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Abstract— In this work we study the use of the 5G New Radio
(NR) communication model for position tracking of a mobile
robotic system. We have deployed the 5G NR in three different
configurations in a simulated agricultural environment. We
evaluate the impact of using different number of gNodeB (gNB)
base stations and the increased topological complexity on the
position estimation, using three different heuristic approaches.
The setups consist of 5, 10 and 15 gNBs that communicate with
the user equipment (UE) carried by the robot. The ground truth
trajectory of the system is recorded and estimated by three
meta-heuristics, namely Hyperbola Crossing points (HCP), Par-
ticle Swarm Optimisation (PSO) and Genetic Algorithm (GA).
We measure the performance according to statistical metrics
such as the average prediction time, the average Euclidean
Distance (ED) and their standard deviations. We provide and
discuss the qualitative results derived experimentally to assess
the positioning capability of 5G NR for a simulated field
robotics application.

Index Terms— 5G NR, Mobile Robotics, Position Estimation,
Meta-Heuristics, Agriculture, HCP, PSO, GA

I. INTRODUCTION

As we are steadily moving forward into the next gen-
eration of wireless communications, there is a promising
future for robotic systems integrating 5G New Radio (NR)
technology [2]. NR is described in Release 16 of the 3rd
Generation Partnership Project (3GPP), which is the stan-
dardization organization. The 5G NR network can support
multiple communication protocols and services with a pri-
mary focus of advancing industrial, infrastructure, device to
device (D2D), vehicular and people oriented applications in
urban and rural areas.

The roll out of the 5G cellular network is performed cur-
rently as two types, Stand Alone (SA) and Non Stand Alone
(NSA). In the first case, the 5G user devices have access
through the ground Node B (gNBs) base stations and the
core network relies on the newly installed 5G infrastructure.
In the latter case, the 5G enabled devices have access to the
5G network interface but the core systems are still based on
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4G infrastructure. Hence communications differ in latency
than ’true’ 5G in terms of tens of milliseconds, but still faster
when compared to its predecessors. The User Equipment
(UE) is the target of the tracking process and communicates
with the gNB base stations at regular intervals to infer its
global position from the cellular network [8].

5G-enabled devices are predicted to have many favor-
able characteristics for mobile robot applications in outdoor
environments, such as higher speeds, low latency, larger
bandwidth capacity and less tower congestion in terms of
infrastructure, as its predecessors required. These attributes
are very attractive for applications such as smart factories,
manufacturing and warehousing, autonomous vehicles, med-
ical and agriculture automation.

Tracking the position of a mobile robotic systems in an
outdoor environment is a challenging task due to the inher-
ent complexity of the environment. The Global Positioning
System (GPS) is the standard for outdoor field robotics, but
signal quality is not always available especially in rural areas
such as dense forests, canyons, but also in building congested
cities as it requires communication with satellites that are in
orbit and non line of sight is a frequent problem.

The contribution of this work is to evaluate the position
estimation performance from a terrestrial communication
source such as the new 5G NR and assess its suitability for
position estimation of robotic systems, in terms of execution
time and error. For this purpose, we evaluate three well
established meta-heuristics for 5G position tracking, based
on Hyperbola Crossing Points (HCP), Particle Swarm Opti-
mization (PSO) and Genetic Algorithm (GA). This represents
a preliminary step towards a full assessment of the impact of
placement of base stations on robot positioning performance.

II. RELATED WORK

Position estimation using telecommunications relies on
multiple nodes. Nodes can be synchronized or operate asyn-
chronously to determine the position. A node is responsi-
ble of transmitting signals with qualitative and quantitative
properties that can be utilized by a receiver to measure the
transmission time and infer the ranges from nearby cellular
base stations. The measured signals are transformed into the
inferred position that can be used for localisation purposes
of a mobile robotic system operating outdoors.

There are two types of signal processing for position
estimation which are range-based and range-free [3]. In
static wireless networks, range free approaches such as the
centroid [13], Amorphase [13], DV-HOP [13] and APIT [16]
have been used in the past to determine sensor location. In



range positioning the position of a node relies on informa-
tion produced from the Received Signal Strength Indicator
(RSSI) [5], Time Difference of Arrival (TDOA) or Angle
of Arrival (AOA) of the base station topology. For the
determination of the ranges in cellular networks, the Time
of Arrival (TOA), Angle of Arrival (AOA) and Phase of
Arrival (POA) and their combinations [7] have been utilized
successfully in the past.

