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Abstract

Pretrained large language models (LLMs) have
become foundational tools in natural language
processing (NLP), demonstrating strong per-
formance across tasks such as summarization,
question answering, and translation. However,
their internal memorization mechanisms re-
main difficult to interpret and control. This
challenge arises from the distributed and non-
linear nature of memorization in LLMs, where
learned information, such as specific phrases
or facts, is entangled across billions of param-
eters. As a result, identifying how and when
memorized content is retrieved during infer-
ence remains an open problem. In this work,
we propose a novel framework to uncover the
relationship between input semantics and mem-
orization in LLMs. We employ a Sparse Au-
toencoder (SAE) at the final hidden layer to
decompose high-dimensional activations into
sparse, interpretable components. To further
investigate how specific input features influ-
ence memorization, we introduce Representa-
tion Fine-Tuning (REFT), a mechanism that
dynamically edits the SAE-encoded represen-
tations based on semantic interventions. Ex-
perimental results on the GPT-Neo and Pythia
model families show that our method consis-
tently outperforms both state-of-the-art base-
lines in extracting memorized data. Moreover,
we demonstrate that our framework enables
fine-grained analysis of how semantic varia-
tions in input tokens affect memorization be-
havior.

1 Introduction

Pretrained large language models (LLMs)
(Guimaraes et al., 2024; Wang et al., 2023;
Almazrouei et al., 2023; Brown et al., 2020; Gao
et al., 2020b) have shown remarkable capabilities
across a broad range of natural language process-
ing (NLP) tasks, including summarization (Wei
et al., 2021; Zhang et al., 2024; Van Veen et al.,
2024), question answering (Zhuang et al., 2023; Li
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et al., 2024c¢), and dialogue generation (Liu et al.,
2024a; Lu et al., 2025; Das et al., 2024). Beyond
generalization, recent studies have revealed that
LLMs often memorize and regurgitate training data
in many downstream tasks (Firstova et al., 2024;
Qin et al., 2024; Carlini et al., 2021). To quantify
this behavior, Carlini et al. (2022) introduced the
discoverable memorization rate, which measures
how likely a model is to reproduce memorized
sequences. Surprisingly, subsequent works
(Chapman et al., 2024; Wang et al., 2024d; Zhao
and Patras, 2023) have shown that memorization
rates can be unexpectedly high, which can cause
severe privacy and copyright issues (Carlini et al.,
2021, 2022; Ozdayi et al., 2023; Nasr et al., 2023;
Karamolegkou et al., 2023).

heis a ;nember

who is a member | Output Tokens |

Target LLM '

(
prompt

Figure 1: Interpretable and Controllable Memorization
in LLMs (a) Standard LLM inference outputs tokens di-
rectly based on the prompt (b) Inserts a SAE and applies
REFT to decompose and modulate internal represen-
tations, enabling controlled and interpretable memory
retrieval.

Despite its significance, the mechanisms under-
lying memorization in LLMs remain poorly under-
stood (De Wynter et al., 2023; Singh et al., 2023).
This challenge stems from the mismatch between
the non-linear, high-dimensional interactions of
billions of model parameters and the need for inter-
pretable, traceable memory representations (Arpit



et al., 2017). During training, LL.Ms encode data
into high-dimensional feature fragments that are
stored in a distributed, unstructured manner across
the parameter space (Liu et al., 2024c; Aghajanyan
et al., 2020). Consequently, pinpointing where
specific memories reside and how they are reacti-
vated remains elusive (Khalifa et al., 2024; Chang
et al., 2023b). While attention mechanisms offer
partial interpretability, they fall short in explaining
how memorized content propagates across layers
through complex transformations (Jain and Wal-
lace, 2019; Chefer et al., 2021). LLMs often re-
trieve memorized information in response to se-
mantically distant inputs (Huang et al., 2024; Sun
et al., 2025), which is especially problematic in
long-form generation (Li et al., 2024b), where ir-
relevant or weakly related training fragments may
unexpectedly appear. Although several methods,
such as static and dynamic soft prompts (Chapman
et al., 2024; Wang et al., 2024d; Zhao and Patras,
2023), have been proposed to extract memorized
content (see Fig. 1(a)), they primarily focus on
improving retrieval performance. These methods
do not provide a clear understanding of which se-
mantic features or input variations are critical for
triggering memorization. Thus, a semantic-level
explanation of memorization activation remains
lacking.

