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Abstract

Augmenting large language models (LLM) to001
use external tools enhances their performance002
across a variety of tasks. However, prior works003
over-rely on task-specific demonstration of tool004
use that limits their generalizability and com-005
putational cost due to making many calls to006
large-scale LLMs. We introduce GEAR, a com-007
putationally efficient query-tool grounding al-008
gorithm that is generalizable to various tasks009
that require tool use while not relying on task-010
specific demonstrations. GEAR achieves better011
efficiency by delegating tool grounding and ex-012
ecution to small language models (SLM) and013
LLM, respectively; while leveraging semantic014
and pattern-based evaluation at both question015
and answer levels for generalizable tool ground-016
ing. We evaluate GEAR on 14 datasets across017
6 downstream tasks, demonstrating its strong018
generalizability to novel tasks, tools and dif-019
ferent SLMs. Despite offering more efficiency,020
GEAR achieves higher precision in tool ground-021
ing compared to prior strategies using LLM022
prompting, thus improving downstream accu-023
racy at a reduced computational cost. For ex-024
ample, we demonstrate that GEAR-augmented025
GPT-J and GPT-3 outperform counterpart tool-026
augmented baselines because of better tool use.027

1 Introduction028

Recently there has been a surge in research on Aug-029

mented Language Model (Mialon et al., 2023),030

which aims to enable models interface existing031

“tools” for various purposes, such as accessing the032

latest information (Izacard et al., 2022), interacting033

with third-party services (Liang et al., 2023), per-034

forming precise calculations (Schick et al., 2023),035

or reasoning via code (Cheng et al., 2022; Gao036

et al., 2022). The paradigmatic framework of these037

tool-augmented LM studies generally comprises038

two steps: selecting a tool and executing it via a039

generated API call. Consequently, choosing suit-040

able tools is essential for task success.041
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Figure 1: GEAR leverages small language models
(SLM) to facilitate the process of tool grounding for
a given query and has the ability to add and utilize new
tools for novel tasks without the need for fine-tuning or
extra demonstrations. GEAR utilizes a large language
model (LLM) in the tool execution module to ensure the
accuracy of the final answer.

The existing works teach language models 042

to select tools using either fine-tuning or in- 043

context learning approaches. For example, Tool- 044

former (Schick et al., 2023) is tailored and limited 045

to a predetermined set of tools observed during 046

pre-training. On the other hand, approaches based 047

on in-context learning (Li et al., 2023; Paranjape 048

et al., 2023; Chen et al., 2023; Sun et al., 2023; 049

Yao et al., 2022) rely on many calls to LLM and 050

task-specific demonstrations which diminish their 051

cost efficiency and limits their scalability to a large 052

tool library. To address these limitations, we focus 053

on making the query-tool grounding process more 054

efficient, scalable and generalizable. 055
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Feature CoT Zero-shot CoT Toolformer ToolkenGPT ART GEAR

Tool Use ✗ ✗ ✔ ✔ ✔ ✔
Novel Task Generalization ✗ ✔ ✔ ✗ ✗ ✔
Extensibility to New Tools at Inference N/A N/A ✗ ✗ ✔ ✔

Grounding Algorithm N/A N/A Finetune LLM
Generation

LLM-Based or
Cosine Similarity GEAR

# of LLM Calls at Inference 1 1 1 1 N 1

Input Data Task-Specific
Demonstrations

Single
Query

Augmented
Dataset

Supervised
Data

Task-Specific
Demonstrations

Single
Query

Table 1: Comparing GEAR with the recent related works for generalization, computation efficiency, and key
grounding algorithms. N is the task library size.

In this work, we present GEAR, Augment lan-056

guage models with Generalizable and Efficient tool057

Resolution, a query-tool grounding algorithm that058

enables efficient use of tools while also allowing059

for generalization to both new tasks and large tool060

libraries. The GEAR framework (Figure 1) is com-061

prised of two key modules: (i) Query-Tool Ground-062

ing and (ii) Execution. In the query-tool grounding063

module, we compute a grounding score comprised064

of semantic and pattern based evaluations (intro-065

duced in §3). The intuition behind the grounding066

score is to enable comprehensive query-to-query067

and answer-to-answer comparisons by leveraging068

tool description and usage examples, respectively.069

By considering both question and answer perspec-070

tives, the final grounding score provides a compre-071

hensive evaluation of the suitability and compati-072

bility between the given queries and the available073

tools. Then GEAR passes the selected tool and074

the given query to the execution module where a075

LLM is prompted to generate the appropriate API076

call to obtain the ultimate response from the tool.077

In general, given n tools in a tool library, GEAR078

makes (n + 1) calls to SLMs and only 1 call to079

LLM (Algorithm 1).080

Compared to all other in-context learning ap-081

proaches (Li et al., 2023; Paranjape et al., 2023),082

GEAR significantly reduces the workload on the083

LLM to do tool grounding, subtask decomposition084

and API call generation across all tools by assign-085

ing query-tool grounding to SLM. For instance,086

compared to ART (Paranjape et al., 2023), GEAR087

reduces the calls to LLM by directing its intermedi-088

ate calls to an SLM (e.g., GPT-Neo) leading to 4×089

reduction in computational cost (FLOPS), while090

providing higher accuracy (details in §5.2; Table 5).091

To the best of our knowledge, there is currently092

no fine-grained algorithm for query-tool grounding,093

nor have there been comprehensive empirical ex-094

periments to assess tool grounding accuracy across095

various tool library sizes. Thus, we conduct exper- 096

iments1 for GEAR on a variety of different down- 097

stream tasks and tool libraries. Our experiments 098

demonstrate that, GEAR improves grounding ques- 099

tions to tools, which leads to stronger downstream 100

performance compared to other few-shot or tool- 101

augmented baselines. For example, GEAR lever- 102

aging SLMs (e.g., GPT-Neo with 1.3B parameters) 103

consistently achieves high grounding performance 104

on 12 datasets from 6 NLP tasks, resulting in bet- 105

ter downstream accuracy than few-shot prompting 106

and ART (Paranjape et al., 2023). We also provide 107

evidence of the strong generalizability of GEAR 108

to novel tasks, large tool libraries, and different 109

SLMs. 110

2 Related Work 111

We divide the notable prior works on tool- 112

augmented models into two groups based on how 113

they modify language models: one uses fine-tuning, 114

while the other uses in-context prompting. We also 115

touch upon works in embodied LM applications. 116

Tool Use via Fine-tuning. There have been some 117

research efforts focusing on training models to 118

use various language tools (Thoppilan et al., 2022; 119

Komeili et al., 2022; Shuster et al., 2022; Khot 120

et al., 2021, 2022). 121

More recently, Schick et al. (2023) proposes 122

Toolformer which uses a self-supervision manner 123

to train LLMs to use Wikipedia, QA, Calculator, 124

Machine Translation, and Calendar tools. Parisi 125

et al. (2022) uses a similar self-supervised approach 126

for teaching models to use tools. Hao et al. (2023) 127

treats tools as special tokens of LLM and learns 128

embeddings for them. Qiao et al. (2023) proposes 129

a two-stage framework that enables the model to 130

learn through feedback derived from tool execu- 131

tion. Yang et al. (2023) employs instruction tuning 132

1Code to reproduce our results is available.
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to enable LLMs to use multimodal tools. Although133