As a means of absolute outdoor robot positioning sys-
tems, sensors based on the the Global Navigation Satellite
Systems (GNSS) are the most commonly used [4]. They
rely on a constellation of satellites around the Earth’s orbit,
which constantly transmit their location. This information
is then used to estimate the time elapsed in communication
between the receiver and transmitter. Through trilateration or
multilateration between the receiver and available satellites in
orbit, the final position can be established within a reasonable
error margin. With the evolution of cellular networks the
combination of satellite and terrestrial communications was
made possible and an object can be tracked with improved
accuracy [9].

Currently we are making the transition to the 5G era bring-
ing increased signal density, lower latency, larger bandwidth
and much higher frequencies and energy savings. As with
its predecessors, 5G NR is predicted to be a hybrid between
ground based radio frequency communications and satellite
global communications. The 4G Long Term Evolution (LTE)
has provided connectivity with devices in such way that
broadband internet coverage was expanded to IoT devices
in remote regions as a hybrid scheme.

The communication model is based on the downlink time
difference of arrival signal (DL-TDOA) or the uplink signal
(UL-TDOA) between the UE and the base stations. All gNBs
are synchronized and each signal is transmitted in specific
intervals to avoid cross interference [2].

Setup of the gNBs consists of the position reference signal
(PRS) and the downlink shared channel (PDSCH). The PRS
in 5G NR serves to solve two important positioning issues in
regards to the communication of gNBs and UE. Each gNB
signal is prone to interference from nearby stations that can
cause the collision of the millimeter wave (mmWave) signals
in both time and frequency domains. For this purpose the
PRS was developed as a separate signal, to avoid the shad-
owing of weak signals received from distant gNBs. Without
these signals, further uncertainty in the detection process
of distant gNBs signals would be added and eventually
result in partial signal loss, which can include the position
information.

Moreover the downlink reference signal’s correlation prop-
erties are generally weak due to low resource element (RE)
density. Due to this reason, it is possible that the RE
pattern is not widely accessible across the carriers of the
transmitted frequency. The physical downlink shared channel
(PDSCH) is the data transmission channel and is subject
to signal modulation. The signal before transmission is
encoded under an orthogonal frequency division multiplexing
(OFDM) scheme which provides larger bandwidth and gains

Fig. 1. Multilateration with 5G NR and User Equipment (UE).

in overall response time. More information regarding the 5G
NR positioning and the parametrization of the signals can be
found in [2].

In this work, we experiment with the 5G NR communi-
cation propagation model to derive the 2D position from the
meta-heuristic approaches in an agricultural simulation.

III. METHODOLOGY

In this section we describe the concepts and processes
involved within the work.

A. Problem modelling

Given a set of gNB stations which are placed over large
distances, the position tracking can be seen as a combinato-
rial problem. A robot carrying the UE is able to use the 5G
NR to track its position over time by comparing the ranges
from each base station and infer its position as in Figure 1.

The ranges to each gNB Sn(x, y), where n is the in-
dividual index, are estimated from the DL-TDOA signals.
Additional parameters include the fixed locations of the
stations, which can be considered as vertices of the triangles
that are created from the known distances between gNBs
dnm where n is the source and m is the destination index,
and the estimated ranges [r0, .., rn] to the UE. A mobile robot
carrying the UE with access to this information is capable
of estimating its global position. By iterative computation,
tracking the position will generate the trajectory of the
robot over time in the world reference frame O[x, y]. All
parameters of the problem are summarized in Table I.

In general, the positioning of the robot can be seen as
a non linear optimization problem of the unknown position
based on the gNB ranges, that has been adapted from [17]
and represented as a system of equations of the form of
Equation 1,

r2i = (Si − p0)
T (Si − p0) (1)

where ri are the ranges from each gNB, Si are the fixed
gNB positions and po is the unknown robot position specified



TABLE I
PROBLEM PARAMETERS.

Parameter Notation Description
Space dimension: 2D Cartesian
Redundant ranges: Yes Dependent on gNBs
Global reference: O(x,y) World frame

Robot position vector: po(x, y) Based on UE
Station position vectors: Sn(x, y) Fixed

Ranges: r0, r1, r2..rn Distances, gNBs to UE

from a number of N position reference points (gNBs). In our
case, the ranges are measured from the TDOA signals of the
5G NR with Equation 2,

r2i =
c · dtoai

sR
(2)

where c is the speed of light, dtoa is the time difference
of arrival of each gNB and sR the sample rate. Then we can
represent the optimization equation as Equation 3,

popt = argmin
p0

S(p0) (3)

where we try to minimize the approximate position es-
timates S(po) and find the optimized position popt, based
on the gNBs ranges and their fixed distances in the world
reference frame. These estimates are given by Equation 4,

S(po) =

N∑
i=1

[(Si − p0)
T (Si − p0)− r2i ]

2 (4)

where ri are the measured ranges, between the i-th gNB and
the robot, from the 5G NR signal TDOA as per Equation 2,
Si is the i-th fixed gNB position and po is the estimated robot
position specified by each of the N gNB position reference
points. This least-squares formulation of the multilateration
equation is implemented internally in all meta-heuristics.

