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ABSTRACT

We offer a novel approach to balance exploration and exploitation in
reinforcement learning (RL). To do so, we characterize an environment’s ex-
ploration difficulty via the Second Largest Eigenvalue Modulus (SLEM) of the
Markov chain induced by uniform stochastic behaviour. Specifically, we investi-
gate the connection of state-space coverage with the SLEM of this Markov chain
and use the theory of contraction coefficients to derive estimates of this eigenvalue
of interest. Furthermore, we introduce a method for estimating the contraction co-
efficients on a local level and leverage it to design a novel exploration algorithm.
We evaluate our algorithm on a series of GridWorld tasks of varying sizes and
complexity.

1 INTRODUCTION

The exploration-exploitation dilemma is a central issue in RL: how should a RL agent balance the
trade-off between exploiting its current knowledge of the environment to maximize returns with
exploring the environment so as to potentially discover more promising states. The difficulty of
this trade-off is that it is not uniform across all environments nor even across all states in the same
environment; in the well-known Arcade learning environment (Bellemare et al., 2013) there are a
set of games known to be difficult for exploration. Indeed, the infamous Montezuma’s Revenge
has been the focal point of recent works (Bellemare et al., 2016; Ecoffet et al., 2021). Despite this,
Taiga et al. (2020) demonstrated that ε-greedy (Sutton & Barto, 2018), one of the simplest and most
popular exploration strategies, performs comparably with more sophisticated techniques. Given
ε ∈ [0, 1], this strategy exploits its current knowledge with probability 1− ε and explores (by acting
randomly) with probability ε; thus, one elicits a purely random behaviour by setting ε = 1.

In this work, we characterize exploration difficulty via the mixing time, or time to stationarity, of
the Markov Chain induced by uniformly stochastic behaviour. Although this characterization is
not novel (Kearns & Singh, 2002; Liu & Brunskill, 2018), our approach differs from prior work in
the use of contraction coefficients, a notion introduced by Wolfer (2020). Contraction coefficients
prove useful as they can bound the eigenvalues of the transition matrices and their products (Seneta,
1979). We demonstrate empirically that bounding the eigenvalues of the transition matrix through
contraction coefficients provides good estimates of the mixing times of these chains.
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Figure 1: Complexity measures for the states of a GridWorld environment. The maze section of the
environment (on the right) is clearly more complex than the open room, and correlates well with our
measure of complexity. Higher numbers (colour more yellow) denotes higher complexity.
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Consider the hybrid GridWorld shown in Figure 1, where we illustrate one of the local complexity
measures we introduce in this paper (see subsection 3.3). It is evident that the maze section of the
GridWorld proves more challenging for exploration than the open room section, which correlates
well with our proposed measure.

Although the mixing time, the second largest eigenvalue modulus, or the contraction coefficient
of a Markov Chain all provide a useful measure of the complexity of an Markov Decision Pro-
cess (MDP), estimating any of these quantities is impractical: the number of samples required is
usually quadratic in the very same quantity we are trying to estimate (Pritchard & Scott, 2004) (see
Sec. subsection 3.1). This limitation may be why graph-theoretical analyses (based on the Random
Walk Laplacian of the state space graph) have been predominant in the study of this problem (Ma-
hadevan, 2009; Liu et al., 2018). The issue lies largely in the fact that the estimates are done at a
global level (i.e. for the full MDP).

To overcome these estimation issues, we propose going from global to local estimates by evaluating
the complexity in the vicinity of each state in the MDP. This global-to-local view connects with
decomposition methods that have been used in the past to compute convergence rates of Markov
Chains (Madras & Randall, 2002; Martin & Randall, 2006). We use our local complexity estima-
tors to propose an adaptive exploration method and demonstrate empirically, on discrete MDPs of
varying size and structural complexity, that it can improve the exploitation-exploration trade-off.

2 BACKGROUND

2.1 MARKOV PROCESSES

An MDP is a tuple M = 〈S,A,P,R〉 where S is the state space, A denotes the action space,
P : S ×A → ∆(S) defines the transition probabilities, andR : S ×A → R is the reward function.
A policy π(·|s) : S → ∆(A) is a conditional probability distribution over actions. Here, we are
interested in the Markov Chains over state space of the form

pπ(s′|s) =
∑
a

π(s|a)p(s′|s, a) (1)

where each policy induces the transition function p(s′|s, a). A Markov Chain (St)t≥0 is a sequence
of random variables whose probability distributions are given by a Markov kernel or operator M
such that St ∼ ρt = ρ0Mt. When the state space is discrete, the transition operator of the chain
will be a row stochastic matrix M . We will assume that the Markov Chains we analyze are ergodic
(irreducible and aperiodic) throughout. The assumption of ergodicity guarantees the existence and
uniqueness of the stationary and limiting distributions (Kulkarni, 2011).