fine-tuning allows somewhat accurate tool ground-134

ing among those observed during training, a key135

issue with the resulting models is that they cannot136

utilize new tools without retraining, thus hindering137

models’ generalizability to new tools and tasks.138

Tool Use via In-Context Learning. Prior work139

has used in-context prompting of LLMs utilizes140

prompts to guide language models generating con-141

textually relevant responses, which is generally142

more generalizable than fine-tuning. Some notable143

works here include Chain-of-thought (Wei et al.,144

2022), Zero-shot CoT (Kojima et al., 2022), among145

others. These, however, have no access or use ex-146

ternal tools.147

ART (Paranjape et al., 2023), and other concur-148

rent studies (Lu et al., 2023; Qian et al., 2023)149

support accessing new tools through code or assem-150

bling tool sequences to generate the final response.151

Nonetheless, their way of accessing tools relies on152

extra task-specific information like demonstrations153

of how a task needs to be divided or conveyed to ex-154

isting tools. This restricts their generalizability to155

new tasks that may necessitate new tools or a differ-156

ent combination of tools. Concurrent work (Hsieh157

et al., 2023) addresses this issue via documental158

tool descriptions. However, GEAR complements159

this work in that, our approach also uses tool out-160

puts for more accurate tool grounding.161

Another core issue in all these works is the tool162

grounding mechanism. Lu et al. (2023); Qian163

et al. (2023) rely solely on LLM prompting for164

tool grounding while ART applies cosine similar-165

ity query/tool representations for task grounding.166

However, little is understood about tradeoffs or lim-167

its of these approaches, which we explore in our168

experiments. To address these, our method extends169

these works and captures both semantic and pattern170

relationships (introduced in §3.1 and §3.2) between171

query and tools. This allows GEAR to successfully172

identify and utilize unseen tools for low-resource173

tasks (novel tasks) without the need for additional174

task information. Table 1 compares GEAR, CoT,175

Zero-shot CoT, Toolformer, and ART.176

Embodied Language Model in Robotics. Re-177

cent research has focused on employing language178

models for robotic agents planning and their com-179

munication with the world (Driess et al., 2023;180

Zhao et al., 2023; Song et al., 2022; Huang et al.,181

2023; Vemprala et al., 2023). This is similar to the182

setup here involving a language model’s interaction 183

with external tools. Huang et al. (2022) and Lynch 184

et al. (2022) leverage various sources of human lan- 185

guage and textual feedback to guide robots while 186

solving complex tasks. GEAR shares the same un- 187

derlying idea with SayCan (Ahn et al., 2022) which 188

utilizes binary scores for robotic affordance, while 189

GEAR employs a distinct method that is designed 190

for more general tool and task settings. 191

3 GEAR: Generalizable and Efficient 192

Augmented Tool Resolution 193

We start with the formal problem statement. We 194

are given an input query Q that we aim to solve. In 195

addition, we are provided with a tool library T ≜ 196

{(T1, d1, π1), (T2, d2, π2), · · · , (Tn, dn, πn)} with 197

n tools. Each tool Ti can receive an API call (e.g., a 198

question or a formula) and respond accordingly, of- 199

ten in the form of natural language. If the provided 200

input is unparsable to the tool, it would return an 201

empty response. Each tool is also supplied with its 202

natural language description (di) and demonstra- 203

tions (πi) showing examples of natural language 204

questions parsed by each tool. 205

GEAR aims to find the most appropriate tool 206

for solving Q. As it can be observed in the Al- 207

gorithm 1, GEAR iterates over the tools (line 2) 208

and scores each tool i with respect to the given 209

question Q (line 5). This score is a linear combi- 210

nation of two scores, a semantic similarity score 211

S(., .) and a pattern similarity score P (., .). Se- 212

mantic score (defined in §3.1) provides a measure 213

of semantic alignment between the tool descrip- 214

tion di and the given query Q. Pattern similarity 215

score (defined in §3.2) scores the alignment be- 216

tween the responses obtained from SLM and each 217

tool, which provides an indication of how closely 218

the tool’s output aligns with a preliminary answer. 219

The algorithm ultimately picks the most appropri- 220

ate tool based on their scores (line 7) and obtains 221

the final tool response via an API call generated by 222

a LLM (line8, line9). 223

3.1 Semantic Similarity Score 224

Semantic similarity measures the alignment be-
tween the provided question to the language de-
scription of a tool. For instance, in Figure 2, the de-
scription of Calculator is semantically closer to
a query that contains numbers, leading to a higher
semantic score. Formally, this score is defined as:

S(Q, di) = fSLM(Q, di),
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Semantic

Pattern
Final Answer 

f(Q,d  ) i+2

Question
Calc Usage Example

18

Q: A restaurant 
charges 4% service 
charge. If your 

order amounted to 
450, how much did 

you pay?

“450”

iq âi

You will pay 4% service charge

â

Calculator WikiSearch

0.1713

0.5447

0.0414

0.1898

MT

0.1166

0.1172 …Calc(“450 * 0.04”)

Calculator Call 

“WikiAPI lookup …”
Wiki(“Ghana flag red 

meaning”)

“According to the 
Restaurant Association…” 

MT(“Restaurant”
, “de”)

“Gaststätte”

“Arithmetic calculator 
for …”

Tool Description: d iTool Usage Example: iπ

Calc(“75 + 25”)

Calc(“450”) 

if(Q,d ) 

Tool Description: d i+1Tool Usage Example: i+1π

f(Q,d  ) i+1

Wiki(“Restaurant 
service charge”) 

q i+1 âi+1

â

Tool Description: d i+2Tool Usage Example: i+2π

q i+2 âi+2

â

MT(“Hello”, “de”) “MT translates …”

…

…

Grounding Score0.7160 0.2312 0.2338 …

Calculator WikiSearch Machine Translation

Figure 2: GEAR framework. It computes the pattern score by comparing the preliminary answer (in gray line) to
tool responses (in green box) and the semantic score by comparing the query to tool descriptions (in blue box).
Grounding tool with the highest weighted average score and executing it via a LLM to obtain the final answer.

Algorithm 1 GEAR Algorithm

Input: Query Q, Tool library T , Small Language Model
(SLM), Large Language Models (LLM)
Output: Grounded tool, and answer to the input question

1: â
sample←−−− SLM(Q)

2: for (Ti, di, πi) in T do
3: qi

sample←−−− SLM(πi +Q) ▷ Generate API call
4: âi ← Ti(qi) ▷ Get the tool’s response
5: fi(Q)← γS(Q, di) + (1− γ)P (â, âi) ▷ Score it
6: end for
7: ι← argmaxi fi(Q) ▷ Select the best tool

8: qι
sample←−−− LLM(πι +Q) ▷ Generate API call

9: aι ← Tι(qι) ▷ API call to the selected tool
10: Return grounded tool Tι and the final answer aι.

where f is a similarity function utilizing the repre-
sentation of SLM, quantifying the degree to which
the query Q is semantically close to the tool de-
scription di. A popular choice to implement this
similarity function (used in our experiments) is co-
sine distance between the representations query Q
and tool description di:

S(Q, di) = cos (encSLM(Q), encSLM(di)) ,

where encSLM(.) is the representation of SLM.225

3.2 Pattern Similarity Score226

Pattern similarity provides an answer-level align-227

ment score. This score computes an alignment228

between a preliminary guess â and the response229

generated by each tool âi. For instance, in Fig-230

ure 2, the preliminary answer is “4”, which has a231

higher pattern similarity score with Calculator’s232

response (“450”, denoted in red), as both are num-233

bers. Whereas, the responses from Wiki and MT234

are descriptive responses with a large proportion of235

English tokens (in black) and a non-ASCII token236

(in orange) that is not exhibited in the preliminary 237

answer. Pattern similarity is computed based on 238

the following steps. 239

Preliminary guess. First, SLM generates a zero- 240

shot preliminary answer â for the given query using 241

greedy decoding (line 1).2 242

Tool-based response. Then SLM is prompted by 243

the given query and few shot usage examples to 244

obtain API call qi: 245

qi
sample←−−−− SLM(πi +Q). 246

We then obtain the tool response âi ← Ti(qi) if qi 247

is parsable by the tool Ti, otherwise empty. 248

Scoring the alignment. The scoring is based on
a predefined pattern set S consisting of distinct
elements that correspond to output patterns of var-
ious tools. These pattern elements, for example,
can represent numbers, English words, symbols,
URLs, or certain robotic movements.3 We encode
raw tool response âi to its corresponding pattern
set {ej(t) | ∀j ∈ {1, 2, · · · , |S|},∀t ∈ âi}, where
t is the word token of âi and the encoding func-
tion ej : t → S encodes word token to the jth

pattern of S if token exhibits that pattern, other-
wise empty.4 Formally, the output of ej for t is ei-

2We recommend greedy decoding for this zero-shot SLM-
based step to reduce the risk of significantly poor responses
which may occur in stochastic decoding.

3While our evaluation is focused on language tools, the
idea discussed here should in principle generalize to other
modalities such as physical tools.

4For instance, if S = {e,f,n} consisting of English,
non-ASCII and number patterns respectively, the sentence
“Hello World 2023” would be encoded to {e,e,n}. If mul-
tiple patterns are exhibited in one word token, each pattern
would be encoded separately: the German word “lächeln”
=⇒{e,f,e}.
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ther a multiset of jth pattern ({S1j , · · · ,Snj } where
n ≥ 1) or an empty set ϕ. Thus, the final encoded
pattern set of âi is the multisubset of S. The en-
coding of â follows the same procedure. Let C â

j

and C âi
j denote the number of jth pattern encoded

by ej in the pattern set of â and âi. Namely, for
âi, C

âi
j = |{ej(t) | ∀t ∈ âi}|. Let |â| and |âi| be

the length of final encoded pattern sets of â and âi.
The pattern similarity score between tool response
âi and preliminary answer â is computed as:

