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Abstract

Unsupervised and unpaired domain translation using generative adversarial neural net-
works, and more precisely CycleGAN, is state of the art for the stain translation of
histopathology images. It often, however, suffers from the presence of cycle-consistent
but non structure-preserving errors. We propose an alternative approach to the set of
methods which, relying on segmentation consistency, enable the preservation of pathology
structures. Focusing on immunohistochemistry (IHC) and multiplexed immunofluorescence
(mIF), we introduce a simple yet effective guidance scheme as a loss function that lever-
ages the consistency of stain translation with stain isolation. Qualitative and quantitative
experiments show the ability of the proposed approach to improve translation between the
two domains.
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1. Introduction

The computational analysis of mIF histopathological images, by enabling simultaneous and
quantitative analysis of multiple markers, is becoming key for the development of novel
therapeutic drugs. Because most deep-learning based segmentation and detection meth-
ods require large datasets of pixel-precise annotation to yield accurate and robust results,
methods to transfer annotations or models from one domain to another are of increasing
interest (Brieu, 2019). However, the standard CycleGAN approach (Zhu, 2017) for the un-
derlying unsupervised and unpaired domain translation have limitations in preservation of
pathology structures, which led to the introduction of segmentation-based guidance (Ma-
hapatra, 2020). We propose in this study a novel and simple guidance scheme tailored
to the translation from and to the IF domain, based on the conversion from the RGB to
Haematoxylin-DAB (HD) colorspace (Ruifrok, 2001). As shown qualitatively and quanti-
tatively, our approach yields improved translation results.

2. Methods

We incorporate two losses LIF and LIHC to the CycleGAN training (cf. Fig. 1). These
respectively guide the translation from the IHC domain to the IF domain by generator GAB

and the translation from the IF domain to the IHC domain by generator GBA. With xIHC

an IHC patch input to GAB and xIF an IF patch input to GBA, we define the stain-isolation
guidance loss LIF

g as the L1 norm between the DAB channel of the generated IF image
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Figure 1: LIF
g and LIHC

g guide the training of GAB and GBA. Note the improved DAPI
channel of GAB(xIHC) vs. F(xIHC) and the more realistic color of GBA(xIF ) vs. F

−1(xIF ).

GAB(xIHC) and the DAB channel of the pseudo-IF image F(xIHC). The later is derived
from the conversion of xIHC to the Haematoxylin-DAB (HD) colorspace followed by its
rescaling1 using a set of representative IHC images as reference. The inaccuracy of the
estimated Haematoxylin channel leads us to consider only the DAB channel into the loss:

LIF
g = ∥GAB(xIHC).DAB −F(xIHC).DAB∥1 (1)

We similarly define the pseudo-IHC loss LIHC
g as the L1 norm between the generated IHC

image GBA(xIF ) and the image F−1(xIF ) obtained by color conversion from HD to RGB:

LIHC
g =

∥∥GBA(xIF )−F−1(xIF )
∥∥
1

(2)

The stain isolation and pseudo-IHC losses are added to the following CycleGAN losses: a
cycle consistency loss Lcycle, two adversarial losses on the output of the generators GAB and
GBA, an identity loss Lid as well as an embedding loss Lemb. The overall loss reads as:

L = LAB
GAN + LBA

GAN + λ1Lcycle + λ2Lid + λ3Lemb + λ4LIHC
g + λ5LIF

g (3)

with the following fixed weighting parameters: λ1 = 10, λ2 = 2 and λ3 = 10. In the
remaining of this study, the two parameters λ4 and λ5 are either switched off or set to 10.

3. Results

The unpaired IF and IHC datasets respectively contains 11K and 160K patches of 256 ×
256px with 0.5µm/px resolution. On the IF images, the PDL1 and DAPI channels are
selected out of the seven initially available channels. The batch size is 1, the learning rates
0.0001 for the generators and 0.0005 for the discriminators. Adam optimizer (β1 = 0.5,
β2 = 0.999) is used to minimize the loss (cf. Eq. 3) for 100K iterations. We qualitatively
study the following configurations: (a) no guidance (λ4 = 0, λ5 = 0), (b) a virtual-IHC
guidance (λ4 = 10, λ5 = 0), (c) a stain-isolation guidance (λ4 = 0, λ5 = 10) and (d)
a combine guidance (λ4 = 10, λ5 = 10). Fig. 2A shows the difficulty of baseline (a) to
translate highly saturated regions: dark-brown pixels in IHC are wrongly translated into
high DAPI signal in IF while some high DAPI signal in IF is wrongly translated into brown

1. https://scikit-image.org/docs/stable/auto examples/color exposure/plot ihc color separation.html
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Figure 2: A - Examples of GAB(xIHC) and GBA(xIF ) generated using: (a) the baseline Cy-
cleGAN, (b) the virtual-IHC guidance, (c) the stain-isolation guidance, and (d) combined
guidance; B - Respective histograms of the DAPI values of GAB(xIHC) measured on satu-
rated (S > 0.90) pixels of annotated membrane regions of 222 unseen IHC images xIHC .

pixels in IHC. While these are partially corrected by the virtual-IHC loss (b), the stain-
isolation loss (c) yields better translation. Combining both losses (d) does not improve over
(c). This is quantitatively confirmed in Fig. 2B: proposed guidance schemes (b)-(d) prevent
the generation of high DAPI signal in membrane regions, otherwise observed in (a).

4. Discussion

We propose two novel loss functions based on color conversion in order to provide guidance
at training time for the CycleGAN-based translation between the IF and IHC stain domains.
Doing so, we are able to prevent cycle-consistent but non structure preserving translation
errors. Future work include the inclusion of the proposed guidance losses to the second
translation steps of each cycle as well as the downstream task of transferring segmentation
and detection models from the IHC domain to the IF domain.
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