This paper addresses the following central re-
search question: What semantic factors cause
memorization in LLMs? And further: Can we ex-
ploit them to control the memorization rate? To an-
swer these, we propose a novel framework for ana-
lyzing the relationship between input semantics and
memorization behavior. As illustrated in Fig. 1(b),
we insert a Sparse Autoencoder (SAE) (Ng et al.,
2011) into the final hidden layer of an LLM to
compress its activations into disentangled compo-
nents that isolate memorized content. We further
introduce Representation Fine-Tuning (REFT) (Wu
et al., 2024a), which employs task-specific refer-
ence signals to guide semantic reconstruction. By
comparing token-level and latent representations
before and after intervention, we are able to iden-
tify the influence of semantic changes on memo-
rization.

Our contributions are summarized as follows:

* Locating Activations and Corresponding
Semantics Driving Memorization: We intro-
duce a sparse autoencoder that decomposes
hidden states into interpretable components,

isolating memorization-related features (e.g.,
domain-specific terms, syntactic patterns) us-
ing ¢1-constrained bottlenecks. This enables
precise identification of input elements that
trigger memorization, improving the inter-
pretability of LLM memory behavior.

* Controlling Memorization via Representa-
tion Modification: By freezing the LLM’s
parameters and introducing a lightweight se-
mantic encoder, we edit the internal repre-
sentations to control memorization behavior.
Through pre- and post-intervention analysis,
we uncover how subtle semantic changes in
input affect memorization.

* Comprehensive Empirical Evaluation: We
conduct experiments across multiple settings
and demonstrate that our framework con-
sistently enhances memory retrieval perfor-
mance. Compared to baseline methods, our
approach achieves relative improvements of
up to 65.6% and 29.5% on text generation
tasks. Furthermore, REFT-based interventions
provide insight into how specific token-level
modifications influence memorization, deep-
ening our understanding of memory dynamics
in LLMs.

2 Related work

2.1 Memorization in LLM

Early research has shown that LLMs are capable
of reproducing exact phrases from their training
data when presented with seemingly arbitrary
prompts (Madaan et al., 2022; Ippolito et al.,
2022). Researchers then defined the concept of
discoverable memorization—content that a model
can reproduce through a practical search—and
proposed the first quantitative framework to assess
memorization risk (Schwarzschild et al., 2024,
Carlini et al., 2022). Later studies extended this
analysis from pre-training to fine-tuning, showing
that task-specific fine-tuning not only maintains
but also alters memorization patterns, and different
retention levels across downstream tasks (VM
et al., 2024; Wang et al., 2024b). These findings
have important practical implications: proprietary
books and source code can be reproduced word-
for-word, and production systems like GPT have
been shown to leak large amounts of training data
(Balloccu et al., 2024; Chang et al., 2023a). To
estimate the limit of extractable content, Li et al.



Li et al. (2024a) introduced a constant soft prompt
that, once learned, greatly increases data leakage
(Hui et al., 2024).

2.2 Sparse Autoencoder

The interpretability of LLMs depends on trac-
ing the pathways responsible for memorization in
model outputs, that is identifying which hidden-
layer features, attention patterns, or parameter up-
dates directly lead to the repetition of training
data (Dang et al., 2024). For example, a model
may exactly reproduce training text, such as code
snippets or sensitive information, when given cer-
tain prompts, or generate content by implicitly
retrieving parameterized knowledge, such as fac-
tual statements. In this context, the SAE enables
interpretability by separating features in a clear
and dynamic way (Radhakrishnan et al., 2018).
SAEs are added to a layer in LLMs, where they
compress and reconstruct hidden states (Ge et al.,
2023). This makes the model create sparse rep-
resentations of hidden features. These represen-
tations correspond directly to discrete memoriza-
tion units (e.g., domain-specific terms, syntactic
templates, or memorized segments), creating an
explicit mapping between inputs and memorization
activations (Cunningham et al., 2023; Seo et al.,
2025). Lightweight interventions to the SAE en-
coder can adjust which features are active. This
can reduce unwanted memories or strengthen sig-
nals that matter for the task, making it easier to
understand how the model remembers information
in real time (Kong et al., 2024; Fang et al., 2022).