P (â, âi) =
∑

j∈{1,··· ,|S|}

(C â
j + λ)C âi

j

(|â|+ λ|S|)|âi|
log

1

Pj
,

where Pj is the prior probability of the jth pattern249

from a prior pattern distribution P . P,S and ej250

can be shared across different task and tool library251

settings. Add-λ smoothing is applied to solve the252

pattern zero-frequency issue. However, if âi is253

empty, P (â, âi) will be assigned its lower bound254

value 0. In our experiment, we use regular expres-255

sions as encoding functions ej .256

Intuitively, the pattern similarity score P (â, âi)257

is the cross entropy between the prior pattern dis-258

tribution P and the smoothed joint pattern distri-259

bution from true tool response âi and preliminary260

answer â. It is proved to have strict lower and upper261

bounds in Appendix A.1 and holds the following262

five essential properties: (i) Order Insensitive (ii)263

Length Insensitive (iii) Pattern Sensitive (iv) Pat-264

tern Set Size Insensitive (v) Commutative. Expla-265

nations and proofs of these properties are provided266

in Appendix A.2.267

We hypothesize that tools could easily elicit their268

latent pattern distribution through parsable API269

calls, irrespective of its correctness. Therefore,270

despite their less reliable performance, SLMs are271

sufficient for query-tool grounding, because their272

key task is to generate appropriate response pat-273

terns in â for the given query and parsable API274

call qi for the target tool, which is much simpler275

than reasoning to make â (zero-shot result with-276

out tool use) or qi (API call for result with tool277

use) correct. In Appendix A.3, we discuss mock278

responses which can further enhance the efficiency279

and generalizability of the grounding process.280

4 Experiment Setup281

4.1 GEAR Implementation.282

We implement GEAR according to the construction283

described in §3. Throughout the experiments the284

LLMs in our study are GPT-J and GPT3davinci-003 285

(in short, GPT-3), and our SLMs are GPT-Neo, 286

GPT2medium, GPT2large, MiniLM and MPNet.5 287

Specifically for our implementation of GEAR, 288

we use MPNet to calculate semantic similarity 289

scores and GPT-Neo for generating preliminary an- 290

swers and API calls to calculate pattern similarity 291

scores. For LLMs, we use either GPT-J or GPT-3 292

for final tool execution. 293

We prioritize two factors for choosing tools: 1) 294

whether they could compete with others 2) whether 295

their function is naturally beyond the capability 296

of any LLM. Appendix B and C provide detailed 297

information about the datasets and tools used in our 298

experiments and other implementation details. 299

4.2 Baseline Systems 300

We organize our baselines as follows: 301

• Zero-shot: This baseline directly asks questions 302

to LLM without any instruction. 303

• Few-shot: This baseline involves prompting 304

LLM with natural language instructions that ar- 305

ticulate the requirements of the given task. 306

• ART: This approach uses prompting LLM for 307

multi-step reasoning and tools execution (Paran- 308

jape et al., 2023). Besides the results in the orig- 309

inal paper, we experiment with a reimplementa- 310

tion of ART (referred to as ART∗) adapted to our 311

tools and tasks. Specifically, following the orig- 312

inal work, we report two variants of this model 313

with different tool-grounding strategies proposed 314

in its paper: (1) LLM-based prompting similarity 315

(ART∗
llm) and (2) cosine similarity (ART∗

cs). 316

To ensure a fair comparison between baselines, 317

we let few-shot, ART∗, and GEAR use the same 318

prompt examples (Appendix H). 319

5 Experimental Findings 320

We compare the downstream performances of mod- 321

els (§5.1), and compare their generalizability to 322

new tools or tasks (§5.2). 323

5.1 Results on Downstream Tasks 324

We first evaluate all our models on the downstream 325

task performance with a tool library containing 326

4 basic tools (Table 2). For consistency of com- 327

parisons, all the baselines use GPT-J for the final 328

5We accessed the OpenAI models on April through June,
2023.
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Algorithm→
Grounding Model→
Execution Model→
Datasets ↓

Zero-shot

GPT-J

Few-shot

GPT-J

ART∗
llm

GPT-Neo
GPT-J

GEAR
GPT-Neo
GPT-J

ASDiv 7.5 21.4 16.7 23.3
GSM8K 0.4 5.6 9.8 3.8
SVAMP 2.0 13.1 11.2 18.6
↱

Average (Arithm) 3.3 13.4 12.6 15.2

IWSLT (cn) 10.5 16.9 4.1 21.1
IWSLT (ar) 8.5 18.7 4.8 17.6
IWSLT (de) 7.7 19.3 5.4 32.9
IWSLT (fr) 7.9 22.7 6.7 38.4
IWSLT (ja) 5.5 14.4 3.4 12.9
IWSLT(ko) 8.9 15.2 3.6 14.9
↱

Average (MT) 8.2 17.9 4.7 23.0

NQ-Open 10.2 31.1 21.2 43.4
WebQS 5.3 18.2 11.2 22.1
TriviaQA 27.3 46.5 29.3 50.3
↱

Average (ODQA) 14.3 31.9 20.6 38.6

CSQA 10.9 37.1 6.3 60.7
COPA 6.5 27.0 1.0 13.6
SocialIQA 8.4 26.0 5.5 41.5
↱

Average (CSQA) 8.6 30.0 4.3 38.6

Table 2: Downstream task performance results (§5.1).
Evidently, GEAR-augmented GPT-J outperforms our
baselines when using a consistent set of grounding and
execution models.

answer execution. GEAR outperforms all the base-329

lines across four basic tasks. For example, the ac-330

curacy of GEAR-augmented GPT-J is 24.3% and331

6.7% higher than zero-shot and few-shot baselines332

on the ODQA (Open-domain QA) task. Compared333

to the ART∗
llm, GEAR consistently has superior per-334

formance because of better tool use. Later in §5.2335

we show that this performance gap is due to the336

difference in tool grounding accuracy. Additional337

results using GPT-3 as execution model (in place338

of GPT-J) are provided in Appendix D.339

Table 3 puts Toolformer (Schick et al., 2023),340

ART (Paranjape et al., 2023) and GEAR together,341

evaluating on their shared datasets. All datasets342

are evaluated under a 4 basic tools library except343

for MLQA which uses a 5-tools library with an344

extra Multilingual QA tool. Since Toolformer345

code and model are not available online, we are346

not able to reproduce their results and therefore,347

copy the numbers from its paper. The compari-348

son is unfair to Toolformer as it uses a finetuned349

GPT-J model. But it is informative that GEAR-350

augmented GPT-3 outperforms the original work351

ARTcs, which employs the same-sized model with352

task-specific demonstrations, on 4 out of 5 tasks.353

This performance gain also emphasizes the strong354

generalization capability of GEAR. 355

5.2 Results on Tool Grounding 356

We systematically examine the tool grounding ac- 357

curacy (the percentage of correctly selected tools) 358

across a variety of tool library sizes and model 359

sizes. We first calculate the grounding accuracy for 360

a tool library comprising 4 basic tools. Then we 361

expand the tool library to a total of 10, as described 362

in Appendix C.2, by introducing competitor and 363

distractor tools. We re-evaluate the grounding accu- 364

racy for the four basic tasks, along with two novel 365

tasks requiring Multilingual QA and Timezone 366

Converter tools. The main results are shown in 367

Table 5 and Figure 3. 368

GEAR is more generalizable than other query- 369

tool grounding algorithms. According to Ta- 370

ble 5, GEAR utilizing GPT-Neo with 1.3B parame- 371

ters significantly outperforms the LLM-based strat- 372

egy proposed by ART (Paranjape et al., 2023), even 373

when the latter uses GPT-3 which is 134 × larger. 374

The best-reported similarity strategy in ART, which 375

calculates the cosine similarity between the given 376

demonstration and textual description of tasks, per- 377

forms outstandingly well on Arithmetic and MT 378

tasks. We hypothesize this is because of the pres- 379

ence of distinct and unique keywords in Arithmetic 380

and MT queries, which are easily distinguishable 381

by word embeddings. However, for more open- 382

ended NLP tasks like Open-domain and Common- 383

sense QA, word embeddings are less generaliz- 384

able in selecting the correct tools, resulting in low 385

grounding accuracy of 47.1% and 37.8%. In con- 386

trast, GEAR’s grounding strategy is shown to be 387

more strong with grounding accuracy of 61.0% and 388

64.7% on the aforementioned tasks. 389

Table 4 displays a substantial decline in ground- 390

ing accuracy of ART (Paranjape et al., 2023) 391

when using out-domain demonstrations. In con- 392

trast, GEAR consistently maintains its high perfor- 393

mance without requiring in-domain demonstrations. 394

We also demonstrate GEAR outperforms retrieval- 395

based baselines on query-tool grounding, as shown 396

in Table 11 in Appendix E. 397

GEAR is generalizable to smaller language mod- 398

els. We evaluate the grounding performance of 399

GEAR on two smaller GPT-2 models. As reported 400

6Since OpenAI has not open sourced their GPT3davinci-003,
we approximate the operations as # tokens× # params, which
is the lower bound of operations. The real amount of opera-
tions should exceed this estimation.
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Models ASDiv SVAMP SQuAD T-REX TriviaQA MLQA(es)

Toolformer (GPT-J) 40.4 29.4 33.8 53.5 48.8 20.6
ART∗

llm (GPT-Neo/GPT-3) 37.0 21.3 17.7 20.6 24.3 14.0
ARTcs (MiniLM/GPT3davinci-003) 86.7 77.3 39.3 50.4 61.0
GEAR (GPT-Neo/GPT3davinci-003) 74.9 (-11.8) 79.9 (+2.6) 61.1 (+21.8) 83.1 (+32.7) 62.5 (+1.5) 58.3 (+37.7)

Table 3: Comparing GEAR with Toolformer (Schick et al., 2023) and ART (Paranjape et al., 2023) (§5.1). The
original ART work, ARTcs, employs MiniLM for cosine similarity strategy and does not have QA or MT for the
MLQA task.

