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ABSTRACT

This paper is about complex-valued CNNs (CV-CNNs) for computer vision that
use representations that are complex-valued instead of real-valued. We divide in-
put data into three categories: inherently real-valued, inherently complex-valued,
and complex-valued obtained by transforming real-valued. We study the ques-
tion whether complex-valued representation of CV-CNNs offers any advantages
over the commonly used real-valued CNNs (RV-CNNs). For concreteness, we fo-
cus on the classification task. The existing literature offers contradictory answers
to our question. We find that this is mainly because (a) they seldom employ a
common performance measure (e.g., CV-CNN compared against RV-CNN with
similar network structure vs similar number of parameters) (b) diversity of eval-
uation datasets used are limited (e.g., datasets in which magnitude information is
more, less or as important as phase information) (c) less effort has been devoted
to reduce the randomness in training between CV-CNN and RV-CNN. Towards
this, we propose performance measures based on similar network structure, num-
ber of parameters and number of MAC operations. Also, we consider diverse
datasets with varying magnitude/phase information, and deal with the randomness
in training. As a result, we expect that any observed performance differences will
be independent of the above disparities, and arise from the use of real vs com-
plex representations. Theoretically, we show that, unlike RV-CNNs, CV-CNNs
can preserve magnitude and phase through intermediate stages of processing. Our
main experimental findings are the following. (i) As network depth decreases –
the performance of CV-CNNs improves with respect to similar network structure;
the performances of CV-CNN and RV-CNN having a similar number of parame-
ters become more comparable; and the performance of RV-CNNs improves with
respect to similar number of MAC operations; (ii) The above performance differ-
ences diminish as the network depth increases. (iii) With respect to data diversity,
performance depends on whether the dataset has dominant magnitude or phase,
i.e., whether reconstruction error is lower using only magnitude or only phase.
If a complex-valued data has dominant magnitude, instead of providing real and
imaginary parts as input, providing the magnitude part produces significant per-
formance gain, whereas if the data has dominant phase, providing both real and
imaginary parts is important. This holds true for different network depths.

1 INTRODUCTION

The types of data most in use in computer vision and image processing include three types: (a)
inherently real-valued data such as image and audio signals, (b) inherently complex-valued data
such as SAR, SONAR, and MRI data, and (c) (pseudo)complex-valued data obtained by transform-
ing real-valued data such as FFT and STFT outputs. Some practical applications of the inherent
complex-valued data include MRI signal processing (Virtue et al., 2017), wind prediction (Sepasi
et al., 2017), radio modulation and SAR image classification (Chakraborty et al., 2019), whereas
pseudo complex-valued data are used for speech enhancement (Tsuzuki et al., 2013), texture mod-
elling (Ghanem & Ahuja, 2007) and filter design (Freeman et al., 1991). The relative significances
of the magnitude and phase parts of a complex dataset may vary with problems, e.g., spectral phase
carries more information than spectral magnitude in natural images (Pearlman & Gray, 1978) while-
spectral magnitude is more significant than spectral phase in speech signals (Li et al., 2022). Thus,
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it makes more sense to employ a complex-valued model for complex-valued data to capture the
relative roles of magnitude and phase Lee et al. (2022).

The simultaneous use of magnitude and phase, i.e., complex-valued representations has received
limited attention in the learning literature, in neural networks in general, as well as in deep learning.
Hirose (2012; 2009) discusses the magnitude-vs-phase importance for designing complex-valued
neural networks for complex-valued signals. In deep learning also, for example for the common
problem of classification, most work has focused on real-valued CNNs (RV-CNNs). There is limited
work on complex-valued CNNs (CV-CNNs) Lee et al. (2022). CV-CNNs have been developed as an
extension of RV-CNN, by employing complex-doman versions of RV-CNN components (Trabelsi
et al., 2018). Lee et al. (2022); Bassey et al. (2021) present a comprehensive survey of CV-CNN and
its historical development. Several works have investigated the question of whether CV-CNNs add
any value to RV-CNNs at all. Interestingly, the conclusions of these papers often contradict each
other. For example, Drude et al. (2016) claims that the use of complex-valued representations can
hardly be justified. Trabelsi et al. (2018) show that CV-CNN performance is only comparable to that
of RV-CNN. Huang et al. (2020) shows that complex-valued input in CV-CNNs performs inferior to
that when magnitude is input to RV-CNNs. On the contrary, Yao et al. (2020); Gu & Ding (2018);
Popa (2017); Popa & Cernăzanu-Glăvan (2018) claim that CV-CNNs perform significantly better
than RV-CNNs. We find that these contradictions mainly arise due to the following reasons:

1. Different works derive general conclusions based on different performance measures, e.g.,
CV-CNN is compared against an RV-CNN having similar network structure Yao et al.
(2020); Gu & Ding (2018); Popa & Cernăzanu-Glăvan (2018), similar number of real-
valued parameters Drude et al. (2016); Trabelsi et al. (2018); Huang et al. (2020). Albeit
for MLPs, (Barrachina et al. (2021); Hirose (2009) consider similar number of MAC oper-
ations.

