

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MULVULN: ENHANCING PRE-TRAINED LLMS WITH SHARED AND LANGUAGE-SPECIFIC KNOWLEDGE FOR MULTILINGUAL VULNERABILITY DETECTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Software vulnerabilities (SVs) pose a critical threat to safety-critical systems, driving the adoption of AI-based approaches such as machine learning and deep learning for software vulnerability detection. Despite promising results, most existing methods are limited to a single programming language. This is problematic given the multilingual nature of modern software, which is often complex and written in multiple languages. Current approaches often face challenges in capturing both shared and language-specific knowledge of source code, which can limit their performance on diverse programming languages and real-world codebases. To address this gap, we propose MULVULN, a novel multilingual vulnerability detection approach that learns from source code across multiple languages. MULVULN captures both the shared knowledge that generalizes across languages and the language-specific knowledge that reflects unique coding conventions. By integrating these aspects, it achieves more robust and effective detection of vulnerabilities in real-world multilingual software systems. The rigorous and extensive experiments on the real-world and diverse REEF dataset, consisting of 4,466 CVEs with 30,987 patches across seven programming languages, demonstrate the superiority of MULVULN over thirteen effective and state-of-the-art baselines. Notably, MULVULN achieves substantially higher F1-score, with improvements ranging from 1.45% to 23.59% compared to the baseline methods.

1 INTRODUCTION

Software vulnerabilities (SVs) are flaws or oversights in programs that attackers can exploit to compromise systems, manipulate sensitive data, or disrupt operations (Dowd et al., 2006; Fu et al., 2024b). Due to the widespread use of software, such vulnerabilities pose significant security risks. The increasing severity and impact of SVs have driven the development of automated techniques capable of efficiently detecting vulnerabilities with minimal human intervention (Li et al., 2016; 2018b; Nguyen et al., 2019; 2020; Ding et al., 2022; Fu et al., 2024a; Nguyen et al., 2025).

Detecting SVs is essential to ensure the security and reliability of software applications (Dowd et al., 2006; Lin et al., 2020; Hanif et al., 2021; Nguyen et al., 2021; Liu et al., 2023; Fu et al., 2023c). Identifying vulnerable programs or functions enables security teams to prioritize resources and address critical issues during software development and testing. To support this, a variety of SVD systems have been developed, ranging from open-source to commercial tools and from manual to fully automated approaches (Neuhaus et al., 2007; Shin et al., 2011; Grieco et al., 2016; Li et al., 2018b; Duan et al., 2019; Cheng et al., 2019; Wattanakriengkrai et al., 2020; Nguyen et al., 2024).

Most prior work in software vulnerability detection (SVD) relied on handcrafted features manually designed by domain experts (Yamaguchi et al., 2011; Shin et al., 2011; Grieco et al., 2016; Kim et al., 2017). Such features can be outdated, biased, and often fail to generalize across projects (Zimmermann et al., 2009). To overcome these limitations, deep learning-based approaches have been developed to automatically learn features from source code, demonstrating superior performance compared to manual feature engineering (Dam et al., 2018; Li et al., 2018a; Fu et al., 2023b; 2024c; Nguyen et al., 2024; 2025). More recently, both code-specific pre-trained language models (PLMs, e.g., CodeBERT (Feng et al., 2020) and CodeT5 (Wang et al., 2021)) and large language

models (LLMs), including code-specialized models (e.g., CodeLlama (Rozière et al., 2024)) and general-purpose models (e.g., ChatGPT (OpenAI, 2022)), have been increasingly explored for software vulnerability detection (Gao et al., 2023; Fu et al., 2023c; Yao et al., 2024). These studies highlight the promising capability of such models to extract fundamental knowledge (i.e., general patterns) from source code, thereby facilitating effective vulnerability detection.

Although machine learning, deep learning, and large and pre-trained language model-based approaches have advanced vulnerability detection, most of them are limited to a single programming language, typically C or C++, using datasets such as CVEfixes (Bhandari et al., 2021) and BigVul (Fan et al., 2020). This limitation reduces their practical applicability, as real-world software projects are increasingly complex, often involving multiple languages such as Python and Go (Alfadel et al., 2023; Hu et al., 2024; Li et al., 2022), and vulnerabilities exist across these diverse ecosystems. Many applications are polyglot, containing components in multiple languages (Li et al., 2022), and even non-C/C++ projects can harbor serious vulnerabilities with potentially catastrophic consequences (Livshits & Lam, 2005; Alfadel et al., 2023; Mussbacher et al., 2024). Therefore, models restricted to a single language struggle to generalize and have limited use in contemporary software development, highlighting the need for multilingual vulnerability detection approaches.

To address this, we propose MULVULN, a novel approach to multilingual vulnerability detection. MULVULN is designed to capture both shared knowledge (enhancing generalization and transferability across programming languages) and language-specific knowledge (reflecting the unique characteristics of each language and allowing the model to adapt more effectively). By jointly leveraging these two capabilities, our proposed MULVULN approach is designed to enable more robust and effective multilingual vulnerability detection. Specifically, MULVULN consists of two main parts. The first leverages a PLM to capture shared knowledge across languages and encode essential semantic and syntactic relationships crucial for vulnerability detection. The second introduces a parameter pool to model language-specific features, allowing the model to adapt to the unique characteristics of each programming language. Together, these parts form a unified framework for solving the multilingual vulnerability detection problem.

In summary, our key contributions are as follows:

- We study the important problem of multilingual vulnerability detection, a research area where automated AI-based approaches remain relatively underexplored.
- We propose MULVULN, an innovative deep learning-based approach for solving the problem. MULVULN leverages a PLM to capture shared cross-language knowledge and encode semantic and syntactic patterns, providing generalization ability across diverse programming languages. In addition, we introduce a parameter pool to model language-specific features, enabling the model to adapt to unique characteristics of each language. Together, these capabilities lead to more robust and effective multilingual vulnerability detection. To the best of our knowledge, our work is among emerging approaches proposed to address the problem and can serve as a strong baseline for future research.
- We evaluate our MULVULN approach on the real-world and diverse multilingual source code REEF dataset, consisting of 4,466 CVEs with 30,987 patches across seven programming languages (i.e., C, C++, C#, Go, Java, JavaScript, and Python). Rigorous experiments demonstrate the effectiveness and superiority of our approach over thirteen effective, state-of-the-art vulnerability detection baselines in the multilingual setting.

2 RELATED WORK

AI-based approaches have been extensively explored for software vulnerability detection (SVD), ranging from handcrafted features manually designed by domain experts (Yamaguchi et al., 2011; Shin et al., 2011; Li et al., 2016; Grieco et al., 2016; Kim et al., 2017) to automatic feature learning using deep learning-based methods (Li et al., 2018b; Lin et al., 2018; Dam et al., 2018; Li et al., 2018a; Duan et al., 2019; Cheng et al., 2019; Zhuang et al., 2020; Nguyen et al., 2022; Fu et al., 2023a; Nguyen et al., 2024). For example, Dam et al. (2018) employed a deep neural network to convert sequences of code tokens into vector representations, which were then fed into a separate classifier, whereas Li et al. (2018b) jointly learned the vector representation and trained the classifier within a single deep network. Advanced deep learning architectures have further been investigated

108 for addressing the SVD problem. Russell et al. (2018) combined recurrent neural networks (RNNs)
 109 and convolutional neural networks (CNNs) to extract features from embedded source code representations,
 110 while Zhuang et al. (2020); Nguyen et al. (2022); Cao et al. (2024) proposed graph neural
 111 network (GNN)-based models, TMP, ReGVD, and Coca, respectively, for SVD.

112 Recent studies have investigated large language models (LLMs) and pre-trained language models
 113 (PLMs) for vulnerability detection (Feng et al., 2020; Guo et al., 2021; Wang et al., 2021; Gao
 114 et al., 2023; Fu et al., 2023c; Yao et al., 2024; Bahaa et al., 2024; Liu et al., 2024). PLMs such
 115 as CodeBERT, GraphCodeBERT, and CodeT5 support multiple programming languages and tasks
 116 including code search, completion, and summarization (Feng et al., 2020; Guo et al., 2021; Wang
 117 et al., 2021). Fine-tuning these models for downstream tasks like SVD has shown promising results.
 118 Recent work (Gao et al., 2023; Fu et al., 2023c; Yao et al., 2024; Yin et al., 2024; Lu et al., 2024)
 119 has evaluated LLMs such as ChatGPT and CodeLlama on SVD, demonstrating their potential while
 120 also revealing limitations due to the lack of explanatory context in downstream datasets and the
 121 complexity of the task. These studies suggest that providing additional context beyond the source
 122 code may help LLMs better capture code intricacies and improve vulnerability predictions.

123 Large language models (LLMs), including code-specialized and general-purpose models, as well
 124 as code-specific pre-trained language models (PLMs) have recently been investigated and shown
 125 potential for multilingual vulnerability detection downstream task via fine-tuning or prompt engi-
 126 neering (Shu et al., 2025), as their pre-training on large-scale, diverse codebases enables them to
 127 capture general patterns and knowledge across multiple programming languages. However, when
 128 applied to downstream tasks such as multilingual vulnerability detection, these models often strug-
 129 gle to capture fine-grained distinctions and language-specific characteristics, which can limit their
 130 effectiveness in accurately identifying vulnerabilities.