For discrete ergodic Markov Chains, we will be interested in bounding the spectrum of the transition
matrix. If λi denotes the i-th (of n) eigenvalue (ordered by modulus) of the transition matrix, we
have that:

1 = λ1 > λ2 ≥, . . . , λn
From all eigenvalues, we are going to focus on the eigenvalue with the second largest absolute value.
The SLEM is the value of the spectrum of the transition matrix M that controls the convergence of
the chain to its limiting distribution (its mixing time), and is defined by

λ2(M) = max{λ2(M), |λn(M)|} (2)

This quantity is of great importance in the literature of Markov Chains as most bounds on the mixing
time are monotone on the SLEM (Boyd et al., 2004). For several bounds, we will refer instead to
the (absolute) spectral gap λ∗(M) = 1− λ2(M).

Moreover, in the discussions that will follow, we will be interested in the amount of time it will
take for a chain to visit all of the state space. The state-dependent cover time variable t̃cov(s) of
a Markov Chain (St)t≥0 is the minimal value such that for every state, there exist a time t ≤ t̃cov
where the chain has visited all the states (Levin & Peres, 2017). Also, we define the worst-case
cover time of the chain as:

tcov = max
s∈S

Es[t̃cov(s)] (3)

where s ∈ S is the initial state from which we compute the expectation.
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2.2 CONTRACTION COEFFICIENTS

A contraction (or ergodicity) coefficient κ(·) is a continuous scalar function defined for stochastic
matrices such that, for any stochastic matrix M , κ(M) is bounded in the [0, 1] interval. From
the many definitions of contraction coefficients in the literature, we focus on the one proposed by
Dobrushin (Dobrushin, 1956a;b):

κ1(M) = max
i,j
‖M(i, ·)−M(j, ·)‖TV (4)

where ‖ · ‖TV denotes the Total Variation distance (Cover & Thomas, 2005) between two rows of
the stochastic matrix M . The Dobrushin’s coefficient is simple to compute and has the following
properties:

Lemma 1. (Selee (2009), Theorem 3.5.3) For stochastic matrices M ,M1,M2, we have that

1. (Spectral bound) |λ(M)| ≤ κ1(M) for all λ(M) 6= 1.

2. (Sub-multiplicative): κ1(M1M2) ≤ κ1(M1)κ1(M2)

From the sub-mutiplicativity property of contraction coefficients in Lemma 1 it follows that for a
transition matrix M of an homogeneous Markov Chain, κ(M t) ≤ κ(M)t. This fact has been
useful in offering a modern perspective on mixing time analysis of ergodic Markov Chains (i.e.,
Wolfer (2020); Veretennikov & Veretennikova (2020)) that we will revisit in Section 3.1.

As contraction coefficients have a long history of applications to the theory of (time) non-
homogeneous Markov Chains, as well as traditional and quantum information theory (Dobrushin,
1956a; Seneta, 1979; Makur & Zheng, 2019; Hiai & Ruskai, 2015), we refer the reader to (Selee,
2009) for a historical perspective on this topic.

3 LOCO: LOCAL ESTIMATION OF CONTRACTION COEFFICIENTS

We begin by looking at a notion of complexity of an MDP derived from the properties induced by
the Markov Chain of a uniform policy, which we denote Mu. The use of the uniform policy is
justified as the actions executed are independent of the state of the MDP and uniformly distributed.
Any complexity measure constructed from this Markov Chain would reduce the analysis to the
complexity of the transition dynamics of the MDP. Indeed, the transition dynamics of the induced
Markov chain, pu, are spread equally across all actions:

Mu(s, s′) := pu(s′|s) =
1

|A|
∑
a∈A

p(s′|s, a) (5)

Additionally, exploration methods like ε-greedy spend a fraction of time (e.g., proportional to ε)
executing this uniformly stochastic behaviour.

