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Abstract

Automated decision support systems that are able
to infer second opinions from experts can po-
tentially facilitate a more efficient allocation of
resources—they can help decide when and from
whom to seek a second opinion. In this paper, we
look at the design of this type of support systems
from the perspective of counterfactual inference.
We focus on a multiclass classification setting and
first show that, if experts make predictions on their
own, the underlying causal mechanism generating
their predictions needs to satisfy a desirable set
invariant property. Further, we show that, for any
causal mechanism satisfying this property, there
exists an equivalent mechanism where the predic-
tions by each expert are generated by independent
sub-mechanisms governed by a common noise.
This motivates the design of a set invariant Gumbel-
Max structural causal model where the structure of
the noise governing the sub-mechanisms underpin-
ning the model depends on an intuitive notion of
similarity between experts which can be estimated
from data. Experiments on both synthetic and real
data show that our model can be used to infer se-
cond opinions more accurately than its non-causal
counterpart.

1 INTRODUCTION

In decision making under uncertainty, seeking opinions from
multiple human experts tends to improve the overall quality
of the decisions. For example, in medicine, second opinions
have been shown valuable for establishing diagnoses and
initiating treatment [Burger et al., 2020] as well as reducing
the number of unnecessary procedures [Leape, 1989, Al-
thabe et al., 2004]. In machine learning, ground truth labels
are determined by carefully aggregating multiple noisy la-

bels provided by different experts [Zhang et al., 2016] and
inconsistencies between these noisy labels help developing
more robust models [Peterson et al., 2019]. Unfortunately,
the timeliness and quality of the decisions is often compro-
mised due to a shortage of experts, which prevents each
decision to be informed by multiple experts’ opinions.

In this context, we argue that the development of automated
decision support systems that, given an expert’s opinion on
a decision instance and a set of features, are able to infer
other experts’ opinions will enable a more efficient allo-
cation of resources. On the one hand, these systems could
prevent (prioritize) seeking other experts’ opinions when
they are unlikely (likely) to bring new perspectives. On the
other hand, these systems could also help identify those
experts whose opinion is most likely to disagree with that of
the expert sought first. Here, it is worth noting that several
studies have also argued that decision support systems that
identify disagreement between experts may help identify
when a decision instance would benefit most from a second
opinion [Raghu et al., 2019, Lim et al., 2021]. However,
these studies do not focus on inferring other experts’ opin-
ions given an expert’s opinion on a decision instance and a
set of features, as we do in our work.

More specifically, we consider a multiclass classification
setting where, for each instance, experts form their opinions
on their own (i.e., without communicating).1In this setting,
each expert’s opinion reduces to a label prediction. Then,
our goal is to design decision support systems that, given
an expert’s prediction on an instance with a set of features,
are able to infer other experts’ predictions about the same
instance, as illustrated in Figure 1. To this end, one could re-
sort to standard supervised learning. Under this perspective,
for each instance, the given expert’s prediction would be
just an additional feature about the instance. Unfortunately,
this would limit the applicability of the resulting supervised
learning model to the unrealistic scenario where, for each

1This setting fits a variety of real-world applications. For ex-
ample, when a patient is diagnosed by multiple doctors separately.
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Figure 1: An example of a training dataset and use case of our decision support system on a medical application. In panel
(a), for each patient, multiple doctors assess the severity of a concussion on the basis of a set of features. In panel (b), given
a doctor’s assessment of the severity of a concussion and a set of features, our decision support system infers other fellow
doctors’ assessment of the severity of the concussion.

possible pair of experts, we observe a sizeable number of
instances where both experts made a prediction. To circum-
vent this limitation, we look at the design of the above
systems from the perspective of counterfactual inference.

Our contributions. We first show that, if experts form their
opinions for each instance on their own, the underlying
causal mechanism generating the experts’ predictions needs
to satisfy a certain set invariant property. Moreover, we
further show that any structural causal model satisfying the
above set invariant property (in short, any SI-SCM) also
satisfies two additional desirable properties:

(i) there exists an equivalent SI-SCM where each ex-
pert’s predictions are generated by independent sub-
mechanisms governed by a common (multidimen-
sional) noise;

(ii) given an expert’s prediction on an instance with a set
of features, the conditional interventional distribution
and the counterfactual distribution of another expert’s
predictions entailed by the SI-SCM are identical2.

These properties suggest the following natural strategy to
design and train SI-SCM based decision support systems.
In a first step, we can use interventional data about each
expert—her predictions on a set of instances—to determine
the structure of each sub-mechanism separately. One can
view this step as multiple independent supervised learning
problems, one per expert. In a second step, we can use a
small amount of interventional data about multiple experts
making predictions about a joint set of instances to char-

2Under the conditional interventional distribution, both experts
have made a prediction but we only observe one of them. Under the
counterfactual distribution, only one expert has made a prediction,
which we observe.

acterize similarity across experts and factorize the noise
governing the sub-mechanisms into a set of noise compo-
nents. In a way, in this second step, we are adding a wrapper
to the supervised learning models characterizing each ex-
pert’s sub-mechanism to be able to make counterfactual
predictions about second opinions.

