
Under review as a conference paper at ICLR 2023

SOLVING CONTINUAL LEARNING VIA PROBLEM
DECOMPOSITION

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper is concerned with class incremental learning (CIL) in continual learn-
ing (CL). CIL is the popular continual learning paradigm in which a system re-
ceives a sequence of tasks with different classes in each task and is expected to
learn to predict the class of each test instance without given any task related infor-
mation for the instance. Although many techniques have been proposed to solve
CIL, it remains to be highly challenging due to the difficulty of dealing with catas-
trophic forgetting (CF). This paper starts from the first principle and proposes a
novel method to solve the problem. The definition of CIL reveals that the prob-
lem can be decomposed into two probabilities: within-task prediction probability
and task-id prediction probability. This paper proposes an effective technique to
estimate these two probabilities based on the estimation of feature distributions in
the latent space using incremental PCA and Mahalanobis distance. The proposed
method does not require a memory buffer to save replay data and it outperforms
strong baselines including replay-based methods.1

1 INTRODUCTION

Continual learning (CL) is a learning problem where a system learns and accumulates knowledge
over time without forgetting the previous knowledge (Chen & Liu, 2018). The key challenge is the
catastrophic forgetting (CF), which is a phenomenon that the system corrupts the learned knowledge
in the past in learning a new task (McCloskey & Cohen, 1989). This paper focuses on the challenging
CL setting of class incremental learning (CIL) (Rebuffi et al., 2017) in the offline (or batch) mode.
In this setting, the system learns a sequence of classification tasks incrementally, where each task
arrives with all its training data of a set of classes. The resulting classifier can identify the class of
a test instance among all the classes learned in the process with no task information provided. The
other popular setting of CL is task incremental learning (TIL), which builds a separate model for
each task and in testing, the test instance together with the task-id that the test instance belongs to
are provided so that the system can use the model of the specific task to classify the instance.

Existing approaches to CIL can be grouped into several categories. Regularization (Kirkpatrick
et al., 2017) or distillation (Li & Hoiem, 2016) tries not to change the parameters or knowledge that
are important to old tasks when learning the new task. Replay/memory-based approaches (Rebuffi
et al., 2017) save some old data and use them jointly with the new task data to learn the new task and
to preserve/adjust the old knowledge. Parameter isolation approaches (Serra et al., 2018) expand
the network or mask out the important parameters for old tasks (see Sec. 2 for more details). Our
approach is entirely different and is derived directly from the definition of the CIL setting.

Definition: Class incremental learning (CIL) learns a sequence of tasks 1, ..., t, where each task
i has a training data Di = {(xi

j , y
i
j)}n

i

j=1 with xi
j ∈ Xi (input space) and yij ∈ Y i (class label

space). The class labels of tasks are disjoint, Y i ∩ Y k = ∅ for any i ̸= k 2. Let X = ∪t
i=1X

i and
Y = ∪t

i=1Y
i. The goal is to learn a function f : X → Y to predict the class label of test case x.

1The code is included in the Supplementary Material.
2In (Bang et al., 2021), tasks are considered to have shared classes. For instance, the system receives two

datasets D1 and D2 consisting of classes {y1, y2} and {y1, y3, y4}, respectively. We define task 1 and 2
consisting of {y1, y2} and {y3, y4}, respectively, and consider the samples of shared label y1 as additional
training data for task 1. This work does not consider this learning scenario. We leave it for our future work.

1

Under review as a conference paper at ICLR 2023

As tasks have disjoint classes, the CIL probability of a sample x having the jth class label yij of task
i can be decomposed into two probabilities,

P(yij |x) = P(yij |x, i)P(i|x), (1)

The decomposition implies that there are two probabilities that define the CIL probability. The first
probability on the right-hand-side (RHS) is the within-task prediction (WTP) probability (or intra-
task prediction probability) and the second probability on the RHS is the task-id prediction (TIP)
probability (or inter-task prediction probability). Thus, a system makes a correct CIL prediction if
it produces accurate within-task and task-id predictions.

We note that the WTP probability is exactly the prediction probability in a TIL problem. However,
in TIL, the task-id is given in inference or testing. Thus, to solve the CIL problem, one can learn
like TIL and then design a mechanism to predict the task-id to which the test instance belongs.
Some existing works have taken this approach (Rajasegaran et al., 2020; Abati et al., 2020), but
they perform poorly because their task-id predictors are very weak. However, these papers did not
propose Eq. 1. We will discuss these and other related works in the related work section. In fact, the
WTP probability can be improved from that given by a TIL system too.

This paper proposes a novel technique to estimate the two probabilities and an exemplar-free CIL
system, called EWT (Estimation of WTP and TIP probabilities). EWT makes use of the highly
effective hard-attention masking method HAT (Serra et al., 2018) for TIL to learn feature extractor
for each task. HAT has almost no forgetting for TIL as it masks out the parameters and neurons
learned for previous tasks. This ensures that the estimated probabilities are robust and are not af-
fected by forgetting in incremental learning. Although we could directly use the probability of each
class produced from each task as WTP probability, this approach is sub-optimal. We propose a gen-
erative approach to improve the estimation by considering possible noisy and/or out-of-distribution
samples. This is done by fine-tuning the task classifiers using generated pseudo feature representa-
tions for each class. The generation is done based on the Gaussian distributions in the latent feature
space. The Gaussian distribution for each class is estimated incrementally using incremental Prin-
ciple Component Analysis (iPCA). The TIP probability is estimated using Mahalanobis distance.

Our experiments demonstrate the effectiveness of the proposed method EWT using a pre-trained
transformer network that does not have information leak, i.e., it is trained using the ImageNet data
with all classes that are similar to the classes in the experiment datasets removed. Both our sys-
tem and the baselines fix the transformer and train adapter modules inserted at each transformer
layer (Houlsby et al., 2019). The experimental results shows that EWT outperforms the recent state-
of-the-art baselines by large margins, including replay-based approaches.

2 RELATED WORK

Numerous techniques have been proposed for CL. We consider the five most relevant categories:
exemplar-free, replay-based, generative methods, network-expansion, and parameter isolation.
Exemplar-free methods (saving no previous task data) often use regularization (Kirkpatrick et al.,
2017; Zhu et al., 2021), knowledge distillation (Li & Hoiem, 2016), or orthogonal projection (Zeng
et al., 2019) to preserve previous important parameters (Zenke et al., 2017; Wang et al., 2022). Our
method is also exemplar-free and our CF prevention is based on task masking (Serra et al., 2018).

Replay-based CL has been widely studied in CIL. Different saving mechanisms (Rebuffi et al.,
2017; Liu et al., 2020b; Bang et al., 2022), replay strategies (Aljundi et al., 2019), and regulariza-
tions (Lopez-Paz & Ranzato, 2017; Castro et al., 2018; Chaudhry et al., 2018; Buzzega et al., 2020;
Chaudhry et al., 2021) have been used. The goal of these methods is to balance the plasticity and
stability using the saved samples of previous tasks (Liu et al., 2021; Yan et al., 2021). Our method
does not save any samples and it also performs much better than recent replay-based methods.

