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Abstract001

Pretrained large language models (LLMs) have002
become foundational tools in natural language003
processing (NLP), demonstrating strong per-004
formance across tasks such as summarization,005
question answering, and translation. However,006
their internal memorization mechanisms re-007
main difficult to interpret and control. This008
challenge arises from the distributed and non-009
linear nature of memorization in LLMs, where010
learned information, such as specific phrases011
or facts, is entangled across billions of param-012
eters. As a result, identifying how and when013
memorized content is retrieved during infer-014
ence remains an open problem. In this work,015
we propose a novel framework to uncover the016
relationship between input semantics and mem-017
orization in LLMs. We employ a Sparse Au-018
toencoder (SAE) at the final hidden layer to019
decompose high-dimensional activations into020
sparse, interpretable components. To further021
investigate how specific input features influ-022
ence memorization, we introduce Representa-023
tion Fine-Tuning (REFT), a mechanism that024
dynamically edits the SAE-encoded represen-025
tations based on semantic interventions. Ex-026
perimental results on the GPT-Neo and Pythia027
model families show that our method consis-028
tently outperforms both state-of-the-art base-029
lines in extracting memorized data. Moreover,030
we demonstrate that our framework enables031
fine-grained analysis of how semantic varia-032
tions in input tokens affect memorization be-033
havior.034

1 Introduction035

Pretrained large language models (LLMs)036

(Guimaraes et al., 2024; Wang et al., 2023;037

Almazrouei et al., 2023; Brown et al., 2020; Gao038

et al., 2020b) have shown remarkable capabilities039

across a broad range of natural language process-040

ing (NLP) tasks, including summarization (Wei041

et al., 2021; Zhang et al., 2024; Van Veen et al.,042

2024), question answering (Zhuang et al., 2023; Li043

et al., 2024c), and dialogue generation (Liu et al., 044

2024a; Lu et al., 2025; Das et al., 2024). Beyond 045

generalization, recent studies have revealed that 046

LLMs often memorize and regurgitate training data 047

in many downstream tasks (Firstova et al., 2024; 048

Qin et al., 2024; Carlini et al., 2021). To quantify 049

this behavior, Carlini et al. (2022) introduced the 050

discoverable memorization rate, which measures 051

how likely a model is to reproduce memorized 052

sequences. Surprisingly, subsequent works 053

(Chapman et al., 2024; Wang et al., 2024d; Zhao 054

and Patras, 2023) have shown that memorization 055

rates can be unexpectedly high, which can cause 056

severe privacy and copyright issues (Carlini et al., 057

2021, 2022; Ozdayi et al., 2023; Nasr et al., 2023; 058

Karamolegkou et al., 2023). 059
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Figure 1: Interpretable and Controllable Memorization
in LLMs (a) Standard LLM inference outputs tokens di-
rectly based on the prompt (b) Inserts a SAE and applies
REFT to decompose and modulate internal represen-
tations, enabling controlled and interpretable memory
retrieval.

Despite its significance, the mechanisms under- 060

lying memorization in LLMs remain poorly under- 061

stood (De Wynter et al., 2023; Singh et al., 2023). 062

This challenge stems from the mismatch between 063

the non-linear, high-dimensional interactions of 064

billions of model parameters and the need for inter- 065

pretable, traceable memory representations (Arpit 066
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et al., 2017). During training, LLMs encode data067