Models Evaluate on→
Demonstration ↓ ASDiv GSM8K SVAMP TriviaQA NQ-Open WebQS

ARTcs (MiniLM/GPT3davinci-003)

ASDiv 97.9 88.5 87.2 2.1 1.4 0.0
GSM8K 93.8 88.4 81.9 0.3 1.1 0.0
SVAMP 98.3 74.5 75.7 0.0 1.1 0.0

TriviaQA 25.8 32.2 22.5 98.1 96.2 0.4
NQ-Open 25.3 25.2 22.4 97.4 98.2 0.4
WebQS 28.6 39.9 28.3 94.8 96.8 1.1

GEAR (GPT-Neo/GPT3davinci-003) 83.1 83.0 89.0 63.0 65.6 54.3

Table 4: Cross-dataset generalization evaluation of tool grounding accuracy (§5.2). Evidently, GEAR can identify
the appropriate tool for a given task without requiring in-domain demonstrations while ART has a significant
grounding performance decline on out-domain demonstrations, with each score representing grounding accura-
cy/affordance ratio in percentage.

in Table 5, GEAR consistently exhibits high-level401

grounding accuracy on both SLMs and even out-402

performs GPT-Neo on certain tasks. For example,403

GEAR-augmented GPT2large achieves 73.9% and404

82.9% grounding accuracy for the Open-domain405

QA and Commensense QA tasks, greatly higher406

than those of ART∗ baselines. Moreover, as the407

model size increases, the marginal grounding ac-408

curacy gain diminishes. This is because as long as409

the SLM produces expected patterns for the given410

query, the correctness of the preliminary answer411

has no bearing on the pattern similarity score (see412

case study in Appendix E.1). Which, in turn, ex-413

perimentally proves the feasibility of employing414

SLMs for query-tool grounding.415

GEAR is generalizable to larger tool libraries.416

Because of a more comprehensive grounding pro-417

cess, GEAR enables certain tasks to generalize bet-418

ter for larger sets of tools. Figure 3 displays the419

grounding accuracy changing from 4 to 10 tools.420

The general low decreasing rates for Arithmetic,421

MT and Open-domain QA tasks demonstrate the422

ability of GEAR in handling tool libraries of vary-423

ing sizes.424

We hypothesize the drops between the fourth425

and fifth tools of CommonsenseQA and SoicalIQA426

datasets are likely due to the introduction of the427

Multilingual QA tool which has functional over-428

lap with the basic QA tool. Specifically, the 429

Multilingual QA tool can also solve reasoning 430

tasks by translating contexts from English to En- 431

glish; therefore, if we consider Multilingual QA 432

as the correct tool for the Commonsense QA task 433

as well, the averaged final grounding accuracy of 434

Commonsense QA task will increase to 49.1%, 435

with a 15.6% decrease compared to Table 5. 436

We also compare GEAR and the best variant 437

ART∗
cs under a 10-tools library on 6 downstream 438

tasks with two extra novel tasks. In short, GEAR 439

outperforms ART∗
cs on 5 out of 6 tasks. See Ap- 440

pendix E for detailed results. 441

6 Analysis 442

6.1 Ablation Study 443

We now perform a leave-one-out experiment to bet- 444

ter understand the contribution of each score to the 445

final grounding accuracy. We conduct experiments 446

for a 10-tools library with only either semantic sim- 447

ilarity score or pattern similarity score. The results 448

are shown in Table 6. For the 10-tools library, there 449

are 4 out of 6 tasks displaying grounding accuracy 450

decline in both semantic and pattern columns, sug- 451

gesting that it is crucial to consider both semantic 452

and pattern similarity scores for query-tool ground- 453

ing. Tasks such as MT and Timezone Conversion 454

show increased grounding accuracy in the seman- 455
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Algorithm→ GEAR ART∗
llm ART∗

llm ART∗
cs

Grounding Model→
Dataset (w/ 4 Tools) ↓ Target Tool ↓

GPT-Neo
(1.3B)

GPT2large
(774M)

GPT2medium
(355M)

GPT-Neo
(1.3B)

GPT3davinci-003
(175B)

MPNet
(110M)

ASDiv Cal 83.1 77.7 58.7 25.6 46.5 98.8
GSM8K Cal 83.0 65.3 55.6 38.0 45.5 99.5
SVAMP Cal 89.0 76.5 65.1 21.0 50.0 100.0
↱

Average (Arithm) 85.0 73.2 59.8 28.2 47.3 99.4

IWSLT (cn) MT 84.1 95.5 98.2 30.0 63.2 99.9
IWSLT (ar) MT 66.6 27.8 61.6 98.6
IWSLT (de) MT 96.9 94.4 95.2 31.6 66.0 94.0
IWSLT (fr) MT 96.6 94.0 96.0 33.8 64.4 92.2
IWSLT (ja) MT 72.4 89.3 91.1 30.8 62.8 97.8
IWSLT (ko) MT 82.2 66.7 91.7 25.9 72.7 99.4
↱

Average (MT) 83.1 88.0 94.4 30.0 65.1 97.0

NQ-Open Wiki 63.0 61.3 59.1 10.9 44.0 39.4
WebQS Wiki 65.6 83.1 81.4 13.6 56.8 60.5
TriviaQA Wiki 54.3 77.2 71.7 13.2 58.1 41.5
↱

Average (ODQA) 61.0 73.9 70.7 12.6 53.0 47.1

CommonsenseQA QA 77.1 84.0 84.9 10.1 34.9 69.7
COPA QA 41.3 77.2 61.2 7.2 24.4 29.7
SocialIQA QA 75.7 87.6 59.5 16.4 42.4 14.1
↱

Average (CSQA) 64.7 82.9 68.5 11.2 33.9 37.8

# of Operation in GFLOPS6 1573 937 430 5455 7284206 160

Table 5: Tool grounding accuracy for 4 downstream tasks with a 4-tools library (§5.2). We find that GEAR yields
better performance compared to the LLM-based strategy on all datasets. GEAR is generalizable to smaller
SLMs and even achieve better grounding results on certain tasks.

Figure 3: Grounding accuracy of GEAR on four basic
tasks with two datasets each (§5.2). We expand the
tool library from 4 to 10 tools by sequentially incor-
porating Multilingual QA, Timezone Converter,
Sleep, Logarithmic Calculator, and Movement
Controller.

tic column, which is likely due to the same reason456

discussed in §5.2: these two tasks contain unique457

keywords so that single semantic similarity score458

suffices to distinguish them from other tasks. More459

ablation study results can be found in Appendix F.460

Dataset (w/10 Tools) Semantic Pattern

Average (Arithm) -2.3 -11.5
Average (MT) +10.9 −69.9
Average (ODQA) -15.4 -21.1
Average (CSQA) -21.6 -18.9
Average (MLQA) -10.6 -31.5
Timezone Conversion +3.6 −94.9

Table 6: The result of leave-one-out ablation study for
10-tools library (§6.1). The negative number tells the
single score has a grounding accuracy decline compared
to the average accuracy in Table 5. The decrease in
grounding accuracy on both columns demonstrates
the importance of considering both semantic and
pattern scores for query-tool grounding.

7 Conclusion 461

We have introduced GEAR: a generalizable query- 462

tool grounding algorithm that enables efficient 463

tool groundings without extra fine-tuning or task- 464

specific demonstrations. This is accomplished by 465

introducing a fine-grained binary score mechanism 466

supporting small language models. GEAR im- 467

proves the performance of GPT-J and GPT-3 and is 468

experimentally proven to be generalizable enough 469

for dealing with novel tasks and large tool libraries. 470
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Limitations471

While GEAR aims to improve the query-tool472

grounding and exhibits strong generalization and473

robustness for large tool libraries, including user474

provided pipelines, it has a potential limitation in475

lacking support for automatic tool pipeline con-476

struction. Future works could focus on how to477

combine GEAR with automatic reasoning and task478

decomposition works, such as ART (Paranjape479

et al., 2023), Chameleon (Lu et al., 2023), and480

CREATOR (Qian et al., 2023). We believe that481

the combination of generalizable and efficient tool482

grounding with multi-hop reasoning would further483

boost the performance of the current SOTA LLMs.484

Theoretically, GEAR supports tools that have485

non-textual returns via mock responses. How-486

ever, we only test the Sleep and Movement487

Controller tools in the main experiment and the488

Image Generation tool in the GEAR-augmented489

chatbot. Though achieving promising results on490

these three tools, future works, especially in the em-491

bodied LM area, could further explore how mock492

responses can be used in grounding human lan-493

guage with physical world tools.494
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A Pattern Similarity Score764