Generative methods (Shin et al., 2017; Ostapenko et al., 2019; Ayub & Wagner, 2021) build genera-
tors to generate pseudo-replay data to prevent forgetting. Lesort et al. (2018) studied the difficulties
of the generative approach. We do not generate pseudo-replay samples similar to the raw data and
thus do not have its problems. Our method generates feature vectors rather than raw data. Liu et al.
(2020a) and Zhu et al. (2021) also generate feature vectors. They use the generated features for dis-
tilling knowledge of previous tasks. However, we estimate the distributions of features to fine-tune
the classifier and to compute task-id probability rather than for knowledge distillation.

2

Under review as a conference paper at ICLR 2023

xi

{
N

(
µ
c
,
Σ

c
)
}

p
(Y

i
|x

i
,
i
)...f i

gi

g1

(a) Step 1

p
(
Y

|z
)

g...

{
{
N

(
µ
c
,
Σ

c
)
}
}

Z

(b) Step 2

Figure 1: Overview of the training process for task i. The dashed lines indicate that the gradient flow
is blocked while the solid lines indicate gradients are computed along the lines. (a) The network is
trained in a multi-head manner (one per task), in which task-specific parameters are trained based
on hard-attention and used to effectively eliminate the interference between tasks. During training,
the system dynamically estimates the distributions N(µc(f

i(xi)),Σc(f
i(xi))) of feature vectors

f i(xi). The estimated distributions are used to generate pseudo feature vectors, and the network
is jointly trained with the pseudo feature vectors and the training data of task i. Since the network
gi◦f i is trained to minimize the loss on both training data and the pseudo feature vectors, this process
encourages feature vectors of f i to follow the desired distribution. (b) Given the distributions, the
system fine-tunes a classifier g created by joining the multi-head classifiers gk, k ≤ i. The fine-
tuning is done using pseudo feature vectors generated from the distributions.

Network expansion methods (Rusu et al., 2016; Mehta et al., 2021; Yan et al., 2021) expand the
network to preserve old parameters. IBP-WF (Mehta et al., 2021) uses global weight factors for
knowledge sharing and a Bayesian non-parametric approach for network expansion. It first finds the
task-id in testing using Gaussian distributions and then uses the task-id to select the correct model
for prediction. Our method is different as we do not expand the network or find the task-id, but
directly compute the CIL probability. DER (Yan et al., 2021) expands the network and also does
pruning to reduce the network size. Our method does not expand the network.

Another popular branch in continual learning is parameter isolation, which trains a set of task spe-
cific parameters. The methods are mostly designed for task incremental learning (TIL) as they
require the task-id of each test instance to choose the correct task specific parameters. We leverage
the hard attention masking (HAT) (Serra et al., 2018) to prevent forgetting. However, our method is
for CIL unlike the original HAT. Although there are attempts (von Oswald et al., 2020; Rajasegaran
et al., 2020; Abati et al., 2020; Henning et al., 2021) to use the parameter isolation methods for
CIL problem, they do not tackle CIL by problem decomposition problematically as we do. These
methods are much weaker than ours (see Sec. 4).

Using a pre-trained model (e.g., BERT, GPT-3, ViT, DeiT, or CLIP) has been a standard practice for
CL in natural language processing (Ke et al., 2021). For image data, Ostapenko et al. (2022) studied
using pre-trained models as foundation models for CL. SLDA (Hayes & Kanan, 2020) fixes the pre-
trained feature extractor and fine-tunes the classifier. L2P (Wang et al., 2022) trains a prompt pool
with a fixed feature extractor and Wu et al. (2022) fine-tunes replicate layers of a pre-trained model.
Our method EWT also leverages a pre-trained feature extractor, but we use adapters in the fixed
feature extractor and trains only the adapters to learn new knowledge. Using the same pre-trained
model, our method outperforms SLDA and L2P by a large margin (see Sec. 4).

Different CIL settings have been studied as well. Blurry task (or task-free) is studied in online
CIL (Buzzega et al., 2020; Bang et al., 2022), where the tasks boundaries are not clear as tasks
change gradually. Our method is an offline method, where tasks are disjoint. As noted in footnote 2,
we split tasks by unseen classes rather than by datasets. We leave training with additional samples
of previous tasks for our future work in the online CL setting.

3 PROPOSED METHOD

An overview of the training process of the proposed method is illustrated in Fig. 1. Learning a new
task i involves two steps. Step 1 focuses on training the feature extractor. Specifically, it trains the
task network gi ◦ f i using both the training data Xi of task i and the pseudo feature vectors Z gen-
erated from the Gaussian distribution N(µc(f

i(Xi)),Σc(f
i(Xi)) of feature vectors for each class

c in the task (see Fig. 1(a)). The Gaussian distribution is dynamically and incrementally estimated

3

Under review as a conference paper at ICLR 2023

using incremental Principle Component Analysis (iPCA) during training (see Sec. 3.1.1). Since the
network is jointly trained with the training data and the generated features, which also depend on
the values of feature extractor f i, this encourages the feature vector to follow the distribution. This
step has little forgetting as the training is done based on the hard-attention mechanism in Serra et al.
(2018), which can protect/mask the parameters learned from previous tasks (see Sec. 3.1.2). Note
that although f i’s are task specific but they are all learned in the same network and there are a lot
of parameter sharing. Step 2 computes the two probabilities in Eq. 1 based on the trained feature
extractors f i’s and the Gaussian distribution for each class.

3.1 STEP 1: TASK TRAINING

We first discuss the detailed training process to learn a task i in step 1, which performs two functions:
(i) estimating the distribution of feature vectors for each class in a task using incremental Princi-
pal Component Analysis (iPCA), and (ii) training the feature extractor with hard attention masking
in (Serra et al., 2018) to prevent interference or CF in learning task i using the training data Xi and
the generated feature vectors Z based on the incrementally estimated distributions on the fly. As
we explain above, we use Z in the step 1 training because we want to produce better distributions,
which will be used in step 2.

We train the network for task i by minimizing the loss

Lce = − 1

2|B|

 ∑
(x,y)∈B

log p(y|x, i) +
∑

(z,y)∈Z

log p(y|z, i)

 , (2)

where the first p on the right is the softmax output gi(f i(x)), the second p is the softmax output
gi(z), B is a batch of training data, and Z is a batch of pseudo feature vectors generated from the
Gaussian distributions {N(µc,Σc)} for each class c in task i. The following sub-sections describe
how to estimate the distributions of feature vectors and how to train the feature extractor without CF.

3.1.1 INCREMENTAL ESTIMATION OF GAUSSIAN DISTRIBUTIONS OF FEATURE VECTORS

We use multivariate Gaussian distribution to approximate the feature distribution for each class. The
challenges in estimating the distribution of features in CL are: (i) the statistics (µc,Σc) need to
be updated incrementally at each batch on the evolving feature extractor as using the whole data
to recompute the statistics after training is computationally demanding and (ii) saving statistics of
the Gaussian distributions is expensive as the feature vectors have a high dimension d. Therefore,
we take ideas from the algorithms developed for incremental Principal Component Analysis (iPCA)
to approximate the covariance. In iPCA, only a few (k << d) principal vectors are saved and
updated dynamically at each batch without using any previous data. Since the following discussion
is about estimating the distribution of feature vectors of each class, we remove the class indicator c
for simplicity in notation. Likewise, we also remove task index i.

