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Abstract

The recent success of machine learning methods applied to time series collected
from Intensive Care Units (ICU) exposes the lack of standardized machine learning
benchmarks for developing and comparing such methods. While raw datasets,
such as MIMIC-IV or eICU, can be freely accessed on Physionet, the choice of
tasks and pre-processing is often chosen ad-hoc for each publication, limiting
comparability across publications. In this work, we aim to improve this situation
by providing a benchmark covering a large spectrum of ICU-related tasks. Using
the HiRID dataset, we define multiple clinically relevant tasks in collaboration
with clinicians. In addition, we provide a reproducible end-to-end pipeline to
construct both data and labels. Finally, we provide an in-depth analysis of current
state-of-the-art sequence modeling methods, highlighting some limitations of deep
learning approaches for this type of data. With this benchmark, we hope to give
the research community the possibility of a fair comparison of their work.

Software Repository: https://github.com/ratschlab/HIRID-ICU-Benchmark/

1 Introduction

Severely ill patients require treatment and surveillance in Intensive Care Units (ICU). Critical health
conditions are characterized by the presence or risk of developing life-threatening organ dysfunction.
During a patient’s stay in the ICU, continuous monitoring of organs function parameters enables early
recognition of physiological deterioration and rapid commencement of appropriate interventions.
Recent research shows the great success of machine learning methods when applied to ICU time
series [45)119]. One of the main goals of previous works was to develop new methods for prediction
tasks relevant to clinical decision-making. Exemplary of such tasks are alarm systems that predict
different types of organ failure [20, 42].

To develop and evaluate such methods only a small number of large-scale ICU datasets are freely-
accessible: The MIMIC-III [24] and IV [22] datasets, AmsterdamUMCdb [1], HiRID [12] and
the eICU Collaborative Research Database [35]. However, these datasets are not provided in a
pre-processed form directly suitable for machine learning nor do they have well-defined tasks, making
it impossible to fairly compare works [23]. While some pre-processed alternatives with well-defined
tasks exist [[14}136], they are often lacking in terms of size and diversity of tasks. We provide more
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details about this in section[2] This leads to situations where works compare methods on their private
data [42] or only on limited data and number of tasks. Also the lack of relevant clinical sub-tasks for
benchmarking hinders the development of new methods for clinical decision support systems [[16].
Finally, as in other fields, in recent datasets such as HiRID [12] the time resolution of data has greatly
increased. However, no benchmark on ICU time series using such high-resolution datasets currently
exists.

To improve this situation, in this paper we provide an in-depth benchmark based on the HiRID
dataset [12| 20ﬂ which was released on Physionet [12] alongside the publication on the circulatory
Early Warning Score (circEWS) [20]. HiRID is a freely accessible critical care dataset containing data
recorded at the Department of Intensive Care Medicine, the University Hospital of Bern, Switzerland
(Inselspital). The dataset was developed in cooperation with the Swiss Federal Institute of Technology
(ETH), Ziirich, Switzerland. We define a new benchmark on HiRID composed of various clinically
relevant tasks and provide a comprehensive pipeline, which includes all steps from preprocessing
to model evaluation. To assess different aspects of the benchmarked machine learning methods,
we diversify the tasks around specific challenges of ICU data such as prediction frequency, class
imbalance, or organ dependency of the task. To profit from data acquisition advances and allow
improvement on longer time series, we use a resampled data resolution of 5 min. HiRID has a
higher time resolution than any other published critical care dataset and it motivates us to provide a
comprehensive benchmark suite on this dataset. Also, we believe that this dataset will facilitate the
construction of new predictive methods for the healthcare field, going beyond ICU time series.

The main contributions of this paper are:

* We developed a comprehensive, end-to-end pipeline for time-series analysis of critical care
data based on the recently published HiRID dataset. This pipeline includes the following
stages: data preprocessing mode, training mode, and evaluation mode.

* We proposed and implemented a variety of tasks relevant to healthcare workers in the ICU,
diversified in terms of type, prediction resolution, and label prevalence. The tasks cover all
major organ systems as well as the general patient state. We included both regression and
classification (binary and multi-class) tasks.