2.3 REFT Intervention

REFT (Wu et al., 2024a) is an intervention method
that adapts pre-trained LLMs to new tasks by up-
dating only a small part of the parameters, while
keeping most weights unchanged. Common ap-
proaches include Low-Rank Adaptation (LoRA)
(Hu et al., 2022), adapter modules (Di Orio, 2013),
and prompt tuning (Su et al., 2021).par Recent stud-
ies have focused on improving the interpretability
and efficiency of LLMs. Wang et al. (Wang et al.,
2024a) proposed Low-Rank Adaptation with Gra-
dient Approximation, which aligns the gradients
of low-rank updates with those of full fine-tuning
at initialization. Batazy et al. (Batazy et al., 2024)
introduced LoRA-XS, a variant that drastically re-
duces the number of trainable parameters while
maintaining competitive performance. Hu et al.

(Hu et al., 2024) analyzed the computational lim-
its of LoRA using fine-grained complexity theory,
providing theoretical bounds that guide practical
design. However, these methods do not verify how
intervention affects the relationship between mem-
orization and semantic factors.

3 Method

A challenge for LLMs is to understand how
changes in tokens affect memorization. Existing
methods can enhance memorization retrieval but
fail to clarify which specific semantic features or
tokens drive these changes, or how emphasizing
particular words can impact the model’s capacity to
memorize related content. To address this problem,
we introduce a framework that integrates SAE and
REFT to facilitate semantic-level intervention and
analysis of memorization mechanisms in LLMs.
SAE generates sparse, disentangled latent represen-
tations that isolate key features related to memo-
rization, while REFT dynamically modulates these
latent activations based on targeted semantic cues.
This approach allows LLMs to track how focus-
ing on specific semantic units leads to changes in
memorization, giving a new insight into how inputs
affect what the LLMs remember. Unlike previous
work, our method provides a practical way to iden-
tify and control the semantic factors that enhance
memorization in LLMs.

3.1 Monosemantic Decomposition of
Representations

SAEs are unsupervised models that learn important
features from input data by making their represen-
tations sparse. Based on the standard autoencoder,
SAEs reduce the number of activated hidden states
to create sparse latent representations. Traditional
approaches achieve this sparsity via ¢; regulariza-
tion or KL divergence penalties (Ng et al., 2011).
More recently, Gao et al. (Gao et al., 2024) intro-
duced a TopK sparsity mechanism that explicitly
limits the number of active neurons during encod-
ing. Following this strategy, given an input 2 € R,
the function of SAE encoder can be expressed as.

h(z) = ReLU(Wene + benc) (D

where Wepe € R4 and beye € R™4 are the en-
coder’s weight matrix and bias vector, respectively,
and ReLU(-) denotes the rectified linear unit acti-
vation. n denotes the expansion rate of the hidden
dimension. A TopK operation then enforces hard
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Figure 2: Architecture of Sparse Autoencoder-Controlled LLMs with REFT Intervention

sparsity by preserving only the k largest activations
(k < n - d), which can be expressed as

e(z) = TopK(h(z), k) = Pr(h(z)) - h(z) (2)

which Py (h(z)) denoted the downsampling matrix.
The decoder reconstructs the input e(x) from these
sparse activations, which can be expressed as

SAE(x) = Wdece(x) + bdecs 3)

where Waee € RP>*™ 4 and byee € R? are the de-
coder’s weight matrix and bias vector. Equation (3)
shows that SAE(x) can be reconstructed by a linear
transformation of the encoded representation e(x),
using the decoder weights W 4. and bias bge.. To
encourage sparsity in the learned representations, a
sparsity regularization term is added to the training
objective. Accordingly, the overall loss function of
the SAE can be formulated as

L(z) = % lz = SAE(x) |3 + MlA()]; @)

The SAE is trained to recover the input as closely
as possible after . Equation (4) simplifies opti-
mization by using a single regularization parameter
A to control sparsity, rather than manually balanc-
ing multiple loss terms. By mapping inputs to a
high-dimensional space (n - d) but allowing only
k features to be active, this approach offers three
main benefits: (1) it is more robust because of re-
dundant representations, (2) it separates semantic
features through sparse competition, and (3) it is
more efficient by reconstructing only the active
parts.

