Freeze {Θ0, . . . ,Θj} and re-initialize {Θj+1, . . . ,ΘT };
19 for i = 1 to Tl do
20 Update network parameter {Θj+1, . . . ,ΘT } using Equation 5;
21 end
22 end
23 Unfreeze fΘ;
24 for i = 1 to Tr do
25 Extract confident sample set Dlb and unlabeled set Dub using Equation 6 and 7 ;
26 Update fΘ using MixMatch loss on Dlb and Dub;
27 end

Output: The optimized model fΘ∗ .

2.3 PRACTICAL IMPLEMENTATION

The proposed PADDLES is summarized in Algorthm 1. In this section, we introduce the structure
of our model and the corresponding learning settings.

Model Structure To reduce the difficulty of implementation and further improve the robustness
of PADDLES, we incorporate progressive early stopping (PES) (Bai et al. (2021)) in our model
training. Therefore, we need to add a copy of the PES optimization strategy.

After finishing the amplitude and phase spectrum training (Step 15 in Algorithm 1). The param-
eter parts {Θ∗

0, . . . ,Θ
∗
j} are well-optimized. PES model will continue update the remaining parts

{Θj+1, . . . ,ΘT } with previous parameters fixed. Training process will perform Tl steps using the
following objective:

min
{Θl,...,ΘT }

1

N

N∑
i=1

L
(
ŷi, fΘT

◦ · · ◦fΘl
◦ fΘ∗

l−1
◦ · · ◦fΘ∗

0
(xi)

)
, l = j + 1, · · ·, T. (5)

After PES optimization, the final model fΘ∗={Θ∗
0 ,···,Θ∗

T } is obtained.

Learning Settings Following (Li et al. (2020a); Bai et al. (2021)), we adopt PADDLES as a con-
fident sample selector to boost noisy label learning with supervised and semi-supervised learning
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settings. The confident sample set Dlb is defined as

Dlb = {(xi, ŷi)|ŷi = ȳi, i = 1, · · ·, N},

ȳi = argmax
τ∈{1,···,K}

1

2
[fτ

Θ∗(A(xi)) + fτ
Θ∗(A′(xi))],

(6)

where A and A′ are data augmentation operators randomly sampled from the same augmentation
set, fτ

Θ∗(xi) indicates the classification probability of xi belonging to class τ . For the supervised
learning with confident samples, we adopt the weighted classification loss (Equitation (6) in Bai
et al. (2021)).

For the semi-supervised setting, besides the confident label set Dlb, the additional unlabeled set Dub

is defined as
Dub = {xi|ŷi ̸= ȳi, i = 1, · · ·, N},

ȳi = argmax
τ∈{1,···,K}

1

2
[fτ

Θ∗(A(xi)) + fτ
Θ∗(A′(xi))].

(7)

We adopt the MixMatch (Berthelot et al. (2019)) loss to train the semi-supervised learning task as
previous works (Li et al. (2020a); Bai et al. (2021)).

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets We demonstrate the effectiveness of our PADDLES on the two manually corrupted
datasets: CIFAR-10 and CIFAR-100 (Krizhevsky et al. (2009)), and two real-world noisy datasets:
CIFAR-N (Wei et al. (2022)) and Clothing-1M (Xiao et al. (2015)). Both CIFAR-10 and CIFAR-
100 contain 50,000 training samples and 10,000 testing samples with the size of 32×32 for each
image sample. CIFAR-10 has 10 classes, while CIFAR-100 contains 100 classes. The original la-
bels of these two datasets are clean, and we generate three types of noisy labels, i.e., symmetric,
pairflip, and instance-dependent label noise, according to (Han et al. (2018); Liu et al. (2020); Xia
et al. (2020a; 2019); Bai et al. (2021)). CIFAR-N consists of CIFAR-10N and CIFAR-100N, a re-
annotation of CIFAR-10 and CIFAR-100 with real human annotators. Specifically, CIFAR-10N has
five types of labels: Random 1, Random 2, Random 3, Aggregate, and Worst, which are derived from
three submitted label sets. CIFAR-100N contains a single human annotated label set named Noisy
Fine. Clothing-1M has 1,000,000 clothing images in 14 classes clawed from online shopping web
sits. The labels of Clothing-1M are generated according to the context on the shopping web page,
resulting in lots of mislabelled samples. This dataset also provides 14,313 and 10,526 images with
clean labels for validation and testing. Besides the image datasets, we also validate our method on
a text classificaiton dataset, NEWS (Joachims (1997); Yu et al. (2019)). Due to the page limit, the
experimental analysis on NEWS can be found in Appendix C.3.

