
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VeriGuard: Enhancing LLM Agent Safety
via Verified Code Generation

Anonymous authors
Paper under double-blind review

Abstract

The deployment of autonomous AI agents in sensitive domains, such as
healthcare, introduces critical risks to safety, security, and privacy. These
agents may deviate from user objectives, violate data handling policies,
or be compromised by adversarial attacks. Mitigating these dangers
necessitates a mechanism to formally guarantee that an agent’s actions
adhere to predefined safety constraints, a challenge that existing systems
do not fully address. We introduce VeriGuard, a novel framework
that provides formal safety guarantees for LLM-based agents through
a dual-stage architecture designed for robust and verifiable correctness.
The initial offline stage involves a comprehensive validation process. It
begins by clarifying user intent to establish precise safety specifications.
VeriGuard then synthesizes a behavioral policy and subjects it to both
extensive testing in simulated environments and rigorous formal verification
to mathematically prove its compliance with these specifications. This
iterative process refines the policy until it is deemed correct. Subsequently,
the second stage provides online action monitoring, where VeriGuard
operates as a runtime monitor to validate each proposed agent action
against the pre-verified policy before execution. This separation of the
exhaustive offline validation from the lightweight online monitoring allows
formal guarantees to be practically applied, providing a robust safeguard
that substantially improves the trustworthiness of LLM agents in complex,
real-world environments.

1 Introduction
The proliferation of Large Language Model (LLM) agents marks a significant leap towards
autonomous AI systems capable of executing complex, multi-step tasks (Xi et al., 2023; Yao
et al., 2023). These agents, often empowered to interact with external tools, APIs, and file
systems (Schick et al., 2023a; Patil et al., 2024), hold immense promise for automating digital
workflows and solving real-world problems. However, this power introduces substantial
and often unpredictable safety and security vulnerabilities. A critical reliability gap has
emerged: while LLM agents can generate solutions with unprecedented flexibility, the
solution they produce often lacks assurances, making it susceptible to subtle errors, security
flaws, and emergent behaviors that can lead to catastrophic failures. An agent tasked
with data analysis could inadvertently exfiltrate sensitive information; one managing cloud
infrastructure could execute destructive commands; another interacting with financial APIs
could trigger erroneous, irreversible transactions. This problem is even more serious when
there is adversary attack on the system, as shown in Zhang et al. (2025).

Existing safety mechanisms—such as sandboxing, input/output filtering, and static rule-
based guardrails (Inan et al., 2023; Rebedea et al., 2023) —provide a necessary but
insufficient first line of defense. These approaches are fundamentally reactive or based
on pattern matching; they struggle to cover the vast and dynamic state space of agent
actions and can be bypassed by novel adversarial inputs or unforeseen edge cases (Wei
et al., 2023; Xu et al., 2023). They lack a deep, semantic understanding of the code’s intent
and consequences, treating the agent’s output as a black box to be constrained. This leaves
systems vulnerable to sophisticated exploits that a static rule set cannot anticipate (Schulhoff

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

et al., 2023). For LLM agents to be trusted in high-stakes, mission-critical environments, a
more rigorous, provable approach to safety is required.

In this work, we propose a novel method to address this reliability gap, centered on the
VeriGuard framework. VeriGuard represents a paradigm shift from reactive filtering
to proactive, provable safety by deeply integrating policy specification generation and
automated verification into the agent’s action-generation pipeline. VeriGuard fundamentally
reshapes the code generation process to be “correct-by-construction”. This is achieved by
prompting the LLM agent to generate not only the functional code for an action but
also its corresponding verification that precisely define the code’s expected behavior and
safety properties. These paired artifacts are then immediately subjected to an automated
verification engine. An iterative refinement loop forms the core of our framework: if
verification fails, the verifier provides a specific counterexample or logical inconsistency,
which is fed back to the agent as a concrete, actionable critique to guide the generation of a
corrected and verifiably safe version of the code (Pan et al., 2024; Zhao et al., 2025). More
details are in §3.

The primary contribution of this paper is the VeriGuard framework itself, which includes
novel methodologies for the LLM-driven generation and refinement of verifiable code tailored
to agent security and safety contexts. We further contribute a comprehensive empirical
validation of the framework’s effectiveness in preventing unsafe actions across a variety of
challenging domains. Finally, we present a detailed analysis of the performance trade-offs
inherent in this approach.

2 Related Work
2.1 LLM Agents and the Emergence of Autonomous Systems
The development of Large Language Models (LLMs) has catalyzed the emergence of a
new class of autonomous systems known as LLM agents. LLM agents are designed to be
proactive, goal-oriented entities capable of planning, reasoning, and interacting with their
environment through the use of tools (Schick et al., 2023b). Early frameworks like ReAct
demonstrated how to synergize reasoning and acting within LLMs, enabling them to solve
complex tasks by generating both textual reasoning traces and executable actions (Yao et al.,
2023). The agent can also execute more complex tasks like web browsing. This capability,
however, is merely the entry point into a broader spectrum of autonomous actions. Advanced
agents are not just navigating websites but are becoming generalist problem-solvers on the
web and beyond. This evolution is detailed in research and demonstrated in benchmarks
like WebArena (Zhou et al., 2023) and Mind2Web (Gou et al., 2025), which test agents on
their ability to perform multi-step, realistic tasks on live websites.

This paradigm quickly evolved into more sophisticated agent architectures. Systems like
AutoGPT (Gravitas, 2023) and BabyAGI showcased the potential for fully autonomous task
completion, where agents could decompose high-level goals into smaller, executable steps,
manage memory, and self-direct their workflow. Further research has explored enhancing
agent capabilities through mechanisms like self-reflection and verbal reinforcement learning,
allowing them to learn from past mistakes and improve their performance over time
(Shinn et al., 2023). The concept of "Generative Agents" pushed the boundaries even
further by creating interactive simulacra of human behavior within a sandbox environment,
highlighting the potential for complex social and emergent behaviors (Park et al., 2023).
A comprehensive survey by (Wang et al., 2023) details the rapid advancements and
architectural patterns in this burgeoning field.

2.2 LLM Safety, Alignment, and Guardrails
A significant body of research has focused on ensuring the safety and alignment of
LLMs. A primary line of defense involves creating guardrails to constrain agent behavior.
These can range from simple input/output filtering and prompt-based restrictions to more
sophisticated techniques (Bai et al., 2022). Another critical area is the proactive discovery of
vulnerabilities through “red teaming”, where humans or other AIs craft adversarial prompts
to elicit unsafe or undesirable behaviors from the model (Ganguli et al., 2022). The insights
from these attacks are then used to fine-tune the model for greater robustness. Despite these

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

efforts, LLMs remain susceptible to a wide array of "jailbreaking" techniques that can bypass
safety filters (Wei et al., 2023). More recent work has focused on creating safety-tuned LLMs
specifically for tool use, aiming to prevent harmful API calls or command executions (Jin
et al., 2024).