131 3 THE PROPOSED MULVULN APPROACH

132 3.1 PROBLEM STATEMENT

133 We denote \mathcal{D} as a real-world multilingual source code dataset across multiple programming lan-
 134 guages (e.g., C, C++, Java, Python, and JavaScript), consisting of $\{(X_1, Y_1), \dots, (X_N, Y_N)\}$, where
 135 X_i is a source code sample (i.e., a function) and $Y_i \in \{0, 1\}$ is its vulnerability label (0: non-
 136 vulnerable, 1: vulnerable). In this paper, we study the problem of multilingual vulnerability detec-
 137 tion, which aims to automatically predict the label Y_i for each source code sample X_i .

138 3.2 METHODOLOGY

139 In what follows, we present the details of how our MULVULN approach works and addresses the
 140 multilingual vulnerability detection problem. The first part of MULVULN leverages a pre-trained
 141 language model (PLM) to capture shared knowledge across languages, encoding both semantic
 142 and syntactic relationships essential for robust vulnerability detection, enhancing generalization
 143 and transferability across programming languages. The second part introduces a parameter pool
 144 to model language-specific characteristics, allowing the model to adapt to the unique features of
 145 each programming language. Together, these parts form a unified framework that aims to enhance
 146 robustness and effectiveness in solving the multilingual vulnerability detection problem. An overall
 147 visualization is depicted in Figure 1.

148 3.2.1 SHARED KNOWLEDGE LEARNING WITH PRE-TRAINED LANGUAGE MODELS

149 Pre-trained language models (PLMs) (e.g., CodeT5 (Wang et al., 2021)) are trained on large-scale
 150 source code datasets covering diverse programming languages. They have demonstrated excel-
 151 lent performance on various downstream software engineering tasks, including code summariza-
 152 tion, code search, and vulnerability detection. More importantly, PLMs have the capability to learn
 153 shared knowledge by capturing generalizable semantic and syntactic patterns across programming
 154 languages. This shared knowledge provides a foundation for multilingual vulnerability detection by
 155 supporting cross-language generalization and robust feature representations (Shu et al., 2025).

156 Inspired by this capability of PLMs, as illustrated in Figure 1, the primary part of our proposed
 157 MULVULN approach leverages a PLM (e.g., the encoder of CodeT5) to capture shared knowledge
 158 that generalizes across languages and encodes essential semantic and syntactic relationships from
 159 source code, supporting multilingual vulnerability detection.

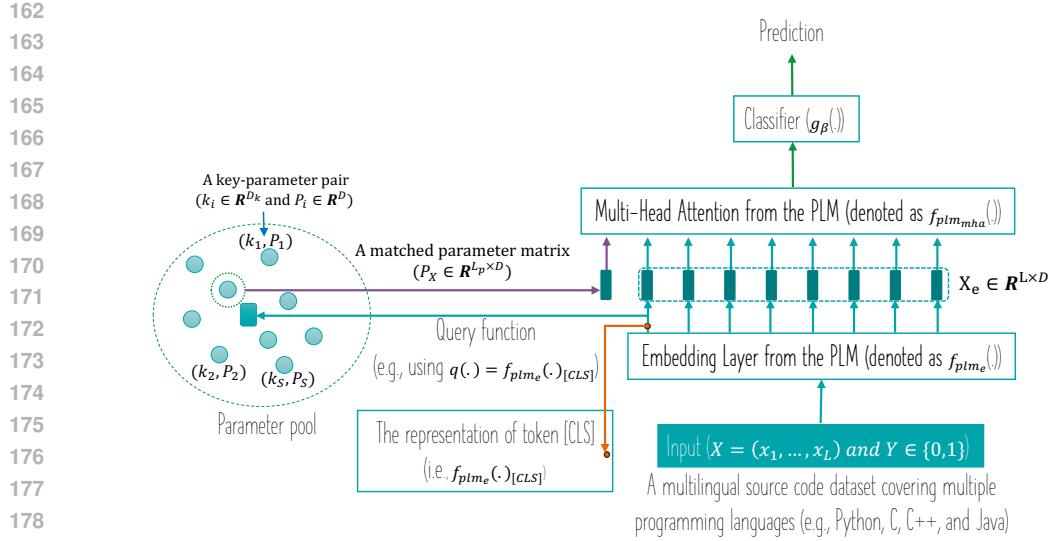


Figure 1: Overview of MULVULN for multilingual vulnerability detection by enhancing a PLM (e.g., the encoder of CodeT5 including $f_{plme}(\cdot)$ and $f_{plm_{mha}}(\cdot)$) with shared and language-specific knowledge. For each input X , basically, a single parameter matrix $P_X \in \mathbf{R}^{L_p \times D}$ is selected from the parameter pool \mathcal{P} to form the adapted input embedding $X_p = \text{concat}(P_X, X_e)$, encoding both shared and language-specific information. By default, we use the `[CLS]` token representation for the query function, and the classifier input aggregates the multi-head attention outputs corresponding to the tokens in the selected parameter matrix using mean pooling.

3.2.2 PARAMETER POOL FOR LANGUAGE-SPECIFIC KNOWLEDGE

Despite PLMs excelling at learning general patterns across multiple programming languages due to large-scale pretraining, they remain limited in fully capturing and clearly distinguishing language-specific nuances, such as subtle syntax rules, idiomatic coding patterns, or unique conventions of each programming language (Lu et al., 2021; Cassano et al., 2023; Du et al., 2024). This limitation becomes particularly important in downstream tasks like multilingual vulnerability detection, where fine-grained distinctions and language-specific characteristics across languages are essential for accurate detection.

To mitigate this problem, we propose a parameter pool containing additional parameters specifically designed to encode fine-grained distinctions and language-specific characteristics of each programming language. For each input source code sample from a particular language, we implement a key-parameter pair-based query mechanism that allows the model to dynamically select the most suitable parameter. The selected parameter is then concatenated with the input embeddings to form the input for the PLM, enabling the model to capture shared knowledge while preserving language-specific distinctions, thereby supporting more robust learning and accurate prediction.

The parameter pool is designed to encode the distinct knowledge of each programming language from its corresponding source code inputs. Formally, the parameter pool is defined as: $\mathcal{P} = \{P_1, P_2, \dots, P_S\}$, where S is the total number of parameters. By default, S is set equal to the number of programming languages, with each language encouraged to use its own corresponding parameter P_j . Note that each $P_j \in \mathbf{R}^{L_p \times D}$ denotes a parameter matrix of length L_p and embedding size D , consistent with the embedding dimension of the source code token embeddings.

Let $X = (x_1, \dots, x_L)$ be a source code with L tokens, including special tokens `[CLS]` (class token at the first position) and `[EOS]` (end-of-sequence token at the last position), and let $X_e \in \mathbf{R}^{L \times D}$ denote its embedding obtained from the embedding layer (i.e., $f_{plme}(\cdot)$) of the used pre-trained language model. For each source code input X , a parameter matrix $P_X \in \mathbf{R}^{L_p \times D}$ is dynamically selected from the parameter pool \mathcal{P} via the Key-Parameter Query mechanism or the Language-Aware Parameter Masking strategy. The adapted input embedding is then given by

$$X_p = \text{concat}(P_X, X_e),$$

216

217 where concat denotes concatenation along the token length dimension. The resulting X_p serves
 218 as the input to the PLM’s multihead-attention layers $f_{plm_{mha}}(\cdot)$. This construction enables the
 219 model to integrate **language-specific knowledge** from P_X with the **shared semantic and syntactic**
 220 **knowledge** encoded in X_e , supporting more effective multilingual vulnerability detection.

221 In what follows, we present two elegant mechanisms for selecting P_X for each input X , including
 222 *Parameter Selection via Key–Parameter Query* and *Language-Aware Parameter Masking*.

223

224 **Parameter Selection via Key–Parameter Query** We design a key–parameter pair-based query
 225 strategy to dynamically select the appropriate parameter for each source code input X . Each param-
 226 eter in the pool is associated with a learnable key: $\{(k_1, P_1), (k_2, P_2), \dots, (k_S, P_S)\}$, where each
 227 $k_i \in \mathbf{R}^{D_k}$. The set of all keys is denoted as $\mathcal{K} = \{k_i\}_{i=1}^S$. Ideally, the input itself determines which
 228 parameter to select through key–parameter matching.

229 This design is motivated by prior work in external memory mechanisms, i.e., VQ-VAE (van den
 230 Oord et al., 2017), where a discrete codebook is employed to retrieve task-relevant representations.
 231 Similarly, in our case, the parameter pool serves as a memory bank of language-specific knowledge,
 232 and the query mechanism enables dynamic and instance-adaptive selection of parameters.

233 We define a query function $q : \mathbf{R}^{L \times D} \rightarrow \mathbf{R}^{D_k}$, which maps the input to the same dimension as the
 234 keys. For simplicity, we set $D_k = D$. By default, we use the $[CLS]$ token representation obtained
 235 from the embedding layer (denoted as $f_{plm_e}(\cdot)$) of the PLM: $q(X) = f_{plm_e}(X)_{[CLS]}$.