Comparison Methods We compare the proposed PADDLES with the following approaches: 1)
Cross Entropy (CE) and MixUp as two baselines, which training deep models with cross-entropy
loss and mixup (Zhang et al. (2018)) strategy separately. 2) Classic LNL methods: Co-teaching (Han
et al. (2018)), Forward-T (Patrini et al. (2017)), JointOptim (Tanaka et al. (2018)), T-revision (Xia
et al. (2019)), M-correction (Arazo et al. (2019)) and DMI (Xu et al. (2019)). 3) State-of-the art
LNL methods: DivideMix (Li et al. (2020a)), CDR (Xia et al. (2020a)), ELR (Liu et al. (2020)),
PES (Bai et al. (2021)), CORES (Cheng et al. (2021)) and SOP (Liu et al. (2022b)).

Network Structures and Hyperparameters We implement our method with PyTorch. The com-
pared methods are implemented or re-implemented according to their original papers and open-
source codes. We chose the same hyperparameters as their papers presented. We set network struc-
tures and hyperparameters for PADDLES on each noisy-label dataset as follows.

For the supervised learning setting, we follow (Xia et al. (2019); Bai et al. (2021)) to use ResNet-18
and ResNet-34 architectures for CIFAR-10 and CIFAR-100, respectively. The disentangle point j is
between the 3rd and 4th ResNet blocks. The initial learning rate is 0.1 and decayed with a factor of
10 at the 100th epoch, the weight decay is 10−4, and we train the networks 110 epochs. We list the
details in the Appendix B including stopping points of ASχ, PSχ and the related PES parameters.
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Table 1: Comparison with different methods under supervised learning of confident samples on
CIFAR-10 and CIFAR-100. The results of the baseline methods are taken from Bai et al. (2021).
The best results are in bold. The mean and standard deviation computed over five runs are given.

Dataset Method Symmetric Pairflip Instance
20% 50% 45% 20% 40%

CIFAR-10

CE 84.00±0.66 75.51±1.24 63.34±6.03 85.10±0.68 77.00±2.17
Co-teaching 87.16±0.11 72.80±0.45 70.11±1.16 86.54±0.11 80.98±0.39
Forward-T 85.63±0.52 77.92±0.66 60.15±1.97 85.29±0.38 74.72±3.24
JointOptim 89.70±0.11 85.00±0.17 82.63±1.38 89.69±0.42 82.62±0.57
T-revision 89.63±0.13 83.40±0.65 77.06±6.47 90.46±0.13 85.37±3.36

DMI 88.18±0.36 78.28±0.48 57.60±14.56 89.14±0.36 84.78±1.97
CDR 89.72±0.38 82.64±0.89 73.67±0.54 90.41±0.34 83.07±1.33
PES 92.38±0.40 87.45±0.35 88.43±1.08 92.69±0.44 89.73±0.51

PADDLES 92.43±0.18 87.94±0.22 89.32±0.21 92.76±0.30 89.87±0.51

CIFAR-100

CE 51.43±0.58 37.69±3.45 34.10±2.04 52.19±1.42 42.26±1.29
Co-teaching 59.28±0.47 41.37±0.08 33.22±0.48 57.24±0.69 45.69±0.99
Forward-T 57.75±0.37 44.66±1.01 27.88±0.80 58.76±0.66 44.50±0.72
JointOptim 64.55±0.38 50.22±0.41 42.61±0.61 65.15±0.31 55.57±0.41
T-revision 65.40±1.07 50.24±1.45 41.10±1.95 60.71±0.73 51.54±0.91

DMI 58.73±0.70 44.25±1.14 26.90±0.45 58.05±0.20 47.36±0.68
CDR 66.52±0.24 55.30±0.96 43.87±1.35 67.33±0.67 55.94±0.56
PES 68.89±0.45 58.90±2.72 57.18±1.44 70.49±0.79 65.68±1.41

PADDLES 69.19±0.88 59.78±3.15 58.68±1.28 70.88±0.55 66.11±1.19

For the semi-supervised learning setting, we follow (Li et al. (2020a); Bai et al. (2021)) to use PreAct
ResNet-18 for CIFAR-10 and CIFAR-100, and use ResNet-34 for CIFAR-N. For Clothing-1M, we
adopt the ResNet-50 pretrained on the ImageNet. The disentangle point j is set between the 3rd and
4th ResNet blocks. We train the model 500 epochs using cosine annealing strategy for CIFAR-like
datasets, and the initial learning rate is 0.02, with a weight decay of 5 × 10−4, stopping points of
ASχ, PSχ are set as 30 (TA = 30) and 35 (TP = 5) separately. For Clothing-1M, we train the
model with 150 epochs using OneCycleLR strategy (Smith & Topin (2019)) and set the learning rate
to 4.5× 10−3 with a weight decay of 0.001, stopping points of ASχ, PSχ are set as 10 (TA = 10)
and 29 (TP = 19), respectively. More details can be found in the Appledix B.