into high-dimensional feature fragments that are068

stored in a distributed, unstructured manner across069

the parameter space (Liu et al., 2024c; Aghajanyan070

et al., 2020). Consequently, pinpointing where071

specific memories reside and how they are reacti-072

vated remains elusive (Khalifa et al., 2024; Chang073

et al., 2023b). While attention mechanisms offer074

partial interpretability, they fall short in explaining075

how memorized content propagates across layers076

through complex transformations (Jain and Wal-077

lace, 2019; Chefer et al., 2021). LLMs often re-078

trieve memorized information in response to se-079

mantically distant inputs (Huang et al., 2024; Sun080

et al., 2025), which is especially problematic in081

long-form generation (Li et al., 2024b), where ir-082

relevant or weakly related training fragments may083

unexpectedly appear. Although several methods,084

such as static and dynamic soft prompts (Chapman085

et al., 2024; Wang et al., 2024d; Zhao and Patras,086

2023), have been proposed to extract memorized087

content (see Fig. 1(a)), they primarily focus on088

improving retrieval performance. These methods089

do not provide a clear understanding of which se-090

mantic features or input variations are critical for091

triggering memorization. Thus, a semantic-level092

explanation of memorization activation remains093

lacking.094

This paper addresses the following central re-095

search question: What semantic factors cause096

memorization in LLMs? And further: Can we ex-097

ploit them to control the memorization rate? To an-098

swer these, we propose a novel framework for ana-099

lyzing the relationship between input semantics and100

memorization behavior. As illustrated in Fig. 1(b),101

we insert a Sparse Autoencoder (SAE) (Ng et al.,102

2011) into the final hidden layer of an LLM to103

compress its activations into disentangled compo-104

nents that isolate memorized content. We further105

introduce Representation Fine-Tuning (REFT) (Wu106

et al., 2024a), which employs task-specific refer-107

ence signals to guide semantic reconstruction. By108

comparing token-level and latent representations109

before and after intervention, we are able to iden-110

tify the influence of semantic changes on memo-111

rization.112

Our contributions are summarized as follows:113

• Locating Activations and Corresponding114

Semantics Driving Memorization: We intro-115

duce a sparse autoencoder that decomposes116

hidden states into interpretable components,117

isolating memorization-related features (e.g., 118

domain-specific terms, syntactic patterns) us- 119

ing ℓ1-constrained bottlenecks. This enables 120

precise identification of input elements that 121

trigger memorization, improving the inter- 122

pretability of LLM memory behavior. 123

• Controlling Memorization via Representa- 124

tion Modification: By freezing the LLM’s 125

parameters and introducing a lightweight se- 126

mantic encoder, we edit the internal repre- 127

sentations to control memorization behavior. 128

Through pre- and post-intervention analysis, 129

we uncover how subtle semantic changes in 130

input affect memorization. 131

• Comprehensive Empirical Evaluation: We 132

conduct experiments across multiple settings 133

and demonstrate that our framework con- 134

sistently enhances memory retrieval perfor- 135

mance. Compared to baseline methods, our 136

approach achieves relative improvements of 137

up to 65.6% and 29.5% on text generation 138

tasks. Furthermore, REFT-based interventions 139

provide insight into how specific token-level 140

modifications influence memorization, deep- 141

ening our understanding of memory dynamics 142

in LLMs. 143

2 Related work 144

2.1 Memorization in LLM 145

Early research has shown that LLMs are capable 146

of reproducing exact phrases from their training 147

data when presented with seemingly arbitrary 148

prompts (Madaan et al., 2022; Ippolito et al., 149

2022). Researchers then defined the concept of 150

discoverable memorization—content that a model 151

can reproduce through a practical search—and 152

proposed the first quantitative framework to assess 153

memorization risk (Schwarzschild et al., 2024; 154

Carlini et al., 2022). Later studies extended this 155

analysis from pre-training to fine-tuning, showing 156

that task-specific fine-tuning not only maintains 157

but also alters memorization patterns, and different 158

retention levels across downstream tasks (VM 159

et al., 2024; Wang et al., 2024b). These findings 160

have important practical implications: proprietary 161

books and source code can be reproduced word- 162

for-word, and production systems like GPT have 163

been shown to leak large amounts of training data 164

(Balloccu et al., 2024; Chang et al., 2023a). To 165

estimate the limit of extractable content, Li et al. 166

2



Li et al. (2024a) introduced a constant soft prompt167

that, once learned, greatly increases data leakage168