A.1 Pattern Similarity Score Bounds765

Because the count C and λ are nonnegative, Pj ∈ [0, 1], |âi| and |â| indicate the total number of encoded766

patterns from tool response and preliminary answer, we always have P (â, âi) ≥ 0. In this proof, for767

better understanding, we assume a most common case that each word token is encoded to only one768

pattern, namely no word token exhibits multiple patterns. Thus, |âi| and |â| are equal to the length of769

unencoded sequences of tool response and preliminary answer. pâi(·) =
C

âi
j

|âi| and pâ(·) =
Câ

j

|â| represent770

the probability of jth pattern in raw âi and â.771

P (â, âi) =
∑

j∈{1,··· ,|S|}

(C â
j + λ)C âi

j

(|â|+ λ|S|)|âi|
log

1

Pj
772

=
∑

j∈{1,··· ,|S|}

C â
j C

âi
j + λC âi

j

|â||âi|+ λ|S||âi|
log

1

Pj
773

If λ = 0:774

P (â, âi)775

=
∑

j∈{1,··· ,|S|}

C â
j C

âi
j

|â||âi|
log

1

Pj
776

=
∑

x∈{E(âi)}

∑
y∈{E(â)}

pâi,â(x, y)Ix=y log
1

P(x)
777

=
∑

x∈{E(âi)}

∑
y∈{E(â)}

pâi(x)pâ(y)Ix=y log
1

P(x)
778

=
∑

x∈{E(âi)}

pâi(x) log
1

P(x)
∑

y∈{E(â)}

pâ(y)Ix=y779

≤
∑

x∈{E(âi)}

pâi(x) log
1

P(x)
· pâ(x)780

(Because it is possible {E(âi)} ∩ {E(â)} = ϕ)781

=
∑

x∈{E(âi)}

pâi(x)pâ(x) log
1

P(x)
782

≤
∑

x∈{E(âi)}

pâi(x) log
1

P(x)
783

= CE(pâi ,P)784
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Properties â (Encoded) â1 (Encoded) â2 (Encoded) Result

Order Insensitive ene ene een P (â, â1) = P (â, â2)
Length Insensitive eee en enenen P (â, â1) = P (â, â2)
Pattern Sensitive ene ene enn P (â, â1) < P (â, â2)
Commutative ene eee nnn P (â, â1) = P (â1, â)

Table 7: Examples illustrating the four essential properties of pattern similarity scores

CE(pâi ,P) is the cross-entropy between the pattern distribution of raw tool response and the prior pattern 785

distribution. {E(âi)} and {E(â)} are two sets of patterns derived from encoding tool response âi and 786

preliminary answer â, respectively. pâi,â(x, y) is the joint probability of pattern x and y in âi and â. 787

Because âi and â are obtained independently, we can simply write the joint probability as the product of 788

pâi(x) and pâ(y). Ix=y is the indicator function. P(x) is the prior probaility of the pattern x. Note that 789

unlike j which is an index variable, x and y here are real pattern variables. 790

791

If λ > 0: let δ ⊆ {1, 2, · · · , |S|} such that C â
α > 0 for α ∈ δ and C â

β = 0 for β ∈ {1, 2, · · · , |S|} \ δ. 792

P (â, âi) 793

=
∑
α∈δ

C â
αC

âi
α + λC âi

α

|â||âi|+ λ|S||âi|
log

1

Pα
794

+
∑

β∈{1,2,··· ,|S|}\δ

λC âi
β

|â||âi|+ λ|S||âi|
log

1

Pβ
795

=
∑
α∈δ

C âi
α

|âi|
· C â

α + λ

|â|+ λ|S|
log

1

Pα
796

+
∑

β∈{1,2,··· ,|S|}\δ

C âi
β

|âi|
· λ

|â|+ λ|S|
log

1

Pβ
797

≤
∑
α∈δ

C â
α + λ

|â|+ λ|S|
log

1

Pα
798

+
∑

β∈{1,2,··· ,|S|}\δ

λ

|â|+ λ|S|
log

1

Pβ
799

= CEα(p̃â,P) + λCEβ(U(0, |â|+ λ|S|),P) 800

where U is the uniform distribution and p̃â is the smoothed pattern distribution of â. 801

A.2 Pattern Similarity Score Properties 802

• Order Insensitive: The position of a pattern should not influence the score, as the preliminary answer 803

generated by the SLM tends to be disorganized. 804

• Length Insensitive: The score should not be biased toward the length of tools’ responses, as certain 805

tools are inclined to generate longer responses. 806

• Pattern Sensitive: Given the prior distribution P , tools that exhibit rare patterns are more likely to be 807

chosen when the preliminary answer â also exhibits those patterns. 808

• Pattern Set Size Insensitive: The average pattern similarity score should remain consistent for various 809

tool library and pattern set sizes. This property ensures a consistent hyperparameter γ (the weight for 810

semantic and pattern scores). 811

• Commutative: P (â, âi) = P (âi, â) should be hold for any preliminary answer â and tool responses âi. 812

Table 7 gives illustrative examples for the pattern similarity score. e and n denote English token pattern 813
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and number pattern. The less frequency of numbers “n” in real corpus compared to English tokens “e”814

results in a smaller prior probability P(n) < P(e), leading to the result in the Pattern Sensitive row. In815

other words, with the same length, tool response â2 containing more rare patterns which also exhibit in816

the preliminary answer â would have higher pattern similarity score.817

The Pattern Set Size Insensitive property also holds because the denominator (|â| + λ|S|)|âi| is818

insensitive to the ∆|S|, given that |â| ≫ |S| and λ is typically small. Therefore, as long as the tool819

response or preliminary answer does not exhibit the given patterns, namely C â
j = 0 or C âi

j = 0, P (â, âi)820

would not significantly change regardless of the size of |S|.821

To prove the length-insensitive property, we have to first assume tool responses â1 and â2 share the
same pattern probability distribution. Namely, we have

C â1
j

|â1|
=

C â2
j

|â2|
, ∀j ∈ {1, 2, · · · , |S|}

Then the comparison of pattern similarity scores for these two tools is only determined by the preliminary822

answer â, pattern set size |S| and λ, with no sensitivity to the length of tool responses.823

A.3 Mock Pattern824

When dealing with a large tool library, iterating through all tools for true responses is inefficient and some825

tools may not have textual responses to encode. Conversely, through the utilization of pattern scores,826

we can set certain tools to generate mock responses with corresponding mock patterns during the tool827

grounding process, eliminating the requirement for actual execution, thereby reducing the GEAR’s time828

complexity and generalizing it to various types of tools. In the experiment section §5, we test the efficiency829

and generalizability of mock patterns for tool grounding by adding Sleep and Movement Controller830

to the tool library.831
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B Implementation Details 832

B.1 Hyperparameters 833

To avoid bias toward to pattern similarity score, we use add-one smoothing and set λ = 1. Additionally, 834

based on our experiment, we observed that the mean of pattern similarity score is consistently three times 835

greater than the mean of the semantic score. In order to achieve a proper balance between these two 836

scores, we set γ = 0.75 throughout the entire experiment. 837

B.2 Patterns 838

For 4 tools experiments, we use the following four patterns: S = {English token pattern: e, non-ASCII 839

token pattern: f, number pattern: n, symbol pattern: s}. Because we believe these four basic patterns 840

could cover a lot of language tools. Based on their frequency in the real corpus, we set their prior 841

probabilities as follows: P = {e: 0.78, f: 0.18, n: 0.05, s: 0.02}. 842

For generalization experiments where the tool library size varies between 4 to 10, we consistently use 843

the following prior pattern distribution: P = {e: 0.75, f: 0.15, n: 0.02, s: 0.02, Sleep Pattern: 0.02, Move 844

pattern: 0.02, Time pattern: 0.02}. 845

B.3 Models 846

• GPT-J is from https://huggingface.co/EleutherAI/gpt-j-6b 847

• GPT-Neo is from https://huggingface.co/EleutherAI/gpt-neo-1.3B 848

• MiniLM is from https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2 849

• MPNet is from https://huggingface.co/sentence-transformers/all-mpnet-base-v2 850

B.4 Tasks and Datasets 851

We use the following 12 datasets from 6 downstream tasks in our main experiment, plus 2 extra datasets 852

(SQuAD (Rajpurkar et al., 2016) and Trex (Elsahar et al., 2018)) in Table 3. To keep the evaluation costs 853

manageable, we use 1K instances per dataset. 854

• Arithmetic (Arithm): We evaluate on ASDiv (Miao et al., 2020), GSM8K (Cobbe et al., 2021) and 855

SVAMP (Patel et al., 2021) datastes. Given the arithmetic nature of these datasets, we expect successful 856

grounding in Calculator tool should improve their performance. 857

• Machine Translation (MT): We use IWSLT-2017 (Cettolo et al., 2017) dataset to evaluate the utility of 858

successful grounding to the MT tool. The input data consists of an English prompt and a non-English 859

context in Simplified Chinese, Arabic, German, French, Japanese, or Korean. We utilize diverse English 860

prompts for English translation requests (e.g., “How do you say ... in English”, “Speak ... to English”, 861

etc.). We sample 1K instances for each source language. 862

• Open-domain QA (ODQA): We experiment with NQ-Open (Lee et al., 2019), WebQS (Berant et al., 863

2013), and TriviaQA (Joshi et al., 2017), since open-domain questions require external knowledge, 864

successful grounding of these tasks to Wiki tool improve their performance. 865

• Commensense QA (CSQA): To investigate the benefit of utilizing the QA tool, we evaluate all baselines 866

on CommonsenseQA (Talmor et al., 2019), COPA (Roemmele et al., 2011), and SocialIQA (Sap et al., 867

2019). Those datasets require the model to perform commonsense reasoning for a given context and 868

select the answer from a variety of choices. 869

• Multilingual QA (MLQA): MLQA (Lewis et al., 2020) is a hard multilingual question-answering 870

benchmark, expecting Multilingual QA to tackle such problem. Each instance includes an English 871

context and a query presented in Arabic, German, Spanish, Hindi, Vietnamese, or Chinese. We randomly 872

sample 1K instances for each language. 873
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• Timezone Conversion: we create this dataset programmatically by iterating over all combinations874

of time zones, randomly-generated numbers which are verbalized into the natural language via real875

querying scenarios. Specifically, we set 5 querying templates and 3 time formats, combining them with876

randomly selected timezones to construct the dataset. Here are two examples:877

My friend is in Cordoba, and I am in Madeira. If it is 2016-07-14 08:24:07 here, what time is it there?

