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Abstract

Game design hinges on understanding how static rules and content translate into dy-
namic player behavior—something modern generative systems that inspect only a
game’s code or assets struggle to capture. We present an automated design iteration
framework that closes this gap by pairing a reinforcement learning (RL) agent, which
playtests the game, with a large multimodal model (LMM), which revises the game
based on what the agent does. In each loop the RL player completes several episodes,
producing (i) numerical play metrics and/or (ii) a compact image strip summarising
recent video frames. The LMM designer receives a gameplay goal and the current
game configuration, analyses the play traces, and edits the configuration to steer future
behaviour toward the goal. We demonstrate results that LMMs can reason over behav-
ioral traces supplied by RL agents to iteratively refine game mechanics, pointing toward
practical, scalable tools for AI-assisted game design.

1 Introduction

Game design is an iterative process: designers create a game and have players playtest the game to
provide feedback for further refinement of the game design (Figure 1). Playtesting helps designers
understand how statically authored rules and content produce dynamic gameplay behavior when
players interact with that static content. The complex, emergent dynamics that result from players
engaging with a game makes it difficult to reason about a design solely from the rules and content.

Here we explore the use of large multimodal models (LMMs) for the task of iteratively refining a
game design using player behavior. LMMs are increasingly used to generate games (Todd et al.,
2023; Sudhakaran et al., 2023; Anjum et al., 2024; Zala* et al., 2024), yet ensuring the game yields
desired player behaviors remains difficult (Sun et al., 2024), in part due to the difficulty of reasoning
about games purely from their static description as rules and content.1 Reinforcement learning (RL)
agents have demonstrated strong game playing capabilities across many genres (Mnih et al., 2015;
Silver et al., 2018; Hafner et al., 2025; Vinyals et al., 2019; Berner et al., 2019). While having
humans playtest a game is the most direct way to gather human feedback (Zook et al., 2014), this
can be costly and time-consuming to implement. We investigate an alternative where an RL agent
acts as a proxy for a human player. In our iterative design process, an LMM takes the role of the
designer modifying the game, using gameplay behavior from the RL player to guide decisions. We
use this setup to explore the potential for AI to augment the design iteration process by automatically
refining a game design toward a given gameplay goal.

We test this approach in Flappy Bird, fixing broken level generators to achieve a target player score
and using a pretrained DQN agent as the player. We explore two different representations of player
behavior to the LMM designer: textual summaries of gameplay metrics captured from the game and

1Please consult Appendix A for a more complete description of related work.
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visual summaries of gameplay extracted from video recordings. Our experiments demonstrate the
viability of automated design iteration using LMMs, showing equal levels of LMM success at tuning
gameplay difficulty when using text-based metrics, gameplay behavior visuals, or both together.
These results showcase the value of RL agents to facilitate automated design iteration, enabling the
refinement of games to provide desired interactive experiences through automated modification by
LMM agents.

Figure 1: Overview of our AI design iteration framework. In each iteration an RL agent plays a
given game configuration, yielding gameplay behavior traces that an LMM uses to modify the game
configuration. We vary the play trace representation as summary metrics, or a sequence of image
observations, or both.

2 Method

Our iterative design system consists of designer and player agents. The player is an RL agent that
plays the game to produce information about gameplay behavior possible in the game. The designer
is an LMM that is provided a gameplay goal and reasons about the current game configuration and
the gameplay behavior to modify the game to achieve the gameplay goal. Through an iterative
process, the designer uses the information extracted from play sessions to make changes about the
game, and the player then plays the new game design to provide feedback for a new iteration.

Game We study Flappy Bird for it’s accessibility and availability of trained RL agents. Flappy
Bird’s gameplay is governed by the physics of the game (rules) and placement logic for the procedu-
rally generated pipes (content), making it difficult to reason about purely from a textual description
of the game rules and thus a good testbed for our iterative design process. Levels are procedu-
rally generated, randomizing the setup for each playthrough. We instrumented the game to record
key gameplay metrics including the player score (number of pipes passed) and gameplay duration.2

Each playthrough was also recorded as a video clip.