However, as illustrated in Figure 1, the amount of exploration required in a given state depends
on local properties of the transition dynamics. Furthermore, as we show below, estimating global
properties may be computationally impractical. This section presents a global-local perspective
that investigates the emergence of the complexity of global random exploration from properties of
local regions of the state space. We leverage Markov Chain decomposition methods to uncover this
global-to-local connection and propose some useful decompositions that are empirically validated.

In the discussion that follows, we make no assumption on the limiting distribution pu(s′|s), but we
do assume the underlying MDP is communicating and the Markov chain ergodic (Kallenberg, 2002).

3.1 GLOBAL COMPLEXITY

Definition 1. The global complexity of a Markov Decision ProcessM = 〈S,A, R, P 〉 under uni-
form stochastic behaviour is the cover time of the Markov Chain pu(s′|s) induced by the uniform
policy:

Cg(M) = EMu [tcov] (6)
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Intuitively, this notion of complexity measures how hard it would be, in expectation, to cover the
entire state space of an MDP following a uniformly stochastic policy, regardless of the initial state.
An important result due to Broder & Karlin (1989) relates the cover time of a Markov Chain with
its spectral gap.

Lemma 2. (Broder & Karlin (1989), Corollary 8) Let M be the transition probability matrix cor-
responding to a random walk on a connected graph G 1. The expected time to visit all states in G
satisfies

E[tcov] ≤
1

λ∗(M)

[
|S|2 log |S|

]
(1 + o(1)) (7)

where |S| denotes the size of the state space. This lemma provides an upper bound on the complexity
of the MDP under uniformly stochastic behaviour, and clarifies the sources of complexity: 1) the size
of the state space as given by the O(|S|2 log |S|) term, and 2) the structural properties of the chain
as indicated by the spectral gap λ∗(M). Note that the inverse spectral gap is not upper-bounded 2,
so there may exist Markov Chains where the time to cover the whole state space is controlled by the
spectral gap of the chain and not by the size of its state space.

Given the online nature of RL and that the size of the state space may be unknown, it would be more
practical to estimate the value of the spectral gap, or more precisely of the SLEM, from samples
obtained from the environment. We make use of results from the literature on Markov Chains to
compute approximations of the upper-bound on global complexity.

A natural approach is to compute the SLEM of the empirical transition matrix M̂ built from sam-
ples. Although simple, this estimation method is known to require a number of samples quadratic
in the mixing time (Pritchard & Scott (2004), Remark 2) to converge. Furthermore, our empirical
evaluations suggest that this estimator both over and underestimates the true value. We obtained
more stable results with the generalized contraction coefficient, that we denote by κgen, proposed
in Wolfer (2020). Although largely underestimating the true SLEM values, estimation via contrac-
tion coefficients is more stable (preserves ordering) independently of the number of samples (see
Appendix A).

3.2 LOCAL COMPLEXITY

Consider a Markov Chain with transition operator (matrix) M over a finite and discrete state space
denoted by S. Let {Si}mi=1 denote a partition of the state space such that the subsets form a set cover
S = ∪i{Si}. For each subset, construct a restricted Markov Chain with transition operator Mi

that models the probability of transition among elements on each subset. Also consider a projection
Markov Chain, denoted by MO, that models the probability of transition among the subsets in the
cover, and a normalization constantO = maxs∈S |{i : s ∈ Si}| that the measures maximum overlap
among the sets on the cover. In this setting, Madras & Randall (2002) propose the following theorem
that relates the spectral gap of a Markov Chain to the spectral gap of the projection chain MO and
the minimum spectral gap among all of the restricted chains.

Lemma 3 (State Decomposition Lemma, Madras & Randall (2002), Theorem 1.1). In the preceding
framework,

λ∗(M) ≥ 1

O2
λ∗(MO) min

i
λ∗(Mi) (8)

Moreover, using Lemma 3, we can formulate the global-local perspective of complexity under ran-
dom behaviour:

Theorem 1. The global complexity of a Markov Decision Process under uniformly random be-
haviour is bounded by

Cg(M) ≤ O2 1

λ∗(MO)

1

mini λ∗(Mi)
|S|2 log |S|(1 + o(1)) (9)

where 〈MO, {Mi}mi=1〉 is a decomposition of the Markov Chain M .
1The random walk on a connected graph generates a discrete ergodic Markov Chain. (Boyd et al., 2004)
2For ergodic chains, the SLEM could approach values infinitesimally close to 1
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Proof. See Appendix B.1

The dependency of this upper-bound on the inverse of the spectral gap of the restricted chains sup-
ports, in part, the idea of local complexity (in the restricted and projection chains) and how it may
be related to global complexity of the original chain. However, these state decomposition theorems
are not constructive in that they do not prescribe how to construct the decomposition. In the next
sections, we define two state space decompositions and analyze their utility for RL agents.

