
OpenMOSS

Can AI Assistants Know What They Don’t Know?

Qinyuan Cheng1,2,∗ Tianxiang Sun1,2,∗ Xiangyang Liu1,2 Wenwei Zhang2

Zhangyue Yin1 Shimin Li1 Linyang Li1,2 Zhengfu He1

Kai Chen2,† Xipeng Qiu1,†

1Fudan University
2Shanghai AI Laboratory

Abstract

Recently, AI assistants based on large language models (LLMs) show sur-
prising performance in many tasks, such as dialogue, solving math prob-
lems, writing code, and using tools. Although LLMs possess intensive
world knowledge, they still make factual errors when facing some knowl-
edge intensive tasks, like open-domain question answering. These untruth-
ful responses from the AI assistant may cause significant risks in practical
applications. We believe that an AI assistant’s refusal to answer questions it
does not know is a crucial method for reducing hallucinations and making
the assistant truthful. Therefore, in this paper, we ask the question “Can
AI assistants know what they don’t know and express them through
natural language?” To answer this question, we construct a model-specific
“I don’t know” (Idk) dataset for an assistant, which contains its known and
unknown questions, based on existing open-domain question answering
datasets. Then we align the assistant with its corresponding Idk dataset and
observe whether it can refuse to answer its unknown questions after align-
ment. Experimental results show that after alignment with Idk datasets, the
assistant can refuse to answer most its unknown questions. For questions
they attempt to answer, the accuracy is significantly higher than before the
alignment. 1

1 Introduction

Large language models (Brown et al., 2020; Chowdhery et al., 2023; Zeng et al., 2023; Touvron
et al., 2023) possess extensive world knowledge and demonstrate capabilities in numerous
natural language tasks that smaller models lack (Wei et al., 2022b). Recently, there are many
artifical intelligence chat assistants built on large language models, capable of helping users
accomplish various tasks in the daily life, providing a satisfactory user experience (Ouyang
et al., 2022; OpenAI, 2022; Anthropic, 2023; Sun et al., 2023; Baichuan, 2023; Qwen-Team,
2023). Although these chat assistants can communicate frequently with users, they are
prone to hallucinations (Shuster et al., 2021; Zhang et al., 2023b; Cheng et al., 2023), such
as including factual errors in their generated responses (Wang et al., 2023b) or imitating
human falsehoods in training corpus (Lin et al., 2022a), some of which are difficult for users
to detect. These untruthful responses could potentially harm society and also diminish the
credibility of AI assistants.

An AI assistant aligned with human values should be truthful (Evans et al., 2021), which
means that it needs to provide accurate information consistent with the real world. When
the assistant’s output contains factual errors, it indicates that it may lack the corresponding
knowledge internally, yet it fails to express the unknowns and refuse to give a answer.

∗Equal contribution.
†Corresponding author. Correspondence to: Qinyuan Cheng <chengqy2019@foxmail.com> Kai

Chen <chenkai@pjlab.org.cn> Xipeng Qiu <xpqiu@fudan.edu.cn>
1We will release our code, data and models at https://github.com/OpenMOSS/Say-I-Dont-Know.
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Figure 1: Knowledge quadrants of an AI assistant. “Unknowns” represents what the AI does
not actually know. “Knowns” represents what the AI actually knows. “Known” represents
what the AI believes it knows. “Unknown” represents what the AI believes it does not
know.

However, a truthful AI assistant should be aware of what it knows and what it does not
know, and be able to communicate this to the user. For questions that are known, the AI
assistant should provide users with accurate information. For questions that are unknown,
the AI assistant should avoid giving answers. Therefore, in this paper, we explore the
question “Can AI assistants know what they don’t know and express them through natural
language?”.

The AI assistant’s perception of its own knowledge can be represented through knowledge
quadrants (Yin et al., 2023b). The knowledge quadrant is a partition which can divide the
knowledge into four categories: Known Knowns, Known Unknowns, Unknown Knowns
and Unknown Unknowns, as shown in Figure 1. Known Knowns is crucial for a truthful AI
assistant, as it relies on its own knowledge to provide accurate and reliable responses. The
more knowledge that falls under the category of Known Knowns, the more helpful the AI
assistant becomes. We use IK-IK (I know I know) to represent Known Knowns. Besides, we
argue that a truthful AI assistant should also be aware of and express its lacks in certain
knowledge. Specifically, it should admit when it doesn’t have information on a topic or
when the information is not certain to maintain truthfulness. This part of knowledge falls
under the category of Known Unknowns. We use IK-IDK (I know I don’t know) to represent
Known Unknows. Unknown Unknowns and Unknown Knowns will cause untruthful and
helpless generations. We use IDK-IDK (I don’t know I don’t know) and IDK-IK (I don’t know
I know) to represent Unknown Unknowns and Unknown Knowns respectively. To make AI
assistants truthful, we need to teach AI assistants to know what they know and what they
do not know to convert Unknown Knowns and Unknown Unknowns to Known Knowns
and Known Unknowns.