* By providing a comprehensive benchmark on a set of canonical tasks, we give the research
community around predictive modeling on ICU time series the possibility for the clear
comparison of their methods.

The paper is organized as follows: in Section 2] we provide an overview of existing ICU datasets and
benchmarking papers. We provide details about the HiRID dataset and introduce the tasks defined
in collaboration with clinicians in Section [3] and give more details on the tasks in APPENDIX A:
DATASET DETAILS. Section[d]illustrates the pipeline design, with more details given in APPENDIX
B: HIRID-ICU-PIPELINE DETAILS. Section [5|describes the experiment and ablation study. In
Section [6] we discuss the observed results and relate this paper to other benchmarks and related tasks
relevant for clinicians.

2 Related Work

The main goal of this work is to provide a benchmark on the HiRID dataset for various clinical
prediction tasks of interest. We describe here other ICU datasets as well as existing benchmarks for
ICU data.

ICU time-series datasets There are several widely-used, freely-accessible datasets consisting
of ICU time series. MIMIC-III [24] is the oldest and most widely used ICU dataset. It consists
of physiological measurements as well as information about laboratory tests. Physiological mea-
surements are recorded with a maximum resolution of 1 hour. The results of laboratory tests are
collected at irregular time intervals. Moreover, there are static features like gender, age, diagnosis,
etc. available. The dataset consists of information recorded about 40,000 ICU stays at Beth Israel
Deaconess Medical Center (BIDMC), Boston, MA, USA. The median of the patient stay length is 2
days. The eICU Collaborative Research Database [35]] is a large multicenter critical care database
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made available by Philips Healthcare in partnership with the MIT Laboratory for Computational
Physiology. It contains data associated with over 200,000 patient stays, but the public version does
not reach the granularity of other datasets in terms of time resolution and data elements. The first
version of AmsterdamUMCdD [/1] was released in November 2019. Its current version from March
2020 contains data related to 23,172 ICU and high dependency unit admissions of adult patients from
2003 - 2016 from Amsterdam University Medical Centers. The data includes clinical observations
like vital signs, clinical scores, device data, and lab results.

Benchmarks on ICU time-series. Among works using the openly available datasets mentioned
above, to the best of our knowledge, only a single standardized benchmark exists, MIMIC-III
benchmark by Harutyunyan et al. [[16]. In that work four tasks were proposed, two requiring a
single prediction per patient stay and two dynamic tasks with more frequent prediction, one per
hour. In addition, while not proposing a benchmark, Jarrett et al. [21] developed a standardized
pipeline for medical time series, called Clairvoyance. They also provided results on several datasets,
including MIMIC. In this spirit, some packages address a specific family of tasks, for example,
classification [[13]] and forecasting [15]. Finally, some public challenges, with curated data, were
proposed in the past, e.g. the early prediction of sepsis (Physionet 2019 challenge [36]) or mortality
prediction (Physionet 2012 challenge [9]). However, the provided datasets are smaller than HiRID
and are built around a single task.

3 Benchmark Design

3.1 The HiRID Dataset

HiRID [12} 20] is a freely accessible critical care dataset containing data from more than 33,000
patient admissions to the Department of Intensive Care Medicine, the University Hospital of Bern,
Switzerland (Inselspital) from January 2008 to June 2016. It was released on Physionet [[12] alongside
the publication of the circulatory Early Warning Score (circEWS) [20]. It contains de-identified
demographic information and a total of 712 routinely collected physiological variables, diagnostic test
results, and treatment parameters. HiRID has a higher time resolution than any other published ICU
dataset, particularly for bedside monitoring, with most vital signs recorded every 2 minutes, which
motivates us to provide a comprehensive benchmark suite on this dataset. Demographic information
about the patient cohort are displayed in Appendix Table 1.

Table 1: Definition of prediction tasks contained in the HiRID-ICU benchmark suite

Task name Task type Task description
ICU mortalit Binary classification, Predicted at 24h after
mortality one prediction per stay admission to the ICU.