Agents For the designer we used GPT-4.1 (https://openai.com/index/gpt-4-1/) as it is currently a
strong LMM model that demonstrates strong baseline visual reasoning capabilities. The designer
task is to modify a configuration file that defines parameters of key game mechanics including pipe
spacing, dimensions, movement speed (see Appendix B for detailed information).3 Concretely, in
each iteration the designer is prompted with the gameplay goal having a score of 10 (no more nor

2While we recorded other metrics, we observed the LMM would only reference these features in it’s analysis, suggesting
it was choosing to ignore the less relevant metrics like the maximum height in the screen the player flew to.

3We briefly investigated local LMMs, but found their performance to currently be relatively weak at basic tasks including
producing valid configuration file outputs. Given the rapid pace of improvements in LMMs we anticipate these limitations
will be relieved in the relatively near future and plan to revisit open models at that time, see Appendix D.
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less), the current game configuration (as YAML), a text description of the configuration parameter
semantics, and examples of several (5) play trajectories from the game.

For the player we used Dirgová Luptáková et al. (2024) DQN implementation as it offers an agent
that is stable to game variations.4 This RL agent uses a lidar model to observe the environment and
decides when to make the bird flap (jump); we found this model is flexible to variation to the level
design. In our experiments the players produces 5 episodes of play from each configuration from
the designer. For our experiments we use the pretrained agent without modification, leaving agent
tuning and learning to future work.

3 Experiments

We evaluate four experimental conditions to assess the impact of different feedback modalities pro-
vided to the LMM for game configuration adjustment:

1. Config-only: Designer receives only the configuration file and its description.
2. Text-only: Adds summaries for 5 episodes (score and flight time).
3. Image-only: Adds one composite image per episode from the last 8s of gameplay (25 frames).
4. Text+Image (Ours): Combines textual summaries and composite images.

In all experimental conditions, we prompt the designer to adjust the game configuration with the
objective of achieving a target score of 10, corresponding to the agent successfully passing 10 pipes.
An episode is considered complete when the agent collides with a pipe, reaches a maximum duration
of 120 seconds, or attains a maximum score of 30, whichever occurs first. To test reasoning across
a variety of game design conditions we created five starting game configurations for the LMM to
adjust (see appendix B).

A single trial run consists of the initial broken configurations, followed by 9 sequential iterations of
changes to the configuration for a total of 10 configurations, see Figure 3 and Appendix E. For each
configuration, we collect 5 independent player episodes. The LMM then uses text metrics and/or the
images from these 5 episodes to revise the game configuration. This process of episode collection
and configuration adjustment is repeated for 9 iterations in a row, each resuming from the previous
configuration, allowing the model to iteratively refine the game settings. We conduct 10 independent
trials for each experimental condition for each game configuration.

We analyze the DQN following the recommendations from the RL statistical best practices liter-
ature (Agarwal et al., 2021), using the inter-quartile mean (IQM) with 5000 bootstrap samples to
estimate 95% confidence intervals. Sampling 5 episodes from each configuration leads to high vari-
ance in estimates of the gameplay behavior. Thus, for analysis, we ran 50 additional episodes for
every configuration that was generated during the iterations. These trials use the same configuration
as the original trial, thereby retaining identical game dynamics while providing extra data for evalu-
ation purposes; we only analyze this newly generated data. Figure 2 displays the DQN score (IQM
and 95% CI) across different iterations of configuration changes.

The configuration-only baseline fails to improve the game settings, resulting in the agent consistently
achieving a score of zero. Text-based feedback reliably allows the designer to achieve the target
objective, with scores hovering around 10. Image-based feedback serves equally well, highlighting
capability of current LMMs to reason about visual representations of gameplay, at least in our case
where score is easily discerned from progress in the level. Providing both text and image feedback
also allows accomplishing the task by the 10th iteration. We note that all 3 non-baseline models
have statistically indistinguishable performance by the 10th iteration, and often achieve the target
score in fewer iterations (often the 5th). These findings collectively indicate that LMMs can reason
about gameplay behavior and relate this to game design parameters to achieve specified gameplay
objectives.