Suppose we have seen n training samples so far. Denote the n samples of a class by X and the the
feature vectors by f(X) = Z = [z1, · · · , zn] from the feature extractor f while minimizing Eq. 2.
Denote the sample mean by µ =

∑
zj/n. Suppose that the system receives a new batch Xnew of

m instances. We obtain the feature vectors Znew = [zn+1, · · · , zn+m], and update the mean by

µ̃ = (nµ+mµnew)/(n+m), (3)

where µnew is the sample mean of the new batch. Denote the singular value decomposition (SVD)
of the centered feature by UΛV T svd

= [Z − µ], where T is the transpose symbol. We approximate
the covariance with k leading eigenvectors and eigenvalues as follows

(n− 1)Σ ≈ UkΛ
2
kU

T
k . (4)

For simplicity, we denote the reduced matrices Uk by U and Λk by Λ as the following discussions
are based on the reduced matrices. Based on (Ross et al., 2008), the SVD can be updated for a
new set of data Znew as ŨΛ̃Ṽ T svd

= [
√
n− 1UΛ K] given the block matrix K = [Znew −

µnew

√
nm/(n+ 1)(µnew − µ)], and we obtain

(n+m− 1)Σ ≈ ŨΛ̃2ŨT . (5)

4

Under review as a conference paper at ICLR 2023

The derivation for Eq. 5 is given in Appendix D. The statistics for the Gaussian distribution of class
c is estimated dynamically with k (<< d) eigenpairs, and pseudo feature vectors can be drawn from
the estimated distribution to train the classifier.

3.1.2 HARD ATTENTION MASKING

In training the network gi ◦ f i using the data of task i and the generated pseudo feature vectors, we
employ the hard attention mask (Serra et al., 2018) to prevent forgetting in the feature extractor.

The hard attention mask ai
l is a trainable pseudo binary 0-1 vector at each layer l of task i. It is

element-wise multiplied to the output of the layer as ai
l ⊗hl and blocks (for value of 0) or unblocks

(for value of 1) the information flow from neurons of adjacent layers. Neurons with value 1 are
important for the task and thus need to be protected while neurons with value 0 are not necessary
for the task and can be freely modifed without affecting other tasks.

More specifically, we modify the gradients of parameters that are important in performing the pre-
vious tasks (1, · · · , i − 1) during training task i so the important parameters for previous tasks are
unaffected. The gradient of parameter wkj,l at kth row and jth column of layer l is modified as

∇w′
kj,l =

(
1−min

(
a<i
k,l, a

<i
j,l−1

))
∇wkj,l, (6)

where a<i
k,l is an accumulated attentions over previous tasks and is 1 if the hard attention of neuron

k at layer l is ever used by any previous task < i (see (Serra et al., 2018) for details).

To encourage parameter sharing and sparsity in the number of activated masks, a regularization is
introduced as Lr =

∑
l,k a

i
k,l(1−a<i

k,l)
/∑

l,k(1−a<i
k,l). The final objective to train a comprehensive

task network without forgetting is

L = Lce + Lr, (7)

where Lce is the cross-entropy loss in Eq. 2.

3.2 STEP 2: COMPUTING THE TWO PROBABILITIES IN EQ. 1

We now discuss how to compute the within-task prediction (WTP) probability and the task-id pre-
diction (TIP) probability.

3.2.1 COMPUTING THE WTP PROBABILITY

We could use the softmax probability of each class in a task as the within task prediction (WTP)
probability for the class. However, this method is not the best for computing the probability (see
the experiment section) because those samples that may be outliers, noises, or other hard-to-classify
cases are unlikely to get accurate probabilities, which also affect the probabilities of those samples
that are easy to classify. We propose to consider possible out-of-distribution (OOD) samples in each
task. However, we do not have OOD data for each task to use in learning the task. Since we have
already computed the distributions of feature representations for each class in step 1, for each task
we could use the generated data from the distributions of the other tasks as the OOD data for the
task. Although we could consider the generated data from previous tasks as OOD data when training
a new task, we cannot use the generated data from a later task to update the model of an earlier task
because we no longer have the data of the earlier task and even if we can use the generated data
of this earlier task, updating its feature extractor can cause serious forgetting because the feature
extractors for different tasks share many parameters in the hard attentions (Serra et al., 2018).

We propose a simpler method. We build and fine-tune (see below) a separate linear classifier (with
one input layer and one output layer) considering the classes from all tasks learned so far using
the generated feature vectors for each class in each task from the feature distribution of the class
estimated in step 1. The advantage of this approach is that using a single combined model/classifier
we can consider the OOD data for all tasks because for the classes of a task, the classes of all other
tasks can be considered as OOD data for the task.

After training each task i in step 1, we have the set of distributions {{N(µc,Σc)}c}i of features of
each class c of the task i ≤ t. We then fine-tune a combined classifier g, which is the classifier cre-

5

Under review as a conference paper at ICLR 2023

ated by joining the parameters of each task’s classifier gi, using pseudo feature vectors Z generated
from the distributions. This is illustrated in Fig. 1(b).

Note that in step 1, each task network gi ◦ f i is trained independently without considering the
other task networks. In this step, we consider the outputs of all the tasks together and fine-tune the
combined classifier g. We minimize the cross entropy loss

Lce = − 1

|Z|
∑

(z,y)∈Z

log p(y|z) (8)

where the probability is computed using the softmax
[
g1(z); · · · ; gt(z)

]
. The WTP probability of

class c (which is our class label yij in Eq. 1) is

P(c|x, i) = softmax(gi(f i(x))). (9)

3.2.2 COMPUTING THE TIP PROBABILITY

We now compute the task-id prediction (TIP) probability for a given test sample x. We make use
of the distance between the feature vector f i(x) of x and a distribution N(µc,Σc) of features
estimated by the training data. This has been used as an effective measure for OOD detection (Lee
et al., 2018). We define the covariance of the distribution of task i as Σi =

∑
c∈Ci Σc/|Ci|, where

Ci is the set of classes of task i and Σc is the covariance matrix computed by the method discussed in
Sec. 3.1.1 with all the principal components. We discard the class covariance after the computation
to save memory. Given a set of distributions {N(µc,Σ

i)}c∈Ci of task i and a test instance x, we
define the following score of the feature f i(x),

si(x) = 1/max
c

{MD(f i(x);µc,Σ
i)}, (10)

where MD is the Mahalanobis distance of sample x to the distribution N(µc,Σ
i). The higher the

value, the further away the sample is from the distributions of task i.

Finally, the TIP probability for task i is defined as,

P(i|x) = si(x)/
∑
k

sk(x), (11)

Eq. 11 is justified as a sample that is closer to a distribution is more like to belong to the distribution.

4 EXPERIMENT

Baselines. We compare the proposed EWT with 11 baselines among which five are exemplar-free
(i.e., saving no previous task data) methods and six are replay-based methods. The exemplar-free
methods are: HAT (Serra et al., 2018), OWM (Zeng et al., 2019), SLDA (Hayes & Kanan, 2020),
PASS (Zhu et al., 2021), and L2P (Wang et al., 2022). For the multi-head method HAT, we make
prediction by taking argmax over the concatenated logits from each task network as it works the
best among all the considered prediction methods (refer to Appendix C for details). The replay
methods are: iCaRL (Rebuffi et al., 2017), A-GEM (Chaudhry et al., 2018), EEIL (Castro et al.,
2018), DER++ (Buzzega et al., 2020), HAL (Chaudhry et al., 2021), and DER without pruning (Yan
et al., 2021). We could not run (Wu et al., 2022) as no code was released. We also do not include
the existing parameter isolation methods that deal with CIL problems as they are very weak 3.