(Hui et al., 2024).169

170

2.2 Sparse Autoencoder171

The interpretability of LLMs depends on trac-172

ing the pathways responsible for memorization in173

model outputs, that is identifying which hidden-174

layer features, attention patterns, or parameter up-175

dates directly lead to the repetition of training176

data (Dang et al., 2024). For example, a model177

may exactly reproduce training text, such as code178

snippets or sensitive information, when given cer-179

tain prompts, or generate content by implicitly180

retrieving parameterized knowledge, such as fac-181

tual statements. In this context, the SAE enables182

interpretability by separating features in a clear183

and dynamic way (Radhakrishnan et al., 2018).184

SAEs are added to a layer in LLMs, where they185

compress and reconstruct hidden states (Ge et al.,186

2023). This makes the model create sparse rep-187

resentations of hidden features. These represen-188

tations correspond directly to discrete memoriza-189

tion units (e.g., domain-specific terms, syntactic190

templates, or memorized segments), creating an191

explicit mapping between inputs and memorization192

activations (Cunningham et al., 2023; Seo et al.,193

2025). Lightweight interventions to the SAE en-194

coder can adjust which features are active. This195

can reduce unwanted memories or strengthen sig-196

nals that matter for the task, making it easier to197

understand how the model remembers information198

in real time (Kong et al., 2024; Fang et al., 2022).199

2.3 REFT Intervention200

REFT (Wu et al., 2024a) is an intervention method201

that adapts pre-trained LLMs to new tasks by up-202

dating only a small part of the parameters, while203

keeping most weights unchanged. Common ap-204

proaches include Low-Rank Adaptation (LoRA)205

(Hu et al., 2022), adapter modules (Di Orio, 2013),206

and prompt tuning (Su et al., 2021).par Recent stud-207

ies have focused on improving the interpretability208

and efficiency of LLMs. Wang et al. (Wang et al.,209

2024a) proposed Low-Rank Adaptation with Gra-210

dient Approximation, which aligns the gradients211

of low-rank updates with those of full fine-tuning212

at initialization. Bałazy et al. (Bałazy et al., 2024)213

introduced LoRA-XS, a variant that drastically re-214

duces the number of trainable parameters while215

maintaining competitive performance. Hu et al.216

(Hu et al., 2024) analyzed the computational lim- 217

its of LoRA using fine-grained complexity theory, 218

providing theoretical bounds that guide practical 219

design. However, these methods do not verify how 220

intervention affects the relationship between mem- 221

orization and semantic factors. 222

3 Method 223

A challenge for LLMs is to understand how 224

changes in tokens affect memorization. Existing 225

methods can enhance memorization retrieval but 226

fail to clarify which specific semantic features or 227

tokens drive these changes, or how emphasizing 228

particular words can impact the model’s capacity to 229

memorize related content. To address this problem, 230

we introduce a framework that integrates SAE and 231

REFT to facilitate semantic-level intervention and 232

analysis of memorization mechanisms in LLMs. 233

SAE generates sparse, disentangled latent represen- 234

tations that isolate key features related to memo- 235

rization, while REFT dynamically modulates these 236

latent activations based on targeted semantic cues. 237

This approach allows LLMs to track how focus- 238

ing on specific semantic units leads to changes in 239

memorization, giving a new insight into how inputs 240

affect what the LLMs remember. Unlike previous 241

work, our method provides a practical way to iden- 242

tify and control the semantic factors that enhance 243

memorization in LLMs. 244

3.1 Monosemantic Decomposition of 245

Representations 246

SAEs are unsupervised models that learn important 247

features from input data by making their represen- 248

tations sparse. Based on the standard autoencoder, 249

SAEs reduce the number of activated hidden states 250

to create sparse latent representations. Traditional 251

approaches achieve this sparsity via ℓ1 regulariza- 252

tion or KL divergence penalties (Ng et al., 2011). 253

More recently, Gao et al. (Gao et al., 2024) intro- 254

duced a TopK sparsity mechanism that explicitly 255

limits the number of active neurons during encod- 256

ing. Following this strategy, given an input x ∈ Rd, 257

the function of SAE encoder can be expressed as. 258

h(x) = ReLU(Wencx+ benc) (1) 259

where Wenc ∈ Rn·d×d and benc ∈ Rn·d are the en- 260

coder’s weight matrix and bias vector, respectively, 261

and ReLU(·) denotes the rectified linear unit acti- 262

vation. n denotes the expansion rate of the hidden 263

dimension. A TopK operation then enforces hard 264
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Figure 2: Architecture of Sparse Autoencoder-Controlled LLMs with REFT Intervention