4github.com/markub3327/flappy-bird-gymnasium

github.com/markub3327/flappy-bird-gymnasium
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Figure 2: Player score (IQM and 95% CI) across iterations from different starting configurations.
The dotted line is the target score for the designer.

base config iteration 1 iteration 2 iteration 3

iteration 4 iteration 5 iteration 6 iteration 7

iteration 8 iteration 9

Figure 3: Designer steps from the base config (top left) to the final generated config (bottom right).
Each level represents ~8 seconds of play. Levels are procedurally generated in Flappy Bird, thus
different game speeds generate different length levels.

4 Conclusion

This study showcases the value of RL agents as playtesters in an automated design iteration loop
with an LMM responsible for adjusting game parameters to achieve a gameplay objective using the
RL agent’s behavior as feedback. We showed that providing text or image feedback to the LMM
designer allows it to achieve the target score after at most 10 iterations of refinement. These results
open the way for further investigation of automated game iteration and refinement using a variety of
play behavior modalities.

Future Work. Our study opens several avenues for further investigation. First, in preliminary
experiments we found that minor change to the player physics parameters (acceleration applied by
jumping, gravity strength, and so on) frequently cause catastrophic degradation in agent performance
despite the resulting games remaining playable to humans. Addressing this brittleness is critical for
building automated design loops that simultaneously produce robust RL agents and diverse training
environments. Second, we see strong potential in replacing the single, fixed RL player with an
ensemble of agents with heterogeneous architectures (both learning and static), providing a richer
proxy for the diversity of human players. Third, we plan to enlarge the designer’s action space from
configuration file edits to modification of the game code, enabling the generation of new mechanics
and gameplay.
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A Related Work

LLM-Generated Simulations. LLMs have been widely used to generate various simulation com-
ponents, including environment configurations, reward functions, and tasks for both games and
robotics. In games, LLMs have been used to generate levels (Todd et al., 2023; Sudhakaran et al.,
2023), parameterize simulators (Zala* et al., 2024), and assist in full-game design (Anjum et al.,
2024). Recently, FactorSim demonstrated that LLMs are capable of generating full fledge video
games from a detailed game design document while passing specific unit tests (Sun et al., 2024),
however they did not assure that the generated games are playable. In robotics, systems such as
RoboGen (Wang et al., 2024), Holodeck (Yang et al., 2024), and Gen2Sim (Katara et al., 2024) have
used LLMs to create 3D environments, tasks, and interactive scenes, often leveraging multi-prompt
pipelines. Other efforts have focused on reward design (Ma et al., 2023; Kwon et al., 2023; Ma
et al., 2024), with Eureka (Ma et al., 2023) using agent performance feedback to iteratively refine
task rewards.

By contrast, we use the raw behavior trajectories of an RL agent as input to a generic LMM, either
as telemetry summary data or raw video. We demonstrate that visual data from gameplay alone is
sufficient for the agent to refine game parameters, without additional processing of that format. This
allows the AI game designer to iteratively refine simulation structure based on observed gameplay,
reducing the need for human engineering to guide the system and opening the door to integrating this
approach into game development workflows where telemetry is difficult or impractical to implement.

We believe our work provides a foundation for interpretable game design iteration by LMMs, which
can later be extended to collaborate with human designers. Unlike POET (Wang et al., 2019),
which does not explain its environment modifications, our LMM-driven approach has the potential
to surface rationales for design choices—enabling human-in-the-loop refinement in future systems.

Reinforcement Learning in Video Games. Reinforcement learning (RL) has been extensively
applied to video games, serving both as a benchmark for evaluating general intelligence and as
a practical tool for developing adaptive agents. Mnih et al. (2015) demonstrated that Deep Q-
Networks (DQN) could learn to play a variety of Atari games directly from pixel inputs, achieving
human-level performance in several instances. Subsequent work demonstrated that RL agents could
be trained to play a variety of games, including complex titles like Dota 2 (Berner et al., 2019) and
StarCraft (Vinyals et al., 2019). We complement these efforts by showing how to use RL agent
behavior as feedback to iteratively refine game design, providing a new avenue for integrating RL
into game development workflows.