Classifying the patient after 24h
regarding the admission diagnosis,
using the APACHE group II and IV labeld]

Multi-class classification,

Patient phenotyping one prediction per stay

Continuous prediction of onset of
circulatory failure in the next 12h,
given the patient is not in failure now.
Continuous prediction of onset

of respiratory failure in the next 12h,
given the patient is not in failure now.

Binary classification,

Circulatory failure il dynamic prediction throughout stay

Binary classification,

Respiratory failurd] dynamic prediction throughout stay

Continuous prediction of urine production
in the next 2h as an average rate in ml/kg/h.
The task is predicted at irregular intervals.
Regression, Continuous prediction of the

dynamic prediction throughout stay remaining ICU stay duration.

Regression,

Kidney function dynamic prediction throughout stay

Remaining length of stay




3.2 Prediction Tasks

Our benchmark suite focuses on clinically relevant prediction tasks with a large diversity in the
machine learning task types. From a clinical point of view, the tasks cover most major organ systems
as well as the general patient state. The major organ systems include the cardiovascular, kidney, and
respiratory systems. For each organ system, we provide a prediction task related to the main organ
function. Length of stay, mortality, and patient phenotyping are chosen to assess an overall patient
state. From a machine learning point of view, our suite contains regression and classification (binary
and multi-class) tasks. We included tasks with different degrees of class imbalance to diversify
the spectrum further and enable the comparison of methods on e.g. highly imbalanced tasks. We
chose tasks performed online throughout the stay (every 5 minutes) and at fixed time-points of the
stay, such as 24h after ICU admission, which capture a more long-term state of the patient. To
enhance reproducibility, we include two tasks previously considered in [16]], mortality, and remaining
length-of-stay prediction. Table[I]contains the full list of task and their detailed descriptions.

4 Pipeline Design

Figure [T shows an overview of the major HiRID-ICU pipeline steps. The pipeline is designed using
the preprocess-train-predict paradigm. We provide more details about it in APPENDIX B: HIRID-
ICU PIPELINE DETAILS and the README section of the software repositoryﬂ The preprocessed
data contains two versions, common_stage and m1_stage. The former is independent of modeling
choices and serves as the starting point for future works with custom pre-processing choices. The
latter is a compatible version for our pipeline with our categorical encoding, imputation, and scaling
choices.
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Figure 1: Detailed Pipeline. (Red) Raw Long-format Data. (Green) Wide-format data. (Blue)
Common data pre-processing. (Grey) Modeling depending stages.

4.1 Data Pre-processing

In its public version, HiRID, as any real-world dataset, contains certain artifacts that require pre-
processing. As pointed out by [4] for MIMIC-III, individual pre-processing in each work avoids a fair
comparison of them. To this effect, we aim to provide a modular and reproducible pipeline. Patient
EHRs in HiRID are stored in a long table format where each row of the table is a record containing
the measurement value of a specific variable at a specific time for a patient, which cannot be used as
a ready input for machine learning models.

Wide-format Merging To obtain a more compact format, the first pre-processing step in our
pipeline is to transform the long table of patient EHRSs into feature matrices, where each column

3 APACHE II and IV [47] 29] are subsequent versions of the major illness severity score used in the ICU. They
also introduce a patient grouping according to admission reason. We use an aggregate of these two groupings for
this task (see APPENDIX A: DATASET DETAILS)

*Circulatory failure is defined as Lactate > 2mmol/l and either mean arterial blood pressure < 65mmHg or
administration of any vasoactive drug.

SRespiratory failure is defined according to the Berlin definition [2] as a P/F ratio < 300 mmHg.

Shttps://github.com/ratschlab/HIRID-ICU-Benchmark
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represents a clinical concept, which we call the wide-format. Such a data format represents an
irregularly sampled multivariate time series. At this step, we also remove any physiologically
impossible measurement.

High-Resolution Gridding After this merging step, we further compact the dataset by re-sampling
it to a 5 minute resolution. Thus, each time step contains the last value measured in the last 5 min
if it exists, or left empty otherwise. This gridding strategy is similar to the one used by [20]. We
refer to the output of this step as the common_stage in Fig[T] Because it is independent of modeling
choices, this stage provides a starting point for future approaches using different imputation and
scaling choices.