To implement the above strategy, we introduce a specific
class of SI-SCMs based on the Gumbel-Max structural
causal model [Oberst and Sontag, 2019] (in short, Gumbel-
Max SI-SCM) and characterize similarity across pairs of
experts using the concept of counterfactual stability3. In
the Gumbel-Max SI-SCM, each expert’s sub-mechanism is
governed by a Gumbel-Max noise variable and submecha-
nisms of similar experts may be governed by the same noise
variable. Further, we show that the problem of uniquely
associating each of these noise variables with disjoint sets
of mutually similar experts given data can be formulated
as a known clique partioning problem, an NP-hard prob-
lem [Grötschel and Wakabayashi, 1989, 1990], and propose
a randomized greedy algorithm with good performance.

Finally, we experiment with synthetic and real data compris-
ing of 20,426 expert predictions over 1,560 natural images.
The results on synthetic data show that our randomized
greedy algorithm can successfully recover the disjoint sets
of mutually similar experts underpinning a specific Gumbel-
Max SI-SCM from data. The results on real data show that
the (counterfactual) predictions provided by the Gumbel-
Max SI-SCM are more accurate than those provided by its
non-causal counterpart.

3Counterfactual stability is, in general, an axiomatic require-
ment imposed to counterfactual distributions [Oberst and Sontag,
2019]. However, in SI-SCMs, it is verifiable from interventional
data due to (ii), as shown in Theorem 7.



Further related work. Predictions by different experts have
been typically studied separately, i.e., without conditioning
on an observed prediction by a given expert [Dawid and
Skene, 1979, Welinder and Perona, 2010, Guan et al., 2018,
Kerrigan et al., 2021, Straitouri et al., 2022]. One could
think of the observed prediction just as an additional fea-
ture when inferring other experts’ predictions, however, this
would limit the applicability of existing inference methods
to scenarios where, for each pair of experts, we observe
a sizeable number of instances where both experts made
a prediction, as discussed previously. More broadly, our
work is not the first to use counterfactual reasoning in expert
prediction [Bica et al., 2020]. However, previous work has
used counterfactual reasoning to quantify an expert’s prefer-
ence over counterfactual outcomes rather than to infer other
experts’ predictions given an observed expert’s prediction.

Counterfactual inference has a long and rich history [Imbens
and Rubin, 2015]. However, it has mostly focused on esti-
mating quantities related to the interventional distribution of
interest such as, e.g., the conditional average treatment effect
(CATE). A few notable exceptions are by Oberst and Sontag
[2019] and Tsirtsis et al. [2021], which use the Gumbel-
Max SCM to reason about counterfactual distributions in
Markov decision processes (MDPs), and by Lorberbom et al.
[2021], which introduces a parameterized family of causal
mechanisms that generalize the Gumbel-Max SCM and are
specifically-tuned to a distribution of observations and inter-
ventions of interest. However, the Gumbel-Max structural
causal model has not been used previously to reason about
counterfactual expert predictions.

2 PRELIMINARIES

Given a set of random variables4 X = {X1, . . . Xn}, a
structural causal model (SCM)M defines a complete data-
generating process via a collection of assignments

Xi = fi(PAi, Ui),

where PAi ⊆ X \ Xi are the direct causes of Xi,
F = {f1, . . . , fn} are deterministic causal mechanisms,
U = {U1, . . . , Un} are jointly independent noise random
variables, and P (U) denotes the (prior) distribution of the
noise variables. Here, note that the noise variables U are
the only source of stochasticity and, given an observational
distribution P (X), there always exists a distribution P (U)
and mechanisms F so that P = PM, where PM is the
distribution entailed byM.

Two SCMsM and M̃ over variables X and U, with noise
distribution P (U) and mechanisms F and F̃ respectively,
are equivalent if, for all i ∈ [n], it holds that

xi = fi(pai, ui)⇐⇒ xi = f̃i(pai, ui).

4We denote random variables with capital letters and realiza-
tions of random variables with lower case letters.

for any realization PAi = pai and P (U)-almost every ui.5

Given a SCM M, an atomic intervention I corresponds
to assigning a fixed value to a variable. For example, let
I = do[Xi = x] be the intervention that assigns value x to
variable Xi, then the intervened SCMMI does not assign
the value of Xi according to fi(PAi, Ui) but assign it to a
fixed value x. The interventional distribution entailed by the
intervened SCM is denoted PM ; I . Furthermore, given the
(possibly partial) observation X = x, we can also define
a modified SCMMX=x where the noise variables U are
distributed according to the posterior distribution P (U |
X = x). Then, we can view a counterfactual statement
as an intervention I in the SCM MX=x and denote the
counterfactual distribution entailed by the counterfactual
SCMMIX=x as PM|X=x ; I .

The Gumbel-Max SCM is a specific class of SCM in which
the causal mechanism for a random categorical variable V
is defined as

fv(PA,U) := argmax
j
{logP (V = j | PA) + Uj} (1)

and each noise variable Uj ∼ Gumbel(0, 1). Here, note that
the interventional distribution PM ; do[PA=pa](V ) entailed
by a Gumbel-Max SCMM is exactly P (V | PA = pa).