Datasets. We use four popular continual learning benchmark datasets. (1). CIFAR10 (Krizhevsky
& Hinton, 2009). This is an image classification dataset consisting of 60,000 color images of size
32x32, among which 50,000 are training data and 10,000 are testing data. It has 10 different classes.

3HyperNet (von Oswald et al., 2020) and PR (Henning et al., 2021) find the task-id via an entropy function
and SupSup (Wortsman et al., 2020) finds it via gradient update. They then make a within-task prediction.
SupSup, PR, and iTAML (Rajasegaran et al., 2020) assume the test instances come in batches and all samples
in a batch belong to one task. When tested per sample on ResNet-18, HyperNet, SupSup, PR and iTAML
achieve 22.4, 11.8, 45.2 and 33.5 on 10 tasks of CIFAR100, respectively, which are much lower than 51.4 of
the baseline iCaRL. CCG (Abati et al., 2020) and IBP-WF (Mehta et al., 2021) do not provide code.

6

Under review as a conference paper at ICLR 2023

(2). CIFAR100 (Krizhevsky & Hinton, 2009). This dataset consists of 50,000 training images
and 10,000 testing images with 100 classes. Each image is colored and of size 32x32. (3). Tiny-
ImageNet (Le & Yang, 2015). This classification dataset has 200 classes with 500 training images
of size 64x64 per class. The validation data has 50 samples per class. Since no label is provided for
the test data, we use the validation set for testing as in (Zhu et al., 2021). (4). ImageNet380. We
randomly selected 380 classes from the 389 classes, which are the remaining classes after removing
those classes similar to those in CIFAR and Tiny-ImageNet from the original 1,000 classes of the
full ImageNet data (Russakovsky et al., 2015) for pre-training (see below). This dataset has about
1,300 color images per class. Similar to Tiny-ImageNet above, we use the validation set (50 images
per class) for testing as its original test data has no label.

Backbone Architecture. We use the backbone architecture of transformer DeiT-S/16 (Touvron
et al., 2021). We initially pre-train the network using 611 classes of ImageNet after removing 389
classes which are similar or identical to the classes of CIFAR and Tiny-ImageNet. To leverage the
strong performance of the pre-trained model while adapting to new knowledge, we fix the feature
extractor and append trainable adapter modules of fully-connected networks with one hidden layer
at each transformer layer (Houlsby et al., 2019) except SLDA and L2P 4. The number of neurons
in each hidden layer is 64 for CIFAR10 and 128 for other datasets. Note that all baselines and our
method use the same architecture and the same pre-training model for fairness as using a pre-
trained model improves the performance (Ostapenko et al., 2022) (e.g., DER improves from 65.2 to
73.3 on 10 tasks of CIFAR100 with pre-training on the same transformer architecture).

Note that we do not use the pre-trained models like CLIP (Radford et al., 2021) or others trained
using the full ImageNet data due to information leak both in terms of features and class labels
because our experiment data have been used in training these pre-trained models. This leakage can
seriously affect the results. For example, the L2P system using the pre-training model trained using
the full ImageNet data performs extremely well, but after those overlapping classes are removed in
pre-training, its performances drop greatly. In Table 1, we can see that it is in fact quite weak.

Training Details. For saving eigenpairs, we follow the existing memory budget strategy in the
replay-based method (Chaudhry et al., 2019) for fairness. We fix the total number of eigenpairs
saved in the CL process. After learning a new task, the system discards q eigenpairs with the
smallest eigenvalues from each class of the previous tasks to accommodate k eigenpairs of each
newly learned class. This strategy maintains k eigenvectors and the corresponding eigenvalues per
class in the budget. Denote the budget size by |M|.
For CIFAR10, we split the 10 classes into 5 tasks with 2 classes per task. The size of the hidden layer
for the adapter module is 64 and the number of eigenpairs is 10 per class. We refer the experiment
as C10-5T. The memory budget size |M| for eigenpairs is 100.

For CIFAR100, we conduct two experiments. We split the 100 classes into 10 and 20 tasks, where
each task has 10 classes and 5 classes, respectively. We refer the experiments as C100-10T and
C100-20T. We choose |M| = 1,000 for both experiments.

For Tiny-ImageNet, we conduct two experiments. We split the 200 classes into 5 tasks with 40
classes per task and 10 tasks with 20 classes per task. We refer the experiments as T-5T and T-10T,
respectively. We save 2,000 eigenpairs in total for both experiments.

For ImageNet380, we split the classes into 10 tasks with 38 classes per task and save 7,600 eigenpairs
in total. We refer the experiment to I380-10T.

For all the experiments of our system, we find a good set of learning rates and the number of epochs
via validation data made of 10% of the training data. We train our model for 15 epochs and use
SGD with batch size of 128 and with momentum value 0.9 for step 1. For the experiments of
CIFAR10 and CIFAR100, we use learning rate of 0.05 and 0.01, respectively. For Tiny-ImageNet
and ImageNet, we use learning rate 0.005. We train the classifier in step 2 for 35 epochs with SGD
with the same batch size and learning rate as step 1. Following the random class order protocol of
the existing methods (Rebuffi et al., 2017; Yan et al., 2021), we randomly generate 5 different class
orders for each experiment and report the average accuracy over the 5 random orders. For replay-
based baselines, we follow Rebuffi et al. (2017). The systems use the memory buffer of size 200 for

4For SLDA and L2P, we follow the original papers. SLDA fine-tunes only the classifier with a fixed feature
extractor and L2P trains learnable prompts.

7

Under review as a conference paper at ICLR 2023

Table 1: Average classification accuracy after the final task. ‘-XT’ means X number of tasks. Our
system EWT and all baselines used the pre-trained network. The last column shows the average of
each method over all datasets and experiments. We highlight the best results in each column in bold.

Method C10-5T C100-10T C100-20T T-5T T-10T I380-10T Average

HAT 79.36±5.16 68.99±0.21 61.83±0.62 65.85±0.60 62.05±0.55 71.20±0.99 68.21
OWM 41.69±6.34 21.39±3.18 16.98±4.44 24.55±2.48 17.52±3.45 0.26±0.00 20.40
SLDA 88.64±0.05 67.82±0.05 67.80±0.05 57.93±0.05 57.93±0.06 65.78±0.05 67.65
PASS 86.21±1.10 68.90±0.94 66.77±1.18 61.03±0.38 58.34±0.42 65.27±1.24 67.75
L2P 73.59±4.15 61.72±0.81 53.84±1.59 59.12±0.96 54.09±1.14 47.89±3.24 58.38
iCaRL 87.55±0.99 68.90±0.47 69.15±0.99 53.13±1.04 51.88±2.36 62.23±0.66 65.47
A-GEM 56.33±7.77 25.21±4.00 21.99±4.01 30.53±3.99 21.90±5.52 30.38±10.02 31.06
EEIL 82.34±3.13 68.08±0.51 63.79±0.66 53.34±0.54 50.38±0.97 63.37±0.49 63.55
DER++ 84.63±2.91 69.73±0.99 70.03±1.46 55.84±2.21 54.20±3.28 66.53±2.36 66.83
HAL 84.38±2.70 67.17±1.50 67.37±1.45 52.80±2.37 55.25±3.60 64.83±2.60 65.30
DER 86.79±1.20 73.30±0.58 72.00±0.57 59.57±0.89 57.18±1.40 69.19±1.36 69.67
EWT 87.60±1.77 74.15±0.40 71.06±0.35 66.16±0.28 64.59±0.17 74.30±0.46 72.98

CIFAR10, 2,000 for CIFAR100 and Tiny-ImageNet, and 7,600 for ImageNet and save a set of raw
training samples according to the saving strategy in the respective original papers 5. For the other
baselines, we follow the experiment setups as reported in their official papers.