3.2 CLASSIFICATION PERFORMANCE ON NOISY DATASETS

Results on Synthetic Datasets We evaluate PADDLES on CIFAR-10 and CIFAR-100 with differ-
ent levels and types of label noise under supervised learning, as shown in Table 1. Under the same
architectures, PADDLES consistently outperforms the other methods across different noisy types
and noisy levels, which demonstrates the effectiveness of PADDLES.

In Table 2, we compare PADDLES with state-of-the-art semi-supervised LNL methods. PADDLES
achieves a significant performance improvement of around 10% to 40% over the baseline methods
such as CE and MixUp. Moreover, PADDLES beats the state-of-the-art LNL methods like ELR+
and PES on all settings. Specifically, with 80% Symmetric label noise on CIFAR-100, the classifica-
tion accuracies are 62.9% vs. 61.6% PES (Bai et al. (2021)), indicating the superiority of PADDLES
in using unlabelled data to boost classification performance.

Results on Real-world Datasets We compare the classification performance of different methods
in Table 3. All the compared methods adopt a pre-trained ResNet-50 backbone on the ImageNet.
Since PADDLES is equipped with a more nuanced optimization strategy from perspectives of fre-
quency domain and progressive model construction, it achieves state-of-the-art performance.

Furthermore, we test our PADDLES model on a more challenging real-world noise-label dataset, as
summarized in Table 4. CIFAR-N consists of CIFAR-10N and CIFAR-100N with six types of noisy
labels annotated with human observers. We can observe a performance gain of PADDLES over
comparing methods on five types of labels except for CIFAR-10N’ Aggregate. PADDLES achieves
comparable performance towards SOP+ on CIFAR-10N’s Aggregate labels.

7



Under review as a conference paper at ICLR 2023

Table 2: Comparison with different methods under semi-supervised learning of confident samples
on CIFAR-10 and CIFAR-100. The results of the baseline methods are taken from Bai et al. (2021).
The best results are in bold. The mean and standard deviation computed over five runs are given.

Dataset Method Symmetric Pairflip Instance
20% 50% 80% 45% 20% 40%

CIFAR-10

CE 86.5±0.6 80.6±0.2 63.7±0.8 74.9±1.7 87.5±0.5 78.9±0.7
MixUp 93.2±0.3 88.2±0.3 73.3±0.3 82.4±1.0 93.3±0.2 87.6±0.5

DivideMix 95.6±0.1 94.6±0.1 92.9±0.3 85.6±1.7 95.5±0.1 94.5±0.2
ELR+ 94.9±0.2 93.6±0.1 90.4±0.2 86.1±1.2 94.9±0.1 94.3±0.2
PES 95.9±0.1 95.1±0.2 93.1±0.2 94.5±0.3 95.9±0.1 95.3±0.1

PADDLES 96.1±0.1 95.3±0.2 93.3±0.1 94.6±0.1 96.2±0.1 95.5±0.2

CIFAR-100

CE 57.9±0.4 47.3±0.2 22.3±1.2 38.5±0.6 56.8±0.4 48.2±0.5
MixUp 69.5±0.2 57.1±0.6 34.1±0.6 44.2±0.5 67.1±0.1 55.0±0.1

DivideMix 75.3±0.1 72.7±0.6 56.4±0.3 48.2±1.0 75.2±0.2 70.9±0.1
ELR+ 75.5±0.2 71.0±0.2 50.4±0.8 65.3±1.3 75.8±0.1 74.3±0.3
PES 77.4±0.3 74.3±0.6 61.6±0.6 73.6±1.7 77.6±0.3 76.1±0.4

PADDLES 77.9±0.1 74.8±0.3 62.9±0.3 74.7±1.5 77.7±0.3 76.3±0.1

Table 3: Comparison with different methods of test accuracy on Cloting-1M. All methods use a
pretrained ResNet-5 architecture. Results of other methods are taken from the original papers. *
indicates that the methods are based on an ensemble model, while other methods are obtained with
a single network.

CE Forward-T JointOptim DMI ELR CORES2 SOP
69.21 69.84 72.16 72.46 72.87 73.24 73.50

T-revision PES DivideMix* ELR+* PES* PADDLES PADDLES*
74.18 74.64 74.76 74.81 74.99 74.90 75.07

Table 4: Comparison with state-of-the-art methods on CIFAR-N. Mean and standard deviation over
five runs are reported. The results of the baseline methods are taken from the leaderboard in Wei
et al. (2022). We use ResNet-34 as backbone like other methods expect for SOP+, which adopted
PreActResNet-18.