2. For MLP, Barrachina et al. (2021) show that performance-difference depends on complex-
valued data properties. However, less attention has been devoted in this aspect for CV-
CNN, e.g., Gu & Ding (2018); Popa (2017); Trabelsi et al. (2018) confine to real-valued
data, Yao et al. (2020); Huang et al. (2020) confine to inherent complex-valued data,
whereas Popa & Cernăzanu-Glăvan (2018) confine to FFT of real-valued data.

3. Less effort has been devoted to reduce the randomness in training between CV-CNN and
its corresponding RV-CNN baseline(s). Main factors are random initialization , data aug-
mentation, data shuffling, and stochastic layers (e.g., dropout) (Zhuang et al., 2022).

As these methods employ different performance measures and disparate network architectures
and/or datasets, it is difficult to consolidate results of these works. The use of the extra information
known to be captured in complex-valued representations, combined with the contradictions seen in
the conclusions to date motivate a more conclusive analysis, and have motivated the work reported
in this paper. Specifically, we study the merits of complex-valued representation of CV-CNNs for
classification task (factoring in the Points 1-3). Our main contributions can be summarized as:

• We consider all three performance measures to evaluate CV-CNN (i.e., similar network
structure, number of parameters and number of MAC operations). For each measure, theo-
retically we reveal the merits/demerits of CV-CNN’s layers in comparison with RV-CNN.
We show that CV-CNNs, unlike RV-CNNs, can preserve magnitude-and-phase through
ReLU and Max-pooling layers (as RV-CNNs work for real-valued inputs).

• Our comprehensive empirical study, based on all three performance measures and several
networks while accounting for the randomness in training, to find the merits of complex-
valued representations of CV-CNNs for classification task leads to definitive answers.

• Our empirical study with different datasets (real-valued: CIFAR-10, CIFAR-100; complex-
valued: MSTAR and several transformations of CIFAR-10 and CIFAR-100 with varying
magnitude/phase information) reveals the dependency of CV-CNN to the magnitude/phase
information in data. This advocates suitable choice of network for different datasets.

• Our work resolves various contradictions in the current literature regarding the merits of
complex-valued representations. Our findings corroborate and add good value to several
existing works that are marred by the contradictions to date.
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Figure 1: (a) Different performance measures with which a CV-CNN can be compared against RV-
CNNs. Case A compares based on similar network structure (or similar graph), Case B compares
based on similar number of real-valued training parameters, and Case C compares based on similar
number of MAC operations. Figs. (a-b) consider two complex-valued layers: (a) Complex-valued
linear layer with one-dimensional complex-valued input and output. (b) Complex-valued linear layer
with M dimensional complex-valued input and N dimensional complex-valued output.

Rest of this paper is organized as follows: Section 2 theoretically differentiate, based on each per-
formance measure, intermediate layers of CV-CNNs and RV-CNNs. The main objective is to reason
why one network may perform better than the other. In addition, here we discuss the magnitude-
and-phase preservation property inherent to CV-CNN. Section 3 presents our empirical study. We
consider experiments on inherent real-valued datasets, inherent and pseudo complex-valued datasets;
discuss our results in Section 3.1 and conclude in Section 4.

2 COMPLEX-VALUED CNN AND ITS RELATION TO REAL-VALUED CNN

In this section, based on each performance measure, we study how CV-CNN’s intermediate layers
differ from that of corresponding RV-CNN’s layers. For comparing CV-CNN and RV-CNN, we con-
sider identical ordering of layers in both networks (which is a standard practice (Guberman, 2016;
Trabelsi et al., 2018; Gu & Ding, 2018; Popa, 2017)). This enables a divide and conquer analysis
scheme for an otherwise complicated end-to-end mapping. Then we show that complex-valued Re-
LUs and Max-pooling are required to preserve the magnitude-and-phase of complex-valued input
(as similar to ReLU and Max-pooling operate in RV-CNN for real-valued inputs).

We discussed three performance measures to compare CV-CNN and RV-CNN, i.e., based on similar
network structure, similar number of real-valued parameters, and similar number of real-valued
MAC operations. First, we study these different measures using two different layers: (a) A simplistic
complex-valued linear layer with one-dimensional input and output; (b) A complex-valued fully-
connected layer with multi-dimensional input and output (Fig. 1).

The complex-valued linear layer performs a scalar multiplication of a complex-valued input xC with
a trainable complex-valued parameter kC (see the yellow box of Fig. 1(a)). The input xC ∈ C can
be equivalently represented by an ordered pair of real numbers in R2 (Hirose, 2009)

xC ≡
{
xr

xi

}
, (1)

where subscript C indicates complex values, and subscripts r and i indicate the real and imagi-
nary parts of complex number, respectively. With this convention, the complex-valued linear layer
transforms the complex-valued scalar input xC as

yC = kC · xC =

{
krxr − kixi

kixr + krxi

}
≜

{
kr −ki
ki kr

}{
xr

xi

}
, (2)

where kr and ki are the real and image parts of the trainable parameter kC . Using equation 2, we
can see that this layer has two real-valued parameters (kr and ki), and has four real-valued MAC
operations (kr · xr + 0, −ki · xi + 0, ki · xr + 0, and kr · xi + 0).
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Next we focus on the Complex-valued fully-connected layer (FCL). It maps a M dimensional
complex-valued input to a N dimensional complex-valued output using a learnable complex-valued
weight matrix of dimension M ×N (see the yellow box in Fig. 1(b)). Thus it has M ×N × 2 real-
valued parameters. Because this layer has M ×N complex-valued multiplication and each complex
multiplication has 4 MAC operations (equation 2), it has M × N × 4 MAC operations. Note that
convolution layer is a special case of FCL with locally connected shared weight.