236 We denote a scoring function $\phi : \mathbf{R}^{D_k} \times \mathbf{R}^{D_k} \rightarrow \mathbf{R}$ (e.g., cosine similarity) to measure the match
 237 between the query and a key. For each input X , the selected parameter matrix is obtained by:

$$239 \quad P_X = P_{i^*}, \quad i^* = \arg \max_{i \in [1, S]} \phi(q(X), k_i). \quad (1)$$

241

242 **Language-Aware Parameter Masking** While the default design uses instance-wise key–
 243 parameter matching, we also explore a language-aware masking strategy during training. In this
 244 approach, each language ℓ is associated with a fixed parameter index i_ℓ , and the query is restricted
 245 to select only from its language-specific parameter. Formally, the selection rule for an input X is:

$$246 \quad P_X = P_{i^*}, \quad i^* = \arg \max_{i \in \mathcal{I}(X)} \phi(q(X), k_i), \quad (2)$$

248

249 where $\mathcal{I}(X) = \{i_\ell\}$ denotes the masked candidate determined by the language identity of X . This
 250 parameter assignment can be viewed as a form of supervision. Although the parameter assign-
 251 ment is fixed during training, the model simultaneously learns the query function $q(X)$ and the key
 252 representations k_i , enabling it to automatically select the appropriate parameter matrix at test time
 253 for each input X using the default instance-wise key–parameter selection in Eq. (1), so the model
 254 remains language-agnostic during inference.

255

256 3.2.3 TRAINING OBJECTIVE FUNCTION

257

258 At each training step, after selecting the parameter matrix P_X for input X using the Key–Parameter
 259 Query strategy (Eq. (1) for default instance-wise selection, or Eq. (2) when Language-Aware Param-
 260 eter Masking is enabled), the adapted embedding $X_p = \text{concat}(P_X, X_e)$ is fed into the multi-head
 261 attention layers $f_{plm_{mha}}(\cdot)$ of the pre-trained language model, followed by the classifier $g_\beta(\cdot)$.

262

263 The overall training objective is to jointly optimize all model parameters through a unified loss:

$$262 \quad \min_{\Theta} \mathcal{L}_{\text{CE}}(g_\beta(f_{plm_{mha}}(X_p)), Y) - \lambda \phi(q(X), k_{i^*}), \quad (3)$$

264

265 where Θ denotes all learnable parameters, including the parameter pool \mathcal{P} , keys \mathcal{K} , the pre-trained
 266 language model components $f_{plm_e}(\cdot)$ and $f_{plm_{mha}}(\cdot)$, and the classifier $g_\beta(\cdot)$. \mathcal{L}_{CE} is the cross-
 267 entropy loss with respect to the ground-truth label Y , while the second term is a surrogate loss
 268 encouraging the selected key k_{i^*} to be close to the query feature $q(X)$. The scalar λ balances the
 269 two loss terms, thereby controlling the strength of language-specific parameter specialization. Here,
 270 each input X acts as a query through its representation $q(X)$, ensuring that parameter selection is
 271 directly guided by the characteristics of the source code sample.

270 It should be noted that the index i^* of the selected parameter matrix is determined by the key-
 271 parameter rule via Eq. (1) for the default instance-wise selection, or Eq. (2) during training when
 272 language-aware masking is enabled.
 273

274 **3.2.4 A SUMMARY OF OUR MULVULN APPROACH**

275
 276 Algorithm 1 presents the details of our proposed MULVULN approach during both training and
 277 testing phases for multilingual vulnerability detection.

278
 279 **Algorithm 1:** The algorithm of MULVULN for multilingual vulnerability detection.

280 **Input:** A real-world multilingual source code dataset \mathcal{D} across multiple programming
 281 languages (e.g., C, C++, Java, Python, and JavaScript), consisting of
 282 $\{(X_1, Y_1), \dots, (X_N, Y_N)\}$, where X_i is a source code sample (i.e., a function) and
 283 $Y_i \in \{0, 1\}$ is its vulnerability label (0: non-vulnerable, 1: vulnerable). We denote the
 284 number of training iterations by n_t , the mini-batch size by m , and the trade-off
 285 hyper-parameter by λ . The dataset \mathcal{D} is randomly partitioned into three subsets,
 286 including the training set \mathcal{D}_{train} (for training the model), the validation set \mathcal{D}_{val} (for
 287 model selection), and the testing set \mathcal{D}_{test} (for evaluation).

288 **1 Training phase**

289 2 Initialize the keys $\{k_i\}_{i=1}^S$, the parameter pool $\{P_i\}_{i=1}^S$, and the classifier model $g_\beta(\cdot)$. Select a
 290 pre-trained language model (e.g., the encoder of CodeT5 denoted as f_{plm} including $f_{plm_e}(\cdot)$
 291 and $f_{plm_{mha}}(\cdot)$ as shown in Figure 1).
 292
 3 **for** $t = 1$ to n_t **do**
 293 4 Sample a mini-batch $\{(X_b, Y_b)\}_{b=1}^m$ from \mathcal{D}_{train} .
 294 5 Obtain the embedding features $\{X_{e_b}\}_{b=1}^m$ and apply parameter selection using
 295 Key-Parameter Query (Eq. (1)) or Language-Aware Parameter Masking (Eq. (2)) to select
 296 the appropriate P_{X_b} for each X_b , forming the adapted embeddings $\{X_{p_b}\}_{b=1}^m$.
 297 6 Update the keys $\{k_i\}_{i=1}^S$, the parameter pool $\{P_i\}_{i=1}^S$, as well as the parameters of the
 298 pre-trained language model f_{plm} and classifier $g_\beta(\cdot)$ by minimizing the objective function
 299 (Eq. (3)) over the mini-batch using the Adam optimizer (Kingma & Ba, 2015).
 300
 7 **end**

301 **8 Testing phase**

302 9 For each input X in \mathcal{D}_{test} , obtain its embedding X_e , select the parameter P_X using Eq. (1),
 303 construct the adapted embedding X_p , and compute predictions $\hat{Y} = g_\beta(f_{plm_{mha}}(X_p))$.

304
 305 **Output:** The trained model for multilingual vulnerability detection.

306
 307
 308 **4 EXPERIMENTS**

309
 310 **4.1 STUDIED DATASET**

311 To evaluate our MULVULN approach and thirteen effective and state-of-the-art baselines, from deep
 312 learning to PLM-based and LLM-based approaches applied for multilingual vulnerability detection,
 313 we utilize the real-world and diverse multilingual source code REEF dataset (Wang et al., 2023a).
 314 REEF contains 4,466 CVEs with 30,987 patches across seven programming languages and pro-
 315 vides comprehensive vulnerability information (e.g., Common Vulnerability Exposure (CVE) and
 316 Common Weakness Enumeration (CWE)) along with project metadata such as commit messages.
 317 The dataset is constructed from real-world vulnerabilities collected from the National Vulnerability
 318 Database (NVD) and Mend’s CVE list (WhiteSource, 2022), from 2016 to 2023. To adapt REEF for
 319 the multilingual vulnerability detection task, we use the processed dataset from (Shu et al., 2025),
 320 which involves several preprocessing steps such as removing code comments to minimize bias and
 321 extracting vulnerable and non-vulnerable functions for each programming language, while to ensure
 322 compatibility with many PLMs relying on absolute positional encoding (typically limited to 512 to-
 323 kens), functions exceeding this length are excluded. Finally, we obtained a total of 20,165 functions

324 with labels (i.e., vulnerable or non-vulnerable). These include 3,056 C, 1,792 C++, 427 C#, 2,905
 325 Go, 3,235 Java, 5,468 JavaScript, and 3,282 Python functions.
 326

327 We follow the same training, validation, and testing splits as in (Shu et al., 2025). Table 4 in the ap-
 328 pendix provides detailed statistics, including the number of vulnerable and non-vulnerable functions
 329 for each programming language. In summary, the dataset contains 16,126 functions for training,
 330 2,013 for validation, and 2,026 for testing across seven programming languages.
 331

332 4.2 MEASURES

333 To measure the performance of our MULVULN approach and the baselines, we use three main
 334 metrics, commonly used in software vulnerability detection, including Recall, Precision, and F1-
 335 score (Li et al., 2018b;a; Nguyen et al., 2019; Zhou et al., 2019; Zheng et al., 2021; Nguyen et al.,
 336 2025). In the field of software vulnerability detection, F1-score (the harmonic mean of Recall and
 337 Precision) can be considered the most important metric, with Recall prioritized over Precision (Ami
 338 et al., 2024). Higher values in these metrics indicate better performances.
 339

340 4.3 BASELINES

341 The baselines for our MULVULN approach consist of thirteen effective, state-of-the-art methods
 342 applied to multilingual vulnerability detection, spanning from deep learning models to large and
 343 pre-trained language models. These include TextCNN (Kim, 2014), ReGVD (Nguyen et al., 2022),
 344 CodeBERT (Feng et al., 2020), GraphCodeBERT (Guo et al., 2021), LineVul (Fu & Tantithamtha-
 345 vorn, 2022), UniXcoder (Guo et al., 2022), CodeT5 (Wang et al., 2021), CodeT5+ (Wang et al.,
 346 2023b), DeepSeek-Coder (Guo et al., 2024), Code Llama (Rozière et al., 2024), Llama 3 (Dubey
 347 et al., 2024), GPT-3.5-Turbo (OpenAI, 2022), and GPT-4o (OpenAI, 2024). We adopt different
 348 strategies depending on the model, including training from scratch (TextCNN and ReGVD), fine-
 349 tuning (GraphCodeBERT, CodeBERT, LineVul, UniXcoder, CodeT5, and CodeT5+), and zero-shot,
 350 few-shot, and instruction-based few-shot prompting (following (Shu et al., 2025)) for large language
 351 models, including DeepSeek-Coder, Code Llama, Llama 3, GPT-3.5-Turbo, and GPT-4o. To ensure
 352 fairness, all baselines and our MULVULN approach are evaluated using the same training, validation,
 353 and testing splits specified in (Shu et al., 2025), with each model trained, fine-tuned, or prompted
 354 according to its respective paradigm.
 355