Method CIFAR-10N CIFAR-100N
Random 1 Random 2 Random 3 Aggregate Worst Noisy Fine

CE 85.02±0.65 86.46±1.79 85.16±0.61 87.77±0.38 77.69±1.55 55.50±0.66
Forward-T 86.88±0.50 86.14±0.24 87.04±0.35 88.24±0.22 79.79±0.46 57.01±1.03
T-revision 88.33±0.32 87.71±1.02 87.79±0.67 88.52±0.17 80.48±1.20 51.55±0.31

Co-Teaching 90.33±0.13 90.30±0.17 90.15±0.18 91.20±0.13 83.83±0.13 60.37±0.27
ELR+ 94.43±0.41 94.20±0.24 94.34±0.22 94.83±0.10 91.09±1.60 66.72±0.07

CORES* 94.45±0.14 94.88±0.31 94.74±0.03 95.25±0.09 91.66±0.09 55.72±0.42
DivideMix 95.16±0.19 95.23±0.07 95.21±0.14 95.01±0.71 92.56±0.42 71.13±0.48

PES 95.06±0.15 95.19±0.23 95.22±0.13 94.66±0.18 92.68±0.22 70.36±0.33
SOP+ 95.28±0.13 95.31±0.10 95.39±0.11 95.61±0.13 93.24±0.21 67.81±0.23

PADDLES 95.86±0.12 96.03±0.16 95.97±0.15 95.46±0.14 93.85±0.34 71.32±0.36

3.3 ABLATION STUDIES

We analyze different components of the PADDLES and summarize the results in Table 5. It can be
observed that without PES tricks on updating the latter parts of the model, PADDLES Base achieves
a significant improvement over the baseline CE method. Moreover, compared with other state-of-
the-art methods, the PADDLES Base model also obtains comparable performance. For instance,
with 45% Pairflip label noise, PADDLES Base ranks 3rd and 5th among all ten methods on CIFAR-
10 and CIFAR-100, as indicated in Table 1. After incorporating PES training on the latter model
parts, the PADDLES obtains further improvement and achieves state-of-the-art performance since
the proposed training policy is designed from the view of the data frequency domain, which is
orthogonal to the PES strategy.
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Table 5: Ablation studies about the proposed PADDLES under the supervised setting, experiments
on CIFAR-10 are based on a ResNet-18 backbone, and experiments on CIFAR-100 are based on a
ResNet-34 backbone. PADDLE Base denotes the model without using the PES strategy to train the
latter parts of the model {fΘj+1 , . . . , fΘT

} in Equation 5.

Dataset Method Symmetric Pairflip Instance
50% 45% 40%

CIFAR-10

CE 75.51±1.24 63.34±6.03 77.00±2.17
PADDLES Base 83.40±0.78 82.80±2.02 85.20±0.47

PES 87.45±0.35 88.43±1.08 89.73±0.51
PADDLES 87.94±0.22 89.32±0.21 89.87±0.51

CIFAR-100

CE 37.69±3.45 34.10±2.04 42.26±1.29
PADDLES Base 47.72±3.55 42.17±2.15 54.68±1.36

PES 58.90±2.72 57.18±1.44 65.68±1.41
PADDLES 59.78±3.15 58.68±1.28 66.11±1.19

(a) Disentangle Position (b) Stopping Point of AS (c) Stopping Point of PS

Figure 3: Sensitivity analysis for different choices of disentangle positions, early stopping points of
AS, and early stopping points of PS.

Another important component of the PADDLES is the frequency disentangle position j, as presented
in Algorithm 1. We choose ResNet models as the backbone and disentangle the deep feature at each
ResNet block. For example, ‘P1’ indicates decomposing the feature before block 1, ‘P5’ is after
block 4, and ‘ALL’ means decomposing the feature at all five positions. As shown in Figure 3(a),
we observe that the performance of PADDLES is more stable on CIFAR-10 than on CIFAR-100 at
different positions. The best performances are achieved at P3 and P4.

We investigate the hyper-parameter sensitivity of the early stopping points for amplitude spectrum
TA and phase spectrum TP in Figure 3(b) and Figure 3(c). All experiments are conducted on CIFAR-
N datasets with a ResNet-34 backbone. We vary TA from 18 to 30 with TP = 5 in Figure 3(b) and
set TP from 5 to 17 with TA = 30. We observe that with fixed TP , the performance will generally
increase when TA is growing for both Fine noises on the CIFAR-100N and Worst noises on the
CIFAR-10N. When the TA is fixed, too large training steps for PS will result in performance degra-
dation, as the model starts to overfit the label noises. Moreover, The performances of Aggregate
noises on the CIFAR-10N dataset stay comparatively stable compared with other noises. The model
achieves the best performance with TA = 30 and TP = 5.