In what follows, we consider each performance measure one by one, and study the difference of the
layers discussed above with corresponding layers of RV-CNN. The main objective is to gather some
insights regarding which network may perform well over the other (rather than empirical study).

2.1 SIMILAR NETWORK STRUCTURE

The network graph of complex-valued linear layer in Fig. 1(a) is a single input node and a single
output node, with a scaling in between. Therefore, a real-valued layer with the similar structure is of
the form y = w1 ∗ x, {y, x, w1} ∈ R (see Case A in Fig. 1(a)). This equation is a constrained case
of equation 2 (ki = xi = 0). This implies that the complex-valued layer has better representation
capability as compared to the real-valued layer (e.g., ki ̸= 0 and/or xi ̸= 0).

The complex-valued FCL maps a M dimensional complex-valued input to a N dimensional
complex-valued output using a complex-valued matrix of dimension M × N Therefore based on
similar structure, real-valued FCL maps a M dimensional real-valued input to a N dimensional
real-valued output using a real-valued matrix of dimension M ×N . From Case A in Fig. 1(b), real-
valued FCL is a constrained case of complex-valued FCL via imaginary parts of input and weight
constrained to zero. As a result, intuitively, based on similar network structure, complex-valued
network may perform better than real-valued network due to its high representation capability.1

2.2 SIMILAR NUMBER OF PARAMETERS

The complex-valued linear network has two real-valued parameters (kr and ki in equation 2). A
real-valued network with two parameters that resembles a multiplication layer is Hirose (2009){

yr
yi

}
=

{
krxr

kixi

}
≜

{
kr 0
0 ki

}{
xr

xi

}
. (3)

Comparing equation 2 and equation 3, it is clear that complex-valued linear layer cannot represent
the input-to-output mappings of the real-valued linear layer and vice-versa. First we introduce two
properties. Property 1 is that the real/imaginary part of output in Equation 2 is dependent on both
the real and imaginary part of input (i.e., yr = krxr − kixi and yi = kixr − krxi). Property 2 is
that the real/imaginary part of output is independent of imaginary/real part (e.g., yr = axr and yi =
bxi, where a ̸= b). Note that equation 2 satisfies Property 1, but cannot always satisfy Property 2.
In contrast, equation 2 satisfies Property 2, but cannot always satisfy Property 1. Thus there exist
complementary qualities for the two layers.

For FCL too, there exist complimentary qualities. Complex-valued FCL has M ×N ×2 real-valued
parameters. Real-valued FCL with similar number of parameters, with a fixed input-and-output
aspect ratio, is a mapping from

√
2M to

√
2N dimensional real-valued vectors (so that number

of parameters becomes M × N × 2). Based on the real-valued representation of complex values
in equation 1, complex-valued FCL can be considered as a mapping from 2M to 2N dimensional
real-valued vector (see Case B in Fig. 1(b)). Thus complex-valued FCL exhibits a high-dimensional
input-output mapping than the real-valued FCL (2M → 2N versus

√
2M →

√
2N ). But the down-

side is that the mapping is constrained with half the input dimension (= M ) due to complex mul-
tiplication (Property 1). In contrast, real-valued FCL exhibits an unconstrained mapping (Property
2) from a higher input dimension (

√
2M versus M ). Due to the complimentary nature, the perfor-

mance differences of CV-CNN and RV-CNN may be comparable if the complimentary qualities have
similar effect, or the performances may differ if one quality dominates over the other.

1In Secs. 2.1-2.3, we assume that the network training does not get stuck in some undesirable local minima.
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Figure 2: Magnitude-and-Phase Preservation in CV-CNN Non-Linearities (A) RV-CNN ReLU,
CReLU and ModReLU preserves magnitude-and-phase information of a set of values, while sup-
pressing other values to zero. But ZReLU distorts magnitude-and-phase in values present in second
and third quadrant. (B) Comparison of CV-CNN and RV-CNN max-pooling layer. The former pre-
serves the magnitude-and-phase information whereas the latter severely distorts it.

2.3 SIMILAR NUMBER OF MAC OPERATIONS

The complex-valued linear network has four MAC operations (equation 2). A real-valued network
with four MAC operations that resembles a multiplication layer is Hirose (2009){

yr
yi

}
=

{
a b
c d

}{
xr

xi

}
, (4)

where {a, b, c, d} ∈ R are trainable real parameters. Note that the equation 2 of complex-valued
network is a constrained case of the above equation (a = d = kr and −b = c = ki), which means
real-valued analogue has better representation capability (e.g., a ̸= d and/or −b ̸= c).