B. Hyperbolic Crossing Points

The HCP [10] has been extensively used to determine the
position of equipment since early applications within wire-
less and cellular telecommunication networks. It is a method
that utilizes the TDOA multilateration algorithm to derive the
position of UE in the global reference coordinates. It uses
stationary terrestrial antennas to measure the propagation of
signal from the gNB to the UE.

In our case the 5G NR model [14] provides an interface for
estimating the position of the robot by using the DL-TDOA
method, which calculates the time delays and the path loss
from each gNB to the UE independently. When the number
of base stations increases, the time required to estimate
the position is an additional overhead, unless corrective
measures are added to the method to selectively perform
multilateration only with a number of nearest gNBs. In this
work we perform multilateration with all gNBs and select
the five nearest ones to the robot for position estimation.

The signal transmissions have hyperboloid form and arrive
to the receiver at different time intervals which are differ-
enced and multiplied by the speed of light. This process

is the TDOA and results in the position estimation from
the gNBs. As a requirement, all ambiguous points of the
communication, which are the crossing points of successive
hyperbolas, are eliminated by redundant base stations in the
region. The resolution of these points is performed automat-
ically and is capable of improving the position estimation
capability within the cellular network.

C. Particle Swarm Optimisation

The PSO [6], [1] is a meta-heuristic aimed at searching
the large candidate solution spaces effectively, while making
minimal assumptions about the optimization problem charac-
teristics. PSO is suitable for tracking the position of a moving
target in the world frame coordinates. The algorithm works
with population of solutions that interact, which is referred
to as a swarm and the candidate solutions as particles.

Each particle is initialized within the available 2D search
space and explores it to find the optimal robot position. The
exploration process of each particle, with a certain velocity,
is driven by its own best estimated position (personal best)
and the swarm’s best estimated position (global best) within
the search space. This process continues until a stopping
condition is attained. A balance is sought between the
diversification (search space exploration) and intensification
(exploiting promising solutions) movements, which should
be obtained by a judicious choice of the algorithm control
parameters, to avoid convergence to local optima and find
the global optimal solution, or a good approximation in
a reasonable computation time. Design decisions involve
the population size, number of iterations, setting of inertia
weight, cognitive and social parameters, which influence the
position and the velocity of particles in the search space.

D. Genetic Algorithm

GA mimic the evolutionary process of survival of the
fittest in an optimization context. The estimation of the posi-
tion is based upon the evolution of solutions over generations
until a stopping condition is reached aiming to determine
the optimal (fittest) solution [15]. The initial population of
candidate solutions is, in general, generated randomly or
guided into areas where some prior information indicates
good solutions are likely to occur.

The most prominent position estimates are preserved for
generating the next iteration of potential solutions by passing
their characteristics to their offspring. This iterative evolu-
tionary process generates successive populations of candidate
solutions, hopefully improving their quality in face of the
optimization problem, by means of selection, crossover and
mutation operators. The individuals of the solution popula-
tion are evaluated by a fitness function to assess their quality,
which influences selection for reproduction, i.e. being the
parents of the next generation solutions.

The creation of offspring solutions involves the exchange
(crossover) and the change (mutation) of parent solution
components. The selection operator is called to select the
parents to generate offspring and the offspring that will be
carried out to the next generation. These operators should



preserve solution diversity to avoid premature convergence
to local optima.

E. Algorithmic approach

Before the execution of the algorithms two mandatory
steps are performed. The first step is the configuration of
the communication parameters and the algorithm parameters.
The configuration of the PRS and the PDSCH is performed
at startup and then we evaluate the performance of position
estimation of the three meta heuristic approaches (see Algo-
rithm 1).

For the meta-heuristics, we have decided to perform
the position predictions at an interval of 100 ground truth
measurements, due to the overall large execution time and
data. The PSO was configured with a population size of 200
and the iterations were set to 1000. For GA the population
size is set to 50, the generations to 200 and the elite count
was set to be 0.05 of the population. The prediction time of
the PSO is adjusted to be similar to the execution of the GA,
in order to have a fair comparison of the methods and the
parameters were set as above to achieve this and remained
the same for experiments.