3 COUNTERFACTUAL INFERENCE OF
SECOND OPINIONS

We consider a multi-class classification task where, for each
instance, a human expert h ⊆ H makes a label prediction
yh ∈ Y = {1, . . . , k} based on multiple sources of informa-
tion, which are (imperfectly) summarized by a feature vector
x ∈ X . Here, we assume that experts make predictions on
their own (i.e., without communicating with each other) and
the assignment of experts to instances is independent of the
identity of the instances and their feature vectors. Then, our
goal is to design an automated decision support system that,
given a prediction yh from an expert h about an instance
summarized by a feature vector x, is able to infer what pre-
diction yh′ another expert h′ 6= h would have made about
the same instance if she had been asked. Here, note that
two different instances may be (imperfectly) summarized
by the same feature vector x, however, we are interested in
a counterfactual prediction about the same instance.

Our starting point is to view the above counterfactual state-
ment as an intervention in a particular counterfactual SCM.
More specifically, letM be a SCM defined by the assign-
ments

Y = fY(X,Z,U), Z = fZ(V ), and X = fX(W )
(2)

5P (U)-almost everywhere means that the set of noise realiza-
tions U ′ for which the property does not hold has probability zero
under the distribution P (U), i.e., P (U ∈ U ′) = 0.



where U , V and W are (multidimensional) independent
noise variables, fY, fZ and fX are given deterministic
causal mechanisms (or functions), and Y = (Yh)h∈Z are
the predictions by a set of human experts Z ⊆ H. Then,
we can express the above counterfactual statement as an
intervention I = do[Z = {h′}] in the counterfactual SCM
MX=x,Z={h},Y =yh and, to infer the label prediction yh′ ,
we just need to resort to the counterfactual distribution
PM|X=x,Z={h},Y =yh ; do[Z={h′}](Y ).

At this point, one may argue that, even if we find a noise
distribution P (U) and a function fY under which the con-
ditional distribution PM(Y | X) is a good fit for observed
historical predictions by experts, we would be unable to
validate how accurate our counterfactual label predictions
are using data. In general, this is true since counterfactual
reasoning lies within level three in the “ladder of causa-
tion” [Pearl, 2009]. In this context, previous work resorts
instead to axiomatic assumptions about the causal mecha-
nism of the world [Oberst and Sontag, 2019, Tsirtsis et al.,
2021, Noorbakhsh and Rodriguez, 2021]. In our setting,
this would reduce to specifying how differences across ex-
perts may have lead to a different prediction while holding
“everything else” fixed. However, in what follows, we will
show that, if experts do not communicate with each other,
the above SCM satisfies a set invariance property that sur-
prisingly implies that the above counterfactual distribution
coincides with an interventional conditional distribution.
This enables a data-driven design and validation of our SCM
based decision support system.

4 RELATING THE COUNTERFACTUAL
AND INTERVENTIONAL WORLDS

To build some intuition on the reasons why, if experts do
not communicate, certain type of counterfactual and inter-
ventional distributions are identical, we start with a simple
example. Let h, h′ ∈ H be two different experts and con-
sider the following two questions:

1. Both experts have made a label prediction about an
instance (i.e., Z = {h, h′}) but we only observe the
prediction Yh = c made by h, what is the prediction
made by h′?

2. One of the experts has made a label prediction Yh = c
about an instance (i.e., Z = {h}) and we observe it,
what would the prediction made by h′ be if she had
made a prediction?

The first question is of conditional nature while the sec-
ond is a counterfactual one. In general, the answer to both
questions may differ, for example, if experts influence each
other’s predictions by sharing and discussing their opinions
in the first case. However, if experts do not communicate,
the answer to both questions should be identical. More for-
mally, the following conditional interventional distribution

and counterfactual distribution of the expert should be equal:

PM ; do[Z={h,h′}](Yh′ | X = x, Yh = c)

= PM|X=x,Z={h},Y=c ; do[Z={h′}](Y). (3)

More generally, we will now show that, if each expert forms
their opinion on their own, the above equality is a direct
consequence of a set invariance property satisfied by the
SCM defined in Eq. (2).

Set Invariant SCMs (SI-SCMs). If experts do not commu-
nicate before making a prediction and hence are unaware
and unaffected of other experts’ opinions, the mechanism
fY has a set invariant value over expansions (supersets)
of Z. For example, consider one single expert h has made
a prediction fY(x, {h}, u) = c about a specific instance.
Then, one can conclude that, if instead of a single expert,
a set of experts ζ ⊆ H such that h ∈ ζ would have made
predictions about the same instance (i.e., x and u does not
change), expert h would have made the same prediction,
i.e., (fY(x, ζ, u))h = c. More formally, we define the set
invariance property as follows:

Definition 1 (Set Invariance). A mechanism fY for variable
Y is set invariant with respect to Z if, for any two realiza-
tions Z = ζ and Z = ζ ′ such that ζ ⊆ ζ ′, it holds that

fY(x, ζ, u) = (fY(x, ζ ′, u))ζ for all x ∈ X , u ∈ U .

A SCMM with such a mechanism is set invariant for Y.