Complex-valued FCL has M × N complex-valued multiplication, and hence possess M × N × 4
MAC operations. Real-valued FCL with similar number of MAC operations, with a fixed input-and-
output aspect ratio, is a mapping from 2M to 2N real-valued dimensions (so that number of MAC
operations become M ×N ×4). In Sec. 2.2, we have discussed that complex-valued FCL exhibits a
high-dimensional mapping from 2M to 2N real-valued vector, but the drawback is that this mapping
is constrained due to complex multiplication. In contrast, here real-valued FCL exhibits the same
high dimensional mapping (2M to 2N ), and in addition there exists no such constraints or drawback.
Compare this with the case of similar number of parameters (Sec. 2.2), real-valued FCL in itself has
both the complementary qualities. As a result, intuitively, based on similar network structure, RV-
CNN may perform better than CV-CNN due to its high representation capability. Note that this is
in stark contrast with the case of similar structure measure (Sec. 2.1) where CV-CNN has better
representation capability, and hence may perform better.

Based on the measure of similar number of MAC operations, we have seen that complex-valued
linear layer and fully connected layer can be represented by respective real-valued layers. Please
refer to Table2 in our supplementary material that summarizes the representations of these two
layers, as well as other standard layers such as convolution, max-pooling, ReLUs, etc. One important
observation from the Table is that there exists no equivalent RV-CNN representations for several
non-linearities of CV-CNN, which the next section addresses.

2.4 NON-LINEARITIES IN COMPLEX-VALUED CNN VERSUS REAL-VALUED CNN

Here we consider ReLUs and Max-pooling, that add non-linearity into a neural network. ReLU is
typically the preferred activation function because it is easier to train and achieves good performance
(Szandała, 2021). The ReLU activation of RV-CNN is an element-wise function (i.e., it acts on each
element independently), which is

ReLU(x) = max(0, x) =

{
x if x ≥ 0

0 if x < 0
. (5)

One main property of the above RV-CNN ReLU, and that is satisfied by most of the existing
complex-ReLUs Trabelsi et al. (2018), is the preservation of input magnitude and phase for a set
of non-zero inputs (P) and the suppression of input to zero for the complement of that set (PC). For
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example, as shown in Fig. 2(a), RV-CNN ReLU preserves the positive axis, CReLU preserves the
first quadrant, and ModReLU preserves a circular segments. Note that P must contain atleast one
non-zero element while not including all non-zero values of C so as to have a non-linearity property.
In this regard, we present the following remark:
Remark 1: Any real-valued non-linear activation cannot preserve magnitude and phase of complex-
valued inputs in a set P ⊂ C \ {0}, while suppressing the inputs to zero for the set PC (In words,
complex-valued activations are necessary for magnitude-and-phase preserving nonlinearity.)

Before providing a formal proof, we attempt to provide an example using the RV-CNN ReLU. As
equation 5 is an element-wise function, its complex equivalent form (equation 1) is{

outr
outi

}
=

{
ReLU(xr)
ReLU(xi)

}
. (6)

This mapping is shown as zReLU in Fig. 2(a), where it preserves the magnitude-and-phase of inputs
in the first quadrant and suppresses the fourth quadrant inputs to zero; but it also produces output
with non-zero magnitude for second/ forth quadrant inputs but with its imaginary/real parts as zero,
thereby distorting their magnitude-and-phase.

Proof: We prove using proof by contradiction. Assume that there exists such a real-valued activation

f(·). The preservation of magnitude-and-phase of input implies tan−1( f(xi)
f(xr)

) = tan−1( xi

xr
) and

f(xi) = xi; f(xr) = xr. Combining these expressions, we get

f(xi)

xi
=

f(xr)

xr
= 1, ∀

{
xr

xi

}
∈ P. (7)

Suppression of input to zero implies

f(xi) = f(xr) = 0, ∀
{
xr

xi

}
∈ PC . (8)

Set P can be equivalently represented as
{
xr ∈ P1 ⊆ R
xi ∈ P2 ⊆ R

}
. The consideration that P must contain

atleast one non-zero element while not including all non-zero values of C implies that P1 or P2

contains atleast one non-zero element while not including all non-zero values of R. As xi and xr are
interchangeable in equation 7, P1 must be equal to P2. Hence, P1 and PC

1 must contain atleast one
non-zero element. Consider a nonzero element x′

r ∈ P1 and x′
i ∈ PC

1 . Clearly, the above element
is not in P because its imaginary part x′

i is not an element of P2 (as P1 = P2). As x′
r + jx′

i ∈ PC ,
from equation 8, f(x′

r) = f(x′
i) = 0. But as x′

r ∈ P1, equation 7 implies f(x′
r) = x′

r ̸= 0, which
is a contradiction. ■

Next we focus on max-pooling. It is used in classification task to aggregate dominant feature-maps
from a local region in order to present a larger receptive field for subsequent layers. It selects the
maximum value from a non-intersecting spatial window W of size K ×K, i.e.,

Y = max(X)|W , (9)

where |W indicates the sliding window. For X ∈ RB×M×N , the output Y ∈ RB×M/K×N/K .