356 4.4 MODEL'S CONFIGURATIONS

357 For the baselines, we primarily followed the architectures and hyperparameters suggested in the
 358 corresponding papers when applying them to multilingual vulnerability detection. Furthermore,
 359 for the pre-trained language models (PLMs), we fine-tuned CodeBERT, GraphCodeBERT, the base
 360 versions of CodeT5 and CodeT5+, UniXCoder, and LineVul using the open-source checkpoints
 361 from Hugging Face (Wolf et al., 2019).
 362

363 In line with (Shu et al., 2025), for experiments with closed-source LLMs, we used GPT-3.5-Turbo
 364 (model version gpt-3.5-turbo-0125) and GPT-4o (model version gpt-4o-2024-08-06) through Ope-
 365 nAI's API (OpenAI, 2024). For open-source LLMs, we utilized Hugging Face checkpoints (Wolf
 366 et al., 2019) for DeepSeek-Coder (6.7B parameters), Code Llama (7B parameters), and Llama 3 (8B
 367 parameters), and applied Low-Rank Adaptation (LoRA) (Hu et al., 2021) during fine-tuning to im-
 368 prove efficiency. For these LLMs, we employed zero-shot, few-shot, and instruction-based few-shot
 369 prompting, as in (Shu et al., 2025), and report the best results regarding F1-score.
 370

371 In our MULVULN approach, Parameter Selection via Key–Parameter Query (Eq. 1) selects a single
 372 parameter matrix $P_{i^*} \in \mathbf{R}^{L_p \times D}$, with L_p set to 5, a commonly used choice that balances efficiency
 373 and representational capacity. Under Language-Aware Parameter Masking, each language ℓ is as-
 374 signed a single parameter matrix, i.e., $\mathcal{I}(X) = \{i_\ell\}$. During training, the hyperparameter λ is tuned
 375 over $\{1 \times 10^{-1}, 3 \times 10^{-1}, 1 \times 10^{-2}, 3 \times 10^{-2}\}$, and the learning rate is fixed at 1×10^{-4} using the
 376 Adam optimizer. For the pre-trained language model, we by default use CodeT5 (base version), one
 377 of the most effective models for vulnerability detection. All experiments were conducted on a Linux-
 378 based x86-64 machine (Precision 7865 Tower) with an AMD Ryzen Threadripper PRO 5955WX (16
 379 cores), equipped with two RTX 6000 Ada Generation GPUs (48 GB VRAM each). The source code
 380 and data for reproducing the experiments of our MULVULN approach are publicly available in an
 381 anonymized repository at <https://anonymous.4open.science/r/mulvuln>.
 382

378
379

4.5 EXPERIMENTAL RESULTS

380
381**RQ1: How does the proposed MULVULN approach compare to thirteen effective and state-of-the-art baselines for multilingual vulnerability detection?**382
383
384
385
386

We compare the performance of our MULVULN approach with thirteen effective, state-of-the-art baseline methods applied to multilingual vulnerability detection, including TextCNN, ReGVD, CodeBERT, GraphCodeBERT, LineVul, UniXcoder, CodeT5, CodeT5+, DeepSeek-Coder, Code Llama, Llama 3, GPT-3.5-Turbo, and GPT-4o, on three main popular metrics used in software vulnerability detection including Recall, Precision, and F1-score.

387
388
389
390
391
392
393
394

The experimental results in Table 1 show that our MULVULN approach, under both Parameter Selection via Key-Parameter Query and Language-Aware Parameter Masking, consistently achieves higher performance in terms of F1-score compared to the baselines. In particular, the variant with Language-Aware Parameter Masking **attains the highest F1-score of 72.20 %, with improvements ranging from 1.45 % to 23.59 % over the baselines**. Moreover, both variants of the MULVULN approach achieve remarkably high Recall, around 97%. These results demonstrate the effectiveness of our method and its advancement in multilingual vulnerability detection.

395
396
397
398
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416

Table 1: Performance comparison of our MULVULN approach and the baselines for multilingual vulnerability detection in terms of Recall, Precision, and F1-score. The best result for F1-score is shown in **bold**, while the second-best is shown with an underline.

Methods	Recall	Precision	F1-score
TextCNN	99.61%	52.02%	68.35%
ReGVD	98.63%	51.28%	67.47%
GraphCodeBERT	96.66%	52.99%	68.45%
CodeBERT	100%	51.03%	67.57%
LineVul	100%	51.03%	67.57%
UniXcoder	89.30%	55.18%	68.22%
CodeT5	93.42%	55.19%	69.39%
CodeT5+	95.29%	56.26%	70.75%
DeepSeek-Coder	47.89%	49.34%	48.61%
Code Llama	91.56%	49.50%	64.26%
Llama 3	53.48%	52.15%	52.81%
GPT-3.5-Turbo	61.83%	48.88%	54.59%
GPT-4o	67.22%	74.54%	70.69%
MULVULN (w/ Eq. (1))	96.86%	56.34%	<u>71.24%</u>
MULVULN (w/ Eq. (2))	96.96%	57.51%	72.20 %

417

RQ2: How does distinct knowledge encoded via the parameter pool contribute to improving the model’s performance?418
419
420
421
422
423
424
425

We evaluate the performance of our proposed MULVULN approach in two settings, one with the parameter pool implemented via Parameter Selection using Key-Parameter Query or Language-Aware Parameter Masking, and the other without it, using only the backbone pre-trained language model. This setup allows us to assess the impact of distinct knowledge encoded via the parameter pool on multilingual vulnerability detection in terms of Recall, Precision, and F1-score. In this ablation study, we use the encoder of CodeT5 (base version) or CodeT5+ (base version), two of the most effective PLMs for software vulnerability detection, as the backbone of our MULVULN approach.

426
427
428
429
430
431

The results in Table 2 clearly demonstrate the impact of the parameter pool on model performance. The encoded distinct knowledge through the parameter pool significantly improves performance in terms of Recall and F1-score, highlighting the effectiveness of our approach. For instance, compared to CodeT5, MULVULN with Language-Aware Parameter Masking achieves improvements of **3.54 % and 2.81 % in Recall and F1-score**, respectively. Similarly, compared to CodeT5+, MULVULN using either Parameter Selection via Key-Parameter Query or Language-Aware Parameter Masking consistently achieves gains in both Recall and F1-score.

432
 433 Table 2: Performance comparison of our MULVULN approach with the parameter pool, encoding
 434 distinct knowledge, and without it, using only the backbone pre-trained models CodeT5 or CodeT5+,
 435 for multilingual vulnerability detection in terms of Recall, Precision, and F1-score. The best results
 436 are shown in **bold**.

Methods	Recall	Precision	F1-score
CodeT5	93.42%	55.19%	69.39%
MULVULN-CodeT5 (w/ Eq. (1))	96.86%	56.34%	71.24%
MULVULN-CodeT5 (w/ Eq. (2)))	96.96%	57.51%	72.20%
CodeT5+	95.29%	56.26%	70.75%
MULVULN-CodeT5+ (w/ Eq. (1)))	96.96%	56.36%	71.28%
MULVULN-CodeT5+ (w/ Eq. (2)))	99.31%	55.48%	71.19%

445 RQ3: How does MULVULN perform on the top-10 critical CWEs?

446 We evaluate the performance of our proposed MULVULN approach on the top-10 CWEs, following
 447 the latest 2024 MITRE Top 25 scoring¹, which considers prevalence, exploitability, impact, and cur-
 448 rent industry perception. Our analysis focuses on Recall and F1-score, the two most important and
 449 prioritized metrics in software vulnerability detection. The experimental results in Table 3 further
 450 demonstrate the effectiveness and reliability of MULVULN. For the top-10 CWEs, the testing subset
 451 contains 657 samples, including 346 labeled as vulnerable. On this subset, MULVULN achieves an
 452 average Recall of 96.27% and an F1-score of 71.82%.

453
 454 Table 3: Performance of our MULVULN approach on the top-10 CWEs in terms of Recall and F1-
 455 score, including the number of vulnerable and total samples (both vulnerable and non-vulnerable).

CWEs	Recall	F1-score	Vul Samples	Total Samples
CWE-79 (Cross-Site Scripting)	94.85%	73.31%	97	198
CWE-787 (Out-of-Bounds Write)	100%	70.97%	22	41
CWE-89 (SQL Injection)	90.91%	66.67%	22	46
CWE-78 (OS Command Injection)	100%	52.63%	5	15
CWE-416 (Use After Free)	94.74%	70.59%	19	34
CWE-20 (Improper Input Validation)	96.15%	73.53%	52	92
CWE-125 (Out-of-Bounds Read)	100%	77.11%	32	51
CWE-22 (Path Traversal)	97.50%	70.27%	40	76
CWE-352 (Cross-Site Request Forgery)	95.24%	80.81%	42	80
CWE-94 (Code Injection)	93.33%	82.35%	15	24
Average	96.27%	71.82%	346	657

472 5 CONCLUSION

473 In this paper, we introduce MULVULN, an innovative deep learning-based approach for multilingual
 474 vulnerability detection. Our MULVULN framework is designed to enhance pre-trained language
 475 models, which generalize across languages and capture semantic and syntactic relationships crucial
 476 for vulnerability detection, by introducing a parameter pool to model language-specific features.
 477 Together, these parts enable the model to generalize across diverse programming languages while
 478 adapting to their unique characteristics, providing a more robust and effective solution for multi-
 479 lingual vulnerability detection. Extensive experiments on the real-world and diverse source code
 480 REEF dataset demonstrate the effectiveness of MULVULN, showing consistent and significant im-
 481 provements over thirteen strong state-of-the-art baselines. In particular, our approach achieves the
 482 best performance on F1-score and strong performance on Recall, the two key metrics prioritized in
 483 software vulnerability detection.