sparsity by preserving only the k largest activations265

(k ≪ n · d), which can be expressed as266

e(x) = TopK(h(x), k) = Pk(h(x)) · h(x) (2)267

which Pk(h(x)) denoted the downsampling matrix.268

The decoder reconstructs the input e(x) from these269

sparse activations, which can be expressed as270

SAE(x) = Wdece(x) + bdec, (3)271

where Wdec ∈ Rd×n·d and bdec ∈ Rd are the de-272

coder’s weight matrix and bias vector. Equation (3)273

shows that SAE(x) can be reconstructed by a linear274

transformation of the encoded representation e(x),275

using the decoder weights Wdec and bias bdec. To276

encourage sparsity in the learned representations, a277

sparsity regularization term is added to the training278

objective. Accordingly, the overall loss function of279

the SAE can be formulated as280

L(x) =
1

2
∥x− SAE(x)∥22 + λ ∥h(x)∥1 (4)281

The SAE is trained to recover the input as closely282

as possible after x. Equation (4) simplifies opti-283

mization by using a single regularization parameter284

λ to control sparsity, rather than manually balanc-285

ing multiple loss terms. By mapping inputs to a286

high-dimensional space (n · d) but allowing only287

k features to be active, this approach offers three288

main benefits: (1) it is more robust because of re-289

dundant representations, (2) it separates semantic290

features through sparse competition, and (3) it is291

more efficient by reconstructing only the active292

parts.293

3.2 Efficient Representation Editing 294

We use a low-rank geometric method (LoREFT) 295

(Wu et al., 2024b) for the Intervention module, 296

combining low-rank projection and rotation in the 297

latent space. In this way, REFT can dynamically ad- 298

just SAE representations through a rotation. Specif- 299

ically, for an input activation h, the transformation 300

is given by: 301

REFT(h) = h +R⊤(Wh + b−Rh) (5) 302

where W ∈ Rk×d denotes a learnable projec- 303

tion matrix encoding target memorization patterns, 304

R ∈ Rk×d is a low-rank rotation matrix with 305

k ≪ d, and b ∈ Rk is a learnable bias term. 306

This transformation first projects the sparse acti- 307

vation h into a memorization-related subspace us- 308

ing Wh+ b, and then measures the difference be- 309

tween this projection and the rotated representation 310

Rh. The aligned residual is finally reintegrated 311

back into the original space via the inverse rotation 312

R⊤. This process allows the model to inject mem- 313

orization cues in a geometrically consistent and 314

interpretable manner while preserving the original 315

sparsity structure imposed by the SAE. 316

The REFT computation proceeds as follows. 317

The learnable projection matrix W serves as a mem- 318

orization bank, encoding target activation patterns 319

derived from a probing dataset. Given an input rep- 320

resentation h, REFT computes the residual vector 321

∆h = Wh+ b−Rh (6) 322

which captures the discrepancy between the current 323

activation and the desired memorization subspace. 324

To control the correction magnitude, the residual is 325

passed through a tanh(·) activation. Importantly, 326
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the rotation matrix R is constrained to be orthog-327

