
Dodging the Data Bottleneck:
Automatic Subtitling with Automatically Segmented ST Corpora

Anonymous ACL submission

Abstract

Speech translation for subtitling (SubST) is the001
task of automatically translating speech data002
into well-formed subtitles by inserting subtitle003
breaks compliant to specific displaying guide-004
lines. Similar to speech translation (ST), model005
training requires parallel data comprising audio006
inputs paired with their textual translations. In007
SubST, however, the text has to be also anno-008
tated with subtitle breaks. So far, this require-009
ment has represented a bottleneck for system010
development, as confirmed by the dearth of011
publicly available SubST corpora. To fill this012
gap, we propose a method to convert existing013
ST corpora into SubST resources without hu-014
man intervention. We build a segmenter model015
that automatically segments texts into proper016
subtitles by exploiting audio and text in a mul-017
timodal fashion, achieving high segmentation018
quality in zero-shot conditions. Comparative019
experiments with SubST systems respectively020
trained on manual and automatic segmentations021
result in similar performance, showing the ef-022
fectiveness of our approach.023

1 Introduction024

Massive amounts of audiovisual content are avail-025

able online, and this abundance is accelerating with026

the spread of online communication during the027

COVID-19 pandemic. The increased production of028

pre-recorded lectures, presentations, tutorials and029

other audiovisual products raises an unprecedented030

demand for subtitles in order to facilitate compre-031

hension and inclusion of people without access032

to the source language speech. To keep up with033

such a demand, automatic solutions are seen as a034

useful support to the limited human workforce of035

trained professional subtitlers available worldwide036

(Tardel, 2020). Attempts to automatise subtitling037

have focused on Machine Translation for trans-038

lating human- or automatically-generated source039

language subtitles (Volk et al., 2010; Etchegoy-040

hen et al., 2014; Matusov et al., 2019; Koponen041

et al., 2020). Recently, direct ST systems (Bérard 042

et al., 2016; Weiss et al., 2017) have been shown 043

to achieve high performance while generating the 044

translation in the target language without interme- 045

diate transcription steps. For automatic subtitling, 046

Karakanta et al. (2020a) suggested that, by directly 047

generating target language subtitles from the au- 048

dio (i.e. predicting subtitle breaks together with 049

the translation), the model can improve subtitle 050

segmentation by exploiting additional information 051

like pauses and prosody. However, the scarcity of 052

SubST corpora makes it hard to build competitive 053

systems for automatic subtitling, especially if no 054

corpus is available for specific languages/domains. 055

One solution to the SubST data bottleneck could 056

be leveraging ST corpora by inserting subtitle 057

breaks on their target side. Automatic segmenta- 058

tion of a text into subtitles is normally implemented 059

with rule-based approaches and heuristics, e.g. a 060

break is inserted before a certain length limit is 061

reached. More involved algorithms (SVM, CRF, 062

seq2seq) predict breaks using a segmenter model 063

trained on subtitling data for a particular language 064

(Álvarez et al., 2016, 2017; Karakanta et al., 2020c). 065

Still, the performance of these models relies on 066

high-quality segmentation annotations for each lan- 067

guage, which web-crawled subtitling corpora like 068

OpenSubtitles (Lison et al., 2018) rarely contain. 069

In this work, we address the scarcity of SubST 070

corpora by developing a multimodal segmenter1 071

able to automatically annotate existing ST corpora 072

with subtitle breaks in a zero-shot fashion. Specifi- 073

cally, our segmenter exploits, for the first time in 074

this scenario, the source language audio (here: En) 075

and segmented target text already available in a few 076

languages (here: De, En, Fr, It). Its key strength 077

is the ability to segment not only target languages 078

for which high-quality segmented data is available 079

but also unseen languages having some degree of 080

similarity with those covered by the original ST 081

1The code and the model will be released upon acceptance.
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resource(s). This opens up the possibility to au-082