A set-invariant SCM (SI-SCM) for Y can be constructed by
expressing the causal mechanism fY with sub-mechanisms
fYh

governed by a common noise variable:6

Theorem 2. Any SCMM with mechanism fY of the form
fY(X,Z,U) = (fYh

(X,U))h∈Z , where fYh
: X ×U → Y

are arbitrary functions, is set invariant for Y.

In fact, the following theorem shows that the class of SCMs
with separate sub-mechanisms for Yh and a shared noise
variable U is not only a subclass but completely defines
the class of SI-SCMs for Y. Thus, any correlation between
experts’ predictions is caused by the common noise and
features but not the causal mechanism.

Theorem 3. For any SI-SCMM, there exists an equiva-
lent SI-SCMM′ with causal mechanism f ′Y(X,Z,U) =
(f ′Yh

(X,U))h∈Z where for h ∈ Z

f ′Yh
(X,U) := (fY(X, {h}, U))h∈Z .

Here, we would like to emphasize that, if the mechanism fY
of an SCM is not explicitly decoupled into sub-mechanisms
governed by the same noise, it may be challenging to check

6All proofs can be found in Appendix 1



whether an arbitrary SCM is set invariant. For arbitrary
SCMs, Theorem 2 can not be applied directly and Theo-
rem 3 does not tell us how to verify that an equivalent SCM
exists. However, it tells us that the mechanism of a set in-
variant SCM can be decoupled and simplified. It would be
interesting to develop methods to check for set invariance
for arbitrary SCMs in future work.

Equality between the counterfactual distribution and
the conditional interventional distribution. Returning to
our simple motivational example, note that, if a SCM is set
invariant, the answers to the counterfactual and the condi-
tional questions 1 and 2 are the same as long as the noise
u ∼ P (U | X = x, Yh = c) is the same. In particular, for
question 1, the answer is Yh′ = (fY(x, {h, h′}, u))h′ , for
question 2, the answer is Yh′ = fY(x, {h′}, u), and since
fY is set invariant, both answers are equal. More generally,
for arbitrary sets of experts, we can easily conclude that
equality holds if and only if fY is set invariant.

Next, to show that, if a SCM is set invariant, then the equali-
ty of distributions in Eq. (3) holds, we first present a more
general theorem that states that, if we expand the set of
experts who make predictions, the corresponding interven-
tional distribution of Y does not change:

Theorem 4. Let SCMM be set invariant for Y. Then, for
any ζ, ζ ′ ∈ H such that ζ ⊆ ζ ′, it holds that

PM ; do[Z=ζ](Y = y | X)

= PM ; do[Z=ζ′]((Y)ζ = y | X)

for any y ∈ Y |ζ| where (Y)ζ denotes the predictions by the
experts in the subset ζ ⊆ ζ ′.

The above theorem is straight forward to show using that,
due to the set invariance property, the prediction values
of mechanism fY for (x, ζ, u) are equal to the values for
(x, ζ ′, u) for experts in ζ and, due to the independence be-
tween the noise and the intervention, the noise distribution
does not change. A direct conclusion is that, no matter how
many experts make predictions, the conditional interven-
tional distribution of a single expert’s prediction does not
change, as formalized by the following corollary:

Corollary 1. Let SCMM be set invariant for Y. Then, for
any h ∈ H and ζ ⊆ H such that h ∈ ζ, it holds that

PM ; do[Z={h}](Yh | X) = PM ; do[Z=ζ](Yh | X).

Similarly, we can derive the desired equality between the
counterfactual distribution and the conditional interven-
tional distribution by using the set invariance of mechanism
fY and the fact that the noise distribution changes equally
in both scenarios. More formally, we have the following
corollary:

Corollary 2. Let SCMM be set invariant for Y. Then, for
any h, h′ ∈ H and ζ ⊆ H such that h, h′ ∈ ζ, it holds that

PM|X=x,Z={h},Y=c ; do[Z={h′}](Y)

= PM ; do[Z=ζ](Yh′ | X = x, Yh = c) .

for any x ∈ X and c ∈ Y .

Remark. While we have introduced the notion of set invari-
ance for SCMs in the context of inferring second opinions,
we believe it may be of independent interest since, generally
speaking, it allows us to identify counterfactual distributions
from interventional data.

5 CHARACTERIZING MUTUALLY
SIMILAR EXPERTS

Given a SI-SCM modelM where each expert’s predictions
Yh are generated by a sub-mechanism fYh

, our goal in this
section is to characterize mutually similar experts. Later
on, this will help us factorize the noise U governing the
sub-mechanisms fYh

underpinning the model into a set of
independent noise components and uniquely associate each
of these noise components with disjoint sets of mutually
similar experts given data.

To this end, we first start by characterizing similarity be-
tween a pair of experts h, h′ ∈ H. To this end, we resort
to the recently introduced notion of counterfactual stabili-
ty [Oberst and Sontag, 2019]. More specifically, we argue
that two experts h and h′ are similar ifM satisfies counter-
factual stability for h, h′ with respect to Y.