484
 485 ¹<https://cwe.mitre.org/top25/>

486 REFERENCES
487

488 Mahmoud Alfadel, Diego Elias Costa, and Emad Shihab. Empirical analysis of security vulnerabilities
489 in python packages. *Empirical Software Engineering*, 2023.

490 Amit Seal Ami, Kevin Moran, Denys Poshyvanyk, and Adwait Nadkarni. "false negative – that one
491 is going to kill you": Understanding industry perspectives of static analysis based security testing.
492 *IEEE Symposium on Security and Privacy*, 2024.

493 Ahmed Bahaa, Aya El-Rahman Kamal, Hanan Fahmy, and Amr S. Ghoneim. Db-cbil: A distilbert-
494 based transformer hybrid model using cnn and bilstm for software vulnerability detection. *IEEE
495 Access*, 2024.

496 Guru Bhandari, Amara Naseer, , and Leon Moonen. Cvefixes: automated collection of vulner-
497 abilities and their fixes from open-source software. *In Proceedings of the 17th International
498 Conference on Predictive Models and Data Analytics in Software Engineering*, 2021.

499 Sicong Cao, Xiaobing Sun, Xiaoxue Wu, David Lo, Lili Bo, Bin Li, and Wei Liu. Coca: Improv-
500 ing and explaining graph neural network-based vulnerability detection systems. *International
501 Conference on Software Engineering*, 2024.

502 Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
503 Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, Arjun Guha,
504 Michael Greenberg, and Abhinav Jangda. MultiPL-E: A scalable and polyglot approach to bench-
505 marking neural code generation. *IEEE Transactions of Software Engineering (TSE)*, 2023.

506 Xiao Cheng, Haoyu Wang, Jiayi Hua, Miao Zhang, Guoai Xu, Li Yi, and Yulei Sui. Static detection
507 of control-flow-related vulnerabilities using graph embedding. *The International Conference on
508 Engineering of Complex Computer Systems (ICECCS)*, 2019.

509 Hoa K. Dam, Truyen Tran, Trang Pham, Shien W. Ng, John Grundy, and Aditya Ghose. Auto-
510 matic feature learning for predicting vulnerable software components. *The IEEE Transactions on
511 Software Engineering*, 2018.

512 Yangruibo Ding, Sahil Suneja, Yunhui Zheng, Jim Laredo, Alessandro Morari, Gail Kaiser, and
513 Baishakhi Ray. Velvet: a novel ensemble learning approach to automatically locate vulnerable
514 statements. *2022 IEEE International Conference on Software Analysis, Evolution and Reengi-
515 neering (SANER)*, 2022.

516 Mark Dowd, John McDonald, and Justin Schuh. *The Art of Software Security Assessment: Iden-
517 tifying and Preventing Software Vulnerabilities*. Addison-Wesley Professional, 2006. ISBN
518 0321444426.

519 Xiaohu Du, Ming Wen, Jiahao Zhu, Zifan Xie, Bin Ji, Huijun Liu, Xuanhua Shi, and Hai Jin.
520 Generalization-enhanced code vulnerability detection via multi-task instruction fine-tuning. In
521 Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Compu-
522 tational Linguistics: ACL 2024*, 2024.

523 Xu Duan, Jingzheng Wu, Shouling Ji, Zhiqing Rui, Tianyue Luo, Mutian Yang, and Yanjun Wu.
524 Vulsniper: Focus your attention to shoot fine-grained vulnerabilities. *The International Joint
525 Conference on Artificial Intelligence, IJCAI*, pp. 4665–4671, 2019.

526 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
527 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
528 *arXiv preprint arXiv:2407.21783*, 2024.

529 Jiahao Fan, Yi Li, Shaohua Wang, and Tien N Nguyen. Ac/c++ code vulnerability dataset with
530 code changes and cve summaries. *In Proceedings of the 17th International Conference on Mining
531 Software Repositories*, 2020.

532 Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
533 Qin, Ting Liu, Dixin Jiang, and Ming Zhou. Codebert: A pre-trained model for programming
534 and natural languages. *CoRR*, abs/2002.08155, 2020.

540 Michael Fu and Chakkrit Tantithamthavorn. Lineul: A transformer-based line-level vulnerability
 541 prediction. In *the International Conference on Mining Software Repositories (MSR)*, 2022.

542

543 Michael Fu, Trung Le, Van Nguyen, Chakkrit Tantithamthavorn, and Dinh Phung. Learning
 544 to quantize vulnerability patterns and match to locate statement-level vulnerabilities. *CoRR*,
 545 abs/2306.06109, 2023a.

546 Michael Fu, Van Nguyen, Chakkrit Kla Tantithamthavorn, Trung Le, and Dinh Phung. Vulex-
 547 plainer: A transformer-based hierarchical distillation for explaining vulnerability types. *IEEE*
 548 *Transactions on Software Engineering*, 2023b.

549

550 Michael Fu, Chakkrit Kla Tantithamthavorn, Van Nguyen, and Trung Le. Chatgpt for vulnerability
 551 detection, classification, and repair: How far are we? *2023 30th Asia-Pacific Software Engineer-
 552 ing Conference (APSEC)*, pp. 632–636, 2023c.

553 Michael Fu, Van Nguyen, Chakkrit Tantithamthavorn, Dinh Phung, and Trung Le. Vision trans-
 554 former inspired automated vulnerability repair. *ACM Transactions on Software Engineering and
 555 Methodology*, 33(3), 2024a.

556

557 Michael Fu, Jirat Pasuksmit, and Chakkrit Tantithamthavorn. Ai for devsecops: A landscape and
 558 future opportunities. *arXiv preprint arXiv:2404.04839*, 2024b.

559 Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Yuki Kume, Van Nguyen, Dinh Phung, and
 560 John Grundy. Aibughunter: A practical tool for predicting, classifying and repairing software
 561 vulnerabilities. *Empirical Software Engineering*, 29(1):4, 2024c.

562

563 Zeyu Gao, Hao Wang, Yuchen Zhou, Wenyu Zhu, and Chao Zhang. How far have we gone in
 564 vulnerability detection using large language models. *CoRR*, abs/2311.12420, 2023.

565 Gustavo Grieco, Guillermo L. Grinblat, Lucas Uzal, Sanjay Rawat, Josselin Feist, and Laurent
 566 Mounier. Toward large-scale vulnerability discovery using machine learning. *The ACM Confer-
 567 ence on Data and Application Security and Privacy*, pp. 85–96, 2016.

568

569 Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan,
 570 Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun Deng, Colin B. Clement, Dawn
 571 Drain, Neel Sundaresan, Jian Yin, Dixin Jiang, and Ming Zhou. Graphcodebert: Pre-training code
 572 representations with data flow. *International Conference on Learning Representations (ICLR)*,
 573 2021.

574 Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. Unixcoder: Unified cross-
 575 modal pre-training for code representation. *Annual Meeting of the Association for Computational
 576 Linguistics (ACL)*, 2022.

577

578 Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
 579 Bi, Yu Wu, Y. K. Li, et al. Deepseek-coder: When the large language model meets programming
 580 – the rise of code intelligence. *arXiv preprint arXiv:2401.14196*, 2024.

581 Hazim Hanif, Mohd H. Nizam, Mohd Faizal, Ahmad Firdaus, and Nor B. Anuar. The rise of software
 582 vulnerability: Taxonomy of software vulnerabilities detection and machine learning approaches.
 583 *Journal of Network and Computer Applications*, 179:103009, 2021. ISSN 1084-8045.

584

585 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 586 and Weizhu Chen. Lora: Low-rank adaptation of large language models. *arXiv preprint
 587 arXiv:2106.09685*, 2021.

588 Jinchang Hu, Lyuye Zhang, Chengwei Liu, Sen Yang, Song Huang, and Yang Liu. Empirical anal-
 589 ysis of vulnerabilities life cycle in golang ecosystem. In *Proceedings of the IEEE/ACM 46th
 590 International Conference on Software Engineering*, 2024.

591

592 Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh. VUDDY: A scalable approach for
 593 vulnerable code clone discovery. *The IEEE Symposium on Security and Privacy*, pp. 595–614,
 2017.

594 Yoon Kim. Convolutional neural networks for sentence classification. *The Conference on Empirical
595 Methods in Natural Language Processing*, 2014.
596

597 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *The International
598 Conference for Learning Representations*, 2015.

599 Wen Li, Li Li, and Haipeng Cai. On the vulnerability proneness of multilingual code. *In Proceed-
600 ings of the 30th ACM Joint European Software Engineering Conference and Symposium on the
601 Foundations of Software Engineering*, 2022.
602

603 Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Hanchao Qi, and Jie Hu. Vulpecker: An automated
604 vulnerability detection system based on code similarity analysis. *The Annual Conference on
605 Computer Security Applications*, pp. 201–213, 2016.