A parallel line of work has investigated the joint training of RL agents and construction of learn-
ing (game) environments, broadly known as open-ended learning or automated curricula. Stooke
et al. (2021) introduced an open-ended learning framework that trains agents across a procedurally
generated universe of tasks, encompassing both cooperative and competitive games. Gisslén et al.
(2021) take a similar approach, using RL for the an inner loop player and outer loop designer in
3d platform traversal and road driving tasks. Khalifa et al. (2020) addresses 2d puzzle level layout
using RL training for the puzzle generation and using fixed solvers (thus omitting the automated
curriculum aspect). The POET system and related efforts demonstrated the joint training of an RL
agent and the progressive complexification of the environment (Wang et al., 2019; 2020; Samvelyan
et al., 2023).

Unlike these efforts, we directly integrate with an existing game and focus on gameplay goals,
rather than agent learning progress. We demonstrate that LMMs already possess design iteration
capabilities and can be very sample efficient in refining game designs to achieve a gameplay goal,
requiring fewer than 10 iterations, each needing only 5 examples of gameplay behavior.
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B Config Example

# Speed and Acceleration
speed:

pipe_vel_x: -4
player:

max_vel_y: 10 # max vel along Y, max descend speed
min_vel_y: -8 # min vel along Y, max ascend speed
acc_y: 1 # players downward acceleration
vel_rot: 3 # angular speed
flap_acc: -9 # players speed on flapping
rot_thr: 20 # Player’s rotation threshold

# Dimensions
dimensions:

player:
width: 34
height: 24
private_zone: 100 # Radius of the private zone for LIDAR. DO NOT MODIFY.

lidar:
max_distance: 200 # Maximum distance for LIDAR rays. DO NOT MODIFY.

pipe:
width: 52
height: 320
min_gap: 100
max_gap: 150
min_gap_distance: 50 # Minimum distance from ground to pipe gap
max_gap_distance: 150 # Maximum distance from ground to pipe gap
min_horizontal_spacing: 200 # Minimum horizontal spacing between pipes
max_horizontal_spacing: 300 # Maximum horizontal spacing between pipes

base:
width: 336
height: 112

background:
width: 288
height: 512
fill_color: [200, 200, 200] # RGB color tuple

metrics:
save_path: "metrics"
save_on_reset: True

We used 5 starting configurations in our experiments. Each was created by modifying the default
game parameters to be broken in different ways that the designer would need to fix:

1. Too fast: Pipes moved too fast, making the game too hard.

2. Too easy: Pipe gaps were too wide, making the game too easy.

3. Too tight 1: Pipe gaps were similar to the default, but made too narrow, making the game too
hard.

4. Too tight 2: Pipe gaps were distributed differently to the default and also too narrow, making the
game too hard.

5. Too spaced out: Pipes were placed infrequently, causing wide horizontal gaps, making the game
too easy.

C Prompts

common_prefix = (
"You are a game designer tasked with improving the difficulty of a Flappy Bird

game. "
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"Your goal is to modify game configuration so the game is challenging but not
excessively difficult.\n\n"

)

common_suffix = (
"SECOND, provide the *complete* YAML for the new configuration, enclosed in a

markdown fenced code block like:\n"
"‘‘‘yaml\n<your yaml here>\n‘‘‘\n"
"The goal is to arrive at a good configuration with as few attempts as

possible.\n"
"Do not modify the LIDAR parameters."
"Do not modify the player speed parameters. Only modify the parameters related

to the pipes, including ‘pipe_vel_x‘."
)

if input_variant == "config_only":
intro = (

common_prefix +
"Below you will find (1) a *schema* describing every configuration

parameter, and (2) the *current* configuration.\n\n"
"First, ANALYSE the configuration and explain (succinctly) what changes

would improve gameplay.\n" +
common_suffix

)
elif input_variant == "images_only":

intro = (
common_prefix +
"Below you will find (1) a *schema* describing every configuration

parameter, (2) the *current* configuration, and (3) a set of gameplay
snapshots from recent sessions.\n\n"