There are some previous work in Agent safeguard. GuardAgent, a framework that uses
an LLM-based “guard agent” to safeguard other LLM agents. GuardAgent operates as a
protective layer, using reasoning to detect and prevent unsafe behaviors (Xiang et al., 2025).
Another work is ShieldAgent, a guardrail agent designed to ensure that autonomous agents
powered by large language models (LLMs) adhere to safety policies (Chen et al., 2025).

However, these existing approaches are largely empirical and reactive. They rely on
identifying and patching vulnerabilities as they are discovered, but they do not provide
formal, provable guarantees of safety. A clever adversary can often devise a novel attack
that circumvents existing guardrails. This highlights a fundamental limitation: without a
formal specification of what constitutes “safe” behavior and a method to verify compliance,
safety remains an ongoing. VeriGuard distinguishes itself from this body of work by moving
from an empirical to a formal verification paradigm, aiming to prove the correctness of an
agent’s actions before they are ever executed.

2.3 Formal Methods and Verifiable Code Generation
Formal methods provide a mathematically rigorous set of techniques for the specification,
development, and verification of software and hardware systems. The advent of powerful
LLMs has opened a new frontier for bridging the gap between natural language specifications
and formal, machine-checkable code. Recent research has begun to explore the potential
for LLMs to automate or assist in the generation of not just code, but also its formal
specification and verification artifacts. For example, (Li et al., 2024) demonstrate a system
where LLMs are used to generate verifiable computation, producing code along with the
necessary components for a verifier to check its correctness. Further studies have investigated
the self-verification capabilities of LLMs (Ghaffarian et al., 2024). This line of work shows
the promise of integrating LLMs into high-assurance software development pipelines.

3 Methodology
Figure 1 describes the high-level ideas of VeriGuard, which operates in two main stages:
(i) Policy Generation: VeriGuard takes inputs including the agent’s specification and
a high-level security request in natural language to synthesize an initial policy function
and its corresponding formal constraints. To ensure the correctness and alignment of this
policy, we employ a rigorous, multi-step refinement feedback loop. This loop begins with a
validation phase to resolve any ambiguities in the user’s request, followed by an automated
code testing phase that generates unit tests to verify functional correctness. The most
critical phase uses formal verification to prove that the policy code adheres to its specified
conditions, ensuring a provably-sound safety contract.. (ii) Policy Enforcement: The
verified policy is integrated into the agentic system at key enforcement points, where it
intercepts and evaluates agent-initiated actions before execution. When a potential violation
is detected, VeriGuard can employ one of several enforcement strategies, ranging from
immediately terminating the agent’s task to blocking the specific unsafe action or engaging
in a collaborative re-planning dialogue with the agent.

3.1 Task Definition
In this section, we formalize the process of generating agent policies from high-level, natural
language specifications.

Policy Generation Given a safety and security request in natural language, denoted as
r, and a agent specification, S, the primary objective is to synthesize a policy function, p,
written in a structured programming language. Concurrently, a set of verifiable constraints
(i.e. pre and post-conditions), C = {c1, c2, . . . , cn}, is derived. The system must guarantee
that the generated policy p complies with all constraints in C. This relationship is formally
denoted as p |= C, signifying that ∀c ∈ C, the policy p satisfies c. The user request r typically
defines a security or operational protocol in text format, while the agent specification S

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: VeriGuard overview which includes Policy generation and Policy enforcement.
The verified policy is integrated into the agent as a runtime safeguard, intercepting and
preventing harmful actions.

provides a schematic of the agent: task description, input/output (I/O) data structures,
available context, environmental information, and any other available data.

Policy Enforcement Given an agentic system and a set of verified policies, the second
objective is to integrate these policies as enforcement mechanisms. The goal is to optimize
the system’s performance by minimizing policy violations (i.e., reducing the attack surface)
while maximizing the agent’s task-completion utility.

3.2 Framework
To address the defined tasks, we propose a framework, VeriGuard, which consists of an
initial policy generator followed by an iterative refinement loop. This loop validates, tests,
and formally verifies the policy code to ensure it accurately reflects the agent requirements
and specifications. For the policy enforcement task, experiment with multiple integration
strategies for deploying VeriGuard within an agentic system.

3.2.1 Policy Generator
The Policy Generator is the core component responsible for translating the agent’s
specification and user’s intent into executable code and formal specifications. It has two
sub-components: (1) policy code generation, and (2) constrains generation, both LLM-
based. At the first pass, the policy generator takes the user request r, an agent specification
S, to produce a preliminary policy function p0, together with a list of arguments the policy
function requires P0. Similarly, the constrains generator take same inputs to produce a set
of constraints C0. This initial generation functions, G0 and H0, can be represented as:

G0(r, S) → (p0, P0) H0(r, S) → (C0)

The arguments schema P0 contains the name, description and type of each required input
argument of the policy function. If the request entails multiple interdependent rules, the
generator produces a single, cohesive codebase that encapsulates all logic. The prompts for
the initial generations are detailed in A.1.

The Policy Generator operates within an iterative refinement loop where policy and
constraints are gradually improved from the previous step (pt−1, Ct−1):

Gt(r, S, R, A, e, pt−1) → (pt, Pt) Ht(r, S, R, A, pt−1) → (Ct)

R, A, and e are the set of requirements, assumptions and coding error messages.

3.2.2 Refinement Process
We employ a three-stage refinement process: validation, testing, and formal verification.

Validation The Validator’s primary function is to resolve ambiguities and ensure
the semantic alignment between the user’s natural language request and its formal

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

representation (p0, C0). This process is bifurcated into an analysis phase and a
disambiguation phase.

In the analysis phase, a function Va scrutinizes the initial artifacts to identify semantic
ambiguities, logical inconsistencies, and implicit presuppositions. The output is a set of
queries, Q, that encapsulate these issues: Va(p0, C0) → Q

In the disambiguation phase, a function Vd processes the user’s feedback, Ufeedback, to resolve
the queries in Q. This interactive process yields a definitive set of explicit assumptions, A,
and a refined, unambiguous set of requirements R as: Vd(Q, Ufeedback) → (A, R)

In an autonomous operational mode where user feedback is unavailable, an internal
module, Ω, is invoked to resolve the queries by selecting the most contextually plausible
interpretations. This generates a set of default assumptions, Adefault, which are then used
to produce the final requirements R. This autonomous path is modeled as: Vd(Q, Ω(Q)) →
(Adefault, R). A.3 shows the implementations detail of this component.