As the complex numbers does not belong to an ordered field, magnitude values are employed for the
maximum, while preserving the phase Trabelsi et al. (2018), i.e.,

YC =

(
max(∥XC∥)|W

)
ejθXC . (10)

Employing the standard max-pooling layer of RV-CNN to the complex equivalent form becomes{
outr
outi

}
=

{
max(∥Xr∥)|W
max(∥Xi∥)|W

}
. (11)

Clearly, there exists no equivalence between max-pooling in CV-CNN and RV-CNN, and more im-
portant, the latter seriously distorts the amplitude and phase information of the input. That is, unlike
equation 10, equation 11 admits a one-to-one correspondence from the output to input (following
the notion of max-pool of selecting imprtant feature-map values). Further, magnitude-and-phase of
output via Eq. equation 11 can have no relation with the input (this is illustrated in Fig. 2(B)).
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Figure 3: (a-b) Comparison of different performance measures based on number of parameters and
MAC operations. Note that similarity based on one performance measure creates a dissimilarity in
the other ones. (c-d) Results of complex-valued datasets: FFT and MSTAR. Note that the perfor-
mance of CV-CNN with RV-CNN depends on different performance measures. Further, for the FFT
case, the magnitude input to RV-CNN (RV-CNN (Abs:2X)) severely degrades the performance.

3 EXPERIMENTS

In this Section, we empirically study the performance difference of CV-CNN based on different
performance measures (network structure, number of parameters, number of MAC operations). We
consider diverse datasets, viz., inherent real-valued datasets, complex-valued dataset, and pseudo
complex-valued datasets in which magnitude information is more, less or as important as phase
information. For each measure and dataset, we consider networks of different depth to study the
effect of depth. We limit the randomness in training between RV-CNN and CV-CNN in the following
ways: (a) Data augmentation and shuffling are made consistent across RV-CNN and CV-CNN (via
fixed algorithmic seed) (b) The effect of random initialization and stochastic layers are reduced by
considering statistical measure of multiple independent runs (via multiple seeds). We consider three
different seeds. The above scheme enables reproducibility of our results.

Baselines: For a given CV-CNN (denoted as CV-CNN(2X)), we consider four different RV-CNN
baselines.

1. RV-CNN (X): RV-CNN based on similar network structure as that of CV-CNN. It is derived
from replacing each layer of CV-CNN with respective RV-CNN layer. The network input
is the concatenated real and imaginary parts of the dataset considered (Sec. 2.1).

2. RV-CNN (C:2X): RV-CNN based on similar number of parameters. It is derived by multi-
plying the number of output maps of each CV-CNN convolution and fully-connected layer
by

√
2. The network input is same as that of RV-CNN (X) (Sec. 2.2).

3. RV-CNN (Abs:2X): This is same as that of RV-CNN (C:2X), but with input as only the
magnitude part of dataset (Chen et al. (2016); Wilmanski et al. (2016); Morgan (2015)).

4. RV-CNN (4X): RV-CNN based on similar number of MAC operations. This is similar to
RV-CNN (C:2X) with same input, but multiplication factor is 2 instead of

√
2 (Sec. 2.3).

Figures 3(a-b) compare these baselines based on the number of parameters and MAC operations.
Note that a similarity based on one performance measure creates a dissimilarity based on the others.

Datasets: We evaluate CV-CNN against the RV-CNN baselines on 11 different datasets.

(i) Inherent real-valued data: We consider CIFAR-10 and CIFAR-100 datasets. The CIFAR10
contains 60000 32× 32 colour images in 10 classes, with 6000 images per class. There are
50000 training images and 10000 test images. The CIFAR100 dataset is similar to CIFAR-
10, except it has 100 classes containing 600 images each. There are 500 training images
and 100 testing images per class.

(ii) Inherent complex-valued data: Following (Singhal et al., 2022), we consider the publicly
available MSTAR dataset (Keydel et al., 1996) that has 10K complex-valued SAR images
of size 128× 128 distributed across 10 classes. We used 80% data for training.

(iii) Pseudo complex-valued data: We transform CIFAR-10 and CIFAR-100 datasets such that
the resultant data characterize diverse magnitude-phase content. Figure 4 first row illus-
trates our transformation of real-valued grayscale image-intensities in the range [0, 1] (i.e.,
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(a) Identity transform (b) Circle transform (c) Spiral transform (d) Square transform (e) Rastor transform

Figure 4: Pseudo Complex-valued Data: Figs. (b-e) represent different complex-valued transforms.
The first row depicts element-wise transformation of real-valued data (left-most figure) using VIB-
GYOR colors. The second row illustrates how the real, imaginary, and magnitude parts of RGB
images are modified due to a transform. The third row depicts the magnitude and phase for each
image-intensity ([0, 1]). The fourth row compares the performance of different methods. Note that
the performance difference of CV-CNN with RV-CNN depends on the performance measures.

left most figure) to complex-valued data in the range [−1, 1] + j[−1, 1]. Element-wise
transformation is depicted via VIBGYOR color. Figures 4(b-d) present four transforma-
tions: circle, spiral, square and rastor, which are one-to-one mappings from R → C. The
second row of Fig. 4 provides real, imaginary, and magnitude parts of four transformed
images. The third row side-by-side indicates how the magnitude and phase is transformed.
The higher the cardinality of many-to-one mapping(s) in magnitude/phase (i.e., graphically,
number of intersections made by a horizontal line), higher the information loss in magni-
tude/phase. E.g., circle transform in Fig. 4(b) third row exhibits the highest intersections
in the magnitude plot and hence contains the least information in the magnitude part (e.g.,
images’ magnitude part in the second row is null)). Hence, circle transform has dominant
phase and likewise, spiral transform has dominant magnitude. Note that the square and
rastor transform have information loss in both magnitude-and-phase, and because those
mappings are one-to-one, both magnitude and phase are required to represent the data (i.e.,
dominant magnitude-and-phase). We also employ FFT transform that has dominant phase
(whether a complex-valued dataset has dominant magnitude/phase can be found similarly
by the cardinality of many-to-one mapping of its elements from complex plane to magni-
tude/phase). Our supplementary material contains three more transformations.

