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Abstract

The task-oriented dialogue (ToD) systems aim001
to achieve the dialogue goal efficiently and suc-002
cessfully in multiple turns. Additionally, the003
development of large language models (LLMs)004
has significantly enhanced the question answer-005
ing and dialogue generation, and makes them006
become increasingly popular in current prac-007
tical scenarios. Unfortunately, existing LLM-008
powered ToD systems lack direct rewards to-009
ward the final dialogue goal and do not ac-010
count for proactivity in dialogue, which can011
enhance efficiency. To fill this gap, we in-012
troduce the ProToD (Proactively Goal-Driven013
LLM-powered ToD) approach, which antici-014
pates future dialogue actions and incorporates015
goal-oriented reward signals to enhance ToD016
systems. Additionally, we present a novel eval-017
uation method that assesses ToD systems based018
on goal-driven dialogue simulations. This019
method allows us to gauge user satisfaction,020
system efficiency and success rate while over-021
coming the limitations of current Information022
and Success metrics. We conduct empirical023
experiments on the MultiWoZ 2.1 and SGD024
dataset. Especially, results on the MultiWoZ 2.1025
dataset demonstrate that our model achieves su-026
perior performance using only 10% of the data027
compared to previous end-to-end fully super-028
vised models. This improvement is accompa-029
nied by enhanced user satisfaction and dialogue030
efficiency.031

1 Introduction032

A task-oriented dialogue system is designed to as-033

sist users in achieving specific objectives. Its pri-034

mary focus is on comprehending user needs and035

generating responses that help to satisfy their needs.036

Integral to this process is the system’s proactivity037

— an attribute borrowed from organizational behav-038

ior as described by Grant and Ashford (2008). The039

proactivity of conversational agents can be charac-040

terized as their ability to steer or control a dialogue041

toward the final goal. This is achieved by taking042

the initiative and foreseeing potential impacts on 043

themselves or users. The ultimate success of a ToD 044

system lies in taking proactive actions to effectively 045

and efficiently address user needs. 046

Current research focuses on guiding LLMs to 047

produce relevant responses using task-specific in- 048

structions and few examples. Li et al. (2023) in- 049

troduce a method where a small model provides 050

directional prompts for each query. The LLM then 051

uses these prompts and previous dialogues as input 052

to produce their responses. They optimize LLMs 053

for ToD by adjusting a policy model, which can 054

be refined using supervised learning and reinforce- 055

ment based on BLEU score rewards. Additionally, 056

Hu et al. (2023) presented a framework that uses 057

LLMs as user simulators to enhance task-oriented 058

dialogue models. These methods based on rein- 059

forcement approach primarily employ rewards that 060

hinge on BLEU scores or user simulations, which 061

focuses on assessing the similarity between the sys- 062

tem’s generated responses and predefined ground 063

truth, as well as measuring user satisfaction scores. 064

However, existing metrics are limited when guid- 065

ing LLMs to be proactive. Notably, the success rate 066

is a pivotal metric in evaluating the effectiveness of 067

a ToD system. A higher success rate indicates that 068

the system is adept at meeting user requirements. 069

Additionally, efficiency is gauged by the number of 070

turns in a conversation. Fewer turns signify greater 071

efficiency, underscoring the need for the system to 072

be proactive. The aforementioned works do not 073

incorporate considerations of task success and effi- 074

ciency into their reward design. Moreover, LLMs 075

tend to produce more flexible and longer responses 076

compared to end-to-end models, leading to lower 077

BLEU score compared with ground-truth response. 078

When BLEU scores are used as rewards for model 079

tuning, it can easily result in lower reward values 080

and potentially lead to incorrect optimization di- 081

rections. Therefore, a new reward mechanism that 082

focuses on goal-driven behavior to guides LLM for 083
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Hello, I want to find a 
cheap hotel in Cam-
bridge, is there any 
recommandation?

Goal: find a cheap with hotel with free parking, make 
the reservation and get the address

Yes, I recomand
[hotel name], 
would you like 
me to do the 
reservation?

Does it provide free parking service?

Can you help me to make the reservation
and give me the address?

Simulate the future dialogues

Reply 
direcely

Yes, I have several options, one is [hotel_name]
with cheap price, free parking and Wi-Fi, in 2
Station Square, CB12GA. Would you like me to
help you do the reservation?