Our approach is to align an AI assistant (like llama-2-7b-chat) with a model-specific “I don’t
know” (Idk) dataset which contains the assistant’s known and unknown questions. We
construct the Idk dataset based on an existing knowledge-intensive open-domain question
answering dataset, TriviaQA (Joshi et al., 2017). We determine whether an assistant knows
the answer to a question by evaluating its average accuracy across multiple responses to
that question. Questions that the assistant answers incorrectly multiple times are marked
as ones it does not know, and a template for refusal to answer is annotated. For questions
that the assistant answers correctly multiple times, a correct answers it generates are used
for the annotated answer. The assistant’s accuracy threshold for being considered knowing
the answer to a question is a hyperparameter, which we call Ik threshold. We discuss the
details of constructing the Idk dataset in Section 3.1.

In order to teach AI assistants to know what they don’t know, we conduct extensive
experiments to exploit the most effective method, including prompting, supervised fine-
tuning and preference-aware optimization. For prompting, we instruct the assistant to
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Figure 2: Knowledge quadrants of AI assistants on the Idk dataset (Ik threshold=1.0). IK-
IK represents the AI answers the questions correctly. IDK-IK represents the AI knows
the answer but refuses to respond to the question. IDK-IDK represents the AI answers
the question incorrectly. IK-IDK represents the AI doesn’t know the answer and refuses
to respond to the question. w/Idk-Prompting: Using prompting can transform certain
IDK-IDK questions to IK-IDK questions. w/Idk-SFT: Idk-SFT allows the model to refuse
to answer more questions it does not know, but it also tends to make the model more
convervative, leading to incorrect refusals to answer some questions that it actually knows.
w/Idk-DPO: Using preference-aware optimization, like DPO, can alleviate the model’s
excessive conservatism and reduce the number of IDK-IK questions.

refuse answering questions it does not know through a prompt. For supervised fine-tuning
(SFT), we directly fine-tune the original assistant using our Idk datasets. For preference-
aware optimization, we use best-of-n sampling (BoN), proximal policy optimization (PPO)
(Schulman et al., 2017; Ouyang et al., 2022), direct preference optimization (DPO) (Rafailov
et al., 2023) and hindsight instruction relabeling (HIR) (Zhang et al., 2023a). We demonstrate
some representative results in Figure 2.

The original model (llama-2-7b-chat) can be considered as lacking the ability to recognize
questions it does not know2. It may guess an answer even it lacks the knowledge. As shown,
there are many IDK-IDK questions, making the assistant untruthful. Instructing the model
to refuse answering unknown questions through a prompt can be effective to some extent,
but there are still numerous IDK-IK and IDK-IDK questions. After supervised fine-tuning

2We conducted a search for keywords such as “I don’t know”, “not sure”, “Sorry” in the responses
of Llama-2-7b-chat and found that only a very small number of responses contained these keywords.
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using Idk dataset, the number of IDK-IK and IDK-IDK has significantly decreased, indicating
that the model’s ability to be aware of its own knowledge has been enhanced. However,
the model may also refuse to answer some questions it knows, leading to a decrease in
the number of IK-IK questions. Compared to SFT model, preference-aware optimization
(like DPO) can mitigate the phenomenon where the model incorrectly refuses to answer
questions it knows. Besides, we conduct extensive ablation experiments to explore the effect
of Ik threshold, data sources, model size and other settings.

Our findings can be summarized as follows:

1. After aligning using Idk datasets, AI assistants are capable of largely knowing what
they know and what they do not know and refusing their unknown questions.
Llama-2-7b-chat can definitively determine whether it knows the answer to up
to 78.96% of the questions in the test set. And it exhibits good performance on
out-of-distribution test sets.

2. Supervised fine-tuning cause the model to become overly conservative, incorrectly
rejecting known questions. Preference-aware optimization can mitigate this prob-
lem, promoting the overall proportion of IK-IK and IK-IDK questions.

3. The Ik threshold used to define knowns and unknowns questions influences the
behavior of the assistant. The more questions labeled as ”I don’t know,” the more
likely the assistant is to refuse to answer questions. In general, the higher the Ik
threshold, the greater the total number of Ik-Ik and Ik-Idk questions, resulting in a
more truthful assistant.

4. Larger model is more adept at distinguishing which questions it knows and which
it doesn’t know. The use of Idk-SFT on Llama-2-70b-chat, as compared to Llama-
2-7b-chat, results in a 5.8% improvement in the total number of IK-IK and IK-IDK
questions.

2 Background

2.1 Aligning LLMs with Human Values

To build AI assistants based on large language models, we typically need to align these large
language models with human values, making them helpful, truthful and harmless (Askell
et al., 2021; Bai et al., 2022; Ouyang et al., 2022). Here we introduce several mainstream
alignment methods related to our work. The most common alignment method for pre-
trained models is instruction tuning, also known as Supervised Fine-Tuning (SFT). Wei
et al. (2022a); Sanh et al. (2022) fine-tune pre-trained models on a collection of NLP datasets
combined with natural language instructions to enhance zero-shot performance on unseen
tasks. Chung et al. (2022); Longpre et al. (2023) scale the number of tasks, the model size
and fine-tune on mixed data. Sun et al. (2023) utilize Self-Instruct (Wang et al., 2023c)
to synthesize three types of SFT data - helpful, honest, and harmless - and construct a
conversational assistant. The step following SFT is preference optimization. Bai et al.
(2022); Ouyang et al. (2022) use Reinforcement Learning from Human Feedback (RLHF)
(Christiano et al., 2017; Stiennon et al., 2020). They first train a reward model on the human
preference data and then optimize the policy model using Proximal Policy Optimization
(PPO) (Schulman et al., 2017) with the trained reward model. Zhang et al. (2023a) propose a
reward-free method named Hindsight Instruction Relabeling (HIR) to utilize preference data
by converting feedback to instructions and training the model using supervised fine-tuning.
Rafailov et al. (2023) propose Direct Preference Optimization (DPO) which can directly
fine-tune language models to align with human preferences without the need of reward
modeling.