Code Testing This module automatically generates a suite of test cases to perform
empirical validation of the policy function. It takes the policy code p, the user request
r, and the agent specification S as input. The objective is to ensure that the policy meets
a baseline of functional requirements and correctly handles typical and edge-case scenarios
before proceeding to the more computationally expensive formal verification stage. The
output is a set of test cases formatted for the PyTest framework. The policy code is refined
iteratively until all generated tests pass, with failure reports and error messages e serving
as feedback for the refinement loop. The iteration stops when not more errors are found or
at a maximum N number. Details in A.4.

Verification The final stage of refinement involves formal verification using a program
verifier. This component takes the logical constraints C and the policy code p as input.
The constraints in C define a formal contract, specifying the pre-conditions (Cpre ⊆ C) that
must hold before the policy’s execution and the post-conditions (Cpost ⊆ C) that must be
guaranteed upon its completion.

The verifier’s task is to mathematically prove that the policy code p adheres to this contract.
This relationship is formally expressed using a Hoare triple: {Cpre} p {Cpost}. If program
p starts in a state where pre-condition Cpre is true, its execution is guaranteed to terminate
in a state where post-condition Cpost is true. If the code violates the contract, the verifier
provides a counterexample or error trace e, which is used as feedback to refine the policy
or constraints. The refinement cycle continues until formal verification succeeds or at a
maximum N number. For this implementation, we utilize the Nagini verifier (Eilers &
Müller, 2018) as a black box. As a static verifier built on the Viper (Eilers et al., 2025)
infrastructure, Nagini can handle more complex properties than other available Python
verifiers. Pre-processing for Nagini is detailed in A.5.

3.3 Policy Enforcement Strategies
Once a policy is generated and verified, it is integrated into the agentic system at specific
enforcement points that intercept agent-initiated actions (e.g., tool executions, database
access, environmental interactions). Each agent can be governed by one or more policy
functions.

3.3.1 Policy Function Arguments
At runtime, the arguments for the policy function defined, in P, must be populated from
the agentic system data defined in S. We do not assume S is a direct input to the policy,
as this data could be unstructured, and require preprocessing or extraction. Moreover,
implementing preprocessing step strictly via code can limit the system’s flexibility. Thus,
a function f : S → P is required to map the agent data to the policy arguments. For our
experiments, we implement f as a flexible LLM-based component (A.2). The input of f
is the agent data in the format specified in S and the output is a populated dictionary of
arguments specified in P .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.3.2 Policy Function Integration
We experimented with four distinct enforcement strategies upon detecting a policy violation:
(i) Task Termination: the most restrictive approach, which halts the agent’s entire high-
level task and issues a notification explaining the violation; (ii) Action Blocking: a more
targeted approach, where the specific action that violates the policy is blocked, but the agent
is permitted to continue executing subsequent actions in its plan that do not violate policy;
(iii) Tool Execution Halt: which stops the specific execution that caused the violation
and returns no observation to the agent, forcing the agent’s reasoning process to halt and
decide on a new course of action based on the lack of feedback; and (iv) Collaborative
Re-planning: the most interactive strategy, which informs the agent of the specific policy
it has violated and requests that it generate a new action plan that complies with the stated
constraints.

4 Experiments
4.1 Datasets
Agent Security Bench (ASB) (Zhang et al., 2025) This dataset focuses on four types
of attacks against agentic systems: direct and indirect prompt injection, memory poisoning,
and plan-of-thought backdoors. The framework utilizes 10 ReAct agents across 10 different
scenarios (e.g., finance, commerce, autonomous driving), incorporating 10 different tasks,
13 attack variations, and 400 attack tools.

EICU-AC (Xiang et al., 2025) This benchmark evaluates an ICU question/answer agent’s
access control over 10 patient databases. It defines specific user roles, each restricted to
designated subsets of the databases and their internal information categories. The agent
must deny any user question if its answer requires accessing data that is forbidden for the
user’s given role.

Mind2Web-SC (Xiang et al., 2025) Mind2Web-SC adapts the Mind2Web benchmark,
which tasks web agents with solving over 2,000 complex online tasks using sequential actions.
The “SC” (Safety Control) variant augments this framework by introducing safety rules that
prohibit specific users from performing certain web activities, thereby testing the agent’s
ability to enforce these policies.

4.2 Evaluation Metrics
ASB: we simultaneously evaluate defense efficacy and operational interference using two
primary metrics: the (i) Attack Success Rate (ASR↓): quantifies the quality of the
defense. It is defined as the ratio of successful attacks to the total number of attack
attempts. (ii) Task Success Rate (TSR↑): measures the operational interference or
overhead imposed by the defense mechanism. It is calculated as the ratio of successfully
completed original tasks to the total number of tasks attempted.

EICU-AC and Mind2Web-SC: the task is defined exclusively as access control, where
correctly stopping a forbidden action is the desired outcome. This evaluation is treated as
a binary classification problem (Allow vs. Deny), so we use standard classification metrics:
Accuracy, Precision, and Recall.

4.3 Baselines
ASB: we experiment with four backbone LLMs: Gemini 2.5 Flash and Pro, GPT-4.1,
and Claude-Sonnet-4. We establish two base boundaries: the upper-bound No Attack,
derived from unattacked model performance, and No Defence, derived from undefended
model performance.We compare against several baselines: Paraphrasing (Jain et al.,
2023), which rewords the query to disrupt malicious special-character sequences and triggers
(effective for DPI and PoT Backdoor attacks); Dynamic Prompt Rewriting (Zhang
et al., 2025), which transforms the input to align with security objectives (proposed for
DPI); and Delimiter (Mattern et al., 2023), which encapsulates the user query to ensure
bounded execution (effective for IPI). We also implemented a stronger Guardrail baseline
that receives the same input as VeriGuard but, instead of generating a code function,
directly asks an LLM to evaluate policy compliance.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

EICU-AC and Mind2Web-SC: we report the results of several state-of-the-art (SOTA)
approaches. These include GuardAgent (Xiang et al., 2025), which translates natural
language safety rules into executable code via manually defined functions; AGrail (Luo
et al., 2025), which implements a mechanism to continually learn and adapt policies (as
security checks) and uses an LLM for verification; LLaMA-Guard 3 Llama Team (2024), a
model trained to detect security issues; and AgentMonitor (Chan et al., 2024), a guardrail
method for multi-agent systems. We also include the Hard-coded Rules baseline in (Xiang
et al., 2025).

4.4 Results
Table 1 summarizes our evaluation on the ASB dataset, conducted across three backbone
LLMs to assess generalization. The table reports the ASR and TSR against several baselines,
including a “No Defense” scenario (providing a lower bound for ASR) and a “No Attack”
scenario (an upper bound for TSR).