In all approaches, N is the number of gNBs and T are
the robot points. The HCP estimates the crossing points of
the hyperbolic signals based on the estimated ranges and
the the five closest gNBs. The PSO inputs are the gNB
positions and ranges, then calculates the minimum distance
of the UE to the gNBs. The GA was customized in similar
fashion by taking the ranges and positions of the base
stations and returns the estimated position. We have used
Equation 5 to calculate the Euclidean distance of the position
compared with the ground truth for all setups. Additionally,
we measured the time of execution for the position prediction
of each measurement independently.

Algorithm 1 5G NR Position Estimation
procedure 5GESTIMATEPOSITION(N,T, interval)

PRSconfig
PDSCHconfig
for i = 1 : size(T ) : interval do

UEpos← T (i)
for i = 1 : size(N) do

ranges = TDOA(N,UEpos)
end for
t start← start
p hcp = HCP (N, ranges), or
p pso = PSO(N, ranges, 200, 1000), or
p ga = GA(N, ranges, 50, 200)
t(i)← t now − t start

end for
end procedure

F. Performance Metrics

For the evaluation of the meta heuristic algorithms, we
have considered two important metrics, the position pre-
diction time and the position error. We have measured the

prediction time of the HCP, PSO and GA on an individual
measurement basis. Once a measurement is received, the time
elapsed for each heuristic is measured and overall averaged
for the duration of the trajectory, resulting in the Mean
Execution Time (MET).

The Euclidean distance (ED) between the predicted posi-
tion and ground truth measurements are calculated according
to the Equation 5 that gives the squared root of the Cartesian
coordinate differences, between the ground truth position
measurement pgt = [xgt, ygt] and the estimated positions
pest = [xest, yest] of the algorithms. This determines the
position error in the prediction as linear distance from the
ground truth measurement.

dist(x, y) =

√√√√ n∑
i=1

(xgt
i − xest

i )2 + (ygti − yesti )2 (5)

The standard deviation of the predicted measurements and
the ground truth position of the robot is given by Equation 6,
where the x and y are the Cartesian coordinates of the robot
trajectory and their mean values µx and µy . This represents
the expected deviation between the measurement estimated
by the heuristic approaches and the ground truth.

Sn(x,y) =

√√√√ 1

n

n∑
i=1

(xi − µx)2(yi − µy)2 (6)

The results of our tests are summarized with Table II
where the MET and ED is presented along with their
standard deviations.

IV. RESULTS

In this section we report the experiments performed and
the results.

A. Robot Simulation and 5G toolbox

For the experiment, the cpr agriculture gazebo1

simulation package was used, which utilizes a Husky robot
model from Clearpath Robotics2. This simulator was selected
due to its integration with ROS and its outdoor features
such as uneven terrain with elevation, its large provided area
and its integrated physics rules. The simulator provides a
ground truth pose, which was used to assess the estimation
performance of each method.

For the PRS signal generation and communication aspects
the MATLAB 5G Toolbox [12] was used and integrated
within ROS [11] to predict the robot position from the
simulator ground truth data.

1https://github.com/clearpathrobotics/cpr_gazebo
2https://clearpathrobotics.com



Fig. 2. Robot ground truth trajectory.

B. Experimental Setups

Three setups were prepared to evaluate the performance of
the 5G NR positioning. We have selected different number
of stations in order to compare the accuracy of the position
tracking and the time required to generate the position
estimation. The placement of gNB positions in all three
environments were generated randomly outside the robot’s
working environment, and are located kilometers away,
which is a representative assumption for 5G applications in
real world outdoor scenarios.

In Setup 1 the placement of the 5 gNB positions are
displayed in Figure 3. The ground truth trajectory within
Figure 2 is performed by the mobile robot and depicted in
Figures 3, 4, 5 to convey the scale of positioning.
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Fig. 3. Setup 1 featuring the gNB positions and the scale of the ground
truth trajectory.

Likewise, setup 2 which consists of 10gNBs is depicted in
Figure 4, and setup 3 which consists of 15gNBs is depicted
in Figure 5. A notable fact about the rollout of the 5G NR
is that signal coverage is going to determine the geometrical
structure of the gNB locations and it is envisaged to be in
a grid pattern, with each station being kilometers apart. In
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Fig. 4. Setup 2, consisting of the 10 gNB stations.
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Fig. 5. Setup 3 consisting of the 15 randomly allocated gNBs.

rural agricultural areas the gNB deployment geometry may
vary depending on the morphology of the area. The path
loss model used (cf. Section IV-A) is set to the default urban
Macrocell Scenario (uMa), with infrastructure height set to
5m and environmental height to be 2m and is representative
of a flat agricultural area.