Reply based on the dialogue history and simulation

Figure 1: An example of dialogue response generation
when considering future dialogues and dialogue goal

generating response is needed. If the chatbot can084

anticipate what the user is likely to discuss next af-085

ter receiving its response, it can provide a response086

that smoothly connects the past and future elements087

of the conversation.088

To tackle the outlined challenges, where task089

success and efficiency crucial to proactive dialogue090

are neglected in guiding LLM-powered ToD sys-091

tems, leading to less effective optimization, we092

introduce the ProToD (Proactively Goal-Driven093

LLM-powered ToD) approach. This method in-094

cludes two key components: Anticipating Future095

Actions and Goal-oriented Reward, aiming to096

enhance the system’s effectiveness and proactivity.097

As depicted in Figure 1, the ability of a ToD system098

to anticipate users’ future demands and prepare a099

more diverse and comprehensive response can be100

highly advantageous. This approach goes beyond101

merely predicting the next user utterance action,102

making it easier for the ToD system to meet users’103

requirements, elevate the success rate of achieving104

goals, and enhance overall dialogue efficiency. Fur-105

thermore, in contrast to using metrics like BLEU106

scores or user simulation scores as the basis for107

reward calculation, opting for the degree of goal108

completion as the reward offers a more natural109

and rational approach to optimizing LLM-powered110

ToD systems. In this context, we introduce a novel111

reward calculation method that considers the extent112

to which each system response fulfills sub-goals, re-113

placing the previous reliance on semantic similarity 114

or user feedback-based reward functions. 115

Moreover, the current metrics, such as “Inform” 116

and “Success”, which rely on fixed ground-truth 117

values, lack the flexibility to accurately gauge ef- 118

fectiveness and success rates. In addition, prior 119

research (Wu et al., 2023a) has highlighted that 120

very high values of these metrics can be achieved 121

simply giving a fixed and predefined response in 122

every turn. This suggests the insufficiency of these 123

metrics. As a result, we propose a novel evaluation 124

method that employs GPT-4 (OpenAI, 2023) as the 125

user simulator. In this approach, users are required 126

to adhere to predefined goals when interacting with 127

the ToD system. The extent to which these con- 128

versations successfully achieve their goals and the 129

number of turns required are used to measure both 130

success and efficiency. 131

To summarize, our contributions in this work 132

are: 133

• We propose the ProToD (Proactively Goal- 134

Driven LLM-powered ToD) approach which 135

anticipates future dialogue actions and inte- 136

grates a goal-oriented reward signal, enhanc- 137

ing the efficiency and success of ToD systems. 138

• To better and flexibly evaluate the efficiency 139

and success rate of LLM-powered ToD sys- 140

tems, we introduce goal-driven user simula- 141

tion based on GPT-4 to assess the performance 142

of the ToD system. 143

• We conduct comprehensive experiments in- 144

cluding automatic metrics evaluation, user 145

simulator based assessment, case study and 146

human evaluation, which fully validate the 147

effectiveness of our model. 148

2 Related Work 149

ToD systems have been as essential tools for facil- 150

itating various tasks such as vairous bookings or 151

reservations scenarios in natural language conver- 152

sations. These systems aim to provide human-like 153

interactions, making it convenient for users to en- 154

gage with them seamlessly. In recent years, there 155

has been significant progress in the development 156

of ToD systems, with various approaches and tech- 157

niques contributing to their enhancement. 158

Some of the earlier ToD models, such as those 159

presented in the works of He et al. (2022), Lee 160

(2021), Sun et al. (2023), and Wu et al. (2023a), 161
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primarily focused on generating responses based162