tomatically obtain synthetic SubST training data083

for previously not available languages. Along this084

direction, our zero-shot segmentation results on085

two unseen languages (Es, Nl) show that training086

a SubST system on automatically-segmented data087

leads to comparable performance compared to us-088

ing a gold, manually-segmented corpus.089

2 Methodology090

Our method to leverage ST corpora for SubST can091

be summarized as follows: i) we train different seg-092

menters on available human-segmented subtitling093

data in order to select the best performing one; ii)094

we run the selected segmenter in a zero-shot fash-095

ion (i.e. without fine-tuning or adaptation) to insert096

subtitle breaks in unsegmented text data of unseen097

languages; iii) then, the automatically annotated098

texts are paired with the corresponding audio to ob-099

tain a synthetic parallel SubST corpus; iv) finally,100

a SubST model is trained on the synthetic corpus.101

We test our method on two language pairs, by102

comparing the results of SubST models trained on103

synthetic data with those of models with identical104

architecture but trained on original gold data.105

2.1 Segmenter106

We adopt the general segmentation approach of107

(Karakanta et al., 2020b) where a textual seg-108

menter takes unsegmented text as input and in-109

serts subtitle breaks. Since subtitling constraints110

are the same across several languages, our first ex-111

tension to this approach is to learn segmentation112

multilingually. To this aim (see Appendix A), we113

combine samples from multiple languages in the114

same training step (Ott et al., 2018) and add a prefix115

language token to the target text (Inaguma et al.,116

2019). As in MT (Ha et al.), multilingual training117

has been shown to enhance ST performance (Wang118

et al., 2020) while allowing for maintaining only119

one model for multiple languages. Since in prelim-120

inary experiments (see Appendix B) we found mul-121

tilingual training to be more effective than training122

a model for each language, we opted for adopting123

multilingual training for all our segmenters.124

Our second extension is multimodal training.125

Since speech phenomena, such as pauses and si-126

lences, can strongly influence the structure of the127

subtitles (Carroll and Ivarsson, 1998), we expect128

that information from the speech modality could129

improve segmentation. To explore this hypothe-130

sis, we extend the multilingual segmenter with a 131

multimodal architecture (Sulubacak et al., 2020), 132

which receives input from different modalities: in 133

our case, audio and text.2 Our multimodal seg- 134

menter is built using an architecture with two en- 135

coders: one for the text (with the same structure as 136

the textual segmenter) and one for the audio. We 137

combine the encoder states obtained by the two 138

encoders using parallel cross-attention (Bawden 139

et al., 2018),3 as it proved to be effective both in 140

speech and machine translation (Kim et al., 2019). 141

Parallel attention is computed by attending at the 142

same intermediate representation (the decoder self- 143

attention); then, the audio encoder cross-attention 144

and the text encoder cross-attention are summed 145

together and fed to the feed-forward layer. 146

2.2 Data and Evaluation 147

Data. To train our textual and multimodal seg- 148

menters, we use En→{De/Fr/It} sections of MuST- 149

Cinema (Karakanta et al., 2020b), the only publicly 150

available SubST dataset. To test the segmenters 151

in zero-shot conditions (Section 3) and train our 152

SubST models (Section 4), we select two target lan- 153

guages also contained in MuST-Cinema:4 Dutch 154

(an SOV – Subject-Verb-Object – language) and 155

Spanish (SVO). Using the corpus notation, subtitle 156

breaks are defined as: block break <eob>, which 157

marks the end of the current subtitle displayed on 158

screen, and line break <eol>, which splits consec- 159

utive lines inside the same block. 160

Baselines. We compare the performance of the 161

segmenters with two baselines. One is a rule-based 162

method (Count Chars) where a break is inserted 163

before a 42-character limit. This is the simplest 164

method to always produce length-conforming sub- 165

titles and serves as a lower bound for segmentation 166

performance. Our second baseline (Supervised) is a 167

neural textual segmenter trained on OpenSubtitles, 168

the largest collection of publicly available textual 169

subtitling data, for the respective language (Es, Nl). 170

Although OpenSubtitles is available for a variety 171

of languages, it has some limitations: it does not 172

2Images and videos are normally protected by copyright
and thus not publicly available. In case suitable training data
and benchmarks will become publicly available, we leave to
future work their use to improve the segmenter performance.

3We also tested sequential cross-attention (Zhang et al.,
2018) but we do not report its results since they are slightly
worse compared to the parallel one.