606 Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Yawei Zhu, Zhaoxuan Chen, Sujuan Wang, and Jialai
607 Wang. Sysevr: A framework for using deep learning to detect software vulnerabilities. *CoRR*,
608 abs/1807.06756, 2018a.
609

610 Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun Deng, and Yuyi
611 Zhong. Vuldeepecker: A deep learning-based system for vulnerability detection. *CoRR*,
612 abs/1801.01681, 2018b.
613

614 Guanjun Lin, Jun Zhang, Wei Luo, Lei Pan, Yang Xiang, Olivier De Vel, and Paul Montague. Cross-
615 project transfer representation learning for vulnerable function discovery. *IEEE Transactions on
616 Industrial Informatics*, 2018.

617 Guanjun Lin, Sheng Wen, Qing-Long Han, Jun Zhang, and Yang Xiang. Software vulnerability
618 detection using deep neural networks: A survey. *Proceedings of the IEEE*, 108(10):1825–1848,
619 2020.

620 Yue Liu, Thanh Le-Cong, Ratnadira Widyasari, Chakkrit Tantithamthavorn, Li Li, Xuan-Bach D
621 Le, and David Lo. Refining chatgpt-generated code: Characterizing and mitigating code quality
622 issues. *ACM Transactions on Software Engineering and Methodology*, 2023.
623

624 Zhongxin Liu, Zhijie Tang, Junwei Zhang, Xin Xia, and Xiaohu Yang. Pre-training by predict-
625 ing program dependencies for vulnerability analysis tasks. *The IEEE/ACM 46th International
626 Conference on Software Engineering*, 2024.

627 V. Benjamin Livshits and Monica S. Lam. Finding security vulnerabilities in java applications with
628 static analysis. *Proceedings of the 14th conference on USENIX Security Symposium*, 2005.
629

630 Guilong Lu, Xiaolin Ju, Xiang Chen, Wenlong Pei, and Zhilong Cai. Grace: Empowering llm-based
631 software vulnerability detection with graph structure and in-context learning. *Journal of Systems
632 and Software*, 2024.

633 Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
634 Clement, Dawn Drain, Dixin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou,
635 Michele Tufano, Ming Gong, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng, Shengyu
636 Fu, and Shujie Liu. CodeXGLUE: A Machine Learning Benchmark Dataset for Code Under-
637 standing and Generation. 2021.
638

639 Gunter Mussbacher, Benoit Combemale, Joerg Kienzle, Lola Burgueno, Antonio GarciaDominguez,
640 Jean Marc Jezequel, Gwendal Jouneaux, Djamel Eddine Khelladi, Sebastien Mosser, and Corinne
641 Pulgar. Polyglot software development: Wait, what? *IEEE Software*, 2024.

642 Stephan Neuhaus, Thomas Zimmermann, Christian Holler, and Andreas Zeller. Predicting vuln-
643 erable software components. *The ACM Conference on Computer and Communications Security*,
644 2007.
645

646 Van Nguyen, Trung Le, Tue Le, Khanh Nguyen, Olivier DeVel, Paul Montague, Lizhen Qu, and
647 Dinh Phung. Deep domain adaptation for vulnerable code function identification. *The Interna-
tional Joint Conference on Neural Networks (IJCNN)*, 2019.

648 Van Nguyen, Trung Le, Olivier De Vel, Paul Montague, John Grundy, and Dinh Phung. Dual-
 649 component deep domain adaptation: A new approach for cross project software vulnerability
 650 detection. *The Pacific-Asia Conference on Knowledge Discovery and Data Mining*, 2020.

651

652 Van Nguyen, Trung Le, Olivier De Vel, Paul Montague, John Grundy, and Dinh Phung. Information-
 653 theoretic source code vulnerability highlighting. *International Joint Conference on Neural Net-
 654 works (IJCNN)*, 2021.

655 Van Nguyen, Trung Le, Chakkrit Tantithamthavorn, John Grundy, and Dinh Phung. Deep domain
 656 adaptation with max-margin principle for cross-project imbalanced software vulnerability detec-
 657 tion. *ACM Transactions on Software Engineering and Methodology*, 2024.

658

659 Van Nguyen, Surya Nepal, Xingliang Yuan, Tingmin Wu, and Carsten Rudolph. Safe: A novel
 660 approach for software vulnerability detection from enhancing the capability of large language
 661 models. *In ACM Asia Conference on Computer and Communications Security*, 2025.

662 Van-Anh Nguyen, Dai Quoc Nguyen, Van Nguyen, Trung Le, Quan Hung Tran, and Dinh Q. Phung.
 663 Regvd: Revisiting graph neural networks for vulnerability detection. *The International Confer-
 664 ence on Software Engineering: Companion Proceedings (ICSE-Companion)*, 2022.

665

666 OpenAI. Chatgpt: Optimizing language models for dialogue. [https://openai.com/blog/
 667 chatgpt](https://openai.com/blog/chatgpt), 2022.

668

669 OpenAI. Gpt-4o: A flagship model by openai. [https://openai.com/index/
 670 gpt-4o-and-more-tools-to-chatgpt-free](https://openai.com/index/gpt-4o-and-more-tools-to-chatgpt-free), 2024. Accessed: 2024-10-19.

671 Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
 672 Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémie Rapin, Artyom Kozhevnikov, Ivan Ev-
 673 timov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong,
 674 Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
 675 Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code. *CoRR*,
 676 abs/2308.12950, 2024.

677

678 Rebecca L. Russell, Louis Y. Kim, Lei H. Hamilton, Tomo Lazovich, Jacob A. Harer, Onur Ozdemir,
 679 Paul M. Ellingwood, and Marc W. McConley. Automated vulnerability detection in source code
 using deep representation learning. *CoRR*, abs/1807.04320, 2018.

680

681 Yonghee Shin, Andrew Meneely, Laurie Williams, and Jason A. Osborne. Evaluating complex-
 682 ity, code churn, and developer activity metrics as indicators of software vulnerabilities. *IEEE
 683 Transactions on Software Engineering*, 37(6):772–787, 2011.

684

685 Honglin Shu, Michael Fu, Junji Yu, Dong Wang, Chakkrit Tantithamthavorn, Junjie Chen, and
 686 Yasutaka Kamei. Large language models for multilingual vulnerability detection: How far are
 we? <https://www.arxiv.org/abs/2506.07503>, 2025.

687

688 Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learn-
 689 ing. *Conference on Neural Information Processing Systems*, 2017.

690

691 Chaozheng Wang, Zongjie Li, Yun Pena, Shuzheng Gao, Sirong Chen, Shuai Wang, Cuiyun Gao,
 692 and Michael R Lyu. Reef: A framework for collecting real-world vulnerabilities and fixes. *In 2023
 693 38th IEEE/ACM International Conference on Automated Software Engineering (ASE)*, 2023a.

694

695 Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. CodeT5: Identifier-aware unified pre-
 696 trained encoder-decoder models for code understanding and generation. *Proceedings of the 2021
 697 Conference on Empirical Methods in Natural Language Processing*, 2021.

698

699 Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi D. Q. Bui, Junnan Li, and Steven Hoi.
 700 Codet5+: Open code large language models for code understanding and generation. *In The 2023
 701 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, 2023b.

702

703 Supatsara Wattanakriengkrai, Patanamon Thongtanunam, Chakkrit Tantithamthavorn, Hideaki Hata,
 704 and Kenichi Matsumoto. Predicting defective lines using a model-agnostic technique. *IEEE
 705 Transactions on Software Engineering*, 48(5):1480–1496, 2020.

702 WhiteSource. Mend bolt. <https://www.mend.io/free-developer-tools/bolt>, 2022.
 703

704 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 705 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
 706 State-of-the-art natural language processing. *arXiv preprint arXiv:1910.03771*, 2019.

707 Fabian Yamaguchi, Felix Lindner, and Konrad Rieck. Vulnerability extrapolation: assisted discovery
 708 of vulnerabilities using machine learning. *The USENIX conference on Offensive Technologies*, pp.
 709 13–23, 2011.

710 Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Zhibo Sun, and Yue Zhang. A survey on large lan-
 711 guage model (llm) security and privacy: The good, the bad, and the ugly. *CoRR*, abs/2312.02003,
 712 2024.

713 Xin Yin, Chao Ni, and Shaohua Wang. Multitask-based evaluation of open-source llm on software
 714 vulnerability. *IEEE Transactions on Software Engineering*, 2024.

715 Yunhui Zheng, Saurabh Pujar, Burn L. Lewis, Luca Buratti, Edward A. Epstein, Bo Yang, Jim
 716 Laredo, Alessandro Morari, and Zhong Su. D2a: A dataset built for ai-based vulnerability detec-
 717 tion methods using differential analysis. *The International Conference on Software Engineering:
 718 Software Engineering in Practice (ICSE-SEIP)*, 2021.

719 Yaqin Zhou, Shangqing Liu, Jing Kai Siow, Xiaoning Du, and Yang Liu. Devign: Effective vulnera-
 720 bility identification by learning comprehensive program semantics via graph neural networks. *The
 721 Thirty-Third Annual Conference on Neural Information Processing Systems (NeurIPS)*, 2019.