We compare VeriGuard against Paraphrase and Rewrite, the best performing defenses
from the ASB benchmark. We also introduce a stronger baseline, GuardRail, which, given
the same inputs as VeriGuard, directly queries an LLM to determine if an action violates
the user’s request, rather than generating a verifiable policy.

The low ASR achieved by GuardRail indicates that simple violation detection is a largely
solved task for strong LLMs. The primary challenge, therefore, is not if a violation occurs,
but how to intervene precisely by blocking only the malicious component (e.g., a specific tool)
without degrading task utility. VeriGuard proves particularly effective at this, achieving a
near-zero ASR while simultaneously outperforming all other defenses in TSR, demonstrating
a superior trade-off between security and utility.

Table 2 summarizes the performance evaluation on the EICU-AC and Mind2Web-SC
datasets. To ensure a fair comparison, we use GPT-4o as the backbone LLM, consistent
with the SOTA model. We also report with Gemini-2.5-pro. VeriGuard, achieves perfect
accuracy on the EICU-AC dataset and outperforms all baselines on recall in Mind2Web-
SC. This is particularly noteworthy given that VeriGuard is a generic policy constructor,
whereas a strong baseline like GuardAgent employs a predefined policy structure specifically
tailored to these access control tasks. Furthermore, unlike GuardAgent, our method does
not require any in-context learning to build its policies. On the other hand, Agrail shows
better accuracy and precision showing that an external memory bank of policies can be
beneficial. Future, work can enhance VeriGuard with memory of previous judgments.

While our method attains high accuracy, we argue that recall is a more critical metric for
security applications. On both datasets, VeriGuard achieves high recall, signifying that it
successfully identifies and blocks every policy violation. This capacity to prevent all illicit
actions, even at the cost of a decrease in precision, is a crucial requirement for deploying
secure agentic systems.

5 Analysis
5.1 Ablation Study of VeriGuard Components
The results of our ablation study, presented in Figure 2, detail the cumulative impact of each
VeriGuard component. The analysis was conducted on the Agent Security Benchmark
(ASB), utilizing Gemini-2.5-Flash with default parameters.

Figure 2a shows the defense is built in stages as initially the agent is highly vulnerable,
with an average ASR of 53.5%. First, the Policy Generation step provides a substantial
impact, reducing the average ASR to 9.97%. Subsequently, the Validation plays a critical
role for complex attacks where the initial policy may be incomplete or non-executable; this
is most evident against Memory Poisoning, where this step reduces the ASR by more than
half (from 31.75% to 15%). Following this, the Validation component further enhances
robustness, fully neutralizing all remaining threats and reducing the ASR to 0% across all
attack vectors. Finally, the formal verification step ensures that the defense code rigorously
follows all security constraints.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Experiment results of VeriGuard on ASB benchmark. Attack Success Rate (ASR
↓) Task Success Rate (TSR ↑).

Defense DPI IPI MP PoT AVG
ASR↓ TSR↑ ASR↓ TSR↑ ASR↓ TSR↑ ASR↓ TSR↑ ASR↓ TSR↑

Gemini-2.5-Flash
No attack – 57.5 – 57.5 – 57.5 – 74.3 – 61.7
No defense 98.5 0.5 40.5 46.3 15 57.3 53.5 64.3 51.9 42.1
Delimiter – – 40.8 48.5 – – – – – –
Paraphrase 71.8 24.0 – – – – 57.3 67.3 – –
Rewrite 70.5 30.0 – – – – – – – –
GuardRail 0.0 24.5 0.0 35.3 0.0 58.5 0.0 66.3 0.0 40.2
VeriGuard 0.0 50.5 0.0 55.8 0.0 78.5 0.0 77.7 0.0 63.3

Gemini-2.5-Pro
No attack – 76.0 – 76.0 – 76.0 – 78.0 – 76.5
No defense 83.0 3.5 62.3 68.0 11.0 79.8 52.2 75.5 52.1 56.7
GuardRail 0.0 48.8 0.0 18.0 0.0 67.3 0.0 72.0 0.0 51.5
VeriGuard 0.0 55.6 0.0 65.5 0.0 76.8 0.0 71.3 0.0 67.3

GPT-4.1
No attack – 64.5 – 64.5 – 64.5 – 87.0 – 70.1
No defense 92.5 1.0 60.0 45.3 2.8 62.3 99.5 87.0 63.7 43.1
Delimiter – – 64.3 52.0 – – – – – –
Paraphrase 80.3 19.0 – – – – 60.0 85.5 – –
Rewrite 74.5 15.5 – – – – – – – –
GuardRail 0.0 20.0 0.0 31.5 0.0 63.0 0.0 82.0 0.0 44.6
VeriGuard 0.0 28.0 0.0 42.3 0.0 63.5 0.0 94.5 0.0 57.1

Claude-sonnet-4
No attack – 100.0 – 100.0 – 100.0 – 99.0 – 99.8
No defense 31.3 89.0 63.8 97.0 24.0 82.0 80.5 87.8 49.9 89.0
Delimiter – – 60.8 98.3 – – – – – –
Paraphrase 39.8 88.5 – – – – 73.3 90.5 – –
Rewrite 66.8 57.5 – – – – – – – –
GuardRail 0.0 68.5 0.0 46.0 0.0 75.5 0.0 83.5 0.0 68.3
VeriGuard 0.0 86.8 0.0 91.5 0.0 81.8 0.0 80.2 0.0 85.1

Table 2: Performance comparison on the EICU-AC and Mind2Web-SC benchmarks

Methods EICU-AC Mind2Web-SC
Acc. P R Acc. P R

Hardcoded Safety Rules (Xiang et al., 2025)a 81.0 76.6 90.7 77.5 95.1 58.0
LLaMA-Guard3 (Luo et al., 2025)* 48.7 – – 56.0 93.0 13.0
AgentMonitor (GPT-4o) (Luo et al., 2025)* 82.3 98.2 66.7 72.5 79.2 61.0
GuardAgent (GPT-4) (Xiang et al., 2025)* 98.7 100.0 97.5 90.0 100.0 80.0
AGrail (GPT-4o) (Luo et al., 2025)* 97.8 97.5 98.1 98.4 99.0 98.0
VeriGuard (GPT-4o) 100.0 100.0 100.0 95.1 91.3 99.0
VeriGuard (GPT-4.1) 100.0 100.0 100.0 96.2 91.2 100.0
VeriGuard (Gemini-2.5-pro) 100.0 100.0 100.0 97.2 95.0 99.0
a Values obtained from the cited papers.