Networks: For classifying CIFAR10, MSTAR and eight transformed CIFAR10 datasets, we con-
sider three CNN architectures with increasing depth and complexity. Figures 3(a-b) compare these
networks based on the number of parameters and MAC operations. The different networks are

(A) Vanilla CNN: A basic feedforward CNN with five-layers (two convolutional and three
fully-connected layers).

(B) Moderately Deep CNN: A residual CNN with five layers (four convolutional layer with one
residual block and one fully-connected layer) and dropout (Resnet5).

(C) Deep CNN: A residual CNN with eight layers (seven convolutional layers with two residual
blocks and one fully-connected layer). Here, batch normalization is also added (Resnet8).

For CIFAR100 and eight transformed CIFAR100 datasets, we consider Resnet18 (seventeen convo-
lutional layers with eight residual blocks, and one fully-connected layer with batch normalization).
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(a) RV-CNN (X) (b) CV-CNN (2X) (c) RV-CNN (C:2X) (d) RV-CNN (Abs:2X) (e) RV-CNN (4X)

Figure 5: Convergence during learning based on different performance measures (for the case of
Rastor transform in Fig. 4e). Note that CV-CNN converges well as compared to different RV-CNNs.

Table 1: Result Summary (C and R denote performances of CV-CNN and RV-CNN, respectively).

Similarity Measures Data Diversity
(RV-CNNs with Real-Imaginary input) (RV-CNNs with Magnitude input)

Network
Depth

Network
Structure

No: of Pa-
rameters

No: of
MAC Ops

Dominant
Magnitude

Dominant
Phase

Similar
Mag-Phase

↓ (decr) C > R C ≈ R C < R C<R C>>R C>>R
↑ (incr) C ≈ R C ≈ R C ≈ R C<R C>>R C>>R

3.1 RESULTS AND DISCUSSIONS

We provide different results in Figs. 3(c-d) and Fig. 4 last row. For brevity, we divide them into two
cases: (A) RV-CNN input consist of the real and imaginary parts (RV-CNN (X), RV-CNN (C:2X),
RV-CNN (4X)), (B) RV-CNN input consist of only the magnitude part (RV-CNN (Abs:2X)).
Case A: Note that as the network depth decreases, the overall performances of: CV-CNN (2X) is
better then RV-CNN (X); CV-CNN (2X) and RV-CNN (C:2X) are comparable; and RV-CNN (4X) is
better than CV-CNN (2X). This means that answer to the question whether CV-CNN is better/worse
than RV-CNN depends on the performance measures (as we inferred in Secs. 2.1-2.3). If this is
accounted for, it eliminates the contradictions in prior works as follows: CV-CNNs perform better
based on similar network structure (Gu & Ding, 2018; Popa & Cernăzanu-Glăvan, 2018; Yao et al.,
2020), performances of CV-CNNs and RV-CNNs are comparable based on similar number of pa-
rameters (Guberman, 2016; Trabelsi et al., 2018), and RV-CNNs perform better based on similar
number of MACs (Barrachina et al., 2021). Note that these performance differences diminish as the
network depth increases. This can be possibly attributed to the over-parameterization of all networks
(or representation capabilities in Secs. 2.1-2.3 saturate). Fig. 5 shows that CV-CNN converges well.
Case B Note in Fig. 4 that magnitude input in an RV-CNN (RV-CNN (Abs:2X)) performs better for
spiral transform, whereas magnitude input significantly degrades the performances of FFT, circle,
rastor, and square transforms that has phase or magnitude-and-phase as the dominant part. Thus we
conclude that magnitude input to a RV-CNN is beneficial for datasets with dominant magnitude (as
in Huang et al. (2020), whereas it degrades the performance when data has dominant phase or both
magnitude-and-phase. This holds true for different network depths. But this has no effect for classi-
fying real-valued data (Fig. 4(a)). Our main experimental findings are summarized in Table 3.1.

(Please refer to our supplementary material for additional results that reinforce our findings. There,
we further relate CV-CNN layers with RV-CNN layers, and provide informative tables.)

4 CONCLUSION

In this paper, we addressed the contradictory answers present in the literature for the following
question: CV-CNN performs better or worse than RV-CNN for classification task? To this end, we
analysed the relation between different layers of CV-CNN and RV-CNN based on different perfor-
mance measures. We showed that CV-CNN, unlike RV-CNN, can preserve magnitude-and-phase in
ReLU and maxpooling layers. Our analysis and comprehensive empirical study led to the conclusion
that an answer to the above question cannot be generalized, but depends on the performance measure
under consideration. Our findings corroborated several prior works that had contradictory answers
and placed them in a strong footing. We believe that this encourages more research in CV-CNNs.
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A SUPPLEMENTARY MATERIAL

1. Relating convolutional layer in CV-CNN to that of RV-CNN (Sec. A.1).
2. Additional Experiments (Fig. 7)

(a) Semicircle transform (dominant phase)
(b) Spiral transform with 44 rotations (dominant magnitude)
(c) Rastor transform with four rows (dominant magnitude-and-phase)

3. Different Tables
(a) Standard building blocks of CV-CNN and their relation to RV-CNN. (Table 2)
(b) Contradicting answers in the literature regarding the merits of CV-CNN (Table 3)
(c) A sample of all data used for comparison for a real-valued classification task (Table 4)
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Equivalence Condition

RealComplex Imaginary

(a). Complex-valued Convolution Layer

(b). Equivalent Standard Convolution Layer

Om nama sivaya

Figure 6: Equivalence of Convolutional Layer.