Evaluation Metrics. We use two metrics: average classification accuracy (ACA) and average for-
getting rate. ACA after the last task t is At =

∑t
i=1 A

t
i/t, where Ai is the accuracy of the model

on task ith data after learning task t. The average forgetting rate after task t is Ft =
∑t−1

i=1 A
i
i −At

i.
This is also referred as backward transfer in other literature (Lopez-Paz & Ranzato, 2017). We report
the incremental classification accuracy (ICA) and ACA at each task in Appendix E.

4.1 RESULTS AND COMPARISON

Average Classification Accuracy. Tab. 1 shows the average classification accuracy after the final
task. The last column Average indicates the average performance of each method over the 6 ex-
periments. Our proposed method EWT performs the best on average. We achieve 72.98% while
the best baseline (DER) achieves 69.67%. The performance gap is even larger when we compare it
with non-replay based methods. The best exemplar-free method is HAT and it achieves 68.21% on
average, which is much lower than our method.

C10-5T C100-10T C100-20T0

10

20

30

40

50

60

70

80

Fo
rg

et
tin

g
R

at
e

HAT

OWM

SLDA

PASS

L2P

iCaRL

A-GEM

EEIL

DER++

HAL

DER

EWT

Figure 2: Average forgetting rate. The
lower the rate, the better the method is.

The baselines SLDA and L2P are proposed to lever-
age a strong pre-trained feature extractor in the original
papers. SLDA freezes the feature extractor and only
fine-tunes the classifier. It performs well for the simple
experiment C10-5T but is significantly poorer than our
EWT on other experiments. This is because the fixed
feature extractor does not adapt to new knowledge. Our
method updates the feature extractor via adapter mod-
ules to new knowledge and it is able to learn more com-
plex problems. L2P trains a set of prompt embeddings.
In the original paper, it uses a feature extractor that was
pre-trained with ImageNet-21k which already includes
the classes of the continual learning evaluation datasets.
When we remove the classes similar to the datasets used
in CL, its performance drops dramatically (58.38% on
average over the 6 experiments) and much poorer than our method EWT (72.98% on average).

Average Forgetting Rate (Backward Transfer). We compare the forgetting rate of each system
after learning the last task in Fig. 2. The forgetting rates of the proposed method EWT are 5.26, 8.75,

5Note that we save eigenvectors where each vector is in dimension of 384 whereas the replay-based methods
save raw inputs. For a memory of size |M| and dataset with C classes, our method and the replay methods
save k = |M|/C pairs and raw inputs, respectively, after the last task. Thus, for C100-10T, EWT takes 384K
elements for the eigenpairs while replay methods consumes 6.1M elements. Refer to Appdendix B for details.

8

Under review as a conference paper at ICLR 2023

Table 2: The average classification accuracy by different variants of the proposed technique. The
variant S1 indicates the model after step 1. The variant S1 + S2 indicates the model after step 2 and
XX + TIP indicates the model with TIP of Sec. 3.2.2 applied at prediction.

C10-5T C100-10T C100-20T T-5T T-10T I380-10T

S1 74.00±3.93 67.76±0.49 59.91±0.66 64.35±0.61 60.48±0.24 70.66±0.91
S1 + S2 84.05±2.24 71.22±0.44 66.11±0.72 65.25±0.39 61.95±0.47 71.95±0.79
S1 + TIP 82.83±2.78 71.84±0.65 66.84±0.50 65.97±0.74 63.49±0.37 73.45±1.14
S1 + S2 + TIP (EWT) 87.60±1.77 74.15±0.40 71.06±0.35 66.16±0.28 64.59±0.17 74.30±0.46

Table 3: The accuracy performance and the number of saved eigenpairs on C100-10T. |M| = m
indicates that a total of m eigenvectors are saved with their corresponding eigenvalues.

|M| = 100 500 1,000 1,500 2,000

C100-10T 73.41±0.06 74.10±0.62 74.15±0.40 74.25±0.06 73.87±0.22

and 8.85 on C10-5T, C100-10T and C100-20T, respectively. iCaRL forgets less than ours on C10-
5T and C100-20T as it achieves 4.95 and 8.31, respectively. However, iCaRL was not able to adapt
to new knowledge effectively as its accuracies are much lower than our method EWT on the same
experiments. The average accuracy over the 6 experiments of EWT is 72.98 while that of iCaRL
is only 65.47. According to the forgetting rates, the best baseline (DER) adapts to new knowledge
well, but it was not able to retain the knowledge as effectively as our method. Its forgetting rates
are 13.36, 15.92, and 15.48 on C10-5T, C100-10T, and C100-20T, respectively, and are much larger
than ours. This results in lower average performance of DER than EWT.

4.2 ANALYSIS AND ABLATION

Performances of Different Variant methods. Tab. 2 shows the performance gain by adding each
proposed technique. The methods in the first (S1) and second rows (S1 + S2) only produce the WTP
probability without TIP probability since the TIP is not computed. Thus, we cannot decompose the
CIL probability as EWT. Instead, we make a CIL prediction by taking argmax over the concatenated
logits from each task classifier gi, which is better than the other considered prediction methods (refer
to Appendix C). From Tab. 2, fine-tuning the classifier via the generated feature vectors in step 2
already improves the performance from step 1 as shown in the second row (S1 + S2). On C10-
5T, C100-10T, and C100-20T, S2 improves more than 3% from S1. When the proposed task-id
prediction (TIP) is introduced, the performance also improves as represented in the third row (S1 +
TIP). In fact, this is slightly better than S1 + S2 without TIP which implies the effectiveness of the
proposed problem decomposition for CIL. Combining all the proposed techniques together delivers
the best performance as represented by the last row, which is the full EWT.

Performance by the Number of Eigenpairs. Step 1 and 2 are based on generating pseudo feature
vectors from Gaussian distributions. Due to the memory consumption, we approximate the covari-
ance by incremental PCA and save only |M| eigenvectors with the corresponding eigenvalues. This
is equivalent to saving |M|/C eigenpairs per class for a dataset of C classes when learning the last
task. Tab. 3 shows the model performance on C100-10T with different |M| sizes. With a single
eigenvector per class (i.e., |M| = 100), the model already achieves 73.41% accuracy. The perfor-
mance increases with the size of M until |M| =2,000. The lower performance on 2,000 is because
the less informative eigenpairs now generate noisy feature vectors.