solely on the current dialogue context. While these163

models showed promise, they often lacked the abil-164

ity to consider the broader context or incorporate165

dialogue states effectively. To address this limita-166

tion, researchers have explored policy optimization167

methods, as highlighted in the studies conducted by168

Wang et al. (2020a) and Wang et al. (2020b). These169

approaches leverage ground-truth dialogue states170

to inform the response generation process, thereby171

enabling more contextually relevant and accurate172

responses. Incorporating both text information and173

dialogue states has been another promising avenue174

for improving ToD systems. Lubis et al. (2020) and175

Lee (2021) are notable examples of research efforts176

that have successfully integrated these two aspects.177

This approach allows ToD systems to have a more178

comprehensive understanding of the conversation,179

enabling them to generate responses that are not180

only contextually appropriate but also take into ac-181

count the underlying task objectives. Furthermore,182

reinforcement learning methods, as demonstrated183

in studies by Wu et al. (2023b), Bang et al. (2023),184

and Feng et al. (2023), have gained recognition185

for their effectiveness in enhancing ToD systems.186

These methods leverage feedback and rewards to187

fine-tune the dialogue generation process, resulting188

in responses that are not only context-aware but189

also optimized for specific task-oriented goals.190

Recently, a new paradigm in natural language191

processing has emerged, characterized by the ad-192

vent of sophisticated LLMs such as ChatGPT (Ope-193

nAI, 2021), GPT-4 (OpenAI, 2023), Llama2 (Tou-194

vron et al., 2023), Bard, and others. These models195

have significantly enhanced a variety of applica-196

tions owing to their superior understanding and197

generation capabilities. The advancements these198

LLMs embody are markedly distinct, with perfor-199

mance that greatly surpasses that of earlier pre-200

training language models like BERT (Devlin et al.,201

2018), T5 (Raffel et al., 2020), and GPT-2 (Radford202

et al., 2019), among others.203

In terms of the LLM-based ToD research,204

Madotto et al. (2020) assess the few-shot capability205

of language models in Natural Language Under-206

standing, Dialogue State Tracking, Dialogue Policy207

and Natural Language Generation tasks. Hudeček208

and Dušek (2023) evaluate Instruction-finetuned209

LLMs’ ability to complete multi-turn tasks and210

interact with external databases in the context of es-211

tablished task-oriented dialogue benchmarks. Snell212

et al. (2022) formulate goal-oriented dialogue as 213

a partially observed Markov decision process, in- 214

terpreting the language model as a representation 215

of both the dynamics and the policy. Recently, Hu 216

et al. (2023) propose a new framework to leverage 217

LLM as the user simulator and utilize the feedback 218

of this simulation to optimize the ToD model. Li 219

et al. (2023) introduce a novel prompting frame- 220

work called Directional Stimulus Prompting for 221

guiding black-box LLMs toward desired output, 222

which employ a small tunable policy model to gen- 223

erate the hint to guide the LLMs. 224

3 Methodology 225

3.1 Overview 226

For dialogue response generation, we consider an 227

input dialogue history space denoted as X, and a 228

response output space referred to as Y. LLMs have 229

shown remarkable capabilities in generating re- 230

sponses by incorporating instructions that describe 231

the task, a few demonstration examples, and the 232

input dialogue history x within the prompt. How- 233

ever, there are challenges when it comes to steer- 234

ing LLMs towards desired outputs, particularly for 235

achieving fine-grained, query-specific behaviors. 236

In the context of ToD, different dialogue systems 237

need to respond to user queries across various do- 238

mains using actions such as informing, request- 239

ing, confirming, and providing domain-specific 240

slot values. In such scenarios, solely relying on 241

task-specific instructions and a handful of examples 242

may not consistently yield satisfactory and relevant 243

responses. Additionally, dealing with long-term 244

memory and maintaining efficiency poses further 245

challenges in LLM-based ToD systems. 246

To address these issues, we propose the incorpo- 247

ration of future dialogue action hints denoted as z 248

into the prompt, inspired by the Directional Stim- 249

ulus Prompting (DSP) approach (Li et al., 2023). 250

These hints serve as guidance for achieving the de- 251

sired response. For each input query, we generate 252

these hints using a small, adaptable policy language 253

model, pPOL(z|x). Subsequently, we combine the 254

generated hint, z, with the original dialogue his- 255

tory, x, to construct the prompt that guides the 256

LLM towards generating its output, represented as 257

pLLM (y|x, z). 258

3.2 Anticipating Future Dialogue Actions 259

To anticipate future dialogue actions by the user, we 260

train a policy model that predicts future dialogue 261
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Future Dialogue Actions

Dialogue History
Policy Model Hints

Smaller Tunable 
Language Model

Train with PPO

Next dialogue Actions: 
[restaurant] [inform] choice area 
[request] food [general] 

Next Two Dialogue Actions: 
[attraction] [inform] type area 
choice [general]
Next Three Dialogue Actions: …

Dialogue Response

Goal-oriented Reward

I have several options in 
the center of town. One 
option is [value_choice]. 
They serve [value_food] 
cuisine and are located 
in the heart of the 
attractions…

4.0

I want to find a moderately priced
restaurant .