A.1 CONVOLUTIONAL LAYER IN CV-CNN AND RV-CNN

Convolutional layer is a main component of CNN, that maps an input tensor, X ∈ RB×M×N , by
an affine transformation to an output tensor Z ∈ RB′×M ′×N ′

. A feature-map of output Z (say,
Y ∈ R1×M ′×N ′

) is obtained as

Y =

( B∑
m=1

X(m) ∗H(m)

)
+ b, (12)

where ∗ denotes the convolution operation and X(m) is the ith layer of X (1 ≤ m ≤ B). The
learnable parameters of convolutional layer is the kernel H ∈ RB×K×L and the bias b ∈ R. Note
that each layer of the output tensor ZC has an individual kernel and bias as in equation 12.

In contrast, convolutional layer in CV-CNN has complex inputs and weights which is given by
Trabelsi et al. (2018); Gu & Ding (2018)

YC =

( B∑
m=1

XC(m) ∗HC(m)

)
+ bC ., (13)

which can be equivalently written as

Yr =

( B∑
m=1

Xr(m) ∗Hr(m)−Xi(m) ∗Hi(m)

)
+ br,

Yi =

( B∑
m=1

Xr(m) ∗Hi(m) +Xi(m) ∗Hr(m)

)
+ bi.

(14)

Using equation 14, an equivalent form using normal CNN can be designed as shown in Fig. 6A(b),
i.e., {

outr
outi

}
=

{
H1 H2
H3 H4

}
∗
{
Xr

Xi

}
+

{
b1
b2

}
, (15)

where we consider B = 1 (wlog) for brevity, and ∗ distributes as per matrix multiplication rule
and all parameters are real. Comparing equation 15 and equation 14, as in linear complex layer,
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Table 2: Standard Building Blocks of Complex-valued CNN. (Note: Subscript C, r and i indicate
complex-valued, real and imaginary parts, respectively.)

Modules RV-CNN with
Similar Network

Structure

Complex-valued CNN RV-CNN with Similar
Number of MAC

operations
Affine transformations

Scalar
Multiplication

k · X for k ∈ R kC · XC for kC ∈ C
{
k1 k2
k3 k4

}
·
{
Xr

Xi

}
, where

k1 = k4 = kr,−k2 = k3 =
ki, and k1, k2, k3, k4 ∈ R

Fully-connected A · x, where A is a real
weight matrix

AC · xC = (Ar · xr − Ai ·
xi) + j(Ai · xr − Ar · xi)

{
A1 A2
A3 A4

}
·
{
Xr

Xi

}
, where

A1 = A4 = Ar,−A2 = A3 =
Ai.

Convolution X ∗H, where H is a real
kernel

XC ∗ HC = (Xr ∗ Hr − Xi ∗
Hi) + j(Xr ∗ Hi + Xi ∗ Hr)

{
H1 H2
H3 H4

}
∗
{
Xr

Xi

}
, where

H1 = H4 = Hr,−H2 = H3 =
Hi.

Residual block F (X, {W}) + X, for
real parameters {W}.

F (XC, {WC}) + XC

{
F (XC, {WC})r
F (XC, {WC})i

}
+

{
Xr

Xi

}

Average Pooling (mean(X)|W ) ↓M ,
where W is a window of

size M × M .

(mean(XC)|W ) ↓M

{
(mean(Xr)|W ) ↓M

(mean(Xi)|W ) ↓M

}

Non-linear Transformations

ReLU ReLU(x) ={
x if x ≥ 0

0 otherwise
.

zReLU(x)=

{
x if θx ∈ [0, π

2 ]

0 otherwise
✗

CReLU(xc) =
ReLU(xr) + jReLU(xi)

{
ReLU(xr)
ReLU(xi)

}
MODReLU(xC) =

ReLU(|xC | − b)ejθx
✗

EqReLU(x) ={
x if θx ∈ [−π

2 , π
2 ]

0 otherwise

✗

Max Pooling (max(X)|W ) ↓M ,
where W is a window of

size M × M .

(max(∥X∥)|W ) ↓M ejθX ✗

for equivalence the convolution filters in CNN require twice the number of real parameters as that
of CV-CNN, and hence there exist many degenerate mappings other than the desired mapping (i.e.,
H1 = H4 = Hr,−H2 = H3 = Hi). But there is no increase in the real parameters for bias bC2.