2.2 Discovering LLMs’ Knowledge

Large language models store extensive world knowledge during the pre-training. There has
been increasing interest in researching knowledge in large language models. Kadavath et al.
(2022); Lin et al. (2022b) fine-tune language models using a classification head or verbalized
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Q: Halloumi is a cheese from 
which country?
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A: Response 1
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A: I don’t know.

… …

Construct Idk Datasets

Q: Who tried to steal
Christmas from the town of 
Whoville?
A: Response
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…

…

Construct
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Chosen: Response 1
Rejected: I don’t know.

…

Construct Preference Pairs

Chosen: Response 7
Rejected: I don’t know.

Chosen: I don’t know.
Rejected: Response 1

Chosen: I don’t know.
Rejected: Response 8

Sample
responses

Sample
responses

Sample
responses

Figure 3: Top: Construction process of the Idk dataset. Bottom: Construction process of
preference pairs. The green response indicates a correct answer, the red response indicates
an incorrect answer, and “I don’t know” represents the template for refusal to answer.

confidence. However, they don’t teach models to aware their knowledge boundary and
refuse to answer the questions they don’t know. Yin et al. (2023b) propose the SelfAware
dataset to evaluate the ability of LLMs to recognize what they don’t know, finding that there
is still an apparent gap compared to human. Burns et al. (2023) propose an unsupervised
method to find latent knowledge inside the activations of a language model by answering
yes-no questions given only unlabeled model activations. Ren et al. (2023) investigate
whether LLMs can perceive their knowledge boundaries or not under retrieval-augmented
setting and normal setting. Zhao et al. (2023); Manakul et al. (2023); Anonymous (2023)
check the generated answers in an unsupervised way to judge whether the model knows
the question. The basic idea is that if the model knows the answer to a question, then the
diversity of multiple sampling generations should be relatively low.

2.3 Mitigating LLMs’ Factual Errors

There are some studies focused on eliminating factual errors in AI assistants. Asai et al.
(2023) propose a framework named SELF-RAG to enhance an LM’s factuality by retrieval
augmentation and self-reflection. Li et al. (2023) first find truthful directions through
probing and then do inference-time intervention in these truthful directions. Zou et al. (2023)
use representation engineering to enhance factuality of the model’s output. Chuang et al.
(2023) propose a simple decoding strategy for reducing hallucinations by contrasting the
differences in tokens’ logits obtained from different layers. Tian et al. (2023) directly fine-
tune language models to learn factuality from preference dataset using direct preference
optimization. However, there is currently no method that can guarantee the complete
elimination of factual errors. In practical applications, it is a necessary feature for AI
assistants to refuse to answer questions they do not know.
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3 Methodology

3.1 Construction of the Idk Dataset

Given a knowledge-intensive question answering dataset, it is hard to precisely determine
which questions the model truly knows the answers to, which due to the model having
varying degrees of confidence for different knowledge. Therefore, following the approach
of previous work (Kadavath et al., 2022; Lin et al., 2022b), we sample multiple responses
from the model for each question, calculating the accuracy rate across these responses as
a measure of the model’s confidence regarding that question. Finally, we select a specific
level of confidence as the criterion for determining whether the model knows or does not
know the answer to a question, that is the Ik threshold. To construct the QA pairs in the Idk
dataset, for questions that the model does not know, we use a template for refusal to reply
as the answer. For questions that the model knows, we select a correct response generated
by the model itself as the answer. The procedure is demonstrated in Figure 3 (top). Our
refusal to answer template is:
This question is beyond the scope of my knowledge, and I am not sure what the answer
is.

We use “I don’t know” and the Idk template to refer to this template in the following paper.

Determine whether the output of a model is correct. In order to construct the Idk
dataset, we need an automatic method to evaluate whether the model’s outputs are correct.
According to the experimental results presented in Wang et al. (2023a), employing lexical
matching, which checks whether the golden answers appear in the responses generated
by the model, to evaluate on a subset of the TriviaQA’s validation set (Joshi et al., 2017)
yields a consistency rate of approximately 90% with human evaluations. We consider lexical
matching to be a relatively accurate automatic evaluation method for the TriviaQA dataset.
Besides, TriviaQA is a mainstream knowledge-intensive open-domain question answering
dataset. Therefore, we construct our Idk dataset based on the TriviaQA dataset.

Meaning of different Ik thresholds. The model is required to refuse to answer questions
where the confidence level is below the Ik threshold. It is important to note that different Ik
thresholds will result in different Idk datasets. A high Ik threshold indicates that the model
will only answer a question if it possesses a high level of confidence. Conversely, if the Ik
threshold is low, the model will answer questions with a lower level of confidence required.
In other words, a high Ik threshold represents a conservative response strategy, whereas a
low Ik threshold represents a more aggressive response strategy. In this work, we sampled
ten responses for each question and derived ten discrete Ik thresholds based on varying
accuracy rates. For the sake of simplicity, we set the Ik threshold to 1.0, meaning that the
model is considered to know the answer to the question only if all ten of its responses
are correct. Unless specifically stated otherwise, the Idk dataset mentioned hereafter is
constructed based on an Ik threshold of 1.0. We discuss the impact of different Ik thresholds
in Section 4.