I want to make a call to someone. He is in Johannesburg, and I am in Pitcairn. If it is May 16 2023
10:31:14AM here, what time is it there?

Successfully grounding to the Timezone Converter should improve the performance of this task.878

Evaluation Metrics. For the Arithmetic task, we convert all English numerals to their numerical879

equivalents and then pick the last number as the answer.7 These are not needed when using Calculator880

tool, as it always outputs a single number. Ultimately, we compute an exact match accuracy between the881

resulting numbers and gold answers. For ODQA and MLQA tasks, following (Schick et al., 2023), we882

verify if the generated output contains the gold answer. For the CSQA task, we compute the accuracy883

as the ratio of accurately selected outputs. For the MT task, the translation quality is evaluated using a884

BLEU (as percentage).885

7For zero-shot or few-shot baseline the overall answer typically appears after the rationales.
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C Tools 886

To evaluate the performance for a variety of purposes, we create a total of 10 different tools, including 4 887

basic tools: Calculator, MT, Wiki, and QA; and 6 novel tools: Timezone Converter, Multilingual 888

QA, Sleep, Exponential Calculator, Logarithmic Calculator, and Movement Controller. All 889

of them are accessible via specific API calls and have corresponding returns. Examples of API calls are 890

shown in Table 13. 891

C.1 Basic Tools 892

Description and usage prompts for each basic tool are provided in Table 15 893

• QA: Our question-answering system is based on an external language model specially trained for answer- 894

ing questions. We utilize ChatGPT in our experiment, renowned for its performance in comprehending 895

and reasoning with human language. 896

• Calculator: The Calculator is built from the Python built-in function eval, which supports four 897

fundamental arithmetic operations with priorities that can be specified using brackets. The output is 898

rounded to three decimal places. 899

• MT: The core of our machine translation tool is the Google Translate API. It accepts two input arguments: 900

the text to be translated and the target language. 901

• Wiki: The last basic tool employed in our experiment is the Wikipedia Search (Wikisearch) engine. It 902

returns wiki paragraphs in response to queries. This tool advances models by supplying external factual 903

knowledge and its returned output is more formal and informative than that of QA. In our experiment, we 904

use ColBERTv2 (Santhanam et al., 2022) as the search retriever to index relevant information. 905

C.2 Novel Tools 906

For the selection of novel tools, we follow these two factors: whether they could compete with existing 907

tools or whether their function is naturally beyond the capability of any LLM. Consequently, we add the 908

following six tools: 909

• Logarithmic Calculator and Exponential Calculator: These two tools aim to solve logarithm 910

and exponential problems and serve as competitors to the Calculator tool. 911

• Multilingual QA: We compose MT and QA tools to form the Multilingual QA pipeline. It involves 912

two steps: translating the query to the target language using MT, and passing the context and translated 913

query to the QA to find the final answer. 914

• Timezone Converter: This tool is implemented by the Python pytz library. It converts a time from 915

one time zone to another. Such a task is also solvable by the QA tool but not accurately. Therefore, we 916

want to assess the success rate of grounding the most appropriate tools for such endeavors. 917

• Sleep: This tool suspends the entire program for a specified duration. This tool is intended to test the 918

mock response functionality for our system. We do not expect the program to sleep during the tool 919

grounding procedure; a mocked response is sufficient. However, once selected, this tool should perform 920

its intended function. 921

• Movement Controller: This tool instructs a robot to move a specified distance in a chosen direction. 922

Similarly to Sleep, this tool is used for testing the mock response for grounding tools with non-textual 923

outputs. During the grounding process, its returned response is a mock text: “Robot is moving 924

forward for {} meters”. 925
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Models ASDiv GSM8K SVAMP NQ-Open WebQA TriviaQA

ARTcs (MiniLM/GPT3davinci-003) 86.7 69.7 77.3 56.7 17.7 61.0
GEAR (GPT-Neo/GPT3davinci-003) 74.9 (-11.8) 71.1 (+1.4) 79.9 (+2.6) 53.8 (-2.9) 23.6 (+5.9) 62.5 (+1.5)

Table 8: Comparing GEAR with ART (Paranjape et al., 2023) on Arithmetic and Open-domain QA tasks

Algorithm→
Grounding Model→
Execution Model→
Datasets ↓

Zero-shot

GPT-3

Few-shot

GPT-3

ART∗
llm

GPT-Neo
GPT-3

GEAR
GPT-Neo
GPT-3

ASDiv 78.7 75.3 37.0 74.9
GSM8K 62.4 69.9 14.7 71.1
SVAMP 75.4 73.7 21.3 79.9
↱

Average (Arithm) 72.2 73.0 24.3 75.3

IWSLT(cn) 43.1 30.1 19.2 39.2
IWSLT(ar) 47.2 41.1 16.1 41.8
IWSLT(de) 51.6 40.8 25.0 51.0
IWSLT(fr) 55.8 42.7 25.9 55.0
IWSLT(ja) 31.4 28.6 13.2 28.8
IWSLT(ko) 37.9 31.3 16.5 36.5
↱

Average (MT) 44.5 35.8 19.3 42.0

NQ-Open 58.0 66.1 24.0 53.8
WebQS 24.9 28.1 11.2 23.6
TriviaQA 54.9 70.4 24.3 62.5
↱

Average (ODQA) 45.9 54.9 19.8 46.6

CSQA 74.7 75.6 5.0 70.1
COPA 45.5 33.7 0.3 36.7
SocialIQA 56.8 64.8 1.2 59.5
↱

Average (CSQA) 59.0 58.0 2.2 55.4

Table 9: Downstream task performance result. Evidently, GEAR-augmented GPT-3 achieves competitive results
with GPT-3 few-shot and ART, both of which provided with task-specific demonstrations for solutions.

D Downstream Performance926

Results for GPT-3 baselines can be seen in Table 9. For MT and Commensense QA tasks, even the927

few-shot performance is lower than zero-shot, we hypothesize that this is because the GPT-3 model has928

seen those datasets during the pretraining and memorized them.929

A comparison of GEAR with ART (Paranjape et al., 2023) on Arithmetic and Open-domain QA tasks is930

provided in Table 8. The downstream accuracy of GEAR-augmented GPT-3 is only slightly higher than931

those of ART-augmented GPT-3, because according to Table 4, ART achieves at least 90% grounding932

accuracy on most Arithmetic and Open-domain QA datasets. However, it is worth noting that ART933

requires in-domain demonstration for each task/dataset while GEAR does not.934
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Figure 4: Confusion matrix of grounding results of four basic tools.

Dataset (w/10 Tools) Target Tool GEAR ART∗
cs

Average (Arithm) Cal 74.0 97.2
Average (MT) MT 80.5 78.5
Average (ODQA) Wiki 40.7 21.1
Average (CSQA) QA 33.4 22.8
Average (MLQA) MLQA 54.4 17.6
Timezone Conversion TZ Conveter 96.4 95.0

Table 10: Tool grounding accuracy for 6 downstream tasks with a 10-tools library (§5.2). GEAR using GPT-Neo
outperforms ART∗

cs using MPNet with the cosine similarity strategy on 5 out of 6 tasks.