Processing for Machine Learning In the second part of the pipeline, we process the common
stage of the data to be compatible with ML models’ expected input format. For this, we first use
forward-filling imputation for each stay. Then, we apply one-hot encoding for categorical variables
and scale the remaining ordinal or continuous variables. We standard scaled all variables with the
exception of the time since admission and admission date, which we min-max scaled. By doing
scaling globally, we ensure to preserve patients’ specificity (e.g.: tachycardia). We refer to the output
of this stage as the m1_stage as it is dependent on our modeling choices.

4.2 Hand-engineered Feature Extraction

In the original paper describing the HiRID dataset [20], the authors showed that boosted tree
ensembles such as LGBM [26]], when provided with hand-engineered features, outperform state-of-
the-art deep learning methods. Based on this observation, we include in our pipeline the possibility to
extract such features from the common_stage of the data. For our models, we extracted four features
for each non-categorical variable over the entire history: minimum past value, maximum past value,
mean past value and density of measurement, which is the proportion of time points where a value
is provided among all possible time points in the historyﬂ These features are then included in the
ml_stage.

4.3 Label Construction and Splitting

We construct prediction task labels using the provided measurements and meta-data for both continu-
ous and stay-level tasks. As an intermediate step for label construction, we use a forward imputed
version of the data, as in the modeling stage. Concerning the experimental design, we use a random
split of patients. The training set contains 70% of the patients and validation and test sets each contain
15%. The temporal splitting strategy as used by Hyland et al. [20] would be more clinically relevant
but information about admission time was removed to preserve anonymity when the dataset was
originally published. While longer stays exist in the dataset, for computational reasons, we limited
labeling to the first 7 days of stays (2016 steps). This cropping affects less than 6% of all stays.

Table 2: Label statistics for each of the tasks, in the training, validation and test sets. As a metric,
for binary classification tasks, the positive label prevalence is reported. For multi-class classification
tasks, the class prevalence of the minority class is reported. Finally, for regression tasks the median
of the label distribution is reported. In parentheses the number of samples is reported. M: Million.

Task name Train set Validation set Test set

Circ. failure 4.3 % (n=14.12M) 4.1 % (n=3.01M) 4.1 % (n=2.96M)

Resp. failure 38.3 % (n=5.58M) 37.6 % (n=1.21M) 37.4 % (n=1.20M)
Mortality 8.7 % (n=10525) 7.1 % (n=2206) 8.3 % (n=2231)
Phenotyping 0.2 % (n=10470) 0.1 % (n=2194) 0.1 % (n=2217)
Kidney function  1.17 ml/kg/h (n=341424)  1.12 ml/kg/h (n=71549)  1.18 ml/kg/h (n=70642)
Rem. LOS 41.04h (n=15.15M) 41.51h (n=3.22M) 39.64h (n=3.17M)

"This is done on the regularly sampled version of the data



4.4 Model Training and Evaluation

The final part of the pipeline contains an end-to-end machine learning suite to train and evaluate
our models, depicted on the right hand side of Fig[TlMachine learning (ML) approaches were
implemented using scikit-learn[34] and 1ightgbm[26], whereas deep learning (DL) approaches
were implemented in pytorch [33]]. All DL models were trained using Adam optimizer [28]], with a
cross-entropy objective for classification tasks and mean-squared error (MSE) for regression tasks.
For classification we provide the possibility to balance loss weights according to class prevalence as
in [27].

For the evaluation of models, we use a range of metrics relevant to each task. For classification tasks,
we considered AURoqﬂ and AUPRCﬂ metrics in the binary case, and balanced accuracy (B-Accuracy)
[6] in the multi-class one. For regression tasks, we used mean absolute error (MAE) as a comparison
metric. Regardless of the task or model, we used the scikit-learn implementation for all metrics.
More details about this stage of the pipeline can be found in APPENDIX B: HIRID-ICU-PIPELINE
DETAILS.