4 CONCLUSION

The impact of the noisy labels for the phase spectrum (PS) is less than the amplitude spectrum
(AS), resulting in a different fit speed of noisy data. Therefore, we propose a Phase-AmplituDe
DisentangLed Early Stopping (PADDLES) method to tackle the learning with noisy labels. During
different training steps, we disentangle the AS and PS from the deep image features and separately
detach their backpropagation. This way, PADDLES avoids stopping the model training of different
frequency components simultaneously and thus achieves better performance. Extensive experiments
on different types of data (images and texts) with different network architectures (CNNs and MLP)
demonstrate the effectiveness of PADDLES, and PADDLES achieves state-of-the-art performance
on five noisy label benchmarks.
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A RELATED WORK

Learning with noisy labels Current methods (Reed et al. (2015); Goldberger & Ben-Reuven
(2017); Malach & Shalev-Shwartz (2017); Patrini et al. (2017); Thekumparampil et al. (2018);
Zhang & Sabuncu (2018); Kremer et al. (2018); Han et al. (2018); Ren et al. (2018); Yu et al.
(2018); Jiang et al. (2018); Xu et al. (2019); Yu et al. (2019); Liu & Guo (2020); Li et al. (2020b;a);
Hu et al. (2020); Lyu & Tsang (2020); Yao et al. (2020); Xia et al. (2020b); Yao et al. (2021); Cheng
et al. (2021); Zhu et al. (2021); Ghazi et al. (2021); Paul et al. (2021); Yang et al. (2022); Wu et al.
(2022); Liu et al. (2022b); Xia et al. (2022); Wei et al. (2022)) of learning with noisy labels (LNL)
can be roughly grouped into two categories: model-based and model-free approaches.

Model-based methods (Patrini et al. (2017); Xia et al. (2020a;b); Yao et al. (2020); Liu et al. (2022b))
propose to directly learn the relations between noisy and clean labels based on the assumption that
the noisy label is sampled from a conditional probability distribution on the true labels. Hence, the
core idea of these methods is to estimate the underlying noise transition probabilities. For instance,
(Goldberger & Ben-Reuven (2017)) used a noise adaptation layer on the top of a classification
model to learn the transition probabilities. T-revision (Xia et al. (2019)) added fine-tuned slack
variables to estimate the noise transition matrix without anchor points. Moreover, a recent work (Liu
et al. (2022b)) proposed to model the label noise via a sparse over-parameterized term and use
implicit algorithmic regularizations to recover the underlying mislabels. These methods hold some
(somewhat strong) assumptions about the noisy label distribution, which may be inapplicable in
some scenarios. Our method does not focus on particular label distribution and therefore does not
belong to model-based methods.

Instead of modeling the noisy label directly, model-free methods (Han et al. (2018); Li et al. (2020a);
Bai et al. (2021); Xia et al. (2020a)) aim to utilize the memorization effect of deep models to suppress
the negative impact of the noisy labels. The memorization effect (Arpit et al. (2017)) indicates that
the deep networks tend to fit the clean data first and then memorize the noise ones, which inspired
the model-free methods. A representative method is Co-teaching (Han et al. (2018)), which uses
two deep networks to train each other with small-loss instances in mini-batches. DivideMix (Li
et al. (2020a)) further extended Co-teaching with two Beta Mixture Models. Moreover, DivideMix
imported MixMatch (Berthelot et al. (2019)) training to utilize the unlabeled (unconfident) samples
to boost the deep models. PES (Bai et al. (2021)) investigated the progressive early stopping of deep
networks, which selects different early stopping for different parts of the deep model and achieved
significant improvement over previous early stopping methods. Unlike existing model-free methods,
our method is the first work designed from the data domain’s perspective in frequency representation.
Inspired by the biological analysis of the vision system on different spectrums, we find that the Phase
spectrum is more resistant to noisy labels than the Amplitude spectrum. Therefore, we propose to
disentangle the different components of the frequency domain and choose different early stopping
strategies, which further exploit the memorization effect and achieve good performance.