Definition 5 (Counterfactual stability). A SCMM satisfies
counterfactual stability for h, h′ with respect to Y if, for all
ζ, ζ ′ ⊆ H such that h ∈ ζ and h′ ∈ ζ ′ and for all c′ 6= c,
the condition

PM ; do[Z=ζ′](Yh′ = c | X)

PM ; do[Z=ζ](Yh = c | X)
≥ PM ; do[Z=ζ′](Yh′ = c′ | X)

PM ; do[Z=ζ](Yh = c′ | X)

implies that PM|X,Z=ζ,Yh=c ; do[Z=ζ′](Yh′ = c′) = 0,
where Yh = c is the observed outcome under do[Z = ζ].

For example, consider a scenario where a doctor needs to
decide what treatment option—surgery (Y = 0), radiation
(Y = 1) or chemotherapy (Y = 2)—will be more beneficial
for a patient with a tumor, imperfectly summarized by a
feature vector x. Assume doctor h decides the most bene-
ficial option is surgery, i.e., Yh = 0, and we know that, for
patients with similar x, doctor h′ is generally more likely
to operate and less likely to resort to therapy than doctor
h. Then, if doctors h and h′ are similar, as defined in Defi-
nition 5, we expect doctor h′ would have also decided the
most beneficial option is surgery for the given patient, if
consulted, i.e., Yh′ = 0. Here, whenever two doctors h and



h′ are not similar, one could argue that it is because they
weigh any (hidden) factor of the patient at hand differently7.

Unfortunately, in general, we cannot use data to verify
if two experts h and h′ are similar. This is because our
notion of similarity relies on a counterfactual distribu-
tion, PM|Yh=c ; do[Z=ζ′], and counterfactual reasoning lies
within level three in the “ladder of causation” [Pearl, 2009].
However, we will now define a notion of conditional stabili-
ty that is verifiable using interventional data and, in the case
of SI-SCMs, is both a sufficient and necessary condition for
counterfactual stability—if conditional stability holds, we
can conclude that two experts are similar.

Definition 6 (Conditional stability). A SCM M satisfies
conditional stability for two experts h, h′ ∈ H with respect
to Y if, for all ζ ⊆ H such that h, h′ ∈ ζ and for all c′ 6= c,
the condition

PM ; do[Z=ζ](Yh′ = c | X)

PM ; do[Z=ζ](Yh = c | X)
≥ PM ; do[Z=ζ](Yh′ = c′ | X)

PM ; do[Z=ζ](Yh = c′ | X)
(4)

implies that PM;do[Z=ζ](Yh′ = c′ | X,Yh = c) = 0.

Here, note that, for SI-SCMs, we only need to verify the
condition in Eq. (4) for the sets ζ = {h} and ζ = {h′}
because no matter how many experts make predictions, the
conditional interventional distributions in Eq. (4) do not
change, as shown in Corollary 1. Then, the following Theo-
rem formalizes the equivalence between conditional and
counterfactual stability:

Theorem 7. Let SCMM be set invariant for Y. Then,M
satisfies counterfactual stability for h, h′ ∈ H with respect
to Y iff it satisfies conditional stability.

Once we have a notion of similarity between pairs of experts
that we can verify from data, we can characterize groups of
mutually similar experts. In this context, it will be useful
to introduce the following notion of pairwise counterfac-
tual stability (in short, PCS), which extends counterfactual
stability to groups of experts ζ ⊆ H of arbitrary size.

Definition 8 (Pairwise Counterfactual Stability). A SCM
M satisfies pairwise counterfactual stability for a group of
experts ζ ⊆ H with respect to Y if it satisfies counterfactual
stability for any h, h′ ∈ ζ.

Similarly as in the case with a pair of experts, one can
also define pairwise conditional stability and it immedia-
tely follows from Theorem 7 that, for SI-SCM, pairwise
conditional and counterfactual stability are equivalent, as
formalized by the following Corollary.

7In general, note that similarity between experts does not al-
ways deterministically enforce the observed expert’s prediction on
the counterfactual prediction. In the example above, this happens
because the inequality in Def. 5 holds for the two remaining la-
bel values. Rather, it allows us to identify experts with different
decision making criteria.

Corollary 3. Let SCMM be set invariant for Y. Then,M
satisfies pairwise counterfactual stability for ζ ∈ H with
respect to Y iff it satisfies pairwise conditional stability.

6 GUMBEL-MAX SI-SCM

In this section, we build upon our theoretical results to
develop the Gumbel-Max SI-SCM, a new class of SI-SCM
based on the Gumbel-Max SCM.

Given a set of experts H, the Gumbel-Max SI-SCM par-
titions H into disjoint sets of experts Ψ = {ψ}ψ∈Ψ, as
defined in Section 5, and associate all experts within each
set to the same multidimensional noise variable. More for-
mally, the Gumbel-Max SI-SCM is defined as follows:

Definition 9 (Gumbel-Max SI-SCM). The Gumbel-Max SI-
SCMM(Ψ) is a specific class of SCM in which the causal
mechanism for Y is defined as

fY(X,Z,U) = (fYh
(X,U))h∈Z , with

fYh
(X,Uψ(h)) = argmax

c∈Y
{logP (Yh = c | X)+Uψ(h),c},

where ψ(h) ∈ Ψ denotes the subgroup expert h belongs to
and each noise variable Uψ(h),c ∼ Gumbel(0, 1).