3.2.1 STATIC AND MONTE CARLO LOCALITY

The first two methods proceed as follows. For each state s ∈ S, simulate the Markov Chain M
for the number of steps required to ensure that each subset in the cover contains exactly τ states.
We call this method the static or fixed decomposition. Alternatively, we can simulate the Markov
Chain M for a fixed number of steps τ and construct each subset from the states visited during the
simulation. We refer to this second decomposition as the Monte Carlo decomposition of the state
space. In both, the restricted Markov Chains used are derived from the empirical transition matrices
as described above.

We are interested to determine the properties of our fine-grained decompositions of the state space
through the relative complexity of the restricted chains thus defined. Algorithmically, the two de-
compositions are quite similar (see Algorithms 4 and 5, Appendix C), the main difference stemming
from the role played by τ .

3.3 LOCAL ESTIMATION THROUGH CONTRACTION COEFFICIENTS

To study the restricted Markov Chains we first define Theorem 1 in terms of the contraction gap
κ∗(·) = 1−κ∗(·) by first restating Lemma 3 in terms of κ∗(·) and then providing a result analogous
to Theorem 1. We show these theorems and their proofs on Appendix B.2. Given these theorems,
and due to the analysis in Section 3.1, we focus the remaining discussion on contraction coefficients.

Having established our results through contraction coefficients, we use them as theoretical basis
to propose LOcal estimation of COntraction coefficients (LOCO), a novel algorithm that, using
either the Static or the Monte Carlo covers defined in Sec. 3.2.1, computes an approximation of
the complexity of uniformly random behaviour in the τ -vicinity of a state. Algorithm 1 presents
the pseudo code for LOCO that produces, for each state, the Wolfer (2020) generalized contraction
coefficient (line 6) extracted from the restricted chain having that state as origin.

Algorithm 1 LOCO: Local Estimation of Contraction Coefficients
1: procedure LOCO(M, τ ) . an MDPM, τ hyper-parameter
2: M =

∑
a πu(a|s)p(s′|s, a) . Markov Chain for the uniform policy

3: C,R = Cover(M ,S, τ) . Static or MonteCarlo (Appendix C)
4: O(·)← [ ]
5: for Mi ∈ R do . κgen(·) for all restricted chains
6: O(si)← κgen(Mi)
7: end for
8: return O . Oracle for each si ∈ S
9: end procedure

Figure 2 shows the values (min-max normalized) of the Wolfer (2020) generalized contraction co-
efficient estimated for the restricted Markov Chains Mi, started on each state, using the static (top
row) and Monte Carlo (bottom row) decompositions. These results confirm that both decomposi-
tions capture the complexity on the τ -vicinity of each state, but the interpretation differs between
the two. In the static decomposition, where the restricted Markov Chains evolve over equally-sized
state spaces, higher values of the contraction coefficient indicate higher local complexity. Restricted
chains with coefficient values close to one indicate that uniformly random behavior would progress
less. On the other hand, the decomposition through the Monte Carlo construction produces higher
values for the contraction coefficients in areas where random behaviour would progress more. This
is an indication of how the variable size of the subsets in the decomposition affects the estimation.
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Figure 2: Static (top row) and Monte Carlo (bottom row) cover construction for an MDP, graphically
depicted as GridWorld.

In the following sections, we show that both notions of local complexity in the τ -vicinity of a state
can be used to balance the exploitation-exploration trade-off. Further empirical evidence is provided
in Appendix E.

4 ADAPTIVE ε-LOCO

One interpretation of LOCO is as a relative measure of complexity in the τ -vicinity of each state. In
this section, we assume that the amount of exploration required at a state is proportional to the local
complexity metric. We introduce an adaptive coefficient κ̂(s) : S → [0, 1] such that for each state
s ∈ S, an ε-greedy policy executes:

πε = (1− κ̂(s))πt + κ̂(s)πu (10)
where ε(·) is computed as a mixture between a pre-defined value of ε and an estimated κgen com-
puted using LOCO. Algorithm 2 presents ε-LOCO, an algorithm that through minimal modification
to conventional RL balances exploration-exploitation by trading off a (user) pre-specified ε coeffi-
cient and an estimate of local complexity, using LOCO.