3.2 Efficient Representation Editing

We use a low-rank geometric method (LoREFT)
(Wu et al., 2024b) for the Intervention module,
combining low-rank projection and rotation in the
latent space. In this way, REFT can dynamically ad-
just SAE representations through a rotation. Specif-
ically, for an input activation h, the transformation
is given by:

REFT(h)=h+ R (Wh+b— Rh) (5

where W € RF*4 denotes a learnable projec-
tion matrix encoding target memorization patterns,
R € RF*4 is a low-rank rotation matrix with
k < d, and b € R* is a learnable bias term.
This transformation first projects the sparse acti-
vation h into a memorization-related subspace us-
ing Wh + b, and then measures the difference be-
tween this projection and the rotated representation
Rh. The aligned residual is finally reintegrated
back into the original space via the inverse rotation
R This process allows the model to inject mem-
orization cues in a geometrically consistent and
interpretable manner while preserving the original
sparsity structure imposed by the SAE.

The REFT computation proceeds as follows.
The learnable projection matrix W serves as a mem-
orization bank, encoding target activation patterns
derived from a probing dataset. Given an input rep-
resentation h, REFT computes the residual vector

Ah=Wh+Db - Rh (0)

which captures the discrepancy between the current
activation and the desired memorization subspace.
To control the correction magnitude, the residual is
passed through a tanh(-) activation. Importantly,



the rotation matrix R is constrained to be orthog-
onal, ensuring that the adjustment R tanh(Ah)
preserves the geometry of the original SAE man-
ifold. This design mitigates interference with the
pretrained sparse representations and enables pre-
cise, interpretable modulation of memorization-
relevant features.

3.3 Interpretable Editing of Model
Memorization

Our method uses SAE on the output of the fi-
nal hidden layer in the target LLMs, enabling
precise control over the learned feature represen-
tations. As shown in Fig. 2, the base model
first generates a dense hidden vector hj, € R?
from the input sequence. We then input hj,gt
into the SAE encoder, which uses a Topk mech-
anisms and ReLU activation to encourage spar-
sity and produces an overcomplete latent vec-
tor a(hjast) € R™? Each nonzero activation
a;j(hast) in this high-dimensional space represents
an approximately monosemantic feature direction,
which is stored in the SAE decoder weight matrix
W 4ec as shown in Equation 1. We add the REFT
intervention module to the SAE encoder to dynam-
ically adjust the sparse activations during inference.
REFT works in two stages.

Feature Detection: The module examines the
sparse activation vector a(hy,s) and identifies in-
dices 7 where the values exceed a set threshold.
These indices represent high-confidence feature di-
rections, often associated with memorized content
or domain-specific semantic patterns. Specifically,
these high-activation features often match clear se-
mantic attributes that are triggered by certain facts
or entities in the input.

Actuation: For each selected index j, REFT scales
the corresponding sparse activation by a factor «,
updating the activation vector as a; = aa; while
keeping other elements unchanged. The modified
sparse vector a(hiagst) is then passed through the
SAE decoder to obtain the new reconstructed hid-
den state:

Ailzfs\zv = Wdec : d(hlast) + bdec (7)

This adjustment directly amplifies (o > 1) or sup-
presses (o < 1) the influence of specific features
on the model’s final output.

The modified hidden state / It is sent to the out-
put layer of the target LLM to generate the response.
For example, when we prompt the LLM with the

basketball player name "Kobe Bryant", LLMs re-
ducing activations related to memorization (such
as phrases like "renowned for jumpshot") can pro-
duce more general text (like "he received his BCL
degree..."). On the other hand, increasing sports-
related features can make the output include more
details, such as team statistics or career highlights.