By definition, the Gumbel-Max SI-SCMM(Ψ) is set in-
variant for Y and, for any ζ ⊆ H and h ∈ ζ, it holds that
PM(Ψ);do[Z=ζ](Yh | X) = P (Yh | X). Moreover, all ex-
perts within each group ψ ∈ Ψ are mutually similar, as
formalized by the following Theorem:

Theorem 10. The Gumbel-Max SI-SCM M(Ψ) satisfies
pairwise counterfactual stability (PCS) for each group ψ ∈
Ψ with respect to Y.

Finally, note that, for Ψ = H, the Gumbel-Max SI-SCM
reduces to the original Gumbel-Max SCM defined in Eq. 1.
Therefore, one can view the Gumbel-Max SI-SCM as a
generalization of the original Gumbel-Max SCM where,
instead of a single multidimensional noise variable U for all
h ∈ H, one has several noise variables Uψ , one per group.

Estimating counterfactual distributions. Given a predic-
tion Yh = c by an expert h, we can compute an unbiased fi-
nite sample Monte-Carlo estimator of the counterfactual dis-
tribution PM(Ψ) |X=x,Z={h},Y =yh ; do[Z={h′}](Y ) for the
prediction Yh′ of another expert h′ 6= h as follows:

PM(Ψ) |X=x,Z={h},Y =yh ; do[Z={h′}](Y )

≈ 1

T

∑
t∈T

1[c = fYh′ (x,ut)] (5)

where u1, . . . ,uT are samples from the posterior distribu-
tion PM(Ψ) |X=x,Z={h},Y =yh ; do[Z={h′}](Uψ(h′)) of the
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Figure 2: Illustration of the counterfactual sampling of ex-
perts’ predictions with the Gumbel-Max SI-SCMM(Ψ).

noise variable Uψ(h′). Here, we can use an efficient proce-
dure to sample from the above noise posterior distribution,
described elsewhere [Oberst and Sontag, 2019, Maddison
et al., 2015]. Moreover, note that, if h /∈ ψ(h′), the posterior
distribution coincides with the prior PM(Ψ)(Uψ(h′)). We
summarized the sampling procedure is depicted in Figure 2.

Partitioning experts into mutually similar groups. In
the Gumbel-Max SI-SCMM(Ψ), for each expert h ∈ H,
we can estimate the conditional distribution P (Yh | X)
using any machine learning model trained using historical
predictions made by the expert h. However, to fully define
M(Ψ), we need to partition the set of expertsH into disjoint
sets of experts Ψ given a small amount of historical data
about multiple experts making predictions about a joint set
of instances. To this end, we proceed as follows.

First, we look for violations of the conditional stability con-
dition throughout the historical data. Whenever there exists
a sample for which the predictions by two different experts
h and h′ violate conditional stability8, we conclude that
h and h′ cannot belong to the same group ψ. Further, we
also conclude that any pair of experts whose predictions did
not violate conditional stability and were at least once ob-
served for the same sample can be similar. However, since
conditional stability is not a transitive property, there may
be multiple valid partitions P = {Ψ} of the experts into
disjoint sets that are consistent with the above conclusions.
To decide among them, we would like to pick the parti-
tion Ψ ∈ P under which the counterfactual distributions
PM(Ψ) |X=x,Z={h},Y =yh ; do[Z={h′}](Y ) provide the best
goodness of fit. More formally, we would like to solve the
following minimization problem:

minimize
Ψ∈P

∑
h,h′∈H

L(M(Ψ), h′, h)− L(M(H), h′, h),

(6)

8A violation occurs whenever Eq. (4) holds but we observe
Yh = c and Yh′ = c′.
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Figure 3: Partitioning experts into mutually similar groups
Ψ.

where L(M(·), h′, h) denotes an average (empirical)
loss whenever we observe Yh and infer the label
prediction Yh′ using the counterfactual distribution
PM(·) |X=x,Z={h},Y =yh ; do[Z={h′}](Y ). Here, we mea-
sure goodness of fit in terms of average loss reduction with
respect to the counterfactual distributions entailed by the
causal modelM(H) because this will allow us to reduce the
number of pairs (h, h′) we need to consider. The step-wise
approach for obtaining Ψ is summarized in Figure 3.

Next, we formulate the above problem as a known clique
partitioning problem [Grötschel and Wakabayashi, 1989,
1990]. More specifically, let G = (H, E) be an undirected
graph where, if {h, h′} ∈ E , then h and h′ can be similar,
as concluded from the data. Then, it readily follows that
finding a partition Ψ ofH is equivalent to finding a clique
cover for G9. Now, let the weight w(h, h′) of each edge
{h, h′} ∈ E be given by:

w(h, h′) = L(M(Ψ), h, h′)− L(M(H), h, h′)

+ L(M(Ψ), h′, h)− L(M(H), h′, h)