4Though present in MuST-Cinema, Es and Nl data are
only used for testing purposes so as to simulate the zero-shot
conditions required to select the best segmenter and evaluate
our SubST systems.
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contain audio, the subtitle and segmentation quality173

varies since subtitles are often machine-translated174

or created by non-professionals, and line breaks175

were lost when pre-processing the subtitles to cre-176

ate the corpus. These limitations may have a detri-177

mental effect on the quality of segmenters trained178

on this data (Karakanta et al., 2019). Complete179

details on data, baselines and experimental settings180

are presented in Appendix A.181

Evaluation. To evaluate both the quality of the182

SubST output and the accuracy of our segmenters,183

we resort to reference-based evaluation. Since to184

date there is no single metric for the plausibility185

of breaks positioning, we use BLEU (Post, 2018)5186

to measure the similarity (n-gram overlap) of the187

generated segmentation (pred) with the reference188

(ref ).6 We compute it both with the inserted breaks189

(BLEU) and without them (BLEUnb) in order to190

spot any undesired changes made to the original191

text. To ensure that the system does not over- or192

under-generate subtitle breaks, we additionally re-193

port Break coverage computed as follows:194

Coverage(%) =

(
#<break>pred

#<break>ref
· 100

)
− 100195

where <break> corresponds to either <eol> or196

<eob>. EOL and EOB coverage obtains negative197

values when the segmenter inserts less breaks than198

required or positive values when it inserts more.199

Lastly, we use length conformity (or characters200

per line – CPL), corresponding to the percentage201

of subtitles not exceeding the allowed maximum202

length of 42 CPL, as per TED guidelines.7203

3 Zero-shot segmentation204

Towards building a SubST model for unseen lan-205

guages (Es and Nl), we first select the best seg-206

menter for generating synthetic En→Es/Nl data.207

As shown in Table 1, all the models that receive208

only text as input (Count Chars, Supervised and209

Textual), result in low segmentation performance.210

The zero-shot Textual segmenter achieves the low-211

est segmentation quality, as shown by a BLEU212

score of 52.6 for Nl and 54.5 for Es. In this respect,213

the Count Chars and Supervised baselines perform214

slightly better, but this difference comes from less215

5BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.5.1
6We do not use F1, a standard accuracy metric used in

segmentation tasks, since it cannot be computed when the
output text is different than the reference.

7https://www.ted.com/participate/
translate/subtitling-tips

changes to the actual text, as shown by the higher 216

BLEUnb scores. Moreover, both Supervised and 217

Textual generate subtitles conforming to the CPL 218

constraint in only 70% of the cases, despite hav- 219

ing received only length-conforming subtitles as 220

training data. The negative values of EOL and 221

EOB coverage show that all textual methods under- 222

generate subtitle breaks. Despite being trained on 223

subtitling data for the particular language, the low 224

performance of Supervised can be attributed to the 225

different domain compared to the MuST-Cinema 226

test set. For example, MuST-Cinema mainly con- 227

tains long sentences with multiple breaks, while 228

in OpenSubtitles we rarely come across sentences 229

with more than three breaks. From these results we 230

can conclude that zero-shot segmentation does not 231

perform satisfactorily with textual input only. 232

Dutch
Segmenter BLEU BLEUnb CPL EOL EOB
Count Chars 61.9 100 100% -21.2% -7.1%
Supervised 60.4 89.5 71.2% -31.4% -51.3%
Textual 52.6 61.3 77.8% -23.4% -9.9%
Multimodal 80.1 99.9 91.4% -27.2% +0.4%

Spanish
Segmenter BLEU BLEUnb CPL EOL EOB
Count Chars 62.5 100 100% -24.6% -4.4%
Supervised 62.1 92.6 71.2% -32.3% -45.4%
Textual 54.5 69.6 70.1% -47.6% -19.3%
Multimodal 80.6 99.6 91.8% -22.4% +4.7%

Table 1: Segmentation results on unseen languages.