E Grounding Performance 935

According to Figure 4, it is clear that Calculator and MT tools have no strong competitors on Arithmetic 936

and MT tasks, while QA and Wiki tools are more likely to compete with each other on CommonsenseQA 937

and Open-domain QA tasks. This is due to the functional overlap of these two tools on open-ended NLP 938

tasks. 939

GEAR is more generalizable than retrieval-based baselines We compare GEAR with two retrieval- 940

based baselines: Okapi BM25 (Robertson et al., 1995) and KNN (Fix and Hodges, 1989) with 50 training 941

examples for each tool under the 4-tools library. Like GEAR, BM25 is a general-purpose approach that 942

does not need supervision. However, from Table 11, the grounding accuracy of BM25 is smaller than 943

GEAR’s (GPT-Neo version) on 13/15 datasets. All MT tasks get a 0% accuracy from BM25 since their 944

inputs contain non-ASCII tokens, which are not accounted for in the description of the MT tool. Although 945

the performance of KNN is generally higher than GEAR on MT and Open-domain tasks, it requires 946

training and is easily overfitting, which hinders its generalizability to low-resource tasks that utilize novel 947

tools without sufficient labeled data. 948

GEAR is generalizable to novel tasks We further evaluate GEAR’s generalizability to novel tasks using 949

MLQA (Lewis et al., 2020) and Timezone Conversion datasets. From Table 10, GEAR achieves 54.4% 950

and 96.4% grounding accuracy on these two novel tasks with a 10-tools library. It outperforms ART∗
cs on 951

5 out of 6 tasks, revealing its strong generalizability to both large tool libraries and novel tasks. 952

19



Algorithm→ BM25 KNN GEAR(GPT-Neo)
Datasets ↓

ASDiv 0.5 66.5 83.1
GSM8K 0.2 58.7 83.0
SVAMP 1.2 75.1 89.0
↱

Average (Arithm) 0.6 66.8 85.0

IWSLT(cn) 100 84.1
IWSLT(ar) 99.7 66.6
IWSLT(de) 80.0 96.9
IWSLT(fr) 84.6 96.6
IWSLT(ja) 100 72.4
IWSLT(ko) 100 82.2
↱

Average (MT) 94.1 83.1

NQ-Open 76.2 73.4 63.0
WebQS 45.4 55.9 65.6
TriviaQA 62.5 83.3 54.3
↱

Average (ODQA) 61.4 70.9 61.0

CSQA 24.6 75.8 77.1
COPA 0.6 32.9 41.3
SocialIQA 14.5 57.2 75.7
↱

Average (CSQA) 13.2 55.3 64.7

Table 11: Tool grounding accuracy for 4 downstream tasks with a 4-tools library (" " denotes 0). GEAR with
GPT-Neo consistently achieves high grounding performance compared to BM25 and KNN.

E.1 Case Study on SLM’s Size953

We provide a case study showing the impact of various SLM choices, including the setting where replacing954

SLM with LLM, to further illustrate our observation in §5.2 that as the model size increases, the marginal955

grounding accuracy gain diminishes (Figure 5).956

[Question] Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her
friends every day with four. She sells the remainder at the farmers’ market daily for $2 per fresh duck egg. How
much in dollars does she make every day at the farmers’ market?

[Preliminary answer from GPT2medium] i make $ 2

[Preliminary answer from GPT2large] the average american spends $ 1000 a year on food

[Preliminary answer from GPT-Neo] janet’s ducks lay 16 eggs per day

[Preliminary answer from GPT-3] Janet eats 3 of the 16 eggs, so she has 16 - 3 = «16-3=13»13 eggs
left. She bakes muffins with 4 of these eggs, so she has 13 - 4 = «13-4=9»9 eggs left to sell. Thus, she makes
$ 9 * 2 = $ «9*2=18»18 every day at the farmers’ market. Answer: $ 18 .

[Question] In which decade did Billboard magazine first publish and American hit chart?

[Preliminary answer from GPT2medium] the first billboard magazine was published in the fall of 1892.

[Preliminary answer from GPT2large] the first billboard magazine was published in the united states in
the year 900 .

[Preliminary answer from GPT-Neo] the billboard hot 100 is a weekly chart that ranks the most popular
songs in the united states

[Preliminary answer from GPT-3] The 1930s. Specifically, Billboard magazine first published its "Music
Popularity Chart" in 1936.

In the first example from GSM8K (Cobbe et al., 2021), we can see that SLM offers the similar indicative957

signal as LLM that the potential answer should contain number and symbol patterns, despite their958

responses being incorrect. We also observe that this phenomenon not only happens in pattern-specific959

tasks (e.g. Arithmetic) but also occurs in more general open-ended tasks like Commonsense QA. The960

second TriviaQA (Joshi et al., 2017) example shows that the pattern distributions generated by those961
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Figure 5: Averaged GEAR grounding performance over SLM sizes on Arithmetic and Commonsense QA tasks.
Each task is evaluated by three datasets.

SLMs are also closely similar to the pattern distribution from LLM: single number surrounded by pure 962

English text. 963

Thus as long as API calls are properly generated, it is highly probable that GEAR with SLM will select 964

the same tool as with LLM. Formally speaking, generating executable API calls from SLM now becomes 965

the only empirical limitation of the upper bound of the pattern similarity score, which would become 966

looser as the model size increases, leading to the decrease of marginal grounding performance gain. 967

To validate the above observations, we visualize the grounding performance of GEAR across different 968

SLM sizes on these two tasks in Figure 5. Evidently, as the increasing of SLM sizes, the grounding 969

performance margin tends to decrease. Note that because of different model families, SLM grounding 970

performance may not necessarily be monotonically increasing (orange line). 971
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Figure 6: The average similarity scores for different tasks and tools. Clearly, the semantic and pattern scores
(already weighted by γ) collaboratively and accurately identify tools for the four basic tasks.

F Ablation Study972

For the 4-tools library, we plot the average final grounding score for each task and tool in Figure 6.973

Notably, neither the semantic nor the pattern similarity score dominates the query-tool grounding on most974

tasks, but they collaborate with each other to correctly identify the tools.975
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G GEAR Augmented Chatbot 976

Because GEAR does not require extra task-specific demonstrations, one of its practical applications is that 977

it can be integrated into any chatbot. To validate it, we create a GEAR augmented chatbot using ChatGPT 978

as the execution LLM and conduct a survey experiment. 979

Figure 7 illustrates the differences between GEAR-augmented chatbot and a normal chatbot and how 980

GEAR interacts with a LM in a dialogue setting. For each user query, we first prompt the LM to determine 981

if a tool usage is necessary. If true, the original query will be sent directly to GEAR, and GEAR will return 982

the response from the selected tool as well as the tool name and confidence score for selecting that tool. 983

This information is then processed by the LM to generate a more natural, user-friendly response. Figure 8 984

provides examples of how our GEAR augmented chatbot works. We equip it with the following six 985

tools: Weather Search, Location Search, Image Generation, Current Time-Timezone Converter Pipeline, 986

Wikipedia Search and Machine Translation. 987

We surveyed 50 individuals about the use of our GEAR-augmented chatbot. The evaluators first use 988

ChatGPT-based chatbot for two weeks, then switch to a GEAR-augmented chatbot for the next two 989

weeks. After fully experiencing these two chatbots, they are asked to complete the survey (Table 12) 990

which contains four types of questions regarding tool grounding performance and final answer quality. 991

Participants are unpaid and their feedback is unmodified. 992

The survey reveals that 76% of users agree that integrating tool usages makes the chatbot more useful 993

and fascinating, and more than 90% of queries grounded correct tools. Image generation and weather 994

search tools are the most popular tools among the 6 tools, with more than 50% of users employing them 995

to solve problems. Regarding response quality, our survey indicates that an average of 78.4% of questions 996

are answered to the user’s satisfaction, a 16.9% increase in satisfaction compared to the previous chatbot 997

that lacks the tool utilization functionality. The Current Time-Time Zone Convertor Pipeline has the 998

highest accuracy, at 100%, while the Machine Translation tool has the lowest quality, with a satisfaction 999

ratio of only 50.5%. We infer that the performance of the Google Translate API may not be adequate to 1000

satisfy the needs of our evaluators, given that most of them are translating extremely complex sentences 1001

between English, Japanese, and Chinese. 1002

In summary, GEAR substantially improves users’ experience on ChatGPT, and it also has excellent 1003

generalization capabilities to novel tools. Note that these novel tools lack training data, but with GEAR 1004

and just a few words of tool description and usage examples, they can be easily integrated into a chatbot 1005

to provide precise and reliable answers to users. 1006
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More Human Supervision

Normal Chatbot Response [w/o GEAR]

What time will be tomorrow this time?

Less Human Supervision

Tool-Augmented Chatbot Response [w/ GEAR]

I'm sorry, but as an AI language model, I don't have real-time 
data or the ability to predict the future.

Try again

I apologize for any confusion. If you provide me with your current 
time zone, I can give you the time difference between now and 
tomorrow at the same time.

The current time is 2023-06-10 23:39:28, EDT. 
Tomorrow's time will be 2023-06-11 23:39:28 
EDT. I used the Time API and the confidence 
score is 0.4953

EDT

The Eastern Daylight Time (EDT) is observed in certain regions of 
North America during the daylight saving time period. However, 
as I mentioned earlier, I don't have real-time data. 

As of now, EDT is usually UTC-4:00 during daylight saving time. 
So, if you are currently in EDT and it is, for example, 3:00 PM, 
then tomorrow at the same time would be around 3:00 PM as well. 

Try again

Please wait while I am selecting and calling the API...
GEAR

LM

[Yes] Original Question

[Result] 2023-06-10 23:39:28, EDT 
[API] Time [Confidence] 0.4953

What time will be tomorrow this time?

Hello

[No] LM Response
Hello! How can I assist you today?

Figure 7: A comparison between the performance of ChatGPT and GEAR augmented chatbot. GEAR requires
minimal human supervision, excels in numerous tool-solvable tasks, and offers interpretable confidence scores for
users.