Then, we can rewrite the minimization problem in Eq. 6 as:

minimize
Ψ

∑
ψ∈Ψ

∑
h,h′∈ψ

w(h, h′)

subject to Ψ is a clique cover for G,
(7)

where note that we only need to consider pairs of experts
h, h′ ∈ ψ because, otherwise, w(h, h′) = 0 since the corre-
sponding counterfactual distributions entailed byM(Ψ) and
M(H) coincide. The minimization problem given by Eq. (7)
is a known clique partitioning problem (CPP) 10, for which
the decision problem of CPP for arbitrary weights is NP-
Hard [Grötschel and Wakabayashi, 1989, 1990]. However,

9Ψ is a clique cover for G iff Ψ is a partition of H, i.e.,⋃
ψ∈Ψ ψ = H and ψ ∩ ψ′ = ∅ for all ψ,ψ′ ∈ Ψ, and vertices in

ψ ∈ Ψ form a clique in G.
10In most of the literature, the problem is defined for complete



we found that a simple randomized greedy algorithm works
well in our setting, as shown in Figure 1 in Appendix 3.
Refer to Appendix 2 for more details about the algorithm.

7 EXPERIMENTS ON REAL DATA

In this section, we compare the performance of the proposed
Gumbel-Max SI-SCM at inferring second opinions against
several competitive baselines using a dataset with real ex-
pert predictions over natural images. Appendix 3 contains
additional experiments on synthetic data where we assess
the performance of Algorithm 1 at recovering groups of
mutually similar experts on synthetic data.11

Data description and experimental setup. We experiment
with the dataset CIFAR-10H [Peterson et al., 2019], which
contains 10,000 images taken from the test set of the stan-
dard dataset CIFAR-10 [Krizhevsky et al., 2009]. Each of
these images belongs to n = 10 classes and contains la-
bel predictions from approximately 50 human annotators.
In total, the images are annotated by 2,571 different hu-
man annotators (from now on, experts).12 Since the classi-
fication task is relatively easy for humans, there are many
images (∼35%) in which there is full agreement between
experts—all experts make the same label prediction. Here,
motivated by the empirical observation that, in medical di-
agnosis, there is typically a 20% per-instance disagreement
among experts [Van Such et al., 2017, Elmore et al., 2015],
we filter out the above mentioned images in which there is
full agreement. Moreover, we split the remaining images
into two disjoint sets at random—a training set and a test
set—and filter out data from any expert who made less than
130 and 20 predictions in training and test set, respectively,
and whose predicted labels in the training data do not cover
all class labels. After these preprocessing steps, the resulting
training and test sets contain 1,257 and 303 images, respec-
tively, annotated by |H| = 114 experts, where each image in
the training and test set is annotated by at least two experts.

To find the groups of mutually similar experts underpinning
our Gumbel-Max SI-SCM, we run Algorithm 1 on the trai-
ning set. Within the Gumbel-Max SI-SCM, we estimate the
conditional distribution PM ; do[Z={h}](Yh | X) for each
expert h using a Gaussian Naive Bayes model (GNB) trained

graphs. However, for arbitrary graphs, one can simply include the
missing edges and assign positive infinite weights so that they are
not included in a solution [Brimberg et al., 2017]

11To facilitate research in this area, we release an open-
source implementation of our code at https://github.com/Networks-
Learning/cfact-inference-second-opinions.

12The dataset CIFAR-10H is one of the only larger public
datasets containing multiple label predictions by different experts
per sample, necessary to train the proposed Gumbel-Max SI-SCM.
However, since our methodology and theoretical results are rather
general, our model may also be useful in other applications.

Table 1: Overall test accuracy

Model h, h′ ∈ H h, h′ ∈ ψ h ∈ ψ, h ∈ ψ′

Gumbel-Max SI-SCM 66.8% 79.9% 45.1%
GNB 48.9% 51.3% 45.1%

GNB + CNB 62.0% 66.0% 55.2%

using also the training set (one GNB per expert)13. Each
GNB model uses 20 dimensional feature vectors computed
by running PCA on a 512 dimensional normalized feature
vector extracted using VGG19 [Simonyan and Zisserman,
2014]. Both during training and test, given an observed label
prediction Yh by an expert h, we infer the prediction Yh′

by another expert h′ using the most likely label under (an
estimate of) the corresponding counterfactual distribution.
To estimate each counterfactual distribution, we use T =
1,000 samples from the noise posterior distribution.

Baselines and evaluation metrics. We compare the per-
formance of our trained Gumbel-Max SI-SCM with two
baselines (see also Figure 2 in Appendix 4):

— The “GNB” baseline uses only the same Gaussian
Naive Bayes models (GNB), one per expert, used by our
trained Gumbel-Max SI-SCM. More specifically, given
an observed label prediction Yh by an expert h, it infers
the prediction Yh′ by another expert h′ using the most
likely label under the estimate of the conditional distri-
bution PM ; do[Z={h′}](Yh′ | X) given by the correspon-
ding GNB.

— The “GNB + CNB” baseline uses the same Gaussian
Naive Bayes models (GNB), one per expert, used by
our trained Gumbel-Max SI-SCM and a Categorical
Naive Bayes (CNB) model, one per expert, that estimates
PM ; do[Z={h,h′}](Yh′ | Yh).14 More specifically, given an
observed label prediction Yh by an expert h, it infers the pre-
diction Yh′ by another expert h′ using the most likely label
under the product of distributions PM ; do[Z={h′}](Yh′ |
X) × PM ; do[Z={h,h′}](Yh′ | Yh), as estimated by the
corresponding GNB (first term) and CNB (second term).