In the configuration of the 5G NR parameters, the PRS
depends on the DL-TDOA scheme and we have configured
the carrier slots of each gNB and a carrier frequency of
3e9 Hz. For the PRS configuration, the slot periodicity was
set to 10 for setup 1, 20 for setup 2 and 30 for setup 3.
The transmission offset was set to be every one consecutive
repeated PRS signal. The modulation scheme for the PDSCH
is set to Quadrature Phase Shift Keying (QPSK) and the
length of the codewords to be 2 bits per symbol, with a
total of 14 symbols per slot. Orthogonal frequency-division
multiplexing modulation (OFDM) is performed to generate
the 5G NR waveforms at each gNB [12]. The hearability
problem is addressed by allocating the PRS resources and
PDSCH channel to the slot grid in a way such that no other
gNB transmits a PRS signal within the same slot.
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Fig. 6. Position estimation of HCP, PSO, GA meta-heuristics for Setup 1.

C. Performance

In setup 1, which consists of the 5 gNBs, we observed that
the PSO was faster than the other two approaches. In terms
of accuracy, the HCP proved to have the best positioning
accuracy of 6.317 ± 2.810 meters, but is not the fastest
approach to predict the position due to the characteristic
multilateral aspects of the method with MET at 1.504 ±
0.119 seconds. The fastest approach was the PSO with MET
at 0.075 ± 0.039 which was not far from the GA which
was at 0.079 ± 0.036 seconds. In terms of average error
they deviated about a meter from the HCP. The estimated
trajectories can be seen in Figure 6.

In setup 2, which consists of 10 gNBs, results were slightly
different. The best performing in terms of execution time and
accuracy was the GA with MET at 0.053 ± 0.020 seconds
and ED at 5.082 ± 2.015 meters. The time required by the
PSO is 2.36 times the GA prediction time; the accuracy is
also slightly worse but similar. The additional overhead of the
HCP is due to the number of base stations and time required
to communicate with all of them affected significantly the
performance of HCP, having an execution time of 11.03
times longer than the PSO and 26.15 times than GA, with a
larger position prediction error. In comparison with setup 1
the MET is faster due to the closer distance of some gNBs
which were selected for position estimation. The estimated
trajectories can be seen in Figure 7.

In setup 3, which consists of 15 gNBs, the PSO and GA
approaches were the best overall, as their position accuracy is
very similar. The GA has the fastest position prediction time
which is at 0.050 ± 0.042 seconds, which is 3.91 times faster
than the PSO prediction time. The HCP has a high execution
time and the least position accuracy. In terms of positioning
accuracy the PSO and GA are highly competitive with 3.850
± 1.859 meters and 3.813 ± 1.862 meters respectively. The
estimated trajectories can be seen in Figure 8.

In Table II, the GA is the top performing algorithm
independently from the number of gNBs. The PSO, although
being very similar to GA in error metrics, lacks in position
prediction time. The HCP cannot cope with the growth
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Fig. 7. Position estimation of HCP, PSO, GA meta-heuristics for Setup 2.
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Fig. 8. Position estimation of HCP, PSO, GA meta-heuristics for Setup 3.

of the number of gNB numbers, as the time required to
communicate with all gNBs in a multilateration fashion is
large.

TABLE II
EXPERIMENTAL RESULTS.

Setup Methods MET (s) ED (m)
HCP 1.504 ± 0.119 6.317 ± 2.810

1 PSO 0.075 ± 0.039 7.489 ± 2.580
GA 0.079 ± 0.036 7.450 ± 2.560

HCP 1.386 ± 0.072 7.146 ± 3.248
2 PSO 0.125 ± 0.075 5.183 ± 2.035

GA 0.053 ± 0.020 5.082 ± 2.015
HCP 1.636 ± 0.098 7.395 ± 4.131

3 PSO 0.199 ± 0.105 3.850 ± 1.859
GA 0.050 ± 0.042 3.813 ± 1.862

V. CONCLUSION

In this work we have performed the integration of 5G NR
technology in a simulated robotic environment and utilized
meta-heuristics to track the location of the robot over time.
The GA is the fastest method and has the least error, as the
number of gNBs are increased. The PSO presents similar
results but lacks the prediction time, which is important in



mobile robot positioning applications. In terms of HCP, even
by selecting only the closest five gNBs to the robot did not
present better results in terms of accuracy and the TDOA
is an additional overhead, with an increasing number of
gNBs. The next step regarding this work is the placement
of the gNBs in a grid fashion, perform further tests and
progressively work with real data from 5G NR service
providers to compare our findings.
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