Convolutional neural networks with frequency domain To explain the behavior of Convolu-
tional Neural Networks (CNNs), recent studies provide new insights from the viewpoint of the fre-
quency domain (Ilyas et al. (2019); Wang et al. (2020); Liu et al. (2021); Chen et al. (2021). (Wang
et al. (2020)) points out that high-frequency components from the image play significant roles in
improving the performance of CNNs. Moreover, (Liu et al. (2021)) investigated the phase spec-
trum in face forgery detection and inducted that urging CNNs to learn the phase spectrum can boost
the detection accuracy. APR (Chen et al. (2021)) presented qualitative and quantitative analyses
of amplitude and phase spectrums for CNNs and concluded that a robust deep model should resist
amplitude noises and perceive more phase spectrum. Inspired by these breakthroughs, we are the
first to investigate the frequency domain in learning with noisy labels and find that the sensitivity of
phase and amplitude components are different. Furthermore, we propose to dynamic stop the opti-
mization of CNN on different frequency components in training, which well-address the over-fitting
problem of noisy labels.

B TRAINING DETAILS

In this section, we give more implementation details about our experiments. We use three
kinds of synthetic label noises for CIFAR-10 and CIFAR-100: symmetric class-dependent label
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noise Van Rooyen et al. (2015) (Symmetric), pairflip class-dependent label noise Han et al. (2018)
(Pairflip), and instance-dependent label noise Xia et al. (2020b) (Instance). We follow the imple-
mentation of (Han et al. (2018); Xia et al. (2020b); Bai et al. (2021)) to generate these label noises
with different levels, which can be found in PES.

Data preprocessing For learning with confident samples (Table 1), we apply the random crop and
random horizontal flip as data augmentations. We further add MixUp Zhang et al. (2018) data aug-
mentation for semi-supervised settings in Table 2. For CIFAR-N dataset (Table 4), we use random
crop, random horizontal, and a CIFAR-10 augmentation policy from (Nishi et al. (2021)). The input
image size of CIFAR-like datasets is set as 32× 32. For the Clothing-1M dataset (Table 3), we first
resize input images to the size of 256×256, then randomly crop the image as 224×224, and random
horizontal flip the images last.

Hyper-parameters of PADDLES In learning with confident sample settings, we adopt ResNet-
18 as the backbone for CIFAR-10 and ResNet-34 for CIFAR-100. We set the learning rate as 0.1,
the weight decay as 10−4, the batch size as 128, and the training epochs is 110. For PES training
parameters, we use Adam optimizer, and set the PES learning rate is 10−4, T2, T3 in Bai et al. (2021)
are 7 and 5 separately. Different types and levels of label noises result in different converge points
of deep model on AS and PS. Therefore, we set different stopping points of TA and TP for different
kinds and levels of label noises. For CIFAR-10, the TA for 20%/40% Instance noise, 45% Pairflip
noise, and 20%/50% Symmetric noise are [17, 20, 19, 18, 19]. The corresponding TP are [13, 25,
16, 21, 20]. For CIFAR-100, the TA for 20%/40% Instance noise, 45% Pairflip noise, and 20%/50%
Symmetric noise are [20, 20, 19, 29, 20]. The corresponding TP are [22, 22, 26, 11, 13]. The T0 in
Algorithm 1 is set as 0, and the training loss is the cross-entropy loss.

In semi-supervised learning, we adopt PreAct ResNet-18 as the backbone. The learning rate is 0.02
with a SGD optimizer, and we use cosine annealing learning rate scheduler to control the update of
the learning rate. We set the weight decay as 5× 10−4, the batch size as 128, the training epochs as
500, and T2 in Bai et al. (2021) as 5. We train the semi-supervised models using MixMatch Berthelot
et al. (2019) loss with same parameters (λu, T,K) in Bai et al. (2021). Moreover, we set T0 in
Algorithm 1 as 0.

For CIFAR-N datasets, we use the ResNet-34 architecture. We set the learning rate as 0.02, the
batch size as 128, the weight decay as 5× 10−4, the training epochs as 300, the T2 in PES as 5. We
also employ the MixMatch loss to train the semi-supervised model with MixMatch parameter λu as
5 and 75 for CIFAR-10N and CIFAR-100N, respectively. We set T0 in Algorithm 1 as 1, and we do
observe further performance improvement with a bigger T0 like 5 in our CIFAR-N settings.

For Clothing-1M dataset, we employ the ResNet-50 as the backbone, which is pre-trained on the
ImageNet. We set the batch size as 64, and the training epochs as 150. During training, we adopt the
SGD optimizer with the learning rate as 4.5× 10−3, the weight decay as 0.001, and the momentum
as 0.9. We also use a three phase OneCycle Smith & Topin (2019) scheduler to dynamic adjust the
learning rate with the max learning rate as 8.55× 10−3. The corresponding PES learning rate is set
as 5 × 10−6 and the T2 is 7. Moreover, the training loss is the weighted cross-entropy loss, and T0

in Algorithm 1 is as 0. More details will be found in our scheduled released codes.