(a) GEAR augmented chatbot screenshot illustrating its tool library.

(b) GEAR augmented chatbot screenshot of using the Time tool.

(c) GEAR augmented chatbot screenshot of using the Location Search tool.

Figure 8: Screenshots of GEAR augmented chatbot using various tools. Using the command /GEAR to ask GEAR
chatbot to output tool response directly without going through the ChatGPT. While the command @TallChatBot
enables a normal conversation where GEAR interacts with ChatGPT to provide more human-readable answers.
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Survery Question Question Type Answer

How would you rate your overall experience with GEAR-augmented chatbot? rating scale 0-10

Do you think GEAR-augmented chatbot has become smarter compared to the previous
version?

rating scale 0-10

Do you think GEAR-augmented chatbot has become more helpful than the previous one? rating scale 0-10

How accurate do you think the answers of the older bot are? rating scale 0-10

How accurate do you think the answers of the new version bot are? rating scale 0-10

Have you noticed that the chatbot is using external tools to help you? Likert scales yes or no

How would you rate the chatbot’s accuracy in choosing the right tool to answer your
query?

rating scale 0-10

Can you recall a situation where the chatbot chose the wrong tool for your query? If so,
please describe it briefly.

open-ended open-ended

Have you ever instructed the chatbot to use a different tool for your query, or did the
chatbot automatically choose a different tool because you weren’t satisfied with the results?

Likert scales yes or no

Will the chatbot be able to switch to the right tool based on your instructions? Likert scales yes or no

When a chatbot uses an external tool, how would you rate its response accuracy? rating scale 0-10

Can you recall any instances where the chatbot used external tools to produce output errors
or didn’t meet your expectations? If so, please describe it briefly

open-ended open-ended

What tools of chatbots have you used? multiple-choice multiple-choice

How would you rate the accuracy of the output generated by the chatbot using the Time
tool?

rating scale 0-10

How would you rate the accuracy of the output generated by the chatbot using the
Wikisearch tool?

rating scale 0-10

How would you rate the accuracy of the output generated by the chatbot using the Weather
Lookup tool?

rating scale 0-10

How would you rate the accuracy of the output generated by the chatbot using the Location
Search tool?

rating scale 0-10

How would you rate the accuracy of the output generated by the chatbot using the Image
Generation tool?

rating scale 0-10

How would you rate the accuracy of the output generated by the chatbot using the Machine
Translation tool?

rating scale 0-10

Please provide any additional feedback or suggestions you have for improving GEAR-
augmented chatbot performance.

open-ended open-ended

Overall Score you want give to the GEAR-augmented chatbot rating scale 0-100

Table 12: Survey Questions
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H Prompts1007

Table 13 provides examples of API calls and outputs for each tool1008

Table 14 shows task-specific demonstrations used for the few-shot baseline in the experiment1009

Table 15 presents the description and usage example of each basic tool.1010

Tool Example API Call Example Output

Question
Answering

QA("What century did the Normans first gain their sepa-
rate identity?")

The Normans first gained their
separate identity in the 11th cen-
tury.

Calculator Calculator(2 + 4) 6

Machine Trans-
lation

MT("太多东西要在这18分钟内讲述了。", "en") There are too many things to be
described in this 18 minutes.

Wikipedia
Search

WikiSearch("Lord Of The Flies") Lord of the Flies (song) "Lord
of the Flies" is an Iron Maiden
single and second track on their
1995 album "The X Factor".

Multilingual
QA

MultilingualQA("question: 《街机游戏街头霸王II》的
游戏机上有多少用于控制角色的圆形物体？context:
For example, the six button layout of the arcade games
Street Fighter II or Mortal Kombat cannot be comfortably
emulated on a console joypad, so licensed home arcade
sticks for these games have been manufactured for home
consoles and PCs.")

Six

Exponential Pow(2, 3) 8

Logarithm Log(2, 8) 3

Timezone Con-
verter

TimezoneConverter("2022-01-02 22:00:00", "Asia/Shang-
hai", "America/New_York")

2022-01-02 09:00:00

Sleep Sleep(20) Sleep for 20 seconds (Mock Re-
sponse)

Movement Con-
troller

RobotMove(0.3) Robot is moving forward for 0.3
meters (Mock Response)

Table 13: Examples of API Calls and Outputs for Each Tool
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Task Demonstration

Math

You are the Calculator tool. Your task is to answer the
questions that contain numbers and require arithmetic
operations, including addition, subtraction, multiplication,
division. Here are some examples:
Input: There were 86 pineapples in a store. The owner sold
48 pineapples. 9 of the remaining pineapples were rotten and
thrown away. How many fresh pineapples are left?
Output: There are total 86 pineapples. 48 pineapples are sold
out, so there are 86 - 48 pineapples now. 9 of the remaining
are thrown away, so there are 86 - 48 - 9 pineapples. That is
29 pineapples.

Commonsense Rea-
soning

You are the Question Answering tool that answers questions by
reasoning and commonsense knowledge. Here are some examples:
Input: The women met for coffee. What was the cause of this?
A: The cafe reopened in a new location. B: They wanted to catch
up with each other.
Output: Considering the options, the more likely cause for
the women meeting for coffee would be B: They wanted to catch
up with each other. Meeting for coffee is often chosen as a
way to have a relaxed and informal conversation, providing an
opportunity for friends or acquaintances to reconnect and share
updates about their lives.

Open-domain Ques-
tion Answering

You are the Wikipedia Search tool that is to look up information
from Wikipedia that is necessary to answer the question. Here
are some examples:
Input: The colors on the flag of Ghana have the following
meanings: green for forests, and gold for mineral wealth. What
is the meaning of red?
Output: The color Red commemorates those who died or worked for
the country’s independence.

Machine Translation

You are the Machine Translation tool that is used for
translating text from one language to another. Here are some
examples:
Input: How do I ask Japanese students if they had their dinner
yet?
Output: ごをもう食べましたか。

Table 14: Example of Various Task Demonstrations for Few-Shot Baselines
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Tool Description Few-Shot Prompt

Calculator

Calculator API is
used for answering
questions that
contain numbers and
require arithmetic
operations,
including addition,
subtraction,
multiplication,
division.

Calculator API is used for solving questions that require
arithmetic operations, including addition, subtraction,
multiplication, division. You task is to rephrase
the question prepended by the special token <Q>and
generate Calculator API call prepended by <API>for
solving that question. You can call the API by writing
"[Calculator(formula)]" where "formula" is the arithmetical
formula you want to solve. Here are some examples of
Calculator API calls:
Input: There were 86 pineapples in a store. The owner sold
48 pineapples. 9 of the remaining pineapples were rotten and
thrown away. How many fresh pineapples are left?
Output: <Q>There are total 86 pineapples. 48 pineapples
are sold out, so there are 86 - 48 pineapples now. 9 of the
remaining are thrown away, so there are 86 - 48 - 9 pineapples.
<API>[Calculator(86 - 48 - 9)].

Question
Answering

Question Answering
API answers
questions by
reasoning and
commonsense
knowledge.

Question Answering API answers questions by reasoning and
commonsense knowledge. You task is to rephrase the question
prepended by the special token <Q>and generate QA API call
prepended by <API>for solving that question. Here are some
examples of API calls: You can call the API by writing
"[QA(question)]" where "question" is the question you want
to ask. Here are some examples of QA API calls:
Input: What do people want to acquire from opening business?
A: home B: wealth C: bankruptcy D: get rich
Output: <Q>What do people want to acquire from opening
business? A: home B: wealth C: bankruptcy D: get rich
<API>[QA("What do people want to acquire from opening
business? A: home B: wealth C: bankruptcy D: get rich")].

Wiki Search

Wikipedia Search
API is to look up
information from
Wikipedia that is
necessary to answer
the question.

Wikipedia Search API is to look up information from Wikipedia
that is necessary to answer the question. You task is
to rephrase the question prepended by the special token
<Q>and generate Wikipedia Search API call prepended by
<API>for solving that question. You can do so by writing
"[WikiSearch(term)]" where "term" is the search term you want
to look up. Here are some examples of WikiSearch API calls:
Input: The colors on the flag of Ghana have the following
meanings: green for forests, and gold for mineral wealth.
What is the meaning of red?
Output: <Q>Ghana flag green means forests, Ghana flag gold
means mineral wealth, what is the the meaning of Ghana flag
red? <API>[WikiSearch("Ghana flag red meaning")].

Machine
Translation

Machine Translation
API is used for
translating text
from one language
to another.

Machine Translation API is used for translating text from one
language to another. You task is to rephrase the question
prepended by the special token <Q>and generate MT API call
prepended by <API>for solving that question. You can do so
by writing "[MT(text, target_language)]" where "text" is the
text to be translated and "target_language" is the language to
translate to. Here are some examples of MT API calls:
Input: How do I ask Japanese students if they had their
dinner yet?
Output: <Q>Translate "Did you have dinner yet" in Japanese
<API>[MT("Did you have dinner yet?", "ja")].

Table 15: Descriptions and Usage Prompts of Four Basic Tools
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