I have [value_choice] available
for you ! Is there a certain area or 
cuisine that interests you ?

Yes I would like the restaurant to be
located in the center of the attractions 

Figure 2: Model Architecture. The policy model is trained to generate future dialogue actions to induce the LLM to
perform specific tasks, via supervised finetuning and PPO based reinforcement learning.

actions for LLMs, using supervised fine-tuning of262

a pre-trained LM such as T5 on a small collection263

of labeled data (1% or 10%).264

To enhance the ability of LLMs to generate task-265

specific responses, we employ the anticipated fu-266

ture dialogue actions, spanning from the current267

turn until the end of the conversation, as contex-268

tual cues for guiding the LLM in generating re-269

sponses to the queries from the current user turn.270

These cues are denoted as z, which convey the271

anticipated future dialogue actions that the dia-272

logue system should respond to. The resulting273

dataset, denoted as D = (x, z), comprises pairs274

of dialogue histories and future action sequences.275

Specifically, given a dialogue history with n turns,276

represented as x = (x1, x2, x3, . . . , xn), and cor-277

responding predicted actions for each response278

turn, denoted as a = (a1, a2, a3, . . . , an), we for-279

mulate the future predicted actions for the i-th280

turn as zi = (ai, ai+1, . . . , an). Subsequently, we281

fine-tune the policy model by maximizing the log-282

likelihood through the following objective:283

LPOL = −E(x,z)∼D log pTOD (z | x) (1)284

This framework enables our model to generate285

responses that align with the underlying dialogue286

actions, resulting in more contextually appropri-287

ate and task-specific outputs for the current user288

query. To better modify the hints toward achieving289

high success rate on the dialogue goal, we con-290

tinue to incorporate reinforcement learning (RL)291

to further fine-tune the policy model based on the292

goal-oriented reward. The detailed approach is293

elaborated below.294

3.3 Goal-oriented Reward295

Our objective is to guide the generation of the LLM296

towards our desired target by optimizing an align-297

ment measure denoted as R(x,y), which measures298

whether the response y achieves predefined dia- 299

logue goals for the input of x. 300

In each dialogue, the overall goal can be subdi- 301

vided into several predefined sub-goals, denoted 302

as g = (g1, g2, g3, . . . , gm). The success of each 303

sub-goal can be measured by assessing whether the 304

ToD system provides the corresponding informa- 305

tion. For instance, in the MultiWoZ dataset, these 306

sub-goals encompass tasks such as supplying a ref- 307

erence ID, phone number, address, and so forth. 308

Consequently, for each system response turn, we 309

can calculate a turn-level goal reward that quanti- 310

fies how many sub-goals it accomplishes. This can 311

be mathematically formulated as follows: 312

ri = λ
m∑
j=0

gj (2) 313

where ri represents the reward for the i-th turn, and 314

λ is a hyperparameter to scale the reward. The 315

value of each gj is determined by whether the ToD 316

system provides the corresponding information: if 317

it does, gj is assigned a value of 1; otherwise, it is 318

set to 0. 319

Meanwhile, given that the parameters of the 320

black-box LLM are neither accessible nor ad- 321

justable, we resort to enhancing the policy model’s 322

optimization. This involves generating future di- 323

alogue actions as hints, which in turn direct the 324

LLMs’ generation process towards the maximiza- 325

tion of our defined objective. 326

RLLM (x,y) = R(x,y) (3) 327

328
y ∼ pLLM (y|x, z) (4) 329

However, the optimization approach described 330

above poses an intractable problem for the policy 331

model. In order to tackle this challenge, we re- 332

frame the optimization of the policy model as a 333

reinforcement learning (RL) problem and leverage 334
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the proximal policy optimization (PPO) algorithm335