In summary, Our framework separates the dense
representations in LLMs into a sparse and un-
derstandable feature space, where each activation
stands for a clear semantic factor. By using the
REFT intervention to increase or decrease these
sparse features, we can directly find and control
which semantic directions—such as factual details,
writing style, or domain knowledge—cause perfor-
mance of memorization changed in LLMs. This not
only shows which semantic features cause mem-
orization, but also reveals how LLMs store and
express memorized content. It enables clear and
targeted interventions, all without retraining the
language model.

4 Experiments

4.1 Experiments Setup

Models. First, we evaluated the performance
across two pretrained LLMs at three scales: GPT-
Neo (125M, 1.3B, 2.7B) (Black et al., 2021) and
Pythia (410M, 1.4B, 2.8B) (Biderman et al., 2023),
respectively. All models were pretrained on the
Pile dataset (Gao et al., 2020a) for text generation.
Then we test the different results between the REFT
and Manual intervention. Specifically, the changes
in the generated text after manually intervening on
a certain token and comparing the results of REFT
intervention further illustrate What semantic fac-
tors cause memorization in LLMs.

Dataset. We extracted inputs using the Language
Model Extraction Benchmark (Carlini et al., 2021),
selecting 15 K English sequences sampled from
the Pile dataset.

Baselines. We compare our method to three base-
lines: the base LLMs (1) without any prompt, (2)
with constant hard prompt, and (3) with dynamic
hard prompt, respectively. All methods incorporate
an SAE in the final hidden layer. For a prompt
length of N, the constant hard prompt uses the
first N tokens from the LLM’s vocabulary. The
dynamic hard prompt employs the mapping m(-)
to transform the prefix into a hard prompt. This
mapping generates a prompt that is more contex-
tually relevant to the input, aiming to enhance the



Table 1: Main Results on GPT-Neo Models

Model Method ExactER Gain (%) Frac.ER Gain (%) Test Loss PPL
GPT-125M No prompt 0.189 N/A 0.369 N/A 0.953 2.594
Base+SAE 0.065 -65.6 0.238 -35.5 0.179 1.196

Const HP+SAE 0.062 -67.2 0.226 -38.8 0.181 1.198

Dyn HP+SAE 0.047 -75.1 0.187 -49.3 0.189 1.208

Ours (REFT) 0.314 +65.7 0.478 +29.5 1.097 2.996

GPT-1.3B  No prompt 0.46 N/A 0.643 N/A 0.202 1.224
Base+SAE 0.183 -60.2 0.371 -42.3 0.088 1.092

Const HP+SAE 0.179 -61.1 0.363 -43.5 0.091 1.095

Dyn HP+SAE 0.105 -77.2 0.255 -60.3 0.108 1.114

Ours (REFT) 0.547 +18.9 0.652 +1.4 0.621 1.860

GPT-2.7B  No prompt 0.540 N/A 0.702 N/A 0.127 1.135
Base+SAE 0.328 -39.3 0.511 -27.2 0.131 1.140

Const HP+SAE 0.313 -42.0 0.486 -30.8 0.183 1.201

Dyn HP+SAE 0.185 -65.7 0.338 -51.9 0.212 1.236

Ours (REFT) 0.612 +13.3 0.767 +9.3 0.556 1.743

Table 2: Main Results on Pythia Models

Model Method ExactER Gain (%) Frac.ER Gain (%) Test Loss PPL
Pythia-410M  No prompt 0.236 N/A 0.458 N/A 0.473 1.605
Base+SAE 0.180 -23.7 0.367 -19.9 0.905 2.473

Const HP+SAE 0.080 -66.1 0.210 -54.2 0.720 2.054

Dyn HP+SAE 0.030 -87.3 0.100 -78.2 1.250 3.490

Ours (REFT) 0.430 +82.2 0.610 +33.2 0.380 1.462

Pythia-1.4B  No prompt 0.416 N/A 0.648 N/A 0.199 1.220
Base+SAE 0.220 -47.1 0.460 -29.0 0.151 1.163