722 Yuan Zhuang, Zhenguang Liu, Peng Qian, Qi Liu, Xiang Wang, and Qinming He. Smart con-
 723 tract vulnerability detection using graph neural network. *The International Joint Conference on
 724 Artificial Intelligence, IJCAI*, pp. 3283–3290, 2020.

725 Thomas Zimmermann, Nachiappan Nagappan, Harald Gall, Emanuel Giger, and Brendan Murphy.
 726 Cross-project defect prediction: A large scale experiment on data vs. domain vs. process. *Pro-
 727 ceedings of the the 7th Joint Meeting of the European Software Engineering Conference and the
 728 ACM SIGSOFT Symposium on The Foundations of Software Engineering*, pp. 91–100, 2009.

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A APPENDIX**
757758 **A.1 DATASET STATISTICS**
759760 To provide a clearer understanding of the real-world and diverse multilingual REEF dataset used
761 in our experiments, Table 4 presents its statistical summary. It reports the number of functions in
762 the training, validation, and testing sets, as well as the distribution of vulnerable and non-vulnerable
763 samples across seven programming languages. For clarity, the languages are sorted in ascending
764 order based on the total number of samples.
765766 Table 4: Statistical summary of the REEF dataset.
767

Languages	Training	Validation	Test	Vul	Non-Vul	Total
C#	341	42	44	212	215	427
C++	1,432	179	181	911	881	1,792
Go	2,323	290	292	1,462	1,443	2,905
C	2,444	305	307	1,541	1,515	3,056
Java	2,587	323	325	1,622	1,613	3,235
Python	2,625	328	329	1,642	1,640	3,282
JavaScript	4,374	546	548	2,743	2,725	5,468
Total	16,126	2,013	2,026	10,133	10,032	20,165

778 **A.2 ADDITIONAL EXPERIMENTS**
779780 **A.2.1 PERFORMANCE OF MULVULN BY PROGRAMMING LANGUAGE**
781782 In this section, we evaluate the performance of our MULVULN approach using the Language-Aware
783 Parameter Masking strategy (Eq. (2)). As shown in Table 1, it achieves the best F1-score across dif-
784 ferent programming languages. The results, summarized in Table 5, show that MULVULN achieves
785 the highest Precision and F1-score, 65.68% and 78.24%, respectively, on *JavaScript*. Moreover, for
786 *C*, it attains the highest Recall of 100%, demonstrating its effectiveness across diverse languages.
787788 Table 5: Performance of our proposed MULVULN approach on Recall, Precision, and F1-score
789 metrics by programming language.
790

Languages	Recall	Precision	F1-score
C#	95.45%	60.00%	73.68%
C++	98.91%	52.91%	68.94%
Go	98.64%	58.70%	73.60%
C	100%	53.08%	69.35%
Java	96.93%	54.67%	69.91%
Python	92.12%	54.68%	68.62%
JavaScript	96.73%	65.68%	78.24%

801 **A.2.2 VISUALIZING LANGUAGE-SPECIFIC PARAMETERS AND QUERY DISTRIBUTIONS**
802803 We analyze how the parameter pool interacts with input queries and demonstrate the effectiveness
804 of the Parameter Selection via Key-Parameter Query mechanism (Eq. (1)) and the Language-Aware
805 Parameter Masking strategy (Eq. (2)) in aligning queries with their corresponding language-specific
806 parameters on test samples after training. The selected parameters are then combined with the
807 input embeddings in the PLM’s multihead-attention layers, allowing the model to integrate shared
808 knowledge captured by the PLM with enhanced language-specific information, supporting more
809 effective multilingual vulnerability detection.

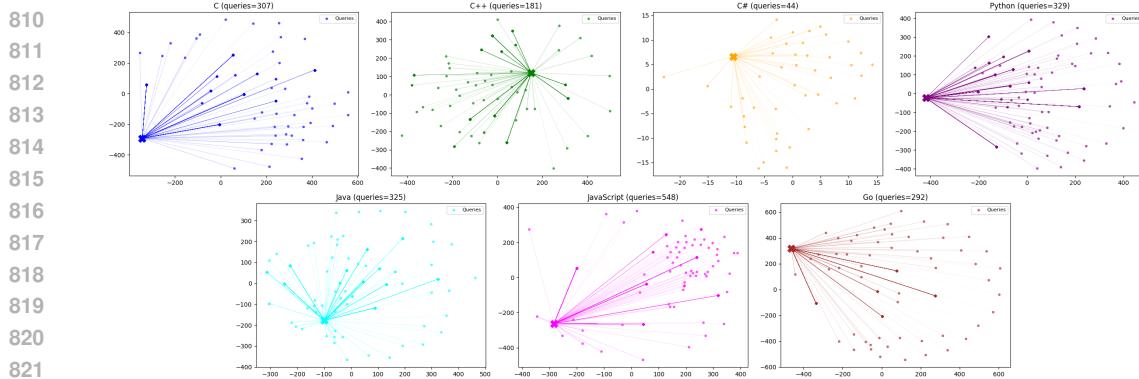


Figure 2: Visualization of the parameter pool and queries using t-SNE under the Parameter Selection via Key-Parameter Query mechanism (Eq. (1)). Each subplot corresponds to a different programming language. The \times marker represents the parameter, and scatter points are queries from test samples of each language. Arrows indicate instance-wise key-parameter associations. Queries radiate outward from their parameter, forming “peacock tail” patterns that reflect sample-level diversity while maintaining a stable language-specific reference.

Figures 2 and 3 show the parameter pool and queries for all test samples of each programming language. In Figure 2, under the Parameter Selection via Key-Parameter Query mechanism (Eq. (1)), each subplot shows that the parameter (\times marker) acts as an anchor, with queries radiating outward to form “peacock tail” patterns that reflect sample-level diversity while maintaining a stable language-specific reference. In Figure 3, under the Language-Aware Parameter Masking strategy (Eq. (2)), queries remain anchored to their corresponding parameter and are generally oriented toward it while preserving distinctions between individual samples. However, for C#, the parameter is positioned farther from its queries, probably due to the limited number of training samples (around 341 versus thousands for other languages), illustrating weaker parameter–query alignment despite cosine similarity-based selection. Notably, this issue does not occur in Eq. (1), which can be attributed to the ability of queries to select from the entire parameter pool, allowing dynamic adjustment even for underrepresented languages. In contrast, languages with more training samples form tighter, more concentrated clusters.

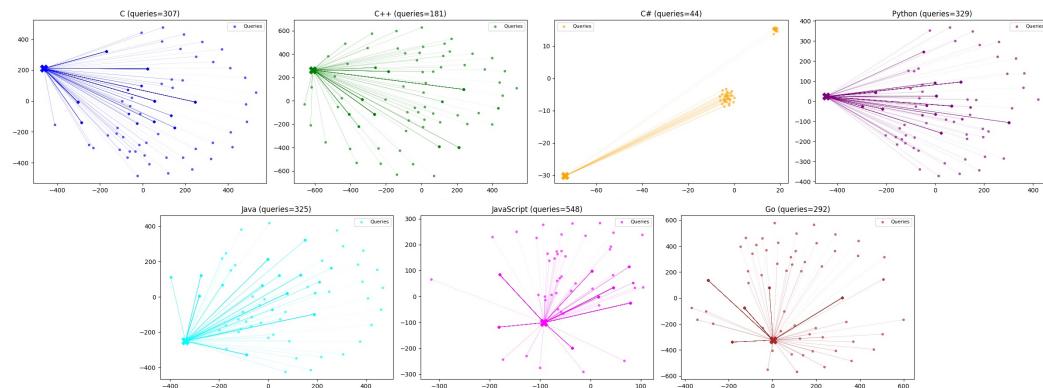


Figure 3: Visualization of the parameter pool and queries using t-SNE under the Language-Aware Parameter Masking strategy (Eq. (2)). Each subplot corresponds to a different programming language. Queries remain anchored to their parameter, generally oriented toward it while preserving distinctions between individual samples. For C#, the parameter is positioned farther from its queries, probably due to limited training samples (around 341 versus thousands for other languages), illustrating weaker parameter–query alignment despite cosine similarity-based selection.

Overall, these visualizations indicate that the parameter pool provides a consistent reference for language-specific knowledge, while the distribution of queries shows that the PLM preserves shared knowledge across languages without collapsing the diversity of individual query embeddings.

864 A.3 THREATS TO VALIDITY
865

866 **Construct Validity** A key threat to construct validity lies in whether our assessments accurately
867 capture the ability of the methods to perform multilingual vulnerability detection. The primary goal
868 of our MULVULN approach is to address this problem in the real-world, challenging, and diverse
869 multilingual source code dataset. To evaluate the performance of MULVULN and the baselines,
870 we use three main measures, commonly used in software vulnerability detection, including Recall,
871 Precision, and F1-score (Li et al., 2018b;a; Nguyen et al., 2019; Zhou et al., 2019; Zheng et al., 2021;
872 Nguyen et al., 2025). In the field of software vulnerability detection, F1-score can be considered the
873 most important metric, with Recall typically prioritized over Precision (Ami et al., 2024).