S Experiments

5.1 Settings

For all models, we tuned specific hyper-parameters using random search. Each randomly picked set
of parameters was run with 3 different random initializations. We then selected hyper-parameters on
the validation set performance for either AUPRC, B-Accuracy, or MAE. All models were trained
with early stopping on the validation loss. Further details about hyper-parameters can be found in
APPENDIX B: HIRID-ICU-PIPELINE DETAILS.

Because of the class imbalance existing in classification tasks, we considered balanced loss weights
for all methods. However as further discussed in subsection 5.5 this technique was relevant only for
the Patient Phenotyping task. For regression tasks, we min-max scaled the labels at training time to
avoid exploding gradients.

5.2 Benchmarked Methods

In our proposed benchmark, we considered two groups of machine learning algorithms. The first
group consists of regular machine learning algorithms, which as shown are highly effective for
ICU-related tasks [40, (16, 20]]. It is composed of a Gradient Boosting method with LightGBM [26]
and Logistic Regression. The second group is focused on deep learning methods. We select the
most commonly used sequence models for this group: Recurrent neural networks (LSTM [17]] and
GRU [8]]), convolutional neural networks (CNN), in particular, temporal convolutional networks
(TCN) [3]] and Transformer models [43]].

5.3 Benchmarking Models on High-resolution ICU Data

In this section, we compare the previously described methods on all tasks. While DL approaches are
provided with the entire history for all time points, ML methods use only the values of the current
step as an input. Thus one would expect the latter models to perform significantly worse due to the
lower amount of information provided.

Stay-Level Tasks When comparing methods on tasks requiring a single prediction after 24h (Table
[3), we observe the superiority of LGBM with hand-extracted features. Transformers outperformed
other DL methods but we observe a significant performance gap with the best ML method in B-
Accuracy for Patient Phenotyping and AUPRC for ICU Mortality. Concerning GRU and LSTM, their
performance is similar to TCN’s for ICU Mortality. However, on the Patient Phenotyping task, they
do not manage to outperform even logistic regression.

8https://scikit-learn.org/stable/modules/generated/sklearn. metrics.roc_auc_score.html
“https://scikit-learn.org/stable/modules/generated/sklearn. metrics.average_precision_score.html
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Table 3: Benchmark of methods for stay level tasks.(Top rows) ML methods; (Bottom rows) DL
methods. All scores are averaged over 10 runs with different random seeds such that the reported
score is of the form mean + std. In bold are the methods within one standard deviation of the best
one. Classification metrics were scaled to 100 for readability purposes.

Task ICU Mortality Patient Phenotyping
Metric AUPRC (1) AUROC (1) B-Accuracy (1)
LR 58.1 £0.0 89.0 £ 0.0 39.1 £0.0
LGBM 54.6 £0.8 88.8 +£0.2 404 +0.8
LGBM w. Feat. | 62.6 + 0.0 90.5 +£0.0 458 +2.0
GRU 60.3+ 1.6 90.0 + 0.4 392421
LSTM 60.0 £0.9 90.3 £0.2 395+1.2
TCN 60.2 + 1.1 89.7+0.4 41.6+23
Transformer 61.0£0.8 90.8 +£0.2 427 +14

Table 4: Benchmark of methods for online monitoring tasks. (Top rows) ML methods; (Bottom rows)
DL methods. All scores are averaged over 10 runs with different random seeds such that the reported
score is of the form mean + std. In bold are the methods within one standard deviation of the best
one. Classification metrics were scaled to 100 for readability purposes. MAE is in units ml/kg/h for

Kidney Function and in hours for Remaining LOS.

Task Circulatory failure Respiratory failure Kidney func. Remaining LOS
Metric AUPRC (1) AUROC (1) , AUPRC (1) AUROC (1) MAE ({) MAE ({)
LR 305+00 87.64+0.0 | 53.0£00 654+0.0 N.A N.A
LGBM 389+03 91.2+0.1 | 585+0.1 69.3+0.2 || 0.45 4 0.00 569 +£04
LGBM w. Feat. | 38.8+0.2 91.2+0.1 | 604+02 70.8+0.1 || 0.45+0.00 57.0+03
GRU 36.8+05 90.74+0.2 | 592+£03 70.1£0.2 | 049 +£0.02 60.6 +£0.9
LSTM 326408 89.9+0.1 | 569+03 682+0.3 | 0.50+£0.01 60.7 £ 1.6
TCN 358+06 9054+0.1 | 589+03 70.0+0.2 || 0.50+£0.01 59.8 +£2.8
Transformer 352406 906+02 | 594+03 70102 | 048 £0.02 59.54+28