Figure 2b demonstrates that these robust security gains do not incur a performance trade-off.
The TSR remains high and exhibits a consistent increase (from 51.87% to 63.25% average),
confirming VeriGuard’s ability to secure the agent without compromising functional
utility.

5.2 Evaluating Integration Methods: Security vs. Utility
Table 3 presents the results from the ASB using Gemini-2.5-Flash. It evaluates the five
integration strategies detailed in Section 3.3.2: Task Termination (TT), Action Blocking

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 2: (Left) shows the ASR is systematically reduced to 0% across all evaluated attack
types. (Right) shows the TSR increases as defense layers are added.

(AB), Tool Execution Halt (TEH), Collaborative Re-planning (CRP), and a combination
of CRP and TEH.

Table 3: ASR↓ and TSR↑ results for VeriGuard integration methods including Task
Termination (TT), Action Blocking (AB), Tool Execution Halt (TEH), Collaborative Re-
planning (CRP). CRP + TEH combination achieves the optimal balance of security and utility.

Integration Method DPI IPI MP PoT AVG
ASR↓ TSR↑ ASR↓ TSR↑ ASR↓ TSR↑ ASR↓ TSR↑ ASR↓ TSR↑

TT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AB 0.0 0.5 0.0 34.0 0.0 55.5 0.0 62.3 0.0 38.1
TEH 0.0 0.3 0.0 48.8 0.0 61.5 0.0 68 0.0 44.6
CRP 14.3 51.5 33.3 50.0 0.0 69.0 0.0 77.7 11.9 62.1
CRP + TEH 0.0 50.5 0.0 55.8 0.0 78.5 0.0 77.7 0.0 63.3

Each strategy offers a different trade-off. Task Termination (TT) is the most stringent
approach; it neutralizes threats by terminating any task when an attack is detected. This
method is impractical for real-world scenarios because it results in a complete task failure
(0% TSR). Action Blocking (AB) is a less severe strategy that blocks a single malicious
action but allows subsequent, non-malicious actions to proceed, forcing the agent to replan.
Tool Execution Halt (TEH) offers a more granular approach. A single agent "action" can
invoke multiple tool calls (some benign), so TEH blocks only the suspicious tool call—not
the entire action—letting the agent continue its plan with a "no tool response" error. In
contrast, Collaborative Re-planning (CRP) is the least invasive method. Instead of blocking,
VeriGuard sends an alert to the agent, which allows it to formulate a new, safer plan.
While this significantly boosts the TSR, it doesn’t guarantee security, as the agent can still
perform unsafe actions (leading to an 11.9% average ASR). Therefore, a hybrid CRP +
TEH approach yields the optimal results. This combination leverages the high TSR of CRP
with the fine-grained security of TEH, achieving both a near-zero average ASR (0.1%) and
the highest average TSR (63.6%).

6 Conclusion
In this work, we introduce VeriGuard, a novel framework designed to substantially
enhance the safety and reliability of Large Language Model (LLM) agents. By integrating
a verification module that formally checks agent-generated policies and actions against
predefined safety specifications, VeriGuard moves beyond reactive, pattern-matching
safety measures to a proactive, provably-sound approach. Our experiments demonstrate
that this interactive verification loop is highly effective at preventing a wide range of
unsafe operations, from prompt injections to unauthorized data access, while maintaining
a high degree of task success. The results on benchmarks such as ASB, EICU-AC, and
Mind2Web-SC show that VeriGuard not only significantly reduces the attack success rate
to near-zero but also offers flexible policy enforcement strategies that can be tailored to
different operational needs. VeriGuard provides a robust and essential safeguard, paving
the way for the trustworthy deployment of LLM agents in complex and high-stakes real-
world environments.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

References
Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion,

Andrew Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon,
Carol Chen, Catherine Olsson, Christopher Olah, Danny Hernandez, Dawn Drain,
Deep Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez, Jamie Kerr, Jared Mueller,
Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Liane Lovitt, Michael Sellitto, Nelson
Elhage, Nicholas Schiefer, Noemi Mercado, Nova DasSarma, Robert Lasenby, Robin
Grosse, Sam Ringer, Scott Johnston, Shauna Kravec, Sheer El Showk, Stanislav Fort,
Tamera Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom Henighan, Tristan Hume,
Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario Amodei, Nicholas Joseph,
Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional ai: Harmlessness from
ai feedback, 2022.

Chi-Min Chan, Jianxuan Yu, Weize Chen, Chunyang Jiang, Xinyu Liu, Weijie Shi, Zhiyuan
Liu, Wei Xue, and Yike Guo. Agentmonitor: A plug-and-play framework for predictive
and secure multi-agent systems, 2024. URL https://arxiv.org/abs/2408.14972.

Zhaorun Chen, Mintong Kang, and Bo Li. Shieldagent: Shielding agents via verifiable safety
policy reasoning. ICML, 2025.

M. Eilers, M. Schwerhoff, A. J. Summers, and P. Müller. Fifteen years of viper. In Ruzica
Piskac and Zvonimir Rakamarić (eds.), Computer Aided Verification (CAV), pp. 107–
123, Cham, 2025. Springer Nature Switzerland. doi: 10.1007/978-3-031-98668-0_5. URL
https://link.springer.com/chapter/10.1007/978-3-031-98668-0_5.

Marco Eilers and Peter Müller. Nagini: a static verifier for python. In International
Conference on Computer Aided Verification, pp. 596–603. Springer, 2018.

Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda Askell, Yuntao Bai, Saurav
Kadavath, Ben Mann, Ethan Perez, Nicholas Schiefer, Kamal Ndousse, Andy Jones, Sam
Bowman, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Nelson Elhage, Sheer
El-Showk, Stanislav Fort, Zac Hatfield-Dodds, Tom Henighan, Danny Hernandez, Tristan
Hume, Josh Jacobson, Scott Johnston, Shauna Kravec, Catherine Olsson, Sam Ringer,
Eli Tran-Johnson, Dario Amodei, Tom Brown, Nicholas Joseph, Sam McCandlish, Chris
Olah, Jared Kaplan, and Jack Clark. Red teaming language models to reduce harms:
Methods, scaling behaviors, and lessons learned, 2022. URL https://arxiv.org/abs/
2209.07858.

Soroush Ghaffarian, Ruturaj Raval, Gabriele Bavota, and Maliheh Izadi. Can llms verify
their own code? a case study in secure web development, 2024.

Boyu Gou, Zanming Huang, Yuting Ning, Yu Gu, Michael Lin, Weijian Qi, Andrei Kopanev,
Botao Yu, Bernal Jiménez Gutiérrez, Yiheng Shu, Chan Hee Song, Jiaman Wu, Shijie
Chen, Hanane Nour Moussa, Tianshu Zhang, Jian Xie, Yifei Li, Tianci Xue, Zeyi Liao,
Kai Zhang, Boyuan Zheng, Zhaowei Cai, Viktor Rozgic, Morteza Ziyadi, Huan Sun, and
Yu Su. Mind2web 2: Evaluating agentic search with agent-as-a-judge, 2025.