onal, ensuring that the adjustment R⊤ tanh(∆h)328

preserves the geometry of the original SAE man-329

ifold. This design mitigates interference with the330

pretrained sparse representations and enables pre-331

cise, interpretable modulation of memorization-332

relevant features.333

3.3 Interpretable Editing of Model334

Memorization335

Our method uses SAE on the output of the fi-336

nal hidden layer in the target LLMs, enabling337

precise control over the learned feature represen-338

tations. As shown in Fig. 2, the base model339

first generates a dense hidden vector hlast ∈ Rd340

from the input sequence. We then input hlast341

into the SAE encoder, which uses a Topk mech-342

anisms and ReLU activation to encourage spar-343

sity and produces an overcomplete latent vec-344

tor a(hlast) ∈ Rn·d. Each nonzero activation345

aj(hlast) in this high-dimensional space represents346

an approximately monosemantic feature direction,347

which is stored in the SAE decoder weight matrix348

Wdec as shown in Equation 1. We add the REFT349

intervention module to the SAE encoder to dynam-350

ically adjust the sparse activations during inference.351

REFT works in two stages.352

Feature Detection: The module examines the353

sparse activation vector a(hlast) and identifies in-354

dices j where the values exceed a set threshold.355

These indices represent high-confidence feature di-356

rections, often associated with memorized content357

or domain-specific semantic patterns. Specifically,358

these high-activation features often match clear se-359

mantic attributes that are triggered by certain facts360

or entities in the input.361

Actuation: For each selected index j, REFT scales362

the corresponding sparse activation by a factor α,363

updating the activation vector as ãj = αaj while364

keeping other elements unchanged. The modified365

sparse vector ã(hlast) is then passed through the366

SAE decoder to obtain the new reconstructed hid-367

den state:368

ĥnew
last = Wdec · ã(hlast) + bdec (7)369

This adjustment directly amplifies (α > 1) or sup-370

presses (α < 1) the influence of specific features371

on the model’s final output.372

The modified hidden state ĥnew
last is sent to the out-373

put layer of the target LLM to generate the response.374

For example, when we prompt the LLM with the375

basketball player name "Kobe Bryant", LLMs re- 376

ducing activations related to memorization (such 377

as phrases like "renowned for jumpshot") can pro- 378

duce more general text (like "he received his BCL 379

degree..."). On the other hand, increasing sports- 380

related features can make the output include more 381

details, such as team statistics or career highlights. 382

In summary, Our framework separates the dense 383

representations in LLMs into a sparse and un- 384

derstandable feature space, where each activation 385

stands for a clear semantic factor. By using the 386

REFT intervention to increase or decrease these 387

sparse features, we can directly find and control 388

which semantic directions—such as factual details, 389

writing style, or domain knowledge—cause perfor- 390

mance of memorization changed in LLMs. This not 391

only shows which semantic features cause mem- 392

orization, but also reveals how LLMs store and 393

express memorized content. It enables clear and 394

targeted interventions, all without retraining the 395

language model. 396

4 Experiments 397

4.1 Experiments Setup 398

Models. First, we evaluated the performance 399

across two pretrained LLMs at three scales: GPT- 400

Neo (125M, 1.3B, 2.7B) (Black et al., 2021) and 401

Pythia (410M, 1.4B, 2.8B) (Biderman et al., 2023), 402

respectively. All models were pretrained on the 403

Pile dataset (Gao et al., 2020a) for text generation. 404

Then we test the different results between the REFT 405

and Manual intervention. Specifically, the changes 406

in the generated text after manually intervening on 407

a certain token and comparing the results of REFT 408

intervention further illustrate What semantic fac- 409

tors cause memorization in LLMs. 410

Dataset. We extracted inputs using the Language 411

Model Extraction Benchmark (Carlini et al., 2021), 412

selecting 15 K English sequences sampled from 413

the Pile dataset. 414

Baselines. We compare our method to three base- 415

lines: the base LLMs (1) without any prompt, (2) 416

with constant hard prompt, and (3) with dynamic 417

hard prompt, respectively. All methods incorporate 418

an SAE in the final hidden layer. For a prompt 419

length of N , the constant hard prompt uses the 420

first N tokens from the LLM’s vocabulary. The 421

dynamic hard prompt employs the mapping m(·) 422

to transform the prefix into a hard prompt. This 423

mapping generates a prompt that is more contex- 424

tually relevant to the input, aiming to enhance the 425
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Table 1: Main Results on GPT-Neo Models

Model Method ExactER Gain (%) Frac.ER Gain (%) Test Loss PPL

GPT-125M No prompt 0.189 N/A 0.369 N/A 0.953 2.594
Base+SAE 0.065 -65.6 0.238 -35.5 0.179 1.196
Const HP+SAE 0.062 -67.2 0.226 -38.8 0.181 1.198
Dyn HP+SAE 0.047 -75.1 0.187 -49.3 0.189 1.208
Ours (REFT) 0.314 +65.7 0.478 +29.5 1.097 2.996

GPT-1.3B No prompt 0.46 N/A 0.643 N/A 0.202 1.224
Base+SAE 0.183 -60.2 0.371 -42.3 0.088 1.092
Const HP+SAE 0.179 -61.1 0.363 -43.5 0.091 1.095
Dyn HP+SAE 0.105 -77.2 0.255 -60.3 0.108 1.114
Ours (REFT) 0.547 +18.9 0.652 +1.4 0.621 1.860

GPT-2.7B No prompt 0.540 N/A 0.702 N/A 0.127 1.135
Base+SAE 0.328 -39.3 0.511 -27.2 0.131 1.140
Const HP+SAE 0.313 -42.0 0.486 -30.8 0.183 1.201
Dyn HP+SAE 0.185 -65.7 0.338 -51.9 0.212 1.236
Ours (REFT) 0.612 +13.3 0.767 +9.3 0.556 1.743

Table 2: Main Results on Pythia Models

Model Method ExactER Gain (%) Frac.ER Gain (%) Test Loss PPL

Pythia-410M No prompt 0.236 N/A 0.458 N/A 0.473 1.605
Base+SAE 0.180 -23.7 0.367 -19.9 0.905 2.473
Const HP+SAE 0.080 -66.1 0.210 -54.2 0.720 2.054
Dyn HP+SAE 0.030 -87.3 0.100 -78.2 1.250 3.490
Ours (REFT) 0.430 +82.2 0.610 +33.2 0.380 1.462

Pythia-1.4B No prompt 0.416 N/A 0.648 N/A 0.199 1.220
Base+SAE 0.220 -47.1 0.460 -29.0 0.151 1.163
Const HP+SAE 0.093 -77.6 0.519 -19.9 0.720 2.054
Dyn HP+SAE 0.051 -87.7 0.578 -10.8 1.250 3.490
Ours (REFT) 0.540 +29.8 0.702 +8.3 0.233 1.262