Algorithm 2 ε-LOCO
1: procedure ε-LOCO(M, τ, ε, η)
2: O(·)← LOCO(M, τ) . Pre-compute oracle
3: for episode in episodes do
4: s0 ∼ ρ
5: for t in timesteps do
6: κ̂(ε, η, st)← (1− η)ε+ ηO(st) . Compute an η-mixture
7: at ∼ (1− κ̂(st))πt + κ̂(st)πu . Adaptive Exploration
8: st+1 ∼ p(st+1|st, at)
9: πt+1 = update(πt, st, at, rt, st+1) . Any policy update.

10: end for
11: end for
12: end procedure

We designed two approaches for computing O(·) (lines 2 and 6). First, we assume a pre-computed
oracle that for each state, produces a local complexity of the MDP in the τ -vicinity of the state
using LOCO. Next, we assume that the learning agent has a memory (e.g., a replay buffer) that
provides access to the last τ visited states and, using these samples, can construct an online estimate
of LOCO. In both cases, the parameter η (line 6) trades off how much the mixture explores using
the preset exploration value and using estimated local complexity.

Offline Adaptive Exploration The oracle (or offline) computation pre-computes a functionO(·)←
LOCO(M, τ) that holds, for each state, the amount of exploration estimated by LOCO for the τ -
vicinity of the state. This approach maintains these values through the whole learning algorithm.

Memory-based Adaptive Exploration The online (or memory-based) approach assumes an agent
with a memory (denoted by RB) that stores state-to-state transitions. Thus, the amount of local
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Figure 3: Average returns and state space coverage for the offline and online approaches in three
GridWorlds. We used η linearly spaced in the [0, 1] interval. A value η = 0 presents the results of
traditional ε-greedy exploration with ε = 1.

exploration at a given state (time step) is a function of the last τ transition experienced by the
agent, such that O(·) ← LOCO(RB, τ) is computed as depicted in Algorithm 3 (see Appendix C,
Algorithm 6 for a full description). This algorithm allows the agent to self-supervise the amount of
exploration in the last τ time steps as computed by our LOCO estimate.

Algorithm 3 LOCO from Memory
procedure LOCO(RB, τ ) .RB : memory, τ : time steps

T ← RB.last(τ) . Last τ state-to-state transitions.
M̂ ←MLE(T ) . Estimate the empirical transition matrix.
return κgen(M̂)

end procedure

We empirically evaluated both approaches on a number of discrete MDPs.

4.1 EXPERIMENTS

We ran ε-LOCO, and the memory-based m-LOCO algorithms, as defined in Algorithms 2 and 6 in
three conventional MDPs Larger, Four Rooms, and Maze (Figure 5, Appendix A). For all environ-
ments, the reward function was set such that executing an action leading to a wall yields rt = −1,
stepping into free space yielded rt = 0, and reaching the goal provided a positive unit reward rt = 1.
The learning algorithm was tabular Q-Learning (Sutton & Barto, 2018), ran for 15 episodes of 200
time steps, with fixed learning rate α = 0.5 and discount γ = 0.99.

Figure 3 shows average reward and state space coverage, over 10 trials, for the oracle and online
approaches respectively. For each trial, we used values of η linearly spaced in the [0, 1] interval,
and a pre-defined value of ε = 1. The oracle approach, with LOCO estimate was fixed throughout

7



Accepted at the Self-Supervision for Reinforcement Learning Workshop, ICLR 2021

the learning phase, showed an smaller improvement when contrasted with the online algorithm.
In the latter case, the self-supervision property of the memory-based algorithm provided a better
exploration-exploitation trade-off, as the restricted chain construction is guided by samples of the
policies the agent is executing.

For an optimal value of η, we observed an increase in the average returns as well as in the amount
of the state space cover, within the fixed budget of 3000 steps, across all environments, but most
prominently in Maze. As the empirical evidence show, from all environments, making progress
by uniformly sampling actions is harder in Maze (see Appendix D). Thus, the introduction of our
measure of local complexity using LOCO estimates may be more relevant the harder the exploration
problem is. In future work, we will further validate this claim on larger and more complex MDPs.