2The inferences derived here for Convolutional layer hold good for fully-connected layer with bias as well,
the main difference being that the convolution in equation 15 has to be replaced by multiplication
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Om Nama Sivaya

Dominant MagnitudeDominant Phase

(b) Semi-circle transform (c) Spiral-44 transform (d) Rastor-4 transform

Dominant Mag-PhaseReal-valued Data

(a) Identity transform

Om Nama Sivaya

Om Nama Sivaya

Figure 7: Pseudo Complex-valued Data: Figs. (b-d) represent different complex-valued transforms.
The first row depicts element-wise transformation of real-valued data (left-most figure) using VIB-
GYOR colors. The second row illustrates how the real, imaginary, and magnitude parts of RGB
images are modified due to a transform. The third row depicts the magnitude and phase for each
image-intensity ([0, 1]). The fourth row compares the performance of different methods. Note that
the performance difference of CV-CNN with RV-CNN depends on the performance measures.
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Table 3: Contradictions on the performances between CV-CNN and RV-CNN. Note that different
works highlight only the inferences (last column), while seldom relating them with other details
(columns 2-4). Our results (see Table 3.1) resolve these contradictions to a large extent).

Works Model Performance
Measures

Datasets Employed Inferences for
CV-CNN

(against RV-CNN)
Not in favor of complex-domain representations in CV-CNNs

Guberman
(2016)

Vanilla CNN (without
Resblocks, dropout and

batch norm)

Similar No: of parameters Cell Classification (binary
class)

No improvement

Trabelsi
et al.

(2018)

CNN (with Resblocks,
dropout and batch norm)

Similar No: of parameters CIFAR10, CIFAR100,
Truncated SVHN

Slightly inferior in two out of
three cases

Mönning
& Man-
andhar
(2018)

Multilayer Perceptron Similar No: of parameters MNIST, CIFAR10,
CIFAR100, Reuters

No Improvement

Tygert
et al.

(2016)

Blocks of: Conv + absolute +
pooling

(Not clear from the paper) CIFAR10 No Improvement

Huang
et al.

(2020)

Parallel CNNs with spatial
and spectral data, with fusion

at end.

Similar No: of parameters SAR datasets Inferior w.r.t magnitude input

In favor of complex-domain representations in CV-CNNs
Gu &
Ding

(2018)

Complex-valued VGG
Network Simonyan &

Zisserman (2014)

Similar Network Structure CIFAR10 Superior

Popa
(2017)

Vanilla CNN (without
Resblocks, dropout and

batch norm)

Similar No: of parameters MNIST, CIFAR10 (Employ
custom gradient for training)

Superior in both cases

Barrachina
et al.

(2021)

Multilayer Perceptron Similar No: of MAC
operations

Custom data (non-circular
2D random numbers)

Superior

Popa &
Cernăzanu-
Glăvan
(2018)

Vanilla CNN (without
Resblocks, dropout and

batch norm)

Similar Network Structure FFT of MNIST, CIFAR10,
SVHN

Superior in all cases

Yao
et al.

(2020)

Vanilla CNN (without
Resblocks, dropout and

batch norm)

Similar Network structure Simulated Human Radar
Echo dataset

Superior
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Table 4: Sample Results employed to create the plots for real-valued data.

RV-CNN (X) CV-CNN (2X) RV-CNN
(Abs:2X)

RV-CNN (C:2X) RV-CNN (4X)

(Real Input) (Complex Input) (Real Input) (Complex Input) (Complex Input)
Vanilla CNN (without Resblocks, Dropout, and Batch norm) on CIFAR-10

No: of RV
Params

62,006 1,24,012 1,24,700 1,24,605 2,45,862

Accuracy
(3 seeds)

73.23/73.51/73.23 76.91/77.79/76.29 77.21/76.97/76.77 76.48/77.08/76.37 79.72/79.61/79.51

Mean &
Stdev Acc.

73.32 (0.16) 77.00 (0.75) 76.98 (0.22) 76.64 (0.38) 79.61 (0.10)

Moderately Deep Network (Resnet5 with Resblocks and Dropout) on CIFAR-10
No: of RV

Params
3,75,946 7,51,892 7,55,674 7,58,131 14,92,618

Accuracy
(3 seeds)

87.73/87.35/87.73 88.66/88.59/88.39 88.66/88.00/88.33 88.61/88.70/88.47 89.04/88.81/88.81

Mean &
Stdev Acc.

87.60 (0.22) 88.55 (0.14) 88.33 (0.33) 88.59 (0.12) 88.89 (0.13)

Deep Network (Resnet8 with Resblocks, Dropout, and Batch norm) on CIFAR-10
No: of RV

Params
42,14,538 84,30,804 84,21,050 84,23,507 1,68,37,514

Accuracy
(3 seeds)

91.62/91.60/91.82 92.09/91.73/91.68 91.80/91.86/92.20 91.91/91.87/91.89 91.98/92.13/91.95

Mean &
Stdev Acc.

91.68 (0.12) 91.83 (0.23) 91.95 (0.22) 91.89 (0.02) 92.02 (0.10)

Deep Network (Resnet18 with Resblocks and Batch norm) on CIFAR-100
No: of RV

Params
1,12,20,132 2,24,45,064 2,26,46,451 2,26,48,908 4,47,58,628

Accuracy
(3 seeds)

70.2/69.07/69.60 70.24/70.04/70.48 70.47/69.4/69.81 70.27/69.2/69.53 70.72/70.61/70.32

Mean &
Stdev Acc.

69.62 (0.57) 70.25 (0.22) 69.89 (0.54) 69.67 (0.55) 70.55 (0.21)
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