Pythia-2.8B No prompt 0.517 N/A 0.735 N/A 0.144 1.155
Base+SAE 0.317 -38.7 0.460 -37.4 0.046 1.047
Const HP+SAE 0.080 -84.5 0.210 -71.4 0.700 2.014
Dyn HP+SAE 0.045 -91.3 0.120 -83.7 1.189 3.284
Ours (REFT) 0.625 +20.8 0.785 +6.8 0.347 1.415

model’s performance without requiring additional426

training. (Wang et al., 2024d).427

4.2 Experiments Result428

For text generation tasks, The results show our429

proposed method has better Exact Extraction Rate430

(Exact ER) and Fractional Extraction Rate (Frac431

ER) scores across all model sizes. In the GPT-432

Neo suite, we achieve relative improvements in433

Exact ER over the vanilla SAE baseline of 65.7%434

(125 M), 18.9% (1.3 B), and +13.3% (2.7 B). The435

Pythia models exhibit even larger gains of 82.2%436

(410 M), 29.8% (1.4 B), and 24.8% (2.8 B) in Ex-437

act ER compared to other methods. Adding SAEs438

to different prompt methods will degrade perfor-439

mance due to information loss due to sparsity and440

reconstruction errors, but our approach improves 441

the results by using REFT interventions in the in- 442

ference process. Importantly, these improvements 443

do not come from avoiding SAE constraints, but 444

from clearly adjusting how features are encoded 445

using our intervention method. A small increase 446

in test loss was seen during the REFT interven- 447

tion (for example, GPT-Neo 2.7B: 0.127 to 0.556), 448

but the memorization metrics went up, showing 449

that the model adapted to feature limitations. This 450

suggests that parameter updates first explore the 451

solution space, which can briefly disturb the bal- 452

ance between the SAE’s sparsity goals and other 453

regularization targets. The later recovery in memo- 454

rization shows that our method can improve both 455

memorization and the quality of generated text. 456
To verify that REFT intervenes in the mem- 457

6



REFTIntervention Manual Intervention

Prompt: Kobe Bryant is a basketball player

Last_hidden

who is a member of … he is a member of …
[-1.4012,0.6788…] [-1.5012,0.5788,…]

(a) Intervention illustration

GPT_125M GPT_1.3B Pythia_410M

REFT who is a member of
the. . .

renowned for his
fade away jump-
shot. . .

who is a member. . .

Manual he played for the
Lakers, famously
rivaling Jordan’s
Bulls. . .

renowned for his
iconic fade away
jumpshot character-
ized by a 45° body
tilt. . .

who partnered with
Nike to release the
“Kobe AD” sneaker
line in 2017. . .

(b) Representative outputs under REFT and manual in-
terventions.

Figure 3: Effects of Manual and REFT Interventions on SAE Latent Representations in LLMs.

orization of a certain token, we replaced auto-458

matic REFT adjustments with manual tuning of459

the SAE’s latent representation and observed the460

resulting changes in generated text. Our manual461

method is to find key latent features in the SAE462

output—usually those linked to memorized facts463

and change them in two ways: by increasing im-464

portant features and reducing low-confidence or465

irrelevant patterns. For a possible LLM vector466

s = [s1, s2, ..., sn], we first compute the REFT467

intervention as an update vector reft(s) and look468

at the difference ∆si = reft(si) − si We then469

use these differences to guide manual adjustments.470

Specifically, we adjust for certain specific markers471

manual(si) as follows472

manual(si) =

{
reft(si) + 0.001, ∆si > 0

reft(si)− 0.001, ∆si < 0
(8)473

then we use manual(si) instead of reft(si) to474

change the probability of that token and observe475

how the generated text changes.476

As shown in Fig. 3, in GPT-Neo 125M, we man-477

ually adjusted the sparse activations linked to spe-478

cific tokens (e.g., “who” to “it”) and saw matching479

changes in the output text. When we increased the480

probability of the token “who,” the model gener-481

ated sentences with that word more often; when we482

reduced it, the word appeared less frequently. This483

shows that using REFT to adjust specific semantic484

features can directly affect the model’s memory485

behavior and control how it recalls and generates486

certain facts.487

Fig. 4 shows a case study with the prompt "Kobe488

Bryant is a basketball player". In this case, differ-489

ent intervention methods changed both the content490

of the model output and the probabilities of key491

tokens. When there was no intervention, the re-492

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

No Intervention

Manual Intervention

REFT Intervention

Prompt: kobe Bryant is a basketball player

Basketball
[21265] ['basketball']

Academic
[330, 49113] ['ac', 'ademic']

Lakers
[43, 3979] ['L','akers']

He played for the Lakers, famously rivaling 
Jordan’s Bulls

who is a member of the Chicago Bulls of the International 
Basketball Association for more than three decades