To compare the performance of our trained Gumbel-Max
SI-SCM and both baselines, for each sample in the test set,
we pick each of the corresponding expert label predictions
Yh as the observed prediction in turn and infer the value
of the other predictions Yh′ . Here, we compute the overall

13In the CIFAR-10H dataset, experts are assigned to
images (presumably) at random. Therefore, it holds that
PM ; do[Z={h}](Yh | X) = P (Yh | X,Z = {h}) and we can
use observational data to estimate the interventional conditional
distribution PM ; do[Z={h}](Yh | X).

14The CNB uses a “one-hot” encoding of the observed pre-
diction Yh as a single |H|-dimensional feature where, for each
dimension, it uses an additional label value to denote than an
expert’s label prediction has not been observed.

https://github.com/Networks-Learning/cfact-inference-second-opinions
https://github.com/Networks-Learning/cfact-inference-second-opinions
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Figure 4: Per-expert test accuracy achieved by our model and both baselines on the CIFAR-10H dataset. In each panel, the
y-axis measures the per-expert test accuracy achieved by our method and the x-axis the per-expert accuracy achieved by a
baseline. For each cell, the darkness is proportional to the number of experts with the corresponding test accuracies.

accuracy as well as the per-expert accuracy and distinguish
among three scenarios: (i) h, h′ ∈ H; (ii) h, h′ ∈ ψ; and,
(iii) h ∈ ψ, h′ ∈ ψ′, ψ 6= ψ′.

Results. We start by reporting that, during the training of our
Gumbel-Max SI-SCM, Algorithm 1 found 352 violations of
the conditional stability condition between pairs of experts
and partitioned the experts into fifteen disjoint groups of
mutually similar experts, where seven of these groups were
singletons. Refer to Appendix 4 for more details regarding
the groups identified by Algorithm 1.

Next, we report the overall accuracy achieved by our model
and the baselines in Table 1. We find that, in general
(h, h′ ∈ H), our model infers the expert predictions more
accurately than both baselines and this competitive advan-
tage comes from instances in which the observed prediction
is by an expert h who belongs to the same group of mutu-
ally similar experts as the expert h′ whose prediction we
infer (h, h′ ∈ ψ). In fact, the GNB+CNB baseline is more
accurate whenever both experts h and h′ do not belong to
the same group (h ∈ ψ, h′ ∈ ψ′, ψ 6= ψ′). Moreover, we
also find that the GNB+CNB baseline infers the expert pre-
dictions more accurately whenever both experts belong to
the same group of mutually similar experts identified by
Algorithm 1. In Appendix 4, we report the confusion matrix
of the above counterfactual predictions.

Finally, we report the per-expert h′ accuracy achieved by
our model and both baselines in Figure 4.15 The results
show that, in general (h, h′ ∈ H), our model infers the
expert predictions more accurately than the baselines for a
majority of the experts (103 and 89, out of 114, compared
to GNB and GNB+CNB, respectively). Moreover, if we
restrict our attention to observed label predictions by experts

15Whenever h, h′ ∈ ψ, we could not compute the per-expert
accuracy for 11 experts—seven of these experts belong to singleton
groups and the remaining four do not predict any of the same test
samples predicted by other experts in their mutually similar groups.

h belonging to the same group of mutually similar experts
as the expert h′ whose prediction we infer (h, h′ ∈ ψ),
our model infers the expert prediction more accurately for
almost all experts h′ (100 and 101, out of 103, compared to
GNB and GNB+CNB, respectively). Additionally, Figure 5
in Appendix 4 shows that, for most experts (87 out of 103),
the GNB+CNB baseline infers the expert predictions Yh′

more accurately if the observed prediction Yh is by an expert
h belonging to the same group of mutually similar experts
as the expert h′ (h, h′ ∈ ψ) than if it is by an expert h
belonging to a different group (h ∈ ψ, h′ ∈ ψ′, ψ 6= ψ′).

8 CONCLUSION

In this work, we have addressed the problem of inferring
second opinions by experts from the perspective of counter-
factual inference. We have focused on a multiclass classifi-
cation setting and showed that, if experts make predictions
on their own, the underlying causal mechanism generating
their predictions needs to satisfy a desirable set invariant
property. Moreover, we have introduced the set invariant
Gumbel-Max structural causal model, a new class of struc-
tural causal model whose structure and counterfactual pre-
dictions about second opinions by experts can be validated
using interventional data.

Our work opens up many interesting avenues for future
work. For example, we assume experts do not communicate
before forming their opinion. Although this assumption may
be satisfied in some real-world applications, it would be in-
teresting to relax it. Moreover, we have validated our model
using a single real dataset. It would be valuable to validate
our model using additional datasets from other applications.
Finally, it would be important to carry out user studies in
which the inferred second opinions provided by our model
are shared with domain experts (e.g., medical doctors).
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