# "Sessions are to passing 30 pipes, while passing fewer than 4 is
considered too difficult.\n\n"

"Aim for passing 10 pipes."
"First, ANALYSE the configuration and images and explain (succinctly) the

current level of difficulty and what changes would improve gameplay.\n
" +

common_suffix
)

elif input_variant == "metrics_text":
intro = (

common_prefix +
"Below you will find (1) a *schema* describing every configuration

parameter, (2) the *current* configuration, and (3) a handful of
recent game-session metrics.\n\n"

# "Sessions are limited to a maximum score of 30, while a score below 4 is
considered too difficult.\n\n"

"Aim for a score of 10."
"First, ANALYSE the configuration and metrics (paying special attention to

the recorded scores) and explain (succinctly) the current level of
difficulty and what changes would improve gameplay.\n" +

common_suffix
)

else: # metrics_and_images
intro = (

common_prefix +
"Below you will find (1) a *schema* describing every configuration

parameter, (2) the *current* configuration, and (3) recent game-
session metrics together with gameplay snapshots.\n\n"

# "Sessions are limited to a maximum score of 30, while a score below 4 is
considered too difficult.\n\n"

"Aim for a score of 10."
"First, ANALYSE the configuration and metrics and explain (succinctly) the

current level of difficulty and what changes would improve gameplay.\
n" +

common_suffix
)

if input_variant == "config_only":
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user_content_header = (
"Configuration schema (read-only):\n" + schema_description + "\n\n" +
"Base configuration (YAML):\n" + base_yaml

)
elif input_variant == "metrics_text":

user_content_header = (
"Configuration schema (read-only):\n" + schema_description + "\n\n" +
"Base configuration (YAML):\n" + base_yaml + "\n\n" +
f"Below you will find up to {n_recent} recent session metrics."

)
elif input_variant == "images_only":

user_content_header = (
"Configuration schema (read-only):\n" + schema_description + "\n\n" +
"Base configuration (YAML):\n" + base_yaml + "\n\n" +
f"Below you will find up to {n_recent} gameplay snapshots from recent

sessions."
)

else: # metrics_and_images
user_content_header = (

"Configuration schema (read-only):\n" + schema_description + "\n\n" +
"Base configuration (YAML):\n" + base_yaml + "\n\n" +
f"Below you will find up to {n_recent} recent session metrics, each

followed by a gameplay snapshot."
)

messages = [
{"role": "system", "content": intro},
{"role": "user", "content": user_content_header},

]

D Open Models

While open models did not perform as well as the OpenAI models we did test a variety of text-only
and text + image models. We used ollama as our run time and tested many variations of qwen3,
deepseek-r1, llama3.2, gemma3, mistral-small3.1, and phi4. Some models inexpli-
cably struggled to consistently generate valid yaml configurations, so we excluded them (all qwen3
variants, deepseek-r1, and llama3.2). We noticed the multi-modal models stopped generat-
ing valid yaml when the same size images were used to prompt as in the closed model testing, so we
also excluded any image-based testing. As a result, we only generated results on the metrics-only
case for a set of 3 open models, gemma3, mistral-small3.1, and phi4.

We share the aggregate results across the same number of iterations as the closed model in Figure 4.
We only ran 5 independent trials per model and starting configuration in contrast to the 10 inde-
pendent trials from Figure 2. Note that the results were consistently lower quality than the closed
model, and tended to undershoot the target score, meaning that the game remained too difficult in
these cases. Expanding on these open model investigations is left to future work, though we note that
the rate of model improvements suggests that near-future models will be significantly more capable.

E Level iteration examples

Below are examples of the generated levels over iteration steps (baseline at the top, subsequent
iterations are each row below) for each of the configurations. As levels are procedurally generated
in Flappy Bird, we display levels corresponding to the length of time the player agent progressed
through the level before failure (or termination from level length or timeout).
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Figure 4: Player score (IQM and 95% CI) across different iterations of configuration changes. Iter-
ation 0 is the initial broken configuration.

Figure 5: Too fast configuration

Figure 6: Too easy configuration
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Figure 7: Too tight 1 configuration

Figure 8: Too tight 2 configuration
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Figure 9: Too spaced out configuration