In the following sections, we introduce our methods to teach AI assistants to say “I don’t
know” when encounter unknown questions. Since the AI assistant we discuss is based on
large language models, we will interchangeably use the terms “model” and “assistant” in
the following sections.

3.2 Idk Prompting

For models capable of following human instructions, such as Llama-2-7b-chat, We can
directly instruct an assistant to say “I don’t know” to unknown questions by adding a
prompt in front of the input question. We call this method Idk-Prompting. This requires
the model to have a high capability for following instructions, but the advantage is that it
eliminates the need for additional training. We call such a prompt an Idk prompt. Our Idk
prompt is as follows:
Answer the following question, and if you don’t know the answer, only reply with "I
don’t know": <Question>
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As for pre-trained models lacking the ability to follow instructions, Idk-Prompting may not
yield satisfactory results.

3.3 Idk Supevised Fine-tuning

Supervised Fine-tuing is a simple yet effective alignment method. We directly use the
Idk dataset for Supervised Fine-tuning of the model. Since the Idk dataset contains both
questions and responses, this constitutes a conditional generation task. We input the
questions into the model and require the model to predict the responses. We perform the
standard sequence-to-sequence loss to train our model. SFT details are demonstrated in
Appendix B.1.

3.4 Preference-aware Optimization

In this section, we introduce how we conduct preference-aware optimization to help the
model perceive its internal knowledge better.

Direct Preference Optimization (DPO) To conduct DPO, we first train a SFT model on
half of the Idk dataset as a warm up, then we collect responses from this SFT model on the
other half of the Idk data. For a given question, we conduct random sampling to gather
multiple responses. Finally, we construct preference data based on the these generated
responses. We demonstrate the procedure in Figure 3 (bottom). A preference data sample
consists of a question, a chosen response, and a rejected response. The questions in the
Idk dataset can be categorized into two types: those the model knows and those it does
not know. For questions the model knows, we use the correct response generated by it
as the chosen response and “I don’t know” as the rejected response. For questions the
model does not know, we use “I don’t know” as the chosen response and its incorrectly
generated response as the rejected response. Besides, we find that only using the DPO loss
Rafailov et al. (2023) can occasionally result in the model’s inability to accurately generate
the Idk template. Therefore, in addition to the original DPO loss, we also incorporate SFT
loss for the chosen responses and multiply it by a coefficient α. The details of the DPO are
demonstrated in Appendix B.2.

Best-of-n Sampling (BoN) We also try to determine if the model knows the answer to a
certain question by training a reward model to score the candidate responses. We first train
a SFT model using a half of the Idk data and then use the SFT model to initialize the reward
model. After collecting responses on the other half of the Idk dataset and constructing
preference data using the same procedure as 3, we train the reward model using a pairwise
loss. During inference, we employ the Best-of-10 strategy. First, we sample ten responses
using the SFT model, then we score these candidate responses with the reward model. The
response with the highest reward score is selected as the final response. The details of
reward modeling are demonstrated in Appendix B.3.

Proximal Policy Optimization (PPO) Based on our reward model, we can use proximal
policy optimization to optimize the model. We use the same inputs for PPO training as we
do for reward modeling, but sample responses in an online manner. The details of the PPO
are demonstrated in Appendix B.4.

Hindsight Instruction Relabeling (HIR) So far, our Idk dataset is constructed based on a
fixed Ik threshold. In order to utilize all Idk datasets constructed with different Ik thresholds,
inspired by Hindsight Instruction Relabeling (Zhang et al., 2023a), we design an instruction
format to relabel all Idk datasets. Specifically, we prepend the following instruction to each
question in the Idk datasets:

Your current knowledge expression confidence level is <X>, please answer the user’s
question: <Question>

where < Question > is a question from an Idk dataset and < X > is the value of model’s
knowledge confidence level ranging from 0 to 1.0, derived from the Ik threshold corre-
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sponding to the Idk dataset. The lower the knowledge confidence level, the more inclined
the model is to refuse answering questions. Then we use the combined Idk dataset to
perform supervised fine-tuning. The advantage of using instruction relabeling is that we
can control the model to adopt either a conservative or aggressive response strategy through
the instruction, without the need to retrain the model. The details of HIR are demonstrated
in Appendix B.5.

4 Experiments

4.1 Dataset

TriviaQA (Joshi et al., 2017) is a reading comprehension dataset, but its question-answer
pairs can be used for open-domain question answering tasks. We use the training set of
TriviaQA, consisting of 87,622 samples, to construct the training and development sets of
the Idk dataset. Since TriviaQA does not provide ground truth for the test set, we use the
development set of TriviaQA to construct the test set for the Idk dataset, which comprises a
total of 11,313 samples. The detailed statistical information of the Idk datasets is provided
in Appendix A.

Additionally, we use the Natural Questions (NQ) (Kwiatkowski et al., 2019) and ALCUNA
(Yin et al., 2023a) datasets as the out-of-distribution (OOD) questions. NQ is a question
answering dataset consisting of real queries issued to the Google search engine. We use
the development set of NQ-Open, which contains 3,610 samples, to construct the OOD test
set. According to the experimental results in Wang et al. (2023a), using lexical matching for
the automatic evaluation on the development set of the NQ dataset shows more than 80%
consistency with human expert assessments. Therefore, we use lexical matching to judge
the correctness of model answers and to label “I don’t know” responses.