5 CONCLUSION

This paper proposed an effective method to solve class-incremental learning (CIL) from the first
principle. Based on the definition of CIL, it first decomposes the CIL prediction probability into
two probabilities, within-task prediction (WTP) probability and task-id prediction (TIP) probabil-
ity. Novel methods are designed to estimate these probabilities, which are based on an incremental
PCA-based generative approach to fine-tune the multi-head task classifiers using a single head ap-
proach and Mahalanobis distance, respectively. Experimental results show that the proposed EWT
outperforms existing strong baselines by a large margin.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Davide Abati, Jakub Tomczak, Tijmen Blankevoort, Simone Calderara, Rita Cucchiara, and Ehte-
shami Bejnordi. Conditional channel gated networks for task-aware continual learning. In CVPR,
pp. 3931–3940, 2020.

Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Caccia, Min Lin,
and Lucas Caccia. Online continual learning with maximal interfered retrieval. In NeurIPS, 2019.

Ali Ayub and Alan Wagner. {EEC}: Learning to encode and regenerate images for contin-
ual learning. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=lWaz5a9lcFU.

Jihwan Bang, Heesu Kim, YoungJoon Yoo, Jung-Woo Ha, and Jonghyun Choi. Rainbow mem-
ory: Continual learning with a memory of diverse samples. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8218–8227, 2021.

Jihwan Bang, Hyunseo Koh, Seulki Park, Hwanjun Song, Jung-Woo Ha, and Jonghyun Choi. Online
continual learning on a contaminated data stream with blurry task boundaries. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9275–9284, 2022.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and SIMONE CALDERARA.
Dark experience for general continual learning: a strong, simple baseline. In NeurIPS, 2020.

Francisco M Castro, Manuel J Marı́n-Jiménez, Nicolás Guil, Cordelia Schmid, and Karteek Alahari.
End-to-end incremental learning. In Proceedings of the European conference on computer vision
(ECCV), 2018.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. arXiv preprint arXiv:1812.00420, 2018.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and M Ranzato. Continual learning with tiny episodic memories. 2019.

Arslan Chaudhry, Albert Gordo, Puneet Dokania, Philip Torr, and David Lopez-Paz. Using hindsight
to anchor past knowledge in continual learning. Proceedings of the AAAI Conference on Artificial
Intelligence, 35(8):6993–7001, May 2021. URL https://ojs.aaai.org/index.php/
AAAI/article/view/16861.

Zhiyuan Chen and Bing Liu. Lifelong machine learning. Morgan & Claypool Publishers, 2018.

Tyler L Hayes and Christopher Kanan. Lifelong machine learning with deep streaming linear dis-
criminant analysis. In CVPR Workshop on Continual Learning, 2020.

Christian Henning, Maria Cervera, Francesco D’Angelo, Johannes Von Oswald, Regina Traber,
Benjamin Ehret, Seijin Kobayashi, Benjamin F Grewe, and João Sacramento. Posterior meta-
replay for continual learning. Advances in Neural Information Processing Systems, 34, 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), ICML, 2019.

Zixuan Ke, Bing Liu, Nianzu Ma, Hu Xu, and Lei Shu. Achieving forgetting prevention and knowl-
edge transfer in continual learning. Advances in Neural Information Processing Systems, 34,
2021.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, and Others.
Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy of
Sciences, 114(13):3521–3526, 2017.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical Report TR-2009, University of Toronto, Toronto., 2009.

10

https://openreview.net/forum?id=lWaz5a9lcFU
https://openreview.net/forum?id=lWaz5a9lcFU
https://ojs.aaai.org/index.php/AAAI/article/view/16861
https://ojs.aaai.org/index.php/AAAI/article/view/16861

Under review as a conference paper at ICLR 2023

Y. Le and X. Yang. Tiny imagenet visual recognition challenge, 2015.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
out-of-distribution samples and adversarial attacks. Advances in neural information processing
systems, 31, 2018.

Timothée Lesort, Hugo Caselles-Dupré, Michael Garcia-Ortiz, Andrei Stoian, and David Filliat.
Generative models from the perspective of continual learning. https://arxiv.org/abs/1812.09111,
2018.

Zhizhong Li and Derek Hoiem. Learning Without Forgetting. In ECCV, pp. 614–629. Springer,
2016.

Xialei Liu, Chenshen Wu, Mikel Menta, Luis Herranz, Bogdan Raducanu, Andrew D Bagdanov,
Shangling Jui, and Joost van de Weijer. Generative feature replay for class-incremental learn-
ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, pp. 226–227, 2020a.

Yaoyao Liu, Yuting Su, An-An Liu, Bernt Schiele, and Qianru Sun. Mnemonics training: Multi-
class incremental learning without forgetting. In CVPR, 2020b.

Yaoyao Liu, Bernt Schiele, and Qianru Sun. Adaptive aggregation networks for class-incremental
learning. In CVPR, 2021.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient Episodic Memory for Continual Learning.
In NeurIPS, pp. 6470–6479, 2017.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pp. 109–165.
Elsevier, 1989.

Nikhil Mehta, Kevin Liang, Vinay Kumar Verma, and Lawrence Carin. Continual learning using
a bayesian nonparametric dictionary of weight factors. In International Conference on Artificial
Intelligence and Statistics, pp. 100–108. PMLR, 2021.

Oleksiy Ostapenko, Mihai Puscas, Tassilo Klein, Patrick Jahnichen, and Moin Nabi. Learning to
remember: A synaptic plasticity driven framework for continual learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11321–11329, 2019.

Oleksiy Ostapenko, Timothee Lesort, Pau Rodrı́guez, Md Rifat Arefin, Arthur Douillard, Irina Rish,
and Laurent Charlin. Continual learning with foundation models: An empirical study of latent
replay. Conference on Lifelong Learning Agents, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. arXiv preprint arXiv:2103.00020, 2021.

Jathushan Rajasegaran, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Mubarak Shah.
itaml: An incremental task-agnostic meta-learning approach. In CVPR, 2020.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, and Christoph H Lampert. iCaRL: Incremental
classifier and representation learning. In CVPR, pp. 5533–5542, 2017.

David A Ross, Jongwoo Lim, Ruei-Sung Lin, and Ming-Hsuan Yang. Incremental learning for
robust visual tracking. IJCV, 77(1), 2008.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211–252, 2015.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

11

Under review as a conference paper at ICLR 2023

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. In International Conference on Machine Learning, pp.
4548–4557. PMLR, 2018.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. In NIPS, pp. 2994–3003, 2017.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International Conference on Machine Learning, pp. 10347–10357. PMLR, 2021.

Johannes von Oswald, Christian Henning, João Sacramento, and Benjamin F Grewe. Continual
learning with hypernetworks. ICLR, 2020.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vin-
cent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 139–149,
2022.

Mitchell Wortsman, Vivek R., R. Liu, A. Kembhavi, M. Rastegari, J. Yosinski, and A. Farhadi.
Supermasks in superposition. In NeurIPS, 2020. URL https://proceedings.neurips.
cc/paper/2020/file/ad1f8bb9b51f023cdc80cf94bb615aa9-Paper.pdf.

Tz-Ying Wu, Gurumurthy Swaminathan, Zhizhong Li, Avinash Ravichandran, Nuno Vasconcelos,
Rahul Bhotika, and Stefano Soatto. Class-incremental learning with strong pre-trained models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 9601–9610, June 2022.

Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynamically expandable representation for
class incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 3014–3023, 2021.