Const HP+SAE 0.093 -77.6 0.519 -19.9 0.720 2.054

Dyn HP+SAE 0.051 -87.7 0.578 -10.8 1.250 3.490

Ours (REFT) 0.540 +29.8 0.702 +8.3 0.233 1.262

Pythia-2.8B  No prompt 0.517 N/A 0.735 N/A 0.144 1.155
Base+SAE 0.317 -38.7 0.460 -37.4 0.046 1.047

Const HP+SAE 0.080 -84.5 0.210 -71.4 0.700 2.014

Dyn HP+SAE 0.045 -91.3 0.120 -83.7 1.189 3.284

Ours (REFT) 0.625 +20.8 0.785 +6.8 0.347 1.415

model’s performance without requiring additional
training. (Wang et al., 2024d).

4.2 Experiments Result

For text generation tasks, The results show our
proposed method has better Exact Extraction Rate
(Exact ER) and Fractional Extraction Rate (Frac
ER) scores across all model sizes. In the GPT-
Neo suite, we achieve relative improvements in
Exact ER over the vanilla SAE baseline of 65.7%
(125 M), 18.9% (1.3 B), and +13.3% (2.7 B). The
Pythia models exhibit even larger gains of 82.2%
(410 M), 29.8% (1.4 B), and 24.8% (2.8 B) in Ex-
act ER compared to other methods. Adding SAEs
to different prompt methods will degrade perfor-
mance due to information loss due to sparsity and

reconstruction errors, but our approach improves
the results by using REFT interventions in the in-
ference process. Importantly, these improvements
do not come from avoiding SAE constraints, but
from clearly adjusting how features are encoded
using our intervention method. A small increase
in test loss was seen during the REFT interven-
tion (for example, GPT-Neo 2.7B: 0.127 to 0.556),
but the memorization metrics went up, showing
that the model adapted to feature limitations. This
suggests that parameter updates first explore the
solution space, which can briefly disturb the bal-
ance between the SAE’s sparsity goals and other
regularization targets. The later recovery in memo-
rization shows that our method can improve both

memorization and the quality of generated text.
To verify that REFT intervenes in the mem-
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Figure 3: Effects of Manual and REFT Interventions on SAE Latent Representations in LLMs.

orization of a certain token, we replaced auto-
matic REFT adjustments with manual tuning of
the SAE’s latent representation and observed the
resulting changes in generated text. Our manual
method is to find key latent features in the SAE
output—usually those linked to memorized facts
and change them in two ways: by increasing im-
portant features and reducing low-confidence or
irrelevant patterns. For a possible LLM vector
s = [s1,82,...,8p), we first compute the REFT
intervention as an update vector reft(s) and look
at the difference As; = reft(s;) — s; We then
use these differences to guide manual adjustments.
Specifically, we adjust for certain specific markers
manual(s;) as follows

anual(s:) reft(s;) +0.001, As; >0
manual(s;) =
reft(s;) —0.001, As; <0
(8)

then we use manual(s;) instead of reft(s;) to
change the probability of that token and observe
how the generated text changes.

As shown in Fig. 3, in GPT-Neo 125M, we man-
ually adjusted the sparse activations linked to spe-
cific tokens (e.g., “who” to “it”) and saw matching
changes in the output text. When we increased the
probability of the token “who,” the model gener-
ated sentences with that word more often; when we
reduced it, the word appeared less frequently. This
shows that using REFT to adjust specific semantic
features can directly affect the model’s memory
behavior and control how it recalls and generates
certain facts.