He received his BCL degree at the University 
of Stuttgart and received his master's degree

ExactER: 0.189

ExactER: 0.314

ExactER: 0.292

Probability

Figure 4: Comparison of token probabilities for selected
keywords under no intervention, manual intervention,
and REFT intervention.

sult text "He received his BCL degree..." shows 493

the LLMs mainly gave general descriptions about a 494

person, and features like “basketball player” were 495

only weakly activated. After REFT intervention, 496

the probabilities of tokens like “Bulls” and “Basket- 497

ball” increased, and related information appeared 498

in the output. With manual intervention, features 499

related to Kobe such as “Lakers” were strongly acti- 500

vated, so the generate text more focused on Kobe’s 501

information. 502

5 Ablation Study 503

We test the performance of our proposed method 504

by focusing on three critical hyperparameters the 505

parameter k of Topk, the output dimension of the 506

SAE encoding layer n · d, and the REFT rank. And 507

we test performance of different parameters in GPT- 508

Neo (125M). 509

Impact of Top-k Selection (k). To evaluate the 510

impact of the top-k parameter, we fix the SAE en- 511

coding dimension n = 3 and the REFT interven- 512
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Figure 5: Ablation Study on k, n and reft rank with Exact ER and Frac ER in GPT-Neo (125M)

tion rank. We varied k in the range of 100 to 500 for513

several representative settings of GPT-Neo (125M,514

1.3B, and 2.7B) and Pythia (410M, 1.4B, and 2.8B).515

Specifically, we set k = 100, 200, and 300 for516

GPT-Neo 125M and Pythia 410M; k = 200, 300,517

and 400 for GPT-Neo 1.3B and Pythia 1.4B; and518

k = 300, 400, and 500 for GPT-Neo 2.7B and519

Pythia 2.8B, respectively. The results show that520

our model consistently outperforms the baselines521

across all tested settings. Notably, increasing k ini-522

tially leads to substantial performance gains; how-523

ever, beyond a moderate value (e.g., k = 300 in524

the 410M suite), the improvement plateaus while525

computational complexity continues to rise. As526

shown in Fig. 5, GPT-Neo (410M) achieves the527

best Exact ER and Frac ER when k = 300.528

Impact of SAE Encoding Dimension (n · d). To529

explore the effect of SAE’s encoding dimension,530

we fix the top-k selection parameter at 100, 200,531

300 and REFT rank at 384, 614 and 768 on GPT-532

Neo (125M, 1.3B, 2.7B), respectively. We vary the533

SAE encoding dimension from smaller (n = 3) to534

larger dimensions (n = 5), respectively. The re-535

sults show that reducing the SAE encoding dimen-536

sion can improve performance, reflecting stronger537

representation ability. However, as the dimension538

increases, computational cost also grows signifi-539

cantly. Therefore, we chose n = 3 as the experi-540

mental setting.541

Impact of REFT Intervention Rank. Lastly, we542

vary the REFT rank across different levels, which543

denoted as L. The experimental results show that544

higher ranks outperform lower ranks. Specifically,545

low ranks has low performance to capture relevant546

variations in latent representations, while overly547

high ranks introduce complexity without substan-548

tial performance gain. Consequently, our findings 549

suggest the optimal balance for the REFT interven- 550

tion rank is 551

L = c · d/10 (9) 552

where c represents the coefficients, in our experi- 553

ments we chose c = 3,4 and 5, corresponding to 554

the reft rank obtained as 196, 307 and 384, respec- 555

tively. 556

The experiments showed that both Exact ER and 557

Frac ER slightly increased as the ReFT rank grew, 558

indicating that a higher intervention rank helps the 559

model better activate and extract memory content. 560

However, a too high rank increases computational 561

cost, while performance gains start to level off. 562

Therefore, we choose L = 384 as the experimental 563

setting. 564

6 Conclusion 565

To address what semantic factors cause memoriza- 566

tion in LLMs, we use a SAE to project the hidden 567

states of LLMs into a sparse space, making it possi- 568

ble to analyze and locate semantic features associ- 569

ated with memorization. By examining the sparse 570

activations, we are able to identify features that are 571

consistently triggered by certain factual prompts or 572

entity names, suggesting their direct involvement in 573

factual recall. To answer whether these factors can 574

be used to control the memorization rate, we apply 575

targeted interventions through REFT, adjusting the 576

influence of specific features on memorization by 577

scaling their activations during inference. Our ex- 578

periments show that this approach improves LLM 579

performance, clarifies the semantic factors behind 580

memory, and allows effective control of memory 581

behavior. It also makes clear how specific semantic 582

features in the model directly lead to memorization. 583
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Limitations584