C ADDITIONAL EXPERIMENTS

In this section, we provide more experimental results to further demonstrate the effectiveness of
our methods, including training curves under different kinds of noise, confident samples quality
evaluation, running time comparison, and evaluation on a text dataset.

We first give more illustration about the impact of different kinds of label noises on deep models in
Figure 4. We generate two more kinds of label noises: the Pairflip Han et al. (2018) with a 45%
noise rate and the Instance Xia et al. (2020b) with a 40% noise rate. As can be observed that the
inflection point of AS’s loss decline is earlier than that of PS components, which means the converge
speed of CNN on AS is faster than PS. Moreover, the curves of AS and PS get closer as the training
epochs increase, indicating that the PS is more robust than AS with different label noises. Another
evidence of the difference between AS and PS is that the number of training steps to achieve optimal
performance is not the same, and Figures 4(c) and 4(f) show that AS costs less time, achieving the
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(a) Training loss on clean labels
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(b) Training loss on noisy labels
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(c) Test accuracy with noisy labels
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(d) Training loss on clean labels
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(e) Training loss on noisy labels
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(f) Test accuracy with noisy labels

Figure 4: To evaluate the impact of label noise on deep models with different image components,
we train a ResNet-18 model on CIFAR-10 using original images, amplitude spectrum, and phase
spectrum under clean and noisy labels. The training losses on two kinds of labels (Figure 4(a) and
Figure 4(b) 4(e)) and testing accuracy with the noisy labels (Figure 4(c) 4(f)) are given. The X-
axis illustrates the training epochs. Figure 4(b) 4(c) are based on the 45% Pairflip label noises and
Figure 4(e) 4(f) are based on the 40% Instance label noises. The curves are based on five random
experiments, and the dotted vertical lines indicate the best performance steps of different image
components.

best performance than PS. Both Figure 1 and Figure 4 inspire us to decompose the AS and PS from
the input images and design different stopping points to obtain a more robust deep network over
previous ES models.

C.1 CONFIDENT SAMPLES QUALITY

Following (Bai et al. (2021)), we examine the extracted labels’ quality in terms of three aspects:
test accuracy, label recall, and label precision using CIFAR-10, where label recall indicates the
ratio of extracted confident samples with correct labels to the whole correctly labeled samples, and
label precision indicates the ratio of extracted confident samples with correct labels to the whole
confident samples. Specifically, we train a neural network based on ResNet-18 with various kinds
and levels of label noise for total 25 epochs separately. As for our methods, the disentangle point
is set between the 3rd and 4th ResNet blocks, while the stopping points of ASχ, PSχ are set to 23
and 25, respectively. The results are shown in Table 6.

From the results in Table 6, we can clearly observe that the models generally outperform the corre-
sponding CE and PES methods when using our methods. That is, our methods can help to obtain
higher accuracy, recall, and comparable precision in the majority of cases. The collection of more
confident samples is essential for learning with confident samples and semi-supervised learning.
More importantly, models with high recall values can help to collect more confident samples for the
following supervised or semi-supervised training. Consequently, PADDLES can contribute to im-
proving the final classification performance in all cases by improving the performance of the initial
model, which is also supported by the experiments in Section 3.
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Table 6: Analysis of the performance and the quality of the confident samples extracted from
CIFAR-10. Mean and standard deviation over five runs are reported.

Metric Method Symmetric Pairflip Instance
20% 50% 45% 20% 40%

Test Accuracy

CE 82.55±2.46 70.76±1.24 60.62±5.59 84.41±0.90 74.73±2.65
PADDLES Base 84.73±0.65 74.34±2.06 63.68±1.59 85.63±1.16 76.70±3.60

PES 85.87±1.59 75.87±1.33 62.40±2.34 86.58±0.45 77.07±1.18
PADDLES 86.98±0.56 76.62±1.66 64.39±1.79 86.79±0.78 78.44±2.17

Label Recall

CE 88.51±2.26 75.18±1.00 67.84±5.06 90.37±1.01 82.15±3.17
PADDLES Base 91.48±0.88 79.18±2.25 70.14±3.34 91.99±0.89 84.02±4.87

PES 92.67±1.43 81.03±1.83 71.06±2.27 93.24±0.60 85.91±0.68
PADDLES 93.29±1.26 82.10±2.12 74.28±5.45 93.90±1.02 84.90±2.93