Guanxiong Zeng, Yang Chen, Bo Cui, and Shan Yu. Continuous learning of context-dependent
processing in neural networks. Nature Machine Intelligence, 2019.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In ICML, pp. 3987–3995, 2017.

Fei Zhu, Xu-Yao Zhang, Chuang Wang, Fei Yin, and Cheng-Lin Liu. Prototype augmentation
and self-supervision for incremental learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 5871–5880, June 2021.

A PSEUDO-CODE

We provide the pseudo-code for training and testing. Our comments start with symbol “//”.

Algorithm 1 Training (Step 1)

1: for training data Di of each task do
2: for each batch (Xj ,Yj) ⊂ Di, until converge do
3: Obtain features Zj = f i(Xj) and outputs gi(Zj)

// Compute the mean and eigenpairs for features of each class in the task
4: for each class c feature Zc ⊂ Zj do
5: Compute µc using Eq. 3 and the eigenpairs (Uc,Λc) using Eq. 5
6: end for

// Train the classifier with generated features and remember the distributions
7: Generate pseudo features Z from the distributions of the current task and obtain gi(Z)
8: Minimize Eq. 7 and update the parameters
9: end for

10: end for

12

https://proceedings.neurips.cc/paper/2020/file/ad1f8bb9b51f023cdc80cf94bb615aa9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ad1f8bb9b51f023cdc80cf94bb615aa9-Paper.pdf

Under review as a conference paper at ICLR 2023

Algorithm 2 Training (Step 2)

// After training task t, fine-tune the classifier
1: Construct g = [g1, ..., gt] by concatenating the parameters of each task classifier gi

// Fine-tuning starts
2: for until converge do
3: Generate pseudo feature vectors Z from the distributions of all the learned classes
4: Minimize Eq. 8 and update the parameters
5: end for

Algorithm 3 Testing

Require: Test instance x, task networks [f1, ..., f t], and classifiers [g1, ..., gt] after learning task t
// Obtain CIL probabilities of the classes corresponding to each task

1: for for each task i ≤ t do
2: Obtain WTP using Eq. 9 and TIP using Eq. 11
3: Obtain the CIL probability p(Y i|x) = p(Y i|x, i)p(i|x), where Y i is the set of class labels

of task i
4: end for

// Concatenate the probabilities for the full CIL probability and make a prediction
5: ŷ = argmax

⊕
i p(Y

i|x), where
⊕

is concatenation

Table 4: The size of the model (in entries) required for each method without the memory buffer.

Method C10-5T C100-10T C100-20T T-5T T-10T I380-10T

HAT 24.1M 24.4M 24.7M 24.3M 24.4M 24.5M
OWM 26.6M 28.1M 28.1M 28.2M 28.2M 28.3M
SLDA 21.6M 21.6M 21.6M 21.7M 21.7M 21.7M
PASS 22.9M 24.2M 24.2M 24.3M 24.4M 24.6M
L2P 21.7M 21.7M 21.7M 21.8M 21.8M 21.8M
iCaRL 22.9M 24.1M 24.1M 24.1M 24.1M 24.2M
A-GEM 26.5M 31.4M 31.4M 31.5M 31.5M 31.6M
EEIL 22.9M 24.1M 24.1M 24.1M 24.1M 24.2M
DER++ 22.9M 24.1M 24.1M 24.1M 24.1M 24.2M
HAL 22.9M 24.1M 24.1M 24.1M 24.1M 24.2M
DER 27.7M 45.4M 69.1M 33.6M 45.5M 45.5M
EWT 24.1M 24.4M 24.7M 24.3M 24.4M 24.5M

B REQUIRED MEMORY

We report the network sizes of the systems after learning the last task. We use an ‘entry’ to denote a
parameter or a value required to learn and to inference for a task.

All the systems except SLDA and L2P use the feature extractor DeiT-S/16 (Touvron et al., 2021)
and adapter modules. The transformer consumes 21.6 millions (M) entries and the adapters take
1.2M and 2.4M entries for CIFAR10 and the other datasets. SLDA fine-tunes only the classifier on
top of the fixed pre-trained feature extractor as it does not have a protection mechanism. L2P uses
a prompt pool with 23k entries. Since each method requires method-specific elements (e.g., task
embedding for HAT), the number of entries required for each method is different. The number of
entries for each model is reported in Tab. 4.

Our method saves the mean and eigenpairs to approximate the distribution of features for each class
to draw pseudo feature vectors while the replay-based methods save the raw inputs to replay jointly
with the current task data. As the number of eigenpairs and the number of saved inputs affect the
performance, we use a budget M of size |M| each method can save. Since feature dimension is
384, the total entries required for saving the mean and eigenpairs for our method are 42.2k, 422.4k,
844.8k and 3.1M for CIFAR10, CIFAR100, Tiny-ImageNet, and ImageNet380, respectively. The

13

Under review as a conference paper at ICLR 2023

Table 5: The methods 1), 2), and 3) indicate entropy-based WTP prediction, softmax-based predic-
tion, and logit-based prediction, respectively, as described Appendix C. The last column Average
means the average value over the 6 experiments.

Method C10-5T C100-10T C100-20T T-5T T-10T I380-10T Average

HAT
1) 79.27±5.15 66.14±0.33 61.32±0.64 56.89±1.63 55.83±1.53 61.26±3.25 63.45
2) 79.27±5.15 68.96±0.29 61.83±0.66 65.84±0.62 62.12±0.46 71.16±0.87 68.20
3) 79.36±5.16 68.99±0.21 61.83±0.62 65.85±0.60 62.05±0.55 71.20±0.99 68.21

S1
1) 73.71±4.06 65.05±0.71 59.74±0.56 55.34±1.66 54.03±1.36 61.60±2.80 61.58
2) 73.71±4.06 67.89±0.45 60.00±0.73 64.29±0.57 60.55±0.21 70.68±0.84 66.19
3) 74.00±3.93 67.76±0.49 59.91±0.66 64.35±0.61 60.48±0.24 70.66±0.91 66.19

S1 + S2
1) 76.55±4.10 67.25±0.43 63.90±0.71 54.75±1.57 53.66±0.82 59.40±1.67 62.58
2) 76.55±4.10 71.21±0.47 65.05±0.37 65.29±0.32 61.75±0.17 72.32±0.25 68.70
3) 84.05±2.24 71.22±0.44 66.11±0.72 65.25±0.39 61.95±0.47 71.95±0.79 70.09

sizes of raw inputs are 3*32*32, 3*64*64, and 3*224*224 (after resize) for CIFAR, Tiny-ImageNet,
and ImageNet380. Thus, the total entries required for memory budget are 614.4k, 6.1M, 24.6M, and
1,144.0M for CIFAR10, CIFAR100, Tiny-ImageNet, and ImageNet380.

Finally, our system saves the covariance matrices for computing TIP in Sec. 3.2.2. The covariances
are saved for each task. Since each covariance is in size 384x384, the total entries for this step
are 737.3k, 1.5M, 2.9M, 737.3k, 1.5M, and 1.5M for C10-5T, C100-10T, C100-20T, T-5T, T-10T,
and I380-10T, respectively. The numbers are relatively small considering that some of the replay-
based methods (e.g., iCaRL, HAL) require a teacher model the same size as the training model for
knowledge distillation.