Fig. 4 shows a case study with the prompt "Kobe
Bryant is a basketball player". In this case, differ-
ent intervention methods changed both the content
of the model output and the probabilities of key
tokens. When there was no intervention, the re-

Prompt: kobe Bryant is a basketball player

REFT Intervention =

ExactER: 0.314 - |
who is a member of the Chicago Bulls of the International

Basketball Association for more than three decades

Manual Intervention
ExactER: 0.292
He played for the Lakers, famously rivaling
Jordan’s Bulls

h He received his BCL degree at the University

of Stuttgart and received his master's degree

0 0.1 0.2 03 04 05 0.6 0.7 0.8 09 1
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No Intervention

ExactER: 0.189

= Basketball
[21265] ['basketball’]

= Academic

= Lakers
[330, 49113] [‘ac’, ‘ademic’] [43, 3979] ['L','akers']

Figure 4: Comparison of token probabilities for selected
keywords under no intervention, manual intervention,
and REFT intervention.

sult text "He received his BCL degree..." shows
the LLMs mainly gave general descriptions about a
person, and features like “basketball player” were
only weakly activated. After REFT intervention,
the probabilities of tokens like “Bulls” and “Basket-
ball” increased, and related information appeared
in the output. With manual intervention, features
related to Kobe such as “Lakers” were strongly acti-
vated, so the generate text more focused on Kobe’s
information.

S Ablation Study

We test the performance of our proposed method
by focusing on three critical hyperparameters the
parameter k of Topk, the output dimension of the
SAE encoding layer n - d, and the REFT rank. And
we test performance of different parameters in GPT-
Neo (125M).

Impact of Top-k Selection (k). To evaluate the
impact of the top-k parameter, we fix the SAE en-
coding dimension n = 3 and the REFT interven-
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Figure 5: Ablation Study on k, n and reft rank with Exact ER and Frac ER in GPT-Neo (125M)

tion rank. We varied k in the range of 100 to 500 for
several representative settings of GPT-Neo (125M,
1.3B, and 2.7B) and Pythia (410M, 1.4B, and 2.8B).
Specifically, we set £k = 100, 200, and 300 for
GPT-Neo 125M and Pythia 410M; k£ = 200, 300,
and 400 for GPT-Neo 1.3B and Pythia 1.4B; and
k = 300, 400, and 500 for GPT-Neo 2.7B and
Pythia 2.8B, respectively. The results show that
our model consistently outperforms the baselines
across all tested settings. Notably, increasing k ini-
tially leads to substantial performance gains; how-
ever, beyond a moderate value (e.g., £ = 300 in
the 410M suite), the improvement plateaus while
computational complexity continues to rise. As
shown in Fig. 5, GPT-Neo (410M) achieves the
best Exact ER and Frac ER when k£ = 300.

Impact of SAE Encoding Dimension (n - d). To
explore the effect of SAE’s encoding dimension,
we fix the top-k selection parameter at 100, 200,
300 and REFT rank at 384, 614 and 768 on GPT-
Neo (125M, 1.3B, 2.7B), respectively. We vary the
SAE encoding dimension from smaller (n = 3) to
larger dimensions (n = 5), respectively. The re-
sults show that reducing the SAE encoding dimen-
sion can improve performance, reflecting stronger
representation ability. However, as the dimension
increases, computational cost also grows signifi-
cantly. Therefore, we chose n = 3 as the experi-
mental setting.

Impact of REFT Intervention Rank. Lastly, we
vary the REFT rank across different levels, which
denoted as L. The experimental results show that
higher ranks outperform lower ranks. Specifically,
low ranks has low performance to capture relevant
variations in latent representations, while overly
high ranks introduce complexity without substan-

tial performance gain. Consequently, our findings
suggest the optimal balance for the REFT interven-
tion rank is

L=c¢-d/10 ©)

where c represents the coefficients, in our experi-
ments we chose ¢ = 3,4 and 5, corresponding to
the reft rank obtained as 196, 307 and 384, respec-
tively.

The experiments showed that both Exact ER and
Frac ER slightly increased as the ReFT rank grew,
indicating that a higher intervention rank helps the
model better activate and extract memory content.
However, a too high rank increases computational
cost, while performance gains start to level off.
Therefore, we choose L = 384 as the experimental
setting.