Significant Gravitas. Auto-gpt: An autonomous gpt-4 experiment. https://github.com/
Significant-Gravitas/Auto-GPT, 2023.

Hakan Inan, Kanishka Kandasamy, Sarath Rameshbabu, Moustafa El-Khamy, Suman
Purohit, and Srivatsa Ranganath. Llama guard: Llm-based input-output safeguard for
human-ai conversations, 2023. URL https://ai.meta.com/research/publications/
llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/.

Neel Jain, Avi Schwarzschild, Yuxin Wen, Gowthami Somepalli, John Kirchenbauer, Ping
yeh Chiang, Micah Goldblum, Aniruddha Saha, Jonas Geiping, and Tom Goldstein.
Baseline defenses for adversarial attacks against aligned language models, 2023. URL
https://arxiv.org/abs/2309.00614.

10

https://arxiv.org/abs/2408.14972
https://link.springer.com/chapter/10.1007/978-3-031-98668-0_5
https://arxiv.org/abs/2209.07858
https://arxiv.org/abs/2209.07858
https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/Significant-Gravitas/Auto-GPT
https://ai.meta.com/research/publications/llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/
https://ai.meta.com/research/publications/llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/
https://arxiv.org/abs/2309.00614

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhihan Jin, Hongyi Zhang, Zhiming Zhou, Jiachen Li, Min Gao, and Enhong Chen. Llm-
safeguard: A human-in-the-loop framework for tuning safety-guard of llm-based agents,
2024.

Guanting Li, Yifeng Zhang, Zhaohua Chen, Hongwei Wang, Zhaoran Wang, Si-Qing Chen,
Yan-Fu Li, Zhuo Tang, Mas ud K. Effendy, An-Tho T. Nguyen, Xiaofei Xie, Meng-Hsun
Tsai, and Ting-Chen Chen. Llm-based generation of verifiable computation, 2024.

AI @ Meta Llama Team. The llama 3 herd of models, 2024. URL https://arxiv.org/
abs/2407.21783.

Weidi Luo, Shenghong Dai, Xiaogeng Liu, Suman Banerjee, Huan Sun, Muhao Chen, and
Chaowei Xiao. AGrail: A lifelong agent guardrail with effective and adaptive safety
detection. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher
Pilehvar (eds.), Proceedings of the 63rd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 8104–8139, Vienna, Austria,
July 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.
18653/v1/2025.acl-long.399. URL https://aclanthology.org/2025.acl-long.399/.

Justus Mattern, Fatemehsadat Mireshghallah, Zhijing Jin, Bernhard Schoelkopf, Mrinmaya
Sachan, and Taylor Berg-Kirkpatrick. Membership inference attacks against language
models via neighbourhood comparison. In Anna Rogers, Jordan Boyd-Graber, and
Naoaki Okazaki (eds.), Findings of the Association for Computational Linguistics: ACL
2023, pp. 11330–11343, Toronto, Canada, July 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.findings-acl.719. URL https://aclanthology.org/
2023.findings-acl.719/.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak Nathani, Xinyi Wang, and
William Yang Wang. Automatically correcting large language models: Surveying the
landscape of diverse automated correction strategies. Transactions of the Association
for Computational Linguistics, 12:484–506, 2024. doi: 10.1162/tacl_a_00660. URL
https://aclanthology.org/2024.tacl-1.27/.

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang,
and Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior,
2023.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla:
Large language model connected with massive apis. In A. Globerson, L. Mackey,
D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural
Information Processing Systems, volume 37, pp. 126544–126565. Curran Associates,
Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/
e4c61f578ff07830f5c37378dd3ecb0d-Paper-Conference.pdf.

Traian Rebedea, Razvan Dinu, Makesh Narsimhan Sreedhar, Christopher Parisien, and
Jonathan Cohen. NeMo guardrails: A toolkit for controllable and safe LLM applications
with programmable rails. In Yansong Feng and Els Lefever (eds.), Proceedings of
the 2023 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, pp. 431–445, Singapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-demo.40. URL https://aclanthology.org/
2023.emnlp-demo.40.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Tsvigun, Nicola
Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools. arXiv preprint arXiv:2302.04761, 2023a.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools, 2023b.

Sander V Schulhoff, Jeremy Pinto, Anaum Khan, Louis-FranÃ§ois Bouchard, Chenglei
Si, Jordan Lee Boyd-Graber, Svetlina Anati, Valen Tagliabue, Anson Liu Kost, and

11

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://aclanthology.org/2025.acl-long.399/
https://aclanthology.org/2023.findings-acl.719/
https://aclanthology.org/2023.findings-acl.719/
https://aclanthology.org/2024.tacl-1.27/
https://proceedings.neurips.cc/paper_files/paper/2024/file/e4c61f578ff07830f5c37378dd3ecb0d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/e4c61f578ff07830f5c37378dd3ecb0d-Paper-Conference.pdf
https://aclanthology.org/2023.emnlp-demo.40
https://aclanthology.org/2023.emnlp-demo.40

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Christopher R Carnahan. Ignore this title and hackaprompt: Exposing systemic
vulnerabilities of llms through a global prompt hacking competition. In Empirical Methods
in Natural Language Processing, 2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.
Reflexion: Language agents with verbal reinforcement learning, 2023.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhi-Yuan Chen,
Jiakai Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Ji-Rong Wen. A
survey on large language model based autonomous agents, 2023.

Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jailbroken: How does llm safety
training fail? NeurIPS, 2023.

Zhengyao Xi, Wenxiang Chen, Xin Guo, Wei He, Yi Ding, Bowei Hong, Ming Zhang, Jun
Wang, Sen Jin, Enyi Zhou, et al. The rise and potential of large language model based
agents: A survey. arXiv preprint arXiv:2309.07864, 2023.

Zhen Xiang, Linzhi Zheng, Yanjie Li, Junyuan Hong, Qinbin Li, Han Xie, Jiawei Zhang,
Zidi Xiong, Chulin Xie, Carl Yang, Dawn Song, and Bo Li. Guardagent: Safeguard llm
agents by a guard agent via knowledge-enabled reasoning, 2025.

Xilie Xu, Keyi Kong, Ning Liu, Lizhen Cui, Di Wang, Jingfeng Zhang, and Mohan
Kankanhalli. An llm can fool itself: A prompt-based adversarial attack, 2023. URL
https://arxiv.org/abs/2310.13345.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and
Yuan Cao. React: Synergizing reasoning and acting in language models, 2023.