ALCUNA is a benchmark to assess LLMs’ abilities in new knowledge understanding. It
creates new artificial entities by altering existing entity attributes and generates questions
about these artificial entities. Since these entities are artificially created, the model can-
not possibly possess this knowledge. Therefore, we use a portion of the questions from
ALCUNA to test whether the model can refuse to answer, totaling 8,857 samples.

4.2 Metrics and Evaluation

We report the following metrics.

• IK-IK Rate: I know what I know (Ik-Ik) rate represents the proportion of questions
answered correctly by the model out of all questions.

• IK-IDK Rate: I know what I don’t know (Ik-Idk) rate represents the proportion of
questions that the model correctly refuses to answer, out of all questions.

• TRUTHFUL Rate: Truthful rate is the sum of Ik-Ik rate and Ik-Idk rate. It represents
the proportion of questions for which the model provides truthful responses. The
higher the value of TRUTHFUL rate, the clearer the model’s perception of what it
knows and does not know, which also indicates a higher level of truthfulness. The
TRUTHFUL value of an ideal truthful model should ideally reach 100%.

The higher these three metrics are, the better. Among these metrics, we argue that the
TRUTHFUL rate is the most important one because it indicates the probability that users will
receive a truthful response.

To calculate these metrics, we categorize the inference results into four knowledge quadrants
using the following method.

• IK-IK: If a question model does not refuse to answer and the answer is correct,
then the question belongs to the Ik-Ik category. We determine whether the model’s
answer is correct by checking if the ground truth appears in the model’s response.
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• IK-IDK: If a question model refuses to answer, and the question is marked as one
that the model does not know, then this question belongs to Ik-Idk category. We
determine whether the model refuses to answer a question by checking whether
the refusal template appears in the model’s response.

• IDK-IK: If a question model refuses to answer, but the question is not marked as
one the model does not know, then this question falls into the Idk-Ik category.

• IDK-IDK: If a question model does not refuse to answer but provides an incorrect
response, then the question belongs to the Idk-Idk category.

We use Llama-2-7b-chat as our initial model for further training, with specific training
details introduced in Appendix B. We test the trained model on the test set of the Idk dataset
to evaluate whether the model can distinguish between questions it knows and does not
know. Except for Idk-BoN, we use greedy decoding in all tests. For Idk-BoN, we set the
temperature coefficient to 1.0 and top p to 0.9, sample ten responses, and then score them
using the reward model. The response with the highest reward score is selected as the final
model response.

4.3 Main Results

TriviaQA Natural Questions ALCUNA
IK-IK IK-IDK TRUTHFUL IK-IK IK-IDK TRUTHFUL IK-IDK

Idk-Datasettest 45.05 54.95 100.00 24.65 75.35 100.00 100.00

Idk-Prompting 37.36 29.58 66.93 19.75 41.72 61.47 91.67
Idk-SFT 28.57 46.19 74.75↑7.82 15.93 53.99 69.92↑8.45 98.01
Idk-DPO 39.30 38.59 77.89↑10.96 20.91 45.60 66.51↑5.04 98.08
Idk-BoNN=10 38.37 40.59 78.96↑12.03 20.55 47.40 67.95↑6.48 98.32
Idk-PPO 35.90 40.57 76.47↑9.54 23.13 42.08 65.21↑3.47 92.66
Idk-HIR 27.36 48.55 75.91↑8.98 15.40 56.90 72.30↑10.83 98.96

Table 1: Overall results on the test set of the Idk dataset constructed based on TriviaQA and
out-of-distribution test sets.

The overall results are in Table 1. The Idk-Dataset used for evaluation contains 45.05%
IK-IK questions and 54.95% IK-IDK questions, which can be seen as two upper bounds
of IK-IK and IK-IDK rate. Simply using an Idk prompt to let the model refuse to answer
questions it doesn’t know can have a certain effect, but the model’s TRUTHFUL rate is still
only 66.93%. The Idk-SFT can increase the TRUTHFUL rate ti 74.75%, but this will result
in a decrease in the IK-IK rate, which can be considered a form of “alignment tax”. We
find that preference optimization can encourage the model to answer questions, thereby
mitigating the alignment tax. DPO3, PPO, and BoN can all reduce the loss of IK-IK while
maintaining a relatively high IK-IDK rate. Idk-BoN achieves the highest TRUTHFUL rate.
Idk-HIR combines all Idk datasets, which can improve IK-IDK rate but help less for IK-IK
rate. However, Idk-HIR provides an switching method for Ik-threshold that does not need
to retrain the model. Overall, by aligning with the Idk dataset, we can transform IDK-IK and
IDK-IDK questions into IK-IK and IK-IDK questions. The model can have a clear perception
of whether it knows the answers to most questions in the test set, significantly increasing
truthfulness compared to before the alignment. The additional experimental results are
represented in Appendix C.