In comparison, the Multimodal segmenter per- 233

forms significantly better. It reaches an absolute 234

gain of 27.5 BLEU for Nl and 26.1 BLEU for Es 235

compared to Textual. Moreover, contrary to Textual 236

and Supervised, the Multimodal model learnt to per- 237

fectly copy the text, as shown by the high BLEUnb 238

scores (up to 99.9 on Nl), close to the maximum 239

score of a method – Count Chars – that by de- 240

sign does not change the original text. The CPL 241

results are in agreement with BLEU: for both lan- 242

guages, the Multimodal model respects the length 243

constraint in more than 91% of the subtitles. Strik- 244

ingly, even if the two target languages were never 245

seen by the model, these results are similar to those 246

obtained on seen languages (see Appendix B). Un- 247

like the rest of the models, Multimodal is the only 248

model that does not under-generate <eob>. This is 249

in line with the results of Karakanta et al. (2020a), 250

who showed that exploiting the audio in ST is ben- 251

eficial for inserting subtitle breaks (<eob>, for 252

instance, typically corresponds to longer speech 253

pauses). The results are more discordant for the 254

3
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EOL Coverage. On Es, Multimodal shows a lower255

tendency to under-generate, while on Nl both mod-256

els fail to insert at least the 23.4% of <eol>. We257

assume this phenomenon is caused by the lower258

frequency of <eol> in the corpus, since a subtitle259

can be composed of only one line, as well as by the260

higher difficulty in placing the break for which the261

system cannot resort to speech clues (e.g. pauses).262

Discussion. So far, our results indicate the263

higher effectiveness of Multimodal segmentation to264

automatically turn existing ST corpora into SubST-265

compliant training data. Also, at least for the West-266

ern European languages considered in our experi-267

ments, our approach can be successfully applied in268

zero-shot settings involving languages not present269

in the training data used to build the segmenter.270

While probably unrealistic (and hard to verify due271

to the lack of suitable benchmarks), the possibility272

of porting our approach to scenarios involving dif-273

ferent alphabets is not verified in this work. This274

would require, at least, a vocabulary adaptation275

which represents a well-known problem in multi-276

lingual approaches to MT/ST (Garcia et al., 2021).277

Nevertheless, even in the worst case in which some278

degree of similarity across languages is required279

for zero-shot automatic segmentation, we believe280

that these results indicate a viable path towards281

overcoming the scarcity of SubST resources. In the282

next section, we will test this hypothesis.283

4 SubST with Synthetic Data284

Since our multimodal segmenter achieves the best285

performance overall, we use it to automatically286

generate the synthetic counterpart of the En→Es287

and En→Nl sections of MuST-Cinema. The result-288

ing data are respectively used to train two SubST289

systems. The goal is to achieve comparable perfor-290

mance to that of similar models trained on manually291

segmented subtitles. For this purpose, using the292

same architecture, we also train two systems on the293

original manual segmentations of MuST-Cinema.294

As shown in Table 2, the SubST system trained295

on our automatically segmented data (Synthetic)296

shows comparable performance with the system297

trained on the original segmentation (Original).298

The BLEUnb between the two models is identical299

for Es, while for Nl the difference is not significant.300

On the contrary, the BLEU for the system trained301

on manual segmentations is higher than for the syn-302

thetic ones. These results highlight that the breaks303

introduced by a non-perfect automatic segmenta-304

Dutch
Data BLEU BLEUnb CPL EOL EOB
Original 38.6* 25.3 91.2% -36.8% +8.0%
Synthetic 36.7 24.3 94.7% -20.4% +4.8%

Spanish
Data BLEU BLEUnb CPL EOL EOB
Original 41.5* 30.7 96.7% -10.0% +10.9%
Synthetic 40.5 30.7 94.2% -21.5% +9.9%

Table 2: Results of the SubST systems. The * stands
for statistically significant results according to bootstrap
resampling test (Koehn, 2004).