(Schulman et al., 2017).336

We use the policy model to initialize a policy337

network π0 = pPOL and then update π using PPO.338

The process through which the policy model gen-339

erates a sequence of future actions z can be viewed340

as an interaction in the context of RL, defined by341

the tuple <S,A, r,P>. Here, S represents the342

state space, A denotes the action space, r corre-343

sponds to the reward function, and P signifies the344

state-transition probability. In each interaction with345

the environment, the agent selects an action (token)346

based on the probability distribution defined by the347

current policy network π(z|x, z < t). The interac-348

tion process concludes when an end-of-sequence349

token is chosen, resulting in the generation of the350

entire sequence of future dialogue actions. The pol-351

icy network π can be improved through fine-tuning,352

aiming to optimize the reward r associated with the353

RL framework.354

To avoid the policy network π deviating too far355

from the initial policy model pPOL, we also in-356

troduce a KL-divergence penalty into the current357

reward function. Therefore, the final reward for-358

mula is:359

r(x,y) = RLLM (x,y)− β log
π(y | x)

pTOD(y | x)
(5)360

3.4 Goal-driven User Simulation Assessment361

As highlighted by (Wu et al., 2023a) in their362

study on the Inform and Success metrics, these363

have inherent issues. The evaluation procedure364

requires the model to generate placeholders, and365

the metrics consider whether the placeholders sat-366

isfy user goals. Consequently, a model that gen-367

erates more placeholders can misleadingly appear368

to perform better. When a fixed response such369

as "[value_name] [value_phone] [value_address]370

[value_postcode] [value_reference] [value_id]" is371

consistently used for every turn during evaluation372

with the standardized evaluation script, it yields373

state-of-the-art results in terms of Inform and Suc-374

cess scores when compared to baseline models.375

Therefore, these problems necessitate a new376

method to assess the performance of LLM-based377

ToD systems. Given a dialogue goal g, we design a378

suitable prompt to enable GPT-4 to act as the user to379

propose the user queries x∗ = {x∗1, x∗2, x∗3 . . . x∗n},380

for which the LLM-based ToD’s responses are381

y∗ = {y∗1, y∗2, y∗3 . . . y∗n} in the turn-by-turn inter-382

action. In these simulations, the efficiency can be383

calculated as the average number of turns. Due 384

to the strong understanding of GPT-4, the success 385

will be assessed by GPT-4 again according to the 386

dialogue goal and this simulated dialogue. 387

3.5 Implementation 388

We employ the T5 model (base version) (Raffel 389

et al., 2020) as our policy model. Concurrently, 390

GPT-3.5-turbo (OpenAI, 2021) serves as the spe- 391

cific LLM. 392

Our process commences with the supervised fine- 393

tuning of the T5 model, centering on the future dia- 394

logue actions prediction task. Post the initial phase, 395

we augment the T5’s capabilities by introducing a 396

goal-oriented reward system and the NLPO method 397

(NLPO (Ramamurthy et al., 2022) is one of the 398

PPO Algorithms, tailored for language generators). 399

These enhancements are geared towards optimizing 400

the model through reinforcement learning, aligning 401

it closely with user goal completion. 402

To adapt to the distinct characteristics of dataset 403

annotation and evaluation metrics, we have tailored 404

the sub-goals to specifically provide ‘PHONE’, 405

‘ADDRESS’, ‘POST’, and ‘REFERENCE ID’. 406

Even with this specific design, the framework of 407

our goal-oriented reward system retains its flexibil- 408

ity, allowing for extensions and adaptations to other 409

ToD systems through tailored goal amendments. In 410

this context, we have set the scaling reward param- 411

eter λ at 3 to achieve a balanced optimization. 412

4 Experiments 413

4.1 Dataset and Evaluation Metrics 414

MultiWoZ 2.1 (Eric et al., 2020) is the improved 415

version of MultiWOZ 2.0 (Budzianowski et al., 416

2018) which is a released multi-domain dialogue 417

dataset spanning 7 distinct domains and containing 418

over 10,000 dialogues. Moreover, MultiWOZ 2.1 419

also includes user dialogue acts as well as multiple 420

slot descriptions per dialogue state slot. 421

Schema Guided Dialogue (SGD) (Rastogi et al., 422

2020) consists of schemas outlining the interface of 423

different APIs and annotated dialogues, including 424

over 16k multi-domain conversations spanning 16 425

domains. 426

Inform and Success are the metrics related to di- 427

alogue task completion - whether the system pro- 428

vides an appropriate entity (Inform rate) and an- 429

swers all the requested attributes (Success rate). 430
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Model Training MultiWoZ 2.1 SGD
Data Inform Success Inform Success