Online Failure Predictions

For the continuous classification tasks, where the maximum sequence

length extends from 288 steps to 2016, DL methods do not leverage the additional history information.
Indeed, as shown in Table[d] for both Circulatory and Respiratory Failure, LGBM trained only on the
current variables outperforms all DL methods. Among these methods, LSTM is the most impacted,
as it has noticeably lower scores. Finally, for all continuous tasks, including regression discussed
below, the improvement brought by hand-extracted features is not as significant. It suggests that
statistical features, when extracted from the entire history, are less informative.

Online Regression Tasks The final set of tasks we benchmark are regression tasks (Table[d). As
for the classification case, LGBM-based methods outperform DL methods, which, among them, have
similar performance. In addition, we do not observe any improvement brought by our selection of
hand-extracted features. Moreover, the overall performances of the proposed methods are relatively
low. While a MAE of 0.45 ml/kg/h for Kidney Function is only twice smaller than the median urine
output rate, a 57h error in Remaining LOS is more than twice the median length-of-stay. We believe
these low scores are due to the nature of the labels’ distributions, which are both heavy-tailed as
shown in APPENDIX A: DATASET DETAILS.

5.4 Behaviour of Deep Learning Approaches for Long Time-Series

One notable difference between the MIMIC-III benchmark [16]] and our work is the data resolution.
The resolution of our data being twelve-time higher leads to 2016 steps (1 week) sequences for online
tasks. Thus, we explore if the increase of sequence length explains the decrease in performance of
DL methods for continuous tasks.



History Length One way to verify if DL methods leverage long-term dependencies in their predic-
tion is to check if a decrease in the considered history impacts performance. We can achieve this for
Transformers and TCN architectures, by respectively using local attention or fixing the number of
dilated convolutions. In the results (Figure[2), we observe that both models do not use the additional
information provided by early steps for the Circulatory failure task. It is in line with LGBM’s lack
of performance improvement when provided with history features on this task. For the Respiratory
Failure task, where history features improve LGBM performance, shortening considered history
impacts significantly both methods. TCN performance consistently decreases as history diminishes,
whereas the Transformer model AUPRC first improves, almost closing the gap with LGBM, before
also lowering. Thus, both DL models leverage history in the Respiratory Failure task. However, this
also highlights known limitations of Transformers for long sequences [[7]] when the history exceeds
12h.
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Figure 2: Impact of history length on online classification performance. (Left) Comparison in
AUPRC for the Circulatory Failure task ; (Right) Comparison in AUPRC for the Respiratory Failure
task. Error bars represent the standard deviation over 5 runs with different random initializations.

Data Resolution Another approach to decrease the length of sequences is to reduce the data
resolution. We compare all DL methods with a 1h prediction interval to assess the impact of data
resolution on performance. This way, we can gradually lower the data resolution from 5min to 1h
while preserving the same prediction time-steps. We report the result of this experiment in Figure 3]
We observe that while TCN and Transformer performance are almost identical, GRU and LSTM are
both impacted in opposite ways. GRU is noticeably better than LSTM on both tasks with a Smin grid,
but as resolution lowers to 1h, this gap is significantly reduced.
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Figure 3: Impact of data resolution on online classification performance. (Left) Comparison in
AUPRC for the Circulatory Failure task ; (Right) Comparison in AUPRC for the Respiratory Failure
task. Error bars represent the standard deviation over 5 runs with different random initializations.

5.5 On Weighting Cross-entropy by Class Prevalence

All the tasks we define show a certain degree of imbalance and the class imbalance problem (CIP)
is known to be highly challenging [25]]. The most common approach to this problem is the use of
class weights in the loss objective. For this ablation, we adopt the original idea from by defining
weights inversely proportional to each class prevalence. As shown in Table[5] for the multi-class
task, it yields a significant improvement on the balanced accuracy. However, such a technique harms
all binary classification tasks performances. It is particularly true for the highly imbalanced tasks,
Circulatory Failure, and ICU Mortality.