5 CONCLUSIONS AND FUTURE WORK

In this work, we presented LOCO, a novel method for measuring the complexity of random explo-
ration at a local level, using contraction coefficients. Through empirical arguments, we showed that
estimating this quantity benefits exploration methods like ε-greedy.

The idea of measuring complexity of an MDPs and the properties of Markov Chains induced on
it have been of interest in RL (Littman et al., 1995; Kakade, 2001; Kearns & Singh, 2002; Strehl
et al., 2009). The study of structural properties of MDPs have been investigated either using graph
theory (Mahadevan et al., 2006) or the mixing time of Markov Chains induced by policies (Littman
et al., 1995; Kearns & Singh, 2002), known to determine the hardness of RL. In recent literature,
Liu & Brunskill (2018) and Jinnai et al. (2019) present global analysis of the complexity uniformly
random behaviour, though they do no offer the decomposition analysis we showed here. Also,
Tarbouriech & Lazaric (2019) and Thodoroff et al. (2018) highlight the importance of looking at
structural properties of MDPs in a RL.

In future work, we would like to extend our results to MDPs with continuous state and action spaces,
and in particular, evaluating the effectiveness of LOCO in combination with deep networks.
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A SLEM ESTIMATION

We empirically verified the behaviour of the Maximum Likelihood Estimation (MLE) approximation
and the Generalized Contraction Coefficient for three well-known MDPs, visually represented as
grid worlds in Figure 5, and evaluate the effect of the sample size. As we show in Figure 4a, this
estimator both over and underestimation of the true value of the SLEM. Furthermore, it would be
impractical to compare the results for different chains as the number of samples used affects the
estimator differently on each MDP.
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(a) MLE
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(b) Wolfer (2020) κgen(·)

Figure 4: We investigated two approaches to estimate the SLEM, each with different level of sophis-
tication.

Maximum Likelihood Estimation Given samples {s1, s2, . . . , sT } obtained from a T − steps sim-
ulation of the Markov Chain M . Using this trajectory, one can compute the MLE of the condi-
tional probability distribution p(St+1 = s′|St = s), such that, for a pair of states (si, sj) indexed
1 ≤ i, j ≤ |S| respectively, the empirical transition matrix is estimated by:

M̂ [i, j](T ) =

∑T
t=1 1{st=si,st+1=sj}∑T

t=1 1{st=si}
(11)

where 1{} denotes the indicator function. For each environment, we generated five 5000-steps
rollouts of the uniform policy and averaged the results of computing the SLEM of the transition
matrices estimated from samples of incremental size (every 250 steps).

Generalized Contraction Coefficient We use the generalized contraction coefficient proposed in
Wolfer (2020), denoted by κgen. While, the estimator of this quantity does not overcome the
quadratic dependency on the mixing time, we contrasted the results of computing κgen(M̂) (Wolfer
(2020), Algorithm 1) with those of the MLE discussed before. As Figure 4b shows, bounding the
SLEM of the chain with an estimate of the generalized contraction coefficient largely underestimates
the ground truth values. However, in contrast to the MLE, the ordering of the SLEMs of the chains
was preserved, independent of the number of samples.

(a) Larger Room (b) Four Rooms (c) Maze

Figure 5: The three gridworld environments used in the experiments of SLEM estimation.
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B THEOREMS PROOFS

B.1 PROOF OF THEOREM 1

Proof.

λ∗(M)
(i)
≥ 1

O2
λ∗(MO)λ∗(Mk)

1

λ∗(M)
≤ O2 1

λ∗(MO)

1

λ∗(Mk)

1

λ∗(M)
[|S|2 log |S|] ≤ O2 1

λ∗(MO)

1

λ∗(Mk)
[|S|2 log |S|]

E[tcov]
(ii)
≤ O2 1

λ∗(MO)

1

λ∗(Mk)
[|S|2 log |S|]

where (i) comes from Lemma 3 and (ii) can be derived from Eq. 7. We omit the extra term
(1 + o(1)) for clarity of the presentation.