Evaluation on out-of-distribution data We also test whether the aligned model is capable
of refusing to answer questions it does not know when encountering out-of-distribution
(OOD) data. We first construct the Idk dataset for testing based on Natural Questions,
setting the Ik threshold to 1.0. As shown in Tabel 1, the Idk dataset contains 24.65% IK-IK

3We find that the DPO model, when refusing to answer questions within ALCUNA, occasionally
rephrases our Idk template. Consequently, we utilize a substring of the original Idk template: “I am
not sure what the answer is” to detect whether the model refuse to answer the question.
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questions and 75.35% IK-IDK questions, which means Natural Questions is more challenging
than TriviaQA. The results on Natural Questions are similar to those on TriviaQA. The
algined models show improvements in all metrics compared to using prompts. In contrast
to the results on TriviaQA, Idk-HIR achieves the highest TRUTHFUL rate, rather than Idk-
BoN. Furthermore, the models aligned using preference optimization methods exhibit a
reduction in the TRUTHFUL rate compared to the Idk-SFT. We believe this is due to the
fact that preference optimization encourages the model to answer more questions. We can
observe that, compared to the Idk-SFT model, preference-optimized models have more
IK-IK questions but less IK-IDK questions. In addition to this, we utilize ALCUNA to
construct the Idk dataset, which only contains ID-IDK questions. The results from Table
1 indicate that the prompting method can already enable the model to refuse answering
most unanswerable questions. After alignment, the model achieves an even higher IK-IDK
rate. The model aligned with TriviaQA demonstrates a high TRUTHFUL rate on Natural
Questions and a high IK-IDK rate on ALCUNA, suggesting that the model’s behavior of
refusing to answer unknown questions can be generalized to OOD data.

4.4 Ablation Study

In this section, we analyze which factors affect the model’s ability to recognize questions it
does not know through extensive abliation experiments.

IK-IK↑ IK-IDK↑ IDK-IK↓ IDK-IDK↓ TRUTHFUL↑
Idk-SFT7b 28.57 46.19 19.24 6.00 74.75

w/Llama-2-13b-chat 33.92 41.43 17.45 7.20 75.35↑0.60
w/Llama-2-70b-chat 57.78 22.68 10.78 8.66 80.55↑5.8

w/Idk-Mistral 18.35 50.65 27.68 3.31 69.00↓5.75
w/Idk-Baichuan 8.85 53.07 36.37 1.71 61.92↓12.83

Table 2: Results of ablation experiments.

Effect of model size The capabilities of LLMs are often closely related to the number of
their parameters: models with a larger size tend to be more powerful. We conduct Idk-SFT
on Llama-2-7b-chat, Llama-2-13b-chat and Llama-2-70b-chat to observe whether the size
of the model affects the effectiveness of Idk-SFT. In Table 2, we report the proportions of
each knowledge quadrant for models of different sizes. However, the label distribution
of the Idk dataset corresponding to different initial models is inconsistent (the larger the
model, the more IK-IK questions), as shown in Appendix A.3. This results in the IK-IK rate
and IK-IDK rate being incomparable. Therefore, we mainly focus on the TRUTHFUL rate of
different models. The TRUTHFUL rate of the 13B model is slightly higher than that of the
7B model. The TRUTHFUL rate of the 70B model is significantly higher than that of the 13B
and 7B models. This indicates that larger models are more adpet at distinguishing between
questions they know and do not know.

Effect of data sources Due to the differences in the pre-training process, different pre-
trained models possess distinct knowledge. During training, we construct model-specific
Idk dataset for different pre-trained models. This is because we want the model to determine
whether it knows the answer to a question based on its internal knowledge, rather than
learning to recognize some specific patterns of questions. The model-specific Idk dataset can
connect the model’s internal knowledge with the labels of the Idk dataset. To explore the
impact of using a non-model-specific Idk dataset on training, we construct two Idk training
sets using Mistral-7B-Instruct-v0.1 (Jiang et al., 2023) and Baichuan2-7B-chat (Baichuan,
2023) respectively, named “Idk-Mistral” and “Idk-Baichuan”. We present label distributions
of these Idk datasets in Appendix A.3 As shown in Tabel 2, using non-model-specific Idk
datasets like “Idk-Mistral” or “Idk-Baichuan” does result in a TRUTHFUL rate loss. Due
to the numerous Idk questions in the Idk-Mistral and Idk-Baichuan datasets, the trained
model tends to be more inclined towards refusing to answer questions, which has resulted
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Figure 4: Left: Variation in the proportions of Ik and Idk questions within the Idk datasets
constructed based on different Ik thresholds. Right: The changes in IK-IK rate, IK-IDK rate,
and TRUTHFUL rate after conducting Idk-SFT with different Idk datasets.

in a significant reduction in Ik-Ik related queries, far below their proportion in the dataset.
This indicates that constructing a model-specific Idk dataset is necessary for enabling the
model to learn to refuse to answer questions it does not know.

Effect of IK threshold So far, we have fixed the Ik threshold to 1.0. Here, we discuss the
impact of different Ik thresholds on model behaviors. The Ik threshold primarily affects
the distribution of labels in the Idk dataset, with a higher Ik threshold indicating that more
questions will be labeled as “I don’t know”. As demonstrated in Figure 4 (left), the higher
the value of the Ik threshold, the greater the proportion of Idk questions. This is because
when the Ik threshold is high, only questions with a high confidence level will be annotated
as questions known to the model. As shown in Figure 4 (right), increasing the Ik threshold
results in a decrease in the IK-IK rate and an increase in the IK-IDK rate. As the Ik threshold
is raised, the model’s TRUTHFUL rate will continue to improve. In other words, setting a
high Ik threshold aids the model in better distinguish between knowledge it knows and
does not know, making the model more truthful. In contrast, setting a low Ik threshold can
make the model more helpful, since the number of IK-IK questions will increase. Besides,
we find that as the proportion of Idk questions in the dataset increases, the model tends to
refuse to answer questions more frequently. We report the F1 scores of Idk and Ik questions
in different Idk datasets in Appendix C.2 and the knowledge quadrants under different Ik
thresholds in C.1.