Hanrong Zhang, Jingyuan Huang, Kai Mei, Yifei Yao, Zhenting Wang, Chenlu Zhan,
Hongwei Wang, and Yongfeng Zhang. Agent security bench (asb): Formalizing and
benchmarking attacks and defenses in llm-based agents. In The Thirteenth International
Conference on Learning Representations, 2025.

Yicong Zhao, Shisong Chen, Jiacheng Zhang, and Zhixu Li. Recode: Improving llm-based
code repair with fine-grained retrieval-augmented generation, 2025. URL https://arxiv.
org/abs/2509.02330.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi
Cheng, Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web
environment for building autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

A Experiment Details
This section details the implementation VeriGuard with agent systems mentioned in

Section 4.

A.1 Prompts Used To Generate the Policy
Prompt: Policy Code Generation

You are an expert AI security agent. Your primary function is to generate a Python
security policy function based on a high-level user request.
CONTEXT
You are part of a system that moderates a target agent’s actions at runtime. This
system works as follows:
1. A user gives a natural language security request (e.g., “The agent cannot send
emails to non-company addresses").
2. You receive this request and generate a specific Python policy function to enforce
it.
3. At runtime, before the target agent acts, its inputs and outputs are intercepted.

12

https://arxiv.org/abs/2310.13345
https://arxiv.org/abs/2509.02330
https://arxiv.org/abs/2509.02330

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

4. Parameters are extracted from this runtime data using the
read_parameters_with_LLM tool.
5. The extracted parameters are passed to your generated policy function, which
decides whether to allow or deny the action.
Runtime Data:
- agent_information: str # The text prompt input given to the agent, the agent
output, and any available context.
Parameter Extraction Tool: The system uses the read_parameters_with_LLM
tool to extract relevant arguments from the agent_information.
- **Tool Signature**: read_parameters_with_LLM(text: str,
list_of_arguments_to_read: dict[str, type]) -> dict
- **Example**: Given the text “Send an email to
alex@example.com and Dona Jhonson with the subject ‘Update’" and
list_of_arguments_to_read={{“recipients": list, “subject":
str}}, the tool would return {{“recipients": [“alex@example.com",
“dona@example.com"], “subject": “Update"}}.
YOUR TASK
Given a agent’s security request and the target agent_specification, you must
generate two outputs: a list of parameters to extract, and the Python code for the
policy function.
OUTPUT REQUIREMENTS
Your response must contain exactly two parts in the following order:
1. Arguments to Extract
A Python dictionary named list_of_arguments_to_read that contains all the
string arguments needed from the runtime data to evaluate the policy. Follow this
exact format:

```python
list_of_ arguments _to_read = {{" argument1 ": type1 , " argument2 ":

type2 , " argument3 ": type3}}
```

2. Policy Function Header

```python
def policy ( arguments : dict) -> tuple[bool , str ]:
```

3. Constant variables
You can define global variables needed to execute the function.

```python
variable1 = " value1 "
variable2 = [" value2 "]
```

4. Policy Function Code
A Python function that implements the user’s security policy. You can create
auxiliary functions as well, but the policy function must be named exactly policy.
The function must adhere to these rules:
- It must be named exactly policy.
- It must accept one argument: arguments: dict.
- It must return a tuple: (bool, str). The bool is the decision: True if the action
is **allowed**, False if it is **denied**.
- It must include a clear docstring explaining the policy.
- It must not use any external libraries.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Note: Do not use python string functions to get parameters or arguments. Use the
read_parameters_with_LLM tool instead.
Follow this exact format:

```python
def policy ( arguments : dict) -> tuple[bool , str ]:

"""A brief , one - sentence description of what this policy
enforces ."""
# Your policy logic here
# ...
if condition _is_met:

return True , " Reason for allowing ."
else:

return False , " Reason for denial ."
```

—
Target Agent Specification:
{agent_specification}
User Request
{request}
Requirements # If available
{requirements}
Assumptions # If available
{assumptions}

Prompt: Constraint Generation

You are a senior **Security Systems Architect** with a deep understanding of
Natural Language Understanding (NLU) and formal logic. Your expertise lies
in translating complex, human-written security policies into clear, unambiguous, and
verifiable logical rules.
Objective
Your task is to analyze a given natural language security policy, an agent’s
description, and a set of defined variables/constants to generate a set of discrete,
testable logical statements. These statements should represent the core requirements
of the policy and can be used to programmatically verify the agent’s behavior.
Instructions
1. **Analyze the Inputs:** Carefully read the provided security policy, the agent’s
description, and the list of variables and constants. Identify key actors, actions,
conditions, and the specific capabilities of the agent that are relevant to the policy.
2. **Generate Logical Statements:** For each policy rule, create one or more logical
statements. * Each statement should be a complete, verifiable condition. * Use
a clear **IF-THEN** or similar logical structure. * Focus on verifiable conditions
(e.g., "The agent’s state is ’idle’") and outcomes (e.g., "The agent must not respond
to external commands"). * Ensure the statements cover both "positive" (allowed)
and "negative" (denied) cases, taking into account the agent’s specific functions.
3. **Provide a Rationale:** After the list, briefly explain the logical structure and
why these statements effectively capture the policy’s intent and apply to the described
agent.
4. **Output Format:**
Verifiable Logical Statements:
(Give the statements in json format as:)

```json
[{{" statement ": ...}},

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

{{" statement ": ...}}
...
]```

Rationale:
(A brief explanation of the logical framework and how it aligns with the policy, the
agent’s capabilities, and the provided variables.)
## Input:
Security Policy Specification:
{security policy}
Agent Specification:
{agents_description}
Variables and Constants:
{variables_and_constants}
Requirements # If available
{requirements}
Assumptions # If available
{assumptions}

## Output:
Verifiable Logical Statements:

A.2 Prompts Used To Enforce the Policy
Prompt: Argument Extraction

You are an expert Natural Language Understanding (NLU) engine. Your task is to
extract structured information from a given text based on a specification and return
it as a single Python dictionary.
## YOUR TASK
You will be provided with a block of input text, a Python function for context, and
a specification of the parameters to extract. You must carefully read the **entire**
input text, find the values for each required parameter, and format them into a
dictionary.
**Instructions:**
- Synthesize information from all parts of the input text to fill the parameters.
- Ensure the data types in the output dictionary match the specification (e.g., list
for list[str]).
- Your output at the end should include your reasoning and a valid Python dictionary.
—–
## EXAMPLE
GIVEN THIS CONTEXT:
Python Function:

```python
def send_email(arguments : dict) -> str:

"""Send an email to the specified recipients with the given
subject ."""
send email logic here
...
return "Email sent successfully ."

```

Agent Information:
Input: Send an email to alex@example.com and Dona Jhonson with the subject
’Update’

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Output: Step 1: Using retreive_email("Dona Jhonson") we get the email
"dona@example.com"
AND THIS PARAMETER SPECIFICATION:
{{"recipients": "list[str]", "subject": "str"}}

PRODUCE THIS OUTPUT:
**Reasoning**
From the "Agent Input", I found one recipient, "alex@example.com", and the subject,
"Updates".
From "Agent Output" Step 1, I found the email for "Dona Jhonson" is
"dng@example.com". I will combine these into the ‘recipients‘ list.
**Python dictionary**

```python
{" recipients ": [" alex@example .com", " dona@example .com"], "

subject ": " Update "}
```

—–
## YOUR TURN

GIVEN THIS CONTEXT:
Python Function:
{function}
Input Text:
{text}

AND THIS PARAMETER SPECIFICATION:
{parameters}

PRODUCE THIS OUTPUT:

A.3 Prompts Used for Validation

Prompt: Validation Analysis

You are an expert **Natural Language Understanding (NLU)** and **logic
engine**. Your primary function to verify logical statements.
## YOUR TASK
Given a user’s security specification and statements, you must analyze the
specification in detail and then check if the logical statements is valid or needs
correction.
1. Check if the user specification has ambiguity, needs clarification, for example
co-references.
2. Check pre-assumptions for the statements. Focus on the specification.
4. Find contra examples.
5. Find any logical error in the statements.
Output: After your analysis list all the points that require clarification or correction.
—
User Specification
{user_specification}
Logical Statements
{statements}

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Prompt: Validation Disambiguation

You are an expert in **System Requirements**, **Security Policy**, and **Logical
Deduction**. Your primary function is to act as an arbiter to resolve ambiguities
identified in a system analysis. You must review a user’s security goals, the agent’s
capabilities, and the provided analysis to establish a definitive, clear, and reasonable
set of system requirements and assumptions.
## YOUR TASK
You are given a high-level user_specification, the technical
agent_specification, and an analysis that identifies points of ambiguity,
conflict, or missing details.
Your task is to:
1. Carefully examine each point raised in the analysis.
2. Use the user_specification as the primary source of intent and the
agent_specification as the context for technical constraints.
3. For each point of ambiguity, make a clear and logical **decision** to finalize the
requirement or assumption.
4. Compile these decisions, along with any original unambiguous requirements, into
a single, comprehensive list of detailed requirements.
## OUTPUT FORMAT
Your response must contain two parts:
**Part 1: Decisions on Ambiguities**
For each point from the analysis, provide your decision in the following structured
format:
1. [Title of the Point/Ambiguity]
- Decision: [State your clear and final decision on the requirement or assumption.]
- Justification: [Briefly explain *why* this decision is the most reasonable, referencing
the user/agent specifications as needed.]
2. [Title of the Next Point/Ambiguity]
- Decision: [...]
- Justification: [...]
**Part 2: Finalized Detailed Requirements List**
After addressing all ambiguities, compile a complete and final list of all detailed
requirements (combining the original, clear requirements with your new decisions).
1. [Detailed Requirement 1]
2. [Detailed Requirement 2]
3. [Detailed Requirement 3]
—
## INPUTS
User Specification
{user_specification}
Agent Specification
{agent_specification}
Analysis of Ambiguities
{analysis}

A.4 Prompts Used for Code Testing

Prompt: Test Case Generation

You are an expert at writing Pytest functions. Your task is to generate complete
and effective test cases for a given Python function, adhering to best practices.
## YOUR TASK

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Generate Pytest functions within a single Python code block. The tests should be
comprehensive, covering a wide range of scenarios including:
- **Happy Path:** Standard, valid inputs.
- **Edge Cases:** Boundary conditions (e.g., empty strings, zero, negative numbers).
- **Error Handling:** Cases that should raise specific exceptions.
Use the following format for your output:

```python
your generated test code here
```

User Request:
{user_request}
Requirements
{requirements}
Assumptions
{assumptions}
Python function to test:
{function_to_test}
Test cases:

Prompt: Policy Code Correction

You are an expert Python developer and debugger. Your task is to analyze a Python
function and its corresponding pytest error message, identify the bug, and provide
the corrected code.
Python Function to Correct
{function_to_test}
Pytest Error Message
{error_message}

## Your Task
Analyze the function and the error message to find the source of the error.
Explain the bug clearly and concisely.
Provide the complete, corrected Python function.
**Response Format**
Bug Explanation
(Describe the bug and the reason for the error here.)
Corrected Function

```python
Your corrected Python code here.
```

A.5 Prompts Used for Verification
Prompt: Code Generation for Verification

You are an expert in **formal methods** and **software verification**, specializing
in Python. Your primary skill is translating requirements into precise **Nagini pre-
and post-condition contracts**.
## Objective:
Your task is to augment a given Python function with Nagini contracts (‘Requires‘
and ‘Ensures‘) based on a set of logical statements. You must ensure the generated
code is syntactically correct and accurately reflects the logic of the provided
statements.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

—–
## Instructions
1. **Analyze the Inputs:** Carefully review the provided Python function and the
list of requirements given as logical statements.
2. **Translate Policies to Nagini:** For each logical statement, formulate the
equivalent Nagini ‘Requires‘ (pre-conditions) or ‘Ensures‘ (post-conditions).
3. **Adhere to Grammar:** Strictly follow the provided Nagini grammar and refer
to the examples for correct syntax and structure.
4. **Integrate and Output:** Embed the generated Nagini contracts directly into
the Python function.
—–
## Inputs
Python Function:
{python_function_code}
Requirements:
{list_of_logical_statements}
Nagini Grammar Reference:
{grammar}
Nagini Examples:
{examples}
—–
## Output Format
Provide the complete Python code for the function, including the newly added Nagini
decorators, inside a single Python code block.

19


	Introduction
	Related Work
	LLM Agents and the Emergence of Autonomous Systems
	LLM Safety, Alignment, and Guardrails
	Formal Methods and Verifiable Code Generation

	Methodology
	Task Definition
	Framework
	Policy Generator
	Refinement Process

	Policy Enforcement Strategies
	Policy Function Arguments
	Policy Function Integration


	Experiments
	Datasets
	Evaluation Metrics
	Baselines
	Results

	Analysis
	Ablation Study of VeriGuard Components
	Evaluating Integration Methods: Security vs. Utility

	Conclusion
	Experiment Details
	Prompts Used To Generate the Policy
	Prompts Used To Enforce the Policy
	Prompts Used for Validation
	Prompts Used for Code Testing
	Prompts Used for Verification