Although our method improves understanding of585

memorization in LLMs, its effectiveness is lim-586

ited by the nature of open-source models. First,587

biases in open-source training data (like LLaMA588

and BLOOM) reduce coverage of niche domain589

concepts, leading to unclear memorization inter-590

pretations. Second, the fixed model architectures591

only allow interventions on shallow activations, not592

deep memorization changes, which limits meaning-593

ful corrections. Lastly, findings from open-source594

models may not apply to closed-source systems595

because of unknown differences in data processing596

and design. While our framework helps extract597

and analyze memorized information, it could be598

misused to extract sensitive data or violate privacy599

if applied to models trained on private datasets.600

We strongly advise future users to follow ethical601

guidelines and safeguards to prevent misuse and602

protect privacy. The code for our SAE and REFT603

framework will be released on GitHub under the604

MIT License after publication. All datasets and pre-605

trained models used (such as The Pile, GPT-Neo,606

Pythia) are open-source and used according to their607

licenses and research purposes. Our released code608

is for research use only.609
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A Sparse Autoencoder 966

The dynamic decoupling and intervention 967

paradigm enables interpretability through features 968

endogenous to the model architecture, eliminating 969

the reliance on post hoc static probing techniques 970

(Wang et al., 2021; Liu et al., 2024b). Broadly, 971

research on memorization interpretability falls 972

into two categories. The first includes a posteriori 973

attribution methods (Hao et al., 2021; Wang et al., 974

2024c), which rely on correlation-based inference 975

and are vulnerable to confounding effects. The 976

second encompasses static intervention techniques 977

(Bai et al., 2021; Huang et al., 2025), such as soft 978

cue engineering and memorization editing, which, 979

despite enabling targeted suppression of memories, 980

fail to explain the underlying activation pathways 981

(Agarwal et al., 2024). 982

B Detailed Experimental Setup 983

Training and Evaluation Settings. The random 984

train/test split is 14k/1k samples, 9686/1k samples, 985

and 38k/2k samples for GPT-Neo and Pythia, re- 986

spectively. For evaluation, the generation’s decod- 987

ing method is greedy decoding. All the experi- 988

ments are conducted on a single NVIDIA A6000 989

GPU with 48GB memorization in less than 12 990

hours for trianing SAE and 18 hours for training 991

REFT. During the training of the SAE, we used a 992

batch size of 128 and an Adam optimizer for 200 993

epochs. We tried the learning rate from the range 994

of [10−3, 10−6]. During the training of the REFT 995

intervention, we utilize a batch size of 128 for GPT- 996

Neo 125M and 1.3B, as well as Pythia 410M and 997

1.4B. For GPT-Neo 2.7B and Pythia 2.8B, we use a 998

batch size of 64. All methods employ the AdamW 999

optimizer for 500 epochs, with the learning rate set 1000

within the range of [10−3, 10−6]. In the ablation 1001

study, we reduced the number of epochs from 500 1002

to 200. 1003

Discuss on the Artifacts. The source code of 1004

our method is implemented with Pytorch (Paszke, 1005

2019) and HuggingFace Accelerate (Gugger et al., 1006

2022). And the implementation is built upon the 1007

open-sourced code released by (Wang et al., 2024d). 1008

All the codes and datasets we utilize are public and 1009

open-sourced. They support the usage in research 1010

12

arxiv.org/abs/2404.03592
arxiv.org/abs/2404.03592
arxiv.org/abs/2404.03592


200 300 400

0.44

0.48

0.52

0.56

0.60

0.64

k

 Exact.ER

 Frac.ER

3 4 5

0.40

0.44

0.48

0.52

0.56

n

 Exact.ER

 Frac.ER

614 819 1024
0.40

0.44

0.48

0.52

0.56

0.60

0.64

Reft rank

 Exact.ER

 Frac.ER

Figure 6: Ablation Study on k, n and reft rank with Exact ER and Frac ER in GPT-Neo (1.3B)

and we use them for research purpose only. We did1011

not check whether the used data contains any infor-1012

mation that names or uniquely identifies individual1013

people or offensive content. We left this work to1014

the institution that released the data.1015

C Ablation Study on Different Model1016

Fig. 6 shows the ablation study on the parameter1017

k of Topk, expansion number n and reft rank for1018

GPT-Neo (1.3B) in terms of ExactER and Frac ER.1019

And we can conclude the same conclusion as the1020

ones in Section 5.1021
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