5 Conclusion

In this paper, we explore the question “Can AI assistants know what they don’t know?”.
We find that after aligning the AI assistant with its own Idk(“I don’t know”) dataset which
contains its known and unknown questions, the assistant can be aware of what it does
not know to a certain extent. In the given test set for open-domain question-answering,
Llama-2-7b-chat can explicitly indicate whether it knows or does not know the answers
to up to 78.96% of the questions and refuse to answer the questions it does not know. To
achieve this, we utilize various methods to use the Idk dataset for alignment, including
prompting, supervised fine-tuning and preference-aware optimization. We also find that the
Ik threshold influences the model’s tendency to decline responses. Empolying an Idk dataset
from different models for alignment results in a performance degradation. Furthermore,
a large model like Llama-2-70b-chat achieves a higher TRUTHFUL rate. An AI assistant’s
refusal to answer questions beyond its knowledge can reduce hallucinations. We believe
this is an essential behavior for a truthful AI assistant.
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A Idk Dataset Construction Details

A.1 Data Statistics

We use the training set of TriviaQA, consisting of 87,622 samples, to construct the training
and development sets of the Idk dataset. We partition 10% of the training set of TriviaQA
to serve as the validation set of the Idk dataset, with the other 90% as the training set.
Therefore, the validation set contains 8,763 samples and the training set contains 78,899
samples. We use the development set of TriviaQA to construct the test set for the Idk dataset,
which comprises a total of 11,313 samples. The number of samples in each part of the Idk
dataset for different models is the same, it is only the distribution of the labels that varies.

A.2 Sampling Parameters

When constructing the Idk dataset through sampling model responses, our sampling
parameters are set as follows: top p=0.9, temperature=1.0, max new tokens=512, repe-
tition penalty=1.0 (no penalty). We use this set of parameters for all random sampling in
this work.

A.3 Label Distribution of Idk Datasets

In Figure 5 and Figure 6, we present the label distribution in the Idk datasets constructed
using different Ik thresholds across various models. It is evident that different models
possess varying knowledge reserves, as indicated by the distinct differences in the label
distribution of their Idk datasets. As shown in Figure 6, the larger the size of the model, the
more extensive its knowledge, resulting in fewer questions being labeled as “I don’t know”.
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Figure 5: Label distribution in the Idk dataset across different models.
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B Training Details

B.1 Supervised Fine-tuning

We organize our Idk dataset into single-turn dialogues following the conversation format of
Llama-2-7b-chat and then use the standard SFT loss to train the model:

LSFT = −E(x,y)∼D[
1
N

N

∑
t

log p(yt|x, y<t; θ)] (1)

(x, y) is a question-answering pair in the Idk dataset, where x represents the question, and y
represents the answer. N represents the length of the answer y, and θ represents the model
parameters. During training, we employ a packing strategy to combine multiple samples
into a single sequence with a maximum length of 4096. Following the settings of llama-
recipes4, our batch size is set to 32, with a learning rate of 1e-4 and train 10 epochs. During
training, we save a checkpoint at the end of each epoch, and select the checkpoint that
performs the best on the validation set as the final model. We employed Fully Sharded Data
Parallelism (FSDP) to conduct SFT training on eight A100 80G GPUs. For Llama-2-70b-chat,
we train 10 epochs using 32 A100 80G GPUs and select the checkpoint of the last epoch
as the final model. The decision to forego the use of a validation set for model selection
was based on our observation that the model exhibiting the lowest loss on the validation
set tended to erroneously reject numerous Ik questions. We speculate that this may be
attributed to the inherent alignment training of the Llama-2-70b-chat itself.

B.2 Direct Preference Optimization

The original DPO loss proposed by Rafailov et al. (2023) is:

LDPO = −E(x,yw ,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)

πref(yl | x)

)]
. (2)

where πref is the SFT model trained with half of the Idk data, πθ is the policy model, yw is
the chosen response and yl if the rejected response. To alleviate the problem of the DPO
model sometimes failing to fully generate the Idk template, we additionally incorporate the
SFT loss. Our final loss function of direct preference optimization is:

LDPO−SFT = LDPO + α ∗ LSFT (3)

In the experiment, we set the coefficient α of the SFT loss to 0.01. The hyperparameters of
our SFT model training are the same as Appendix B.1. During DPO training, following
DPO’s official implementation5, we set our batch size to 64, the learning rate to 5e-7, β to 0.1
and train for one epoch. We partition 10% of the preference data to construct a validation
set to select the best checkpoint. We use 8 A100 80G GPUs for DPO training. We present the
impact of different α values on the model’s TRUTHFUL rate in Table 3.

Table 3: The impact of the coefficient α of the SFT loss on the model’s TRUTHFUL rate.