Standard Prompting - 72.8 44.2 64.3 57.2

DSP w/ SFT (Li et al., 2023) 1% 76.0 64.3 71.1∗ 69.3∗

DSP (Li et al., 2023) 1% 87.3 78.7 79.6∗ 75.2∗

ProToD- 1% 90.4 80.1 84.3 77.5
ProToD 1% 94.3 82.7 87.9 82.1

DSP w/ SFT (Li et al., 2023) 10% 75.0 67.7 73.7∗ 69.9∗

DSP (Li et al., 2023) 10% 95.0 84.0 82.0∗ 78.5∗

ProToD- 10% 95.3 85.0 88.1 80.9
ProToD 10% 96.2 85.8 90.6 84.2

SimpleTOD (Hosseini-Asl et al., 2020) 100% 85.0 70.5 - -
DoTS (Jeon and Lee, 2021) 100% 86.7 74.2 - -
PPTOD (Su et al., 2021) 100% 87.1 79.1 - -
UBAR (Yang et al., 2021) 100% 95.7 81.8 - -
GALAXY (He et al., 2022) 100% 95.3 86.2 - -

Table 1: Comparison of response generation performance across different methods. The results with ∗ mean the
reimplementation results by us. The best results are highlighted in bold, while the top performance in each category
is underscored with an underline. ProToD- is the ablation setting which still incorporates future dialogue actions but
omits rewards based on task-success, using only BLEU as rewards.

4.2 Baselines431

Standard Prompting: We design instructions to432

let LLMs reply to the previous dialogue history.433

DSP (Li et al., 2023): In Directional Stimulus434

Prompting (DSP), "directional stimulus" is intro-435

duced into the prompt to provide more precise guid-436

ance for LLMs. This stimulus acts as a cue to437

guide LLMs in generating desired outputs. A small438

tunable model, such as T5, is used to create this439

stimulus for each query, allowing optimization of440

LLMs through a smaller policy model. This pol-441

icy model is trained through supervised fine-tuning442

with labeled data and reinforcement learning us-443

ing rewards, aiming to align LLM behavior with444

desired outcomes.445

DSP w/ SFT represents the ablation study in DSP,446

performing the supervised fine-tuning (SFT) on the447

pre-trained LM, without the further reinforcement448

learning training.449

SimpleTOD (Hosseini-Asl et al., 2020) adopts a450

unified approach, treating all these sub-tasks as a451

single sequence prediction problem, leveraging pre-452

trained, open-domain, causal language models like453

GPT-2 as its base model.454

DoTS (Jeon and Lee, 2021) is a task-oriented dia-455

logue system that uses a simplified input context456

instead of the entire dialogue history. To address457

the loss of contextual information from previous 458

conversational turns. DoTS tracks the domain state 459

in addition to the belief state and uses it for the 460

input context. 461

PPTOD (Su et al., 2021) proposes a unified solu- 462

tion that overcomes the limitations of the traditional 463

cascaded generation approach. Its integrated archi- 464

tecture efficiently minimizes error accumulation 465

and data annotation overheads. It adopts a multi- 466

task pre-training strategy to leverage insights from 467

diverse dialogue corpora. 468

UBAR (Yang et al., 2021) is a ToD system that 469

models entire dialog sessions by fine-tuning GPT- 470

2 on sequences encompassing user input, belief 471

states, system actions, and responses. 472

GALAXY (He et al., 2022): This method is the pre- 473

vious end-to-end fully supervised training SOTA 474

model. The Galaxy model is a pre-trained con- 475

versational system that acquires dialog strategies 476

by leveraging a combination of limited labeled di- 477

alog data and extensive unlabeled dialog datasets 478

through a semi-supervised learning approach. They 479

incorporate a task to predict dialog actions as a 480

means of improving dialog policy during the pre- 481

training phase and utilize a consistency regulariza- 482

tion component to enhance the acquired represen- 483

tations with the aid of unlabeled dialog data. 484
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4.3 ProToD Performance485