6 Conclusion

To address what semantic factors cause memoriza-
tion in LLMs, we use a SAE to project the hidden
states of LLMs into a sparse space, making it possi-
ble to analyze and locate semantic features associ-
ated with memorization. By examining the sparse
activations, we are able to identify features that are
consistently triggered by certain factual prompts or
entity names, suggesting their direct involvement in
factual recall. To answer whether these factors can
be used to control the memorization rate, we apply
targeted interventions through REFT, adjusting the
influence of specific features on memorization by
scaling their activations during inference. Our ex-
periments show that this approach improves LLM
performance, clarifies the semantic factors behind
memory, and allows effective control of memory
behavior. It also makes clear how specific semantic
features in the model directly lead to memorization.



Limitations

Although our method improves understanding of
memorization in LLMs, its effectiveness is lim-
ited by the nature of open-source models. First,
biases in open-source training data (like LLaMA
and BLOOM) reduce coverage of niche domain
concepts, leading to unclear memorization inter-
pretations. Second, the fixed model architectures
only allow interventions on shallow activations, not
deep memorization changes, which limits meaning-
ful corrections. Lastly, findings from open-source
models may not apply to closed-source systems
because of unknown differences in data processing
and design. While our framework helps extract
and analyze memorized information, it could be
misused to extract sensitive data or violate privacy
if applied to models trained on private datasets.
We strongly advise future users to follow ethical
guidelines and safeguards to prevent misuse and
protect privacy. The code for our SAE and REFT
framework will be released on GitHub under the
MIT License after publication. All datasets and pre-
trained models used (such as The Pile, GPT-Neo,
Pythia) are open-source and used according to their
licenses and research purposes. Our released code
is for research use only.
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A Sparse Autoencoder

The dynamic decoupling and intervention
paradigm enables interpretability through features
endogenous to the model architecture, eliminating
the reliance on post hoc static probing techniques
(Wang et al., 2021; Liu et al., 2024b). Broadly,
research on memorization interpretability falls
into two categories. The first includes a posteriori
attribution methods (Hao et al., 2021; Wang et al.,
2024c¢), which rely on correlation-based inference
and are vulnerable to confounding effects. The
second encompasses static intervention techniques
(Bai et al., 2021; Huang et al., 2025), such as soft
cue engineering and memorization editing, which,
despite enabling targeted suppression of memories,
fail to explain the underlying activation pathways
(Agarwal et al., 2024).

B Detailed Experimental Setup

Training and Evaluation Settings. The random
train/test split is 14k/1k samples, 9686/1k samples,
and 38k/2k samples for GPT-Neo and Pythia, re-
spectively. For evaluation, the generation’s decod-
ing method is greedy decoding. All the experi-
ments are conducted on a single NVIDIA A6000
GPU with 48GB memorization in less than 12
hours for trianing SAE and 18 hours for training
REFT. During the training of the SAE, we used a
batch size of 128 and an Adam optimizer for 200
epochs. We tried the learning rate from the range
of [1073,107%]. During the training of the REFT
intervention, we utilize a batch size of 128 for GPT-
Neo 125M and 1.3B, as well as Pythia 410M and
1.4B. For GPT-Neo 2.7B and Pythia 2.8B, we use a
batch size of 64. All methods employ the AdamW
optimizer for 500 epochs, with the learning rate set
within the range of [1073,107%]. In the ablation
study, we reduced the number of epochs from 500
to 200.

Discuss on the Artifacts. The source code of
our method is implemented with Pytorch (Paszke,
2019) and HuggingFace Accelerate (Gugger et al.,
2022). And the implementation is built upon the
open-sourced code released by (Wang et al., 2024d).
All the codes and datasets we utilize are public and
open-sourced. They support the usage in research
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Figure 6: Ablation Study on k, n and reft rank with Exact ER and Frac ER in GPT-Neo (1.3B)

and we use them for research purpose only. We did
not check whether the used data contains any infor-
mation that names or uniquely identifies individual
people or offensive content. We left this work to
the institution that released the data.

C Ablation Study on Different Model

Fig. 6 shows the ablation study on the parameter
k of Topk, expansion number n and reft rank for
GPT-Neo (1.3B) in terms of ExactER and Frac ER.
And we can conclude the same conclusion as the
ones in Section 5.
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