874 **Internal Validity** Internal validity threats mainly relate to the choice of hyperparameter settings
875 (e.g., optimizer, learning rate, and the number of layers in deep neural networks). Finding optimal
876 hyperparameter configurations is often expensive due to the large number of trainable parameters.
877 In training MULVULN, we generally adopt widely used values, such as the Adam optimizer with a
878 learning rate of 1×10^{-4} . For Parameter Selection via Key-Parameter Query, a single parameter
879 matrix $P_{i^*} \in \mathbf{R}^{L_p \times D}$ is selected for each input (Eq. (1)) with L_p set to 5, a commonly used choice
880 that balances efficiency and representational capacity, and D corresponding to the embedding size
881 of the pre-trained model (i.e., CodeT5 (base version)). For Language-Aware Parameter Masking,
882 each language ℓ is associated with a fixed parameter matrix index i_ℓ (Eq. (2)). All hyperparameter
883 settings are reported in our released reproducible source code to support future replication studies.

884 **External Validity** External validity threats concern whether MULVULN can generalize effectively
885 to real-world and diverse multilingual source code vulnerabilities. We mitigate this by conducting
886 rigorous experiments on the multilingual REEF dataset, which contains 4,466 CVEs with 30,987
887 patches across seven programming languages. REEF provides comprehensive vulnerability infor-
888 mation (e.g., Common Vulnerability Exposure (CVE) and Common Weakness Enumeration (CWE),
889 and Common Vulnerability Scoring System (CVSS)) along with project metadata such as commit
890 messages, and is constructed from real-world vulnerabilities collected from the National Vulnera-
891 bility Database (NVD) and Mend’s CVE list (WhiteSource, 2022), covering the years 2016–2023.
892 The experimental results demonstrate that MULVULN outperforms the baselines by a wide margin,
893 particularly in F1-score.

894
895 A.4 THE FLEXIBILITY OF OUR PROPOSED MULVULN APPROACH
896

897 Our MULVULN approach is flexible and can be applied to both transformer-based encoder–decoder
898 and encoder-only pre-trained LLMs. In this work, we leverage only the encoder component of pre-
899 trained language models, since the detection task primarily requires understanding and representing
900 source code, which is best captured by the encoder. In default, our proposed MULVULN approach
901 uses CodeT5, a widely adopted pre-trained model for software vulnerability detection. In the ab-
902 lation study for RQ2 (presented in Section 4.5), we also apply MULVULN with CodeT5+, demon-
903 strating that our framework can readily adapt to different pre-trained language models.

904
905 A.5 ABLATION STUDIES906 A.5.1 IMPACT OF PARAMETER LENGTH (L_p) ON MULVULN PERFORMANCE
907

908 We conducted an ablation study to evaluate the effect of varying the parameter length $L_p \in$
909 $\{1, 3, 5, 7, 9\}$ on the performance of our MULVULN approach under both Parameter Selection via
910 Key-Parameter Query (Eq. (1)) and Language-Aware Parameter Masking (Eq. (2)). The results
911 are summarized in Table 6. Performance evaluation and conclusions are based on F1-score, the
912 harmonic mean of Precision and Recall, which balances the two metrics.

913 To better interpret the impact of parameter length, we categorize L_p into small, intermediate, and
914 large values and discuss their effects on model performance:

915
916 • **Small values ($L_p = 1, 3$):** These settings seem to limit representational capacity, resulting
917 in lower F1-scores despite high Recall. Notably, $L_p = 3$ achieves the highest Precision for
Eq. (1), but its F1-score remains lower than that of $L_p = 5$.

918
 919 Table 6: Ablation study on parameter length (L_p) for our proposed MULVULN approach under both
 920 Key-Parameter Query (Eq. (1)) and Language-Aware Parameter Masking (Eq. (2)). The best results
 921 in each mechanism are highlighted in **bold**.

Methods	L_p	Recall	Precision	F1-score
MULVULN w/ Eq. (1)	1	90.97%	56.15%	69.44%
MULVULN w/ Eq. (1)	3	86.95%	57.91%	69.52%
MULVULN w/ Eq. (1)	5	96.86%	56.34%	71.24%
MULVULN w/ Eq. (1)	7	95.00%	56.94%	71.20%
MULVULN w/ Eq. (1)	9	94.31%	56.13%	70.38%
MULVULN w/ Eq. (2)	1	91.95%	56.04%	69.64%
MULVULN w/ Eq. (2)	3	96.07%	56.07%	70.81%
MULVULN w/ Eq. (2)	5	96.96%	57.51%	72.20%
MULVULN w/ Eq. (2)	7	95.29%	57.05%	71.37%
MULVULN w/ Eq. (2)	9	89.01%	56.65%	69.24%

936
 937 • **Intermediate value ($L_p = 5$):** This configuration achieves the highest F1-score across
 938 both mechanisms (i.e., Key-Parameter Query (Eq. (1)) and Language-Aware Parameter
 939 Masking (Eq. (2))), striking a balance between sufficient parameter-specific representations
 940 and avoiding redundancy.

941 • **Large values ($L_p = 7$ or 9):** For Eq. (1), Precision increases at $L_p = 7$ compared to
 942 $L_p = 5$ but decreases at $L_p = 9$. For Eq. (2), Precision shows a decline at $L_p = 7$
 943 and $L_p = 9$. Recall and F1-score decrease for both mechanisms at these large L_p values.
 944 These trends may result from over-parameterization, where additional parameters introduce
 945 redundancy rather than meaningful information, reducing overall performance.

946 **Overall finding:** Based on F1-score, $L_p = 5$ provides the most effective trade-off between repre-
 947 sentational capacity, efficiency, and generalization.

949 A.5.2 PARAMETER SELECTION STRATEGIES

950 Our parameter pool is designed to encode the distinct knowledge of each programming language,
 951 with each language primarily using its own dedicated parameter matrix. By default, MULVULN se-
 952 lects a single parameter matrix P_{i^*} for each input X via Key-Parameter Query (Eq. (1)), ensuring
 953 dedicated representations while leveraging shared knowledge from the pre-trained model. To better
 954 understand the effects of flexible selection, we conduct multi-parameter ablation studies.

956 **Multi-Parameter Selection via Key-Parameter Query** We explore selecting the top- K match-
 957 ing keys ($K > 1$) for a single input, allowing X to leverage both its distinct parameter and ad-
 958 ditional shared matrices with other inputs, and examine how this affects the performance of our
 959 MULVULN approach.

961 **Multi-Parameter Extension in Language-Aware Parameter Masking** In this setting, we con-
 962 sider a multi-parameter extension for Language-Aware Parameter Masking (Eq. (2)). Specifically,
 963 each language ℓ can be associated with multiple parameter matrices instead of just one. Inputs
 964 from the same language select among these matrices, allowing us to study the effect of increasing
 965 language-specific capacity while preserving language-specific distinctions.

967 **Impact of Multi-Parameter Selection on Performance** Experimental results in Table 7 show that
 968 the single-parameter setting provides the best trade-off between specialization and generalization.
 969 For Key-Parameter Query, using multiple parameter matrices improves Recall but reduces Preci-
 970 sion, leading to an overall drop in F1-score compared to the default single-parameter setup. For
 971 Language-Aware Parameter Masking, the single-parameter setting achieves the highest F1-score,
 972 while increasing the number of matrices consistently degrades performance.

972
 973 Table 7: Ablation study of our proposed MULVULN approach on parameter selection strategies.
 974 Eq. (1) corresponds to Key-Parameter Query, and Eq. (2) corresponds to Language-Aware Parameter
 975 Masking. Here, pm and pms denote parameter matrix and parameter matrices, respectively.

Methods	Recall	Precision	F1-score
MULVULN (1 pm) w/ Eq. (1)	96.86%	56.34%	71.24%
MULVULN (2 pms) w/ Eq. (1)	98.43%	54.69%	70.31%
MULVULN (3 pms) w/ Eq. (1)	98.53%	54.54%	70.21%
MULVULN (1 pm) w/ Eq. (2)	96.96%	57.51%	72.20%
MULVULN (2 pms) w/ Eq. (2)	95.29%	56.42%	70.88%
MULVULN (3 pms) w/ Eq. (2)	93.13%	56.52%	70.35%

985
 986 These outcomes can be attributed to several factors. *Multi-Parameter Extension in Language-Aware*
 987 *Parameter Masking* may blur language-specific distinctions and increase model capacity, potentially
 988 leading to overfitting, slower convergence, and more challenging optimization. *Multi-Parameter Se-*
 989 *lection via Key-Parameter Query* can increase the risk of suboptimal combinations due to noisy
 990 selection when multiple top- K keys are chosen for a single input, some parameters may not per-
 991 fectly match, introducing conflicting signals that reduce the effectiveness of distinct knowledge.
 992 Furthermore, since the pre-trained model already captures shared cross-language knowledge, addi-
 993 tional instance-wise parameter sharing can be redundant and may dilute useful signals.

994 Overall, these findings exhibit the effectiveness of the single-parameter matrix selection configu-
 995 ration, as it preserves language-specific knowledge while leveraging shared pre-trained representa-
 996 tions, providing a clean adapter mechanism without unnecessary complexity.

997 **Future Directions** While the experimental results favor the single-parameter matrix selection set-
 998 ting, future research could explore adaptive strategies that combine the benefits of single-parameter
 999 and multi-parameter approaches. For instance, dynamically adjusting the number of parameters per
 1000 input based on language complexity, data availability, or task difficulty may mitigate the limita-
 1001 tions of fixed multi-parameter selection. Another promising direction is lightweight regularization
 1002 or gating mechanisms that selectively control parameter sharing, achieving a better balance between
 1003 specialization and generalization.

1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025