We assessed the efficacy of our ProToD approach486

by evaluating it on GPT-3.5-turbo and comparing487

its performance with the LLM-guided DSP work488

(Li et al., 2023), and other prominent task-oriented489

dialogue models like SimpleTOD (Hosseini-Asl490

et al., 2020), DoTS (Jeon and Lee, 2021), PPTOD491

(Su et al., 2021), UBAR (Yang et al., 2021), and492

GALAXY (He et al., 2022). These models were493

trained on the comprehensive training set consist-494

ing of 8438 dialogues. The comparative analysis of495

their overall performance is summarized in Table 1.496

Table 1 illustrates that ProToD consistently497

eclipses the DSP model in performance, a trend498

observed when trained with both 1% and 10% of499

the data. ProToD, when trained with only 1% of500

the data, results in an average improvement of 6.6%501

over the DSP model. These findings underscore502

the importance of anticipating future actions for503

LLM-guided ToD.504

In scenarios where only 10% of the training data505

in MultiWoZ 2.1 is utilized, ProToD further outper-506

forms fully supervised, end-to-end training models507

UBAR and GALAXY, as evidenced by the Inform508

metric. Even with the constrained training dataset509

of 1%, ProToD outperforms SimpleTOD, DoTS,510

and PPTOD in both the Inform and Success met-511

rics.512

The superior performance of ProToD can be at-513

tributed to its utilization of anticipated future ac-514

tions along with the LLMs’ effective understand-515

ing and generation capabilities. With just the hints516

provided by the T5 model, ProToD outperforms in-517

tricate models that are grounded in complex archi-518

tecture and tailored dialogue features. Noteworthy519

is ProToD’s exemplary performance when trained520

on smaller datasets, a significant advantage espe-521

cially when dealing with dialogues where dataset522

annotation is particularly costly.523

4.4 Ablation Study524

We perform an ablation study utilizing ProToD-,525

which still incorporates future dialogue actions but526

omits rewards based on task-success, using only527

BLEU as reward. Even without the goal-oriented528

reward, ProToD- still outperforms DSP, a differ-529

ence that becomes more pronounced when training530

is conducted using only 1% of the standard data531

volume. This underscores the module’s inherent532

effectiveness, as evidenced by its positive contri-533

butions to both Inform and Success metrics. Fur-534

thermore, a comparative analysis between ProToD 535

and ProToD- further illuminates the significant en- 536

hancements afforded by the incorporation of the 537

goal-oriented award module. 538

4.5 Goal-driven User Simulation Assessment 539

We randomly sample 100 dialogues and employ 540

GPT-4 as the user simulator to conduct the dia- 541

logue simulation. Then, we calculate the efficiency 542

and let GPT-4 to assess whether this dialogue com- 543

pleted the dialogue goal and how satisfactory the 544

user feels. In terms of evaluation metrics, Success 545

Rate (SU) considers whether the dialogue fulfills 546

the goal, Efficiency means the average turns needed 547

to complete the goal (if this dialogue fails to com- 548

plete the goal, we use the maximum turns of 10). 549

Additionally, we adopt the previous user satisfac- 550

tion work (Sun et al., 2021) to set the satisfaction 551

score (SA ranging from 1-5 and prompt GPT-4 to 552

provide this satisfaction score. 553

As illustrated in Table 2, ProToD surpasses DSP 554

with a success rate of 69.2% against DSP’s 61.5%. 555

This indicates ProToD’s enhanced capability to 556

achieve dialogue goals. When considering effi- 557

ciency, ProToD’s score of 5.7 outperforms DSP’s 558

6.3, suggesting that ProToD requires fewer interac- 559

tions for task completion. Furthermore, the higher 560

satisfaction score of 4.3 for ProToD, compared to 561

DSP’s 4.0, implies that users may find interactions 562

with ProToD more intuitive and satisfying. This 563

holistic improvement highlights ProToD’s effec- 564

tiveness in multiple aspects. 565

As previously discussed, the current evaluation 566

metrics fall short in assessing the semantic quality 567

of responses and their effectiveness in task com- 568

pletion. These limitations underscore a critical gap 569

in the evaluation paradigm for ToD systems. Our 570

proposed method, in conjunction with the three 571

metrics outlined earlier, presents a transformative 572

approach to address this challenge. By integrating 573

these advanced measures, we aim to offer a more 574

comprehensive and nuanced evaluation framework, 575

ensuring that both the user satisfaction and task 576

accomplishment efficacy of the dialogue systems 577

are meticulously assessed and optimized. 578
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Method SU↑ EF↓ SA↑