Table 5: Deltas in metrics of using balanced cross-entropy loss. (Blue) Improvements over using no
weights; (Red) Deterioration over using no weights.

Task ICU Mortality Phenotyping Circulatory Failure Respiratory Failure
A Metric AUPRC (1) AUROC (71)|B-Accuracy (1)|AUPRC (1) AUROC (1)|AUPRC (1) AUROC (1)
LGBM w. Feat. -1.3 0.0 +4.3 -4.2 -2.6 0.1 0.0
Transformer -2.6 0.0 +4.0 -0.9 0.0 -0.1 -0.1

6 Discussion

In this paper, we provided an in-depth benchmark on the HiRID dataset and evaluated the behaviour
of various machine learning models on diverse clinically relevant tasks developed in collaboration
with intensive care clinicians. Our primary contribution is a full and reproducible preprocessing
and machine learning pipeline and benchmark tasks on a public intensive care dataset, a necessary
prerequisite for reproducible and comparable research in the future. We further evaluate current state-
of-the-art machine and deep learning algorithms on these tasks establishing a baseline to compare
future methods against. We consider this our second major contribution.

This work confirms previous results [20]], that conventional machine learning models (i.e. boosted
ensembles of decision trees) outperform current deep learning approaches on medical time series
problems. Based on the experimental results we found that deep learning models do not lead to
the same breakthrough performance increases as in other domains (such as NLP [10] or Computer
Vision [11]). We believe the sparsity of the data and the imbalance of labels in both regression
and classification tasks play an important role in this. For classification tasks, building a specific
objective for highly imbalanced tasks such as Focal loss [32] might be a potential direction of research.
For regression, a recent work has shown some promising leads for heavy-tailed regression tasks
[44]. Moreover, HiRID introduces a novel high-resolution aspect in ICU data, that needs to be
correctly taken into account. Thus, as for other sequence data, one possible explanation could be
that when trained with extremely long sequences, models can not use the extracted features in the
most effective way [46]. In the case of Transformers, to force the model to learn and extract useful
patterns, various kinds of improvements could be made [41]]. In particular, learnable patterns could
be incorporated [38]].

Our work goes beyond previous ICU time-series benchmarks (e.g. [[L6]) by using a more diverse
set of tasks and a data set with a higher time resolution. As discussed earlier the set of clinical
prediction tasks is diverse regarding the assessed organ systems, prevalence, and task type. An
important limitation of our study is that HiRID is currently not the most frequently used and known
ICU data set.

This work facilitates the future development of machine learning methods and standardized com-
parison of their performance on a diverse set of predefined tasks. It could contribute to solving
today’s problem of machine learning on medical time series not being comparable due to each work’s
unique datasets, preprocessing, and tasks definition. We hypothesize that methods developed and
successfully evaluated on these tasks can also be successfully transferred to other specific medical
time series problems.

This work also fills the gap between proposed machine learning approaches and their applications
to ICU tasks. As a concrete example, COVID-19 is a big challenge for ICU patient monitoring.
Important issues in this context are the uncertainty of the patient’s prognosis as well as the prediction
of the disease progression. COVID-19 is known to cause respiratory failure [31], one of the tasks
studied in our benchmark, which is also the main cause for ICU admission and death [30, 39,37, [18]].
During the current COVID-19 pandemic, first attempts to construct a Respiratory Failure prediction
model were already done such as [5], however, their data is available only for a limited audience,
limiting reproducibility.



7 Conclusion

In this paper, we proposed an in-depth benchmark on time series collected from an Intensive Care
Unit (ICU). In collaboration with clinicians, we defined several tasks relevant for healthcare covering
different critical aspects of ICU patient monitoring. We provide a reproducible end-to-end pipeline to
derive both data and labels, and a training setup to evaluate the final performance. We hope that this
benchmark facilitates the construction and evaluation of machine learning methods for ICU data, and
encourages reproducible research in this field.
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