Label Precision

CE 98.81±0.15 94.65±0.19 72.53±5.26 98.70±0.43 90.77±1.87
PADDLES Base 98.83±0.08 95.01±0.27 72.97±3.01 98.52±0.26 89.83±2.73

PES 98.96±0.09 95.46±0.14 72.99±2.27 98.52±0.19 90.63±0.92
PADDLES 98.89±0.08 95.34±0.29 73.38±5.28 98.30±0.32 88.68±3.00

C.2 TRAINING TIME COMPARISON

We compare the training time of proposed PADDLES and other baseline methods. For fairness,
we follow Bai et al. (2021) to conduct the experiments based on a single Nvidia V100 GPU server.
Moreover, we run 200 and 300 training epochs for supervised and semi-supervised settings (noted
as PADDLES(Semi)), respectively. The results are presented in Table 7. The proposed PADDLES
model costs 1.55h for the supervised training, which is faster than the three methods (CDR, ELR+,
and DivideMix) and achieves comparable training speed to Co-teaching. For the semi-supervised
setting, due to the import of DFT, iDFT, and MixMatch training, PADDLES is slower than PES but
still faster than DivideMix.

Table 7: Training time comparison for different methods on CIFAR-10 with 50% Symmetric label
noise. The results of the baseline methods are taken from Bai et al. (2021).

CE Co-teaching CDR T-revision ELR+ DivideMix PES PES(Semi) Ours Ours(Semi)
0.9h 1.5h 3.0h 3.5h 2.2h 5.5h 1.0h 3.1h 1.55h 4.8h

C.3 TEXT CLASSIFICATION

In order to further explore the generalizability of PADDLES, we also evaluate it on the text dataset
NEWS. The NEWS dataset, also known as 20 Newsgroups (Joachims (1997)), collected by Ken
Lang, is widely used as a benchmark for text classification. The original NEWS dataset contains
approximately 20,000 articles among 20 classes. For fairness comparison, we follow Co-teaching+
(Yu et al. (2019)) to re-organize the dataset with 7 classes and set 11,314 samples for training and
7,532 samples for testing. To test the extreme performance of models, we selected two difficult
typical noise types with high noise rates: Symmetric 80% and Pariflip 45%.

We adopt the same network architecture of NEWS in (Yu et al. (2019)) as the backbone to build
PES-like models and our PADDLES-like models. Specifically, the backbone consists of a pretrained
word embedding layer (Pennington et al. (2014)) followed by a 3-layer MLP with Softsign active
function. Besides the PES, PADDLES, and their semi-supervised versions, we also extend these
two ES strategies into Co-teaching frameworks, denoted as PES Co-teaching/+ and PADDLES Co-
teaching/+ in Table 8. We empirically choose different parameters to obtain the best performance
for each approach. For example, PADDLES Co-teaching+ adopts the PADDLES training stage to
obtain good initial models for Co-teaching training, the disentangle point is set between the 2nd
and 3rd layers of the MLP backbone, while the stopping points of ASχ, PSχ are set to 3 and 6,
respectively. We train 2 models simultaneously with PADDLES, end the PADDLES training after
6 epochs, and then pass the 2 models into the Co-teaching+ network to continue the training for 20
epochs following the ways in (Yu et al. (2019)). The results are shown in Table 8.

Through the results in Table 8, we observe that the Co-teaching methods achieve superior perfor-
mances over PES and PADDLES, under heavy noises, which might be caused by the difference be-
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Table 8: Test accuracy comparison with state-of-the-art methods on the text dataset NEWS Yu et al.
(2019). Mean and standard deviation over five runs are reported.

Method Symmetric Pariflip
80% 45%

CE 19.00±0.41 31.94±0.38
PES 20.69±1.42 31.99±0.41

PADDLES 21.30±1.73 32.45±0.91
PES(Semi) 22.00±2.89 35.45±1.77

PADDLES(Semi) 22.97±4.76 35.51±1.75
Co-teaching 23.26±2.99 35.94±2.68

Co-teaching+ 23.52±2.72 34.65±2.25
PES Co-teching+ 24.11±1.29 35.21±2.04

PADDLES Co-teaching+ 25.66±2.63 36.04±1.89

tween the text and image data. The proposed PADDLES still outperforms the baseline CE and PES
models consistently. More importantly, with PADDLES pretrained base models, PADDLES Co-
teaching+ achieves the state-of-the-art among all methods. As PADDLES is proposed from the data
view, it can be combined with different LNL models and help to obtain more confidence samples.
Therefore, by training with more confident samples, we can provide a more robust initial model for
other subsequent models. Overall, we demonstrate the effectiveness of the proposed PADDLES for
different input signals (images and texts) as well as various backbones (CNNs and MLP).
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