DSP (Li et al., 2023) 61.5 6.3 4.0
ProToD 69.2 5.7 4.3

Table 2: Evaluation performance of dialogue response
generation through simulation by GPT-4, where SU, EF
and SA denote as Success Rate, Efficiency and Satisfac-
tion respectively

Conversation Goal:
You are planning your trip in Cambridge.
You are looking for a restaurant. The
restaurant should be in the centre and
should be in the moderate price range.
Make sure you get food type and postcode.
You are also looking for places to go in
town. The attraction should be in the type
of mutliple sports and should be in the
same area as the restaurant. If there is
no such attraction, how about one that is
in the type of architecture. Make sure
you get phone number, entrance fee, and
address

Conversation History:
User: I want to find a moderately priced
restaurant .
Assistant: I have [value_choice] available
for you ! Is there a certain area or cuisine
that interests you ?
User: Yes I would like the restaurant to be
located in the center of the attractions .

DSP Response: There are [value_choice]
restaurants in the center of the attractions .
what type of food are you interested in ?

ProToD Response: I have several op-
tions in the center of town. One option
is [value_choice]. They serve [value_food]
cuisine and are located in the heart of the at-
tractions. Another option is [value_choice].
They have a variety of cuisines and are also
centrally located. Would you like me to
provide you with their phone?

579

4.6 Case Study 580

In our study, we employ a case study approach to 581

further bolster our motivation. This case study com- 582

prises four key components: the conversation goal, 583

history, DSP model response, and ProToD model 584

response. When we examine the ProToD response 585

in comparison to the DSP response, it becomes 586

evident that the ProToD model offers two notable 587

advantages. Firstly, the ProToD response excels in 588

providing current options and strives to meet the 589

user’s objectives as efficiently as possible, rather 590

than simply asking for the type of food, thereby sig- 591

nificantly enhancing dialogue efficiency. For each 592

option presented, the ProToD-generated response 593

includes comprehensive information encompassing 594

cuisine types and location clarifications. Secondly, 595

the ProToD response addresses the user’s intent 596

confirmation by providing a phone number when 597

it is required, potentially increasing the success 598

rate of the dialogue. Together, these two strengths 599

of the ProToD model – enhancing the detail and 600

relevance of information provided, and effectively 601

confirming and fulfilling user intents – solidify its 602

role in significantly improving both the Inform and 603

Success metrics within the MultiWoZ 2.1 dataset. 604

This underlines ProToD’s effectiveness in deliv- 605

ering more efficient, successful, and user-aligned 606

dialogue experiences. 607

5 Conclusion 608

In this study, we present the ProToD model, an 609

enhancement of the LLM-powered ToD system 610

that incorporates future dialogue action anticipa- 611

tion and goal-oriented reward motivation. By uti- 612

lizing future actions as cues to guide LLMs, our 613

model offers more comprehensive responses and 614

enhances the efficiency of dialogues. The integra- 615

tion of goal-oriented rewards further fine-tunes the 616

cues for LLMs, resulting in improved dialogue task 617

completion rates through a reinforcement learn- 618

ing framework. Additionally, we introduce a goal- 619

driven user simulation assessment based on GPT-4, 620

providing a novel perspective to better evaluate di- 621

alogue efficiency and user satisfaction levels. Our 622

validation process assesses the effectiveness of Pro- 623

ToD by examining performance enhancements in 624

Inform and Success metrics using the MultiWoZ 625

2.1 and SGD dataset. Furthermore, we present case 626

studies and user simulation assessments that illus- 627

trate the improvements in dialogue efficiency and 628

user satisfaction achieved by our model. 629
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6 Limitations630

Firstly, the MultiWoZ dataset is currently unrivaled631

in its scale and comprehensiveness, equipped with632

dialogue goals and sub-goals for assessing dialogue633

task completion. However, to refine and broaden634

the evaluation landscape and our method’s general-635

ization, we require additional datasets to effectively636

evaluate and refine our method.637

Additionally, our approach is still reliant on638

LLMs, and the understanding and generation ca-639

pabilities can vary among different models. While640

the DSP work (Li et al., 2023) has compared per-641

formance with CodeX, there is a need to evaluate642

more recent and superior LLMs like GPT-4, Llama643

2, and others within this framework.644
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