C DIFFERENT PREDICTION METHODS

As HAT is designed for task incremental learning and does not provide a task-id prediction mecha-
nism as the other parameter isolation methods such as HyperNet (von Oswald et al., 2020), we have
tried different CIL prediction methods. The reported values in Tab. 1 are the results of the best one
among the considered methods.

We considered three methods:

1) argmax p(Y i|x, i), where the task-id i is chosen based on the entropy values from each task
network as HyperNet.

2) argmax[p(Y 1|x, 1); · · · ; p(Y t|x, t)], where the within-task prediction (WTP) probability is ob-
tained by taking softmax over logits gi(f i(x)) of task i. This is equivalent to using an equal proba-
bility for task-id prediction (TIP) probability.

3) argmax[g1(f1(x)); · · · ; gt(f t(x))].

Tab. 5 shows the results of each prediction method. Based on the result, the entropy-based prediction
performs the worst. The reason is that the entropy value from each task network is not as informative
as other values since it is not trained with entropy. The softmax-based and logit-based predictions
are not different on average over the 6 experiments. Since logit-based performance is the best, we
choose it as the CIL prediction method for HAT.

S1 and S1+S2 in Tab. 2 in the main paper also do not have CIL prediction mechanism. We try the
three prediction methods as HAT. The results are in Tab. 5. We can observe similar behaviors in S1
and S1+S2 as HAT.

14

Under review as a conference paper at ICLR 2023

Table 6: Incremental classification accuracy. The last column shows the average of accuracies of
each method over all the experiments. We highlight the best results in each column in bold.

Method C10-5T C100-10T C100-20T T-5T T-10T I380-10T Average

HAT 87.64±2.63 79.26±1.13 73.91±0.68 74.26±0.66 72.61±0.69 79.40±1.47 77.84
OWM 56.00±3.46 40.10±1.86 32.58±1.58 45.18±0.33 35.75±2.21 5.95±4.76 35.93
SLDA 93.54±0.66 77.72±0.58 78.51±0.58 66.03±1.35 67.39±1.81 69.66±0.02 75.48
PASS 89.03±7.13 77.01±2.44 76.42±1.23 67.12±6.26 67.33±3.63 74.76±2.33 75.28
L2P 84.60±2.28 72.88±1.18 66.52±1.61 67.81±1.25 64.59±1.59 68.09±1.73 70.75
iCaRL 89.74±6.63 76.50±3.56 77.06±2.36 61.36±6.21 63.56±3.08 73.71±2.13 73.65
A-GEM 68.19±3.24 43.83±0.69 35.97±1.15 49.26±0.64 39.58±3.32 50.16±6.63 47.83
EEIL 90.50±0.72 81.10±0.37 79.54±0.69 66.63±0.40 66.54±0.61 75.08±1.07 76.57
DER++ 89.01±6.29 80.64±2.74 81.72±1.76 66.55±3.73 67.14±1.40 77.41±0.37 77.08
HAL 87.00±7.27 77.42±2.73 77.85±1.71 65.31±3.68 64.48±1.45 75.87±0.40 74.65
DER 92.83±1.10 82.89±0.45 82.79±0.76 70.32±0.57 70.21±0.86 78.30±0.67 79.56
EWT 93.20±1.84 82.57±0.69 80.52±0.85 74.27±0.70 73.87±1.00 81.24±1.65 80.94

D ADDITIONAL DERIVATION DETAILS

We have claimed that the orthonormal matrix Ũ and a diagonal matrix Λ̃2 obtained from Eq. 5
in the main text are eigenvectors and eigenvalues of unnormalized sample covariance (n + m −
1)Σ. Denote the previous sample mean by µ and the eigenpairs of previous covariance Σold by
(U ,Λ2). Following Ross et al. (2008), we provide more details about the claim. Since K̂ =

[Xnew − µnew
√
nm/(n+m)(µnew − µ)] and UΛUT = Σold,

ŨΛ̃2ŨT = ŨΛ̃Ṽ T [ŨΛ̃Ṽ T]T (12)

= [
√
n− 1UΛ K̂][

√
n− 1UΛ K̂]T (13)

= (n− 1)UΛ2UT + K̂K̂T (14)
= (n− 1)Σold + (m− 1)Σnew

+
nm

n+m
(µnew − µ)(µnew − µ)T

(15)

= (n+m− 1)Σ (16)

where the last derivation from Eq. 15 to Eq. 16 is by Lemma 1 of Ross et al. (2008).

E INCREMENTAL CLASSIFICATION ACCURACY

In the main paper, we reported the average classification accuracy (ACA) after learning the last
task. In this section, we also report the incremental classification accuracy (ICA) over the learning
process. ICA after task t is defined as Āt =

∑t
i=1 Ai, where Ai is ACA after learning task i.

Tab. 6 shows ICA of our method EWT and the baselines. For the more challenging datasets (e.g.,
Tiny-ImageNet and ImageNet), our system outperforms the baselines. SLDA is slightly better than
our method on C10-5T and DER is slightly better than EWT on C100-10T and 20T. However, their
performances are not consistent over different experiments. The average performance of our method
over the 6 experiments is 80.94 while the best performing baseline DER is 79.56. Fig. 3 shows the
ACA at each task.

15

Under review as a conference paper at ICLR 2023

2 4 6 8 10
Number of Classes

0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)
C10-5T

HAT
OWM
SLDA
PASS

L2P
iCaRL
A-GEM
EEIL

DER++
HAL
DER
EWT

(a)

10 20 30 40 50 60 70 80 90 100
Number of Classes

0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

C100-10T

HAT
OWM
SLDA
PASS

L2P
iCaRL
A-GEM
EEIL

DER++
HAL
DER
EWT

(b)

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
Number of Classes

0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

C100-20T

HAT
OWM
SLDA
PASS

L2P
iCaRL
A-GEM
EEIL

DER++
HAL
DER
EWT

(c)

40 80 120 160 200
Number of Classes

0

10

20

30

40

50

60

70

80

90

100
A

cc
ur

ac
y

(%
)

T-5T

HAT
OWM
SLDA
PASS

L2P
iCaRL
A-GEM
EEIL

DER++
HAL
DER
EWT

(d)

20 40 60 80 100 120 140 160 180 200
Number of Classes

0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

T-10T

HAT
OWM
SLDA
PASS

L2P
iCaRL
A-GEM
EEIL

DER++
HAL
DER
EWT

(e)

38 76 114 152 190 228 266 304 342 380
Number of Classes

0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

I380-10T

HAT
OWM
SLDA
PASS

L2P
iCaRL
A-GEM
EEIL

DER++
HAL
DER
EWT

(f)

Figure 3: Average classification accuracy after each task. The x-axis indicates the number of learned
classes after each task. The systems with dashed lines are exemplar-free methods.

16

	Introduction
	Related Work
	Proposed Method
	Step 1: Task Training
	Incremental Estimation of Gaussian Distributions of Feature Vectors
	Hard Attention Masking

	Step 2: Computing the Two Probabilities in Eq. 1
	Computing the WTP Probability
	Computing the TIP Probability

	Experiment
	Results and Comparison
	Analysis and Ablation

	Conclusion
	Pseudo-Code
	Required Memory
	Different Prediction Methods
	Additional Derivation Details
	Incremental Classification Accuracy