B.2 THEOREMS FOR CONTRACTION COEFFICIENTS

To study the restricted Markov Chains, it would prove useful, provided the estimators analysis in
Section 3.1, to define Theorem 1 in terms of the contraction gap κ∗(·) = 1 − κ∗(·). To do this, we
firstly re-state Lemma 3 in terms of κ∗(·) and then, we provide an equivalent to Theorem 1.
Theorem 2 (State Space Decomposition via Contractions). In the preceding framework,

λ∗(M) ≥ 1

O2
κ∗(MO) min

i
κ∗(Mi) (12)

Proof. First, for any Markov Chain, we have that the following result that relates the contraction
gap with the spectral gap:

λ2(M)
(i)
≤ κ(M)

1− κ(M) ≤ 1− λ2(M)

1− κ(M) ≤ λ∗(M)

κ∗(M) ≤ λ∗(M) (13)
where (i) comes from Lemma 1.1. Let λ∗(Mk) = mini λ

∗(Mi), using (13) the rest follows:
1− κ(MO) ≤ λ∗(MO)

(1− κ(MO))(1− κ(Mk)) ≤ λ∗(MO)λ∗(Mk)

1

O2
(1− κ(MO))(1− κ(Mk)) ≤ 1

O2
λ∗(MO)λ∗(Mk)

1

O2
(1− κ(MO))(1− κ(Mk)) ≤ λ∗(M)

1

O2
κ∗(MO) min

i
κ∗(Mi) ≤ λ∗(M)

Theorem 3. The global complexity of a Markov Decision Process under uniformly random be-
haviour is bounded by

Cg(M) ≤ O2 1

κ∗(MO)

1

mini κ∗(Mi)
|S|2 log |S|(1 + o(1)) (14)

where 〈MO, {Mi}mi=1〉 is a decomposition of the Markov Chain M .

Proof. From Theorem 2, we have that:

λ∗(M) ≥ 1

O2
κ∗(MO) min

i
κ∗(Mi)

The rest follows as in Theorem 1.
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C ALGORITHMS

Algorithm 4 Static Cover
procedure STATICCOVER(M , S, τ )
C = {},R = {}
for all s ∈ S do

Si ← Si ∪ {s}
T ← [s0 = s]
while |Si| < τ do

st ∼M
Si ← Si ∪ {st}
T ← T + st

end while
C ← C ∪ Si
R ← R∪MLE(T )

end for
return C,R

end procedure

Algorithm 5 Monte Carlo Cover
procedure MONTECARLOCOVER(M , S , τ )
C = {},R = {}
for all s ∈ S do

Si ← Si ∪ {s}
T ← [s0 = s]
for 1 . . . τ do

st ∼M
Si ← Si ∪ {st}
T ← T + st

end for
C ← C ∪ Si
R ← R∪MLE(T )

end for
return C,R

end procedure

Algorithm 6 ε-LOCO from Memory
1: procedure m-LOCO(M, τ, ε, η)
2: RB ← ∅ . Assume a replay buffer
3: for episode in episodes do
4: s0 ∼ ρ
5: for t in timesteps do
6: RB.update(st)
7: ε(st)← (1− η)ε+ ηLOCO(RB, τ) . Algorithm 3
8: at ∼ (1− ε(st))πt + ε(st)πu . Adaptive Exploration
9: st+1 ∼ p(st+1|st, at)

10: πt+1 = update(πt, st, at, rt, st+1) . Any policy update.
11: end for
12: end for
13: end procedure

D RANDOM EXPLORATION

We show the progress of uniform stochastic exploration in three MDPs, graphically depicted as
Gridworlds. For a fixed budget of 3000 steps, making progress by executing each action uniformly
at random, is harder on Maze, than in Four Rooms, than in Larger Room.

(a) Larger (b) Four Rooms (c) Maze

Figure 6: Progress of random exploration in each GridWorld for a fixed number of steps.
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E EMPIRICAL ANALYSIS OF DECOMPOSITIONS

We provide further empirical evidence on the properties of the decomposition presented in Section
3.2.1. In this analysis, we used GridWorld with underlying MDPs of varying state space size, with
deterministic transition dynamics, and common action space. For each environment, we present
the raw value and a min-max per-environment normalized value that renders the visualization more
amenable.

E.1 STATIC DECOMPOSITION

E.2 MONTE CARLO DECOMPOSITION
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Figure 7: Raw values of the per-state local complexity C(·, τ) through a static cover construction.
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Figure 8: Min-max normalized per-state local complexity C(·, τ) through a static cover construction.
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Figure 9: Absolute value of the per-state local complexity C(·, τ) through a static cover construction.
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Figure 10: Min-max normalized per-state local complexity C(·, τ) through a Monte Carlo cover
construction.
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