α = 0 α = 0.01 α = 0.1 α = 0.5 α = 1.0

Ik-threshold=0.5 74.28 72.39 72.06 72.31 72.08
Ik-threshold=1.0 66.14 77.89 76.68 75.55 75.72

As shown in Table 4, when using the Idk dataset constructed with Ik-threshold=0.5 for DPO
training, the model is capable of accurately generating the Idk template. In this scenario,
incorporating SFT loss reduces the model’s TRUTHFUL rate. However, when using the Idk
dataset constructed with Ik-threshold=1.0 for DPO training, the model occasionally fails to
accurately generate the Idk template. In such cases, employing a coefficient of 0.01 yields
the most effective mitigation.

4https://github.com/facebookresearch/llama-recipes
5https://github.com/eric-mitchell/direct-preference-optimization
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B.3 Best-of-n Sampling

We train the reward model using a pairwise loss:

LRM = −E(x,yw ,yl)∼D [log σ (r(xi, yw)− r(xi, yl))] (4)

where (x, yw, yl) is a question-chosen-rejected triplet from the preference dataset. During
training of the reward model, we set batch size to 128, learning rate to 9e-6, and train for
one epoch. We partition 10% of the preference data to construct a validation set to select the
best checkpoint. We use 4 A100 80G GPUs for reward model training.

B.4 Proximal Policy Optimization

We employ the SFT model and reward model obtained from B.3 fro PPO training. We
use DeepSpeed-Chat 6 for PPO training. The SFT model and reward model used in PPO
training are obtained from the BoN’s supervised fine-tuning and reward modeling. For PPO
(Schulman et al., 2017), the loss function of the actor model is:

LPPO−Actor = −Êt[max(rt(θ)Ât, clip(rt(θ), 1 − ϵ, 1 + ϵ)Ât], rt(θ) =
πθ(at|st)

πθold(at|st)
(5)

And the loss function of the critic model is:

LPPO−Critic = 0.5 ∗ Êt[max((Vϕ(st)− R̂t)
2, clip(Vϕ(st), Vold(st) + ϵ, Vold(st)− ϵ))] (6)

We set the learning rate for both the actor model and the critic model to 1e-6. The generation
batch size is 64 and the training batch size is 32. Each training step, we train a single inner
epoch. We utilize DeepSpeed ZeRO-3 to train one epoch on 32 A100 80G GPUs.

B.5 Hindsight Instruction Relabeling

We combine 10 Idk datasets using the HIR method, constructed from 10 distinct Ik thresholds
ranging from 0.1 to 1.0. These Ik thresholds correspond to knowledge confidence level from
1.0 to 0.1, respectively. The lower the knowledge confidence level, the less confident the
model is in its own knowledge, resulting in a more conservative response strategy. Besides,
we also add a dataset consisting entirely of refusals to respond, corresponding to situations
where the knowledge confidence level is 0 and its Ik threshold can be seen as 1.1. We utilize
the following formula to convert from the Ik threshold to the knowledge confidence level:

Knowledge con f idence level = 1.1 − Ik threshold (7)

For example, we prepend the following instruction to questions in the Idk dataset corre-
sponding to an Ik threshold of 1.0:

Your current knowledge expression confidence level is 0.1, please answer the user’s
question: <Question>

We set the batch size to 256, the learning rate to 2e-5 and we train for 3 epochs using 8
A100 80G GPUs. The advantage of this method is that it allows users to control the model’s
response strategy without the need to retrain the model. For instance, in scenarios where
there is a low tolerance for factual errors, we can set the knowledge confidence level to
0.1. This setting prompts the model to answer only those questions it is particularly certain
about, thereby ensuring truthfulness. Conversely, in situations where there is a higher
tolerance for factual errors, we can adjust the knowledge confidence level to 1.0. This
adjustment encourages the model to respond to a wider range of questions, enhancing its
helpfulness. We show the comparison between Idk-HIR and Idk-SFT in Appendix C.3.

6https://github.com/microsoft/DeepSpeedExamples/tree/master/applications/
DeepSpeed-Chat
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C Additional Experimental Results

C.1 Knowledge Quadrants Under Different Ik Thresholds

In Figure 7, we present the distribution of the model’s knowledge quadrants after Idk-SFT
when the Ik threshold ranges from 0.1 to 0.9.
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Figure 7: Knowledge quadrants under different Ik thresholds.

C.2 Effect of IK threshold

Answer F1 and Refusal F1. We report Answer F1 score and Refusal F1 score to reflect
changes in the model’s behavior influenced by the Ik threshold. Regarding Answer F1,
we only consider whether the model answer the question, without taking into account the
accuracy of the answer.

As shown in Figure 8, when the Ik threshold raises, the model tends to refuse to answer
questions, resulting in an increase in Refusal F1. Conversely, when the Ik threshold is low,
the model in more inclined to answer questions, leading to an increase in Answer F1.

C.3 Idk-HIR vs Idk-SFT

In this section, we compare the effects of Idk-HIR and Idk-SFT.
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Figure 8: Refusal F1 and Answer F1 scores at different Ik thresholds.
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Figure 9: Comparison between Idk-SFT and Idk-HIR.

As shown in Figure 9, the IK-IK rate and IK-IDK rate of the Idk-HIR model are comparable
to those of the Idk-SFT model across various Ik thresholds, and the TRUTHFUL rate is
consistently higher than that of the Idk-SFT. Therefore, in certain scenarios, the flexible and
controllable Idk-HIR model serves as an excellent alternative to the Idk-SFT model.
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