tion influence the way the subtitle breaks are placed 305

in the translation but not necessarily the translation 306

itself. For the length constraint, both systems ob- 307

tain high CPL conformity, with the Synthetic model 308

scoring 2.5% less on Es and 3.5% more on Nl. This 309

is related to the number of <eol> and <eob> in- 310

serted by the system: the more subtitle breaks are 311

present, the more fine-grained is the segmentation, 312

leading to higher conformity. Indeed, CPL is higher 313

when the Break Coverage is high. 314

Analysis. Upon examination of the segmenta- 315

tion patterns of the two En→Es systems,8 we did 316

not identify particular differences. Specifically, the 317

inserted <eob> tags follow punctuation marks in 318

76% of the cases for both models and are followed 319

by prepositions and conjunctions in 32% and 29% 320

for Original and Synthetic respectively. Similar pat- 321

terns between outputs were observed for <eol> 322

too, which is followed by a comma in the majority 323

of cases and by the same function words as <eob>. 324

These results confirm that systems trained on au- 325

tomatically segmented data are able to reproduce 326

similar segmentation patterns to those trained on 327

original data without showing a significant degra- 328

dation in the translation. 329

5 Conclusions 330

We presented an automatic segmenter able to turn 331

existing ST corpora into SubST-compliant training 332

data. Through comparative experiments on two 333

language pairs in zero-shot conditions, we showed 334

that SubST systems trained on this synthetic ma- 335

terial are competitive with those built on human- 336

annotated subtitling corpora. Building on these 337

positive results, and conditioned to the availability 338

of suitable benchmarks, verifying the portability 339

of the approach to a larger set of languages and 340

domains is our priority for future work. 341

8We were unable to replicate the analysis on Nl as we do
not have the required linguistic competences.
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A Experimental Settings 514

A.1 Data 515

For the initial experiments aimed to train tex- 516

tual and multimodal segmenters and select the 517

best one (step 1 of the process described in Sec- 518

tion 2), we use three sections of MuST-Cinema,9 519

namely En→{De/Fr/It}. Each section contains 520

paired audio utterances, transcripts, and transla- 521

tions, where both sides of the text are built from 522

subtitles created by humans and therefore the sub- 523

title breaks are based on human segmentation de- 524

cisions. For French (275K sentences), German 525

(229K sentences) and Italian (253K sentences), we 526

used the corresponding sections of MuST-Cinema. 527

For English, we concatenate the segmented tran- 528

scripts of the previous three training sections (757K 529

sentences). 530

A.2 Systems 531

We use the Adam optimizer and inverse square-root 532

learning rate (lr) scheduler for all the trainings. 533

The textual segmenter is a Transformer-based 534

(Vaswani et al., 2017) architecture consisting of 535

3 encoder layers and 3 decoder layers. We set 536

the hyper-parameters as in the fairseq (Ott et al., 537

2019) multilingual translation task, both for the 538

mono- and multilingual textual segmenters. For the 539

multimodal model, a mini-batch for each language 540

direction is built (here: 4) and the model weights 541

are updated after each mini-batch. 542

The multimodal segmenter (Figure 1) is de- 543

rived from the textual segmenter encoder-decoder 544

structure with an additional speech encoder made 545

of 12 Transformer encoder layers as in the origi- 546

nal speech-to-text task10 but with the addition of 547

a CTC (Graves et al., 2006) module to avoid the 548

speech encoder pre-training (Gaido et al., 2021). 549

The training of multilingual models is realized by 550

pre-pending the language token (en, de, fr, it) 551

to the target sentence, as prescribed by Inaguma 552

9https://ict.fbk.eu/must-cinema/
License: CC BY-NC-ND 4.0

10https://github.com/pytorch/fairseq/
tree/main/examples/speech_to_text

6

https://doi.org/10.18653/v1/W19-5209
https://doi.org/10.18653/v1/W19-5209
https://doi.org/10.18653/v1/W19-5209
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/W18-6301
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.47476/jat.v3i2.2020.131
https://doi.org/10.47476/jat.v3i2.2020.131
https://doi.org/10.47476/jat.v3i2.2020.131
https://doi.org/10.47476/jat.v3i2.2020.131
https://doi.org/10.47476/jat.v3i2.2020.131
https://aclanthology.org/2020.aacl-demo.6
https://aclanthology.org/2020.aacl-demo.6
https://aclanthology.org/2020.aacl-demo.6
https://doi.org/10.18653/v1/D18-1049
https://doi.org/10.18653/v1/D18-1049
https://doi.org/10.18653/v1/D18-1049
https://ict.fbk.eu/must-cinema/
https://github.com/pytorch/fairseq/tree/main/examples/speech_to_text
https://github.com/pytorch/fairseq/tree/main/examples/speech_to_text


Segmenter Training
English French German Italian

BLEU CPL BLEU CPL BLEU CPL BLEU CPL
Count Chars 63.73 100% 62.04 100% 61.17 100% 60.68 100%

Textual
mono 82.6 96.6% 81.4 96.7% 79.5 90.9% 79.2 90.0%
multi 81.8 88.5% 81.8 94.3% 80.0 90.9% 78.5 91.2%

Multimodal
mono 86.6 94.8% 85.5 93.9% 84.4 91.4% 82.1 89.9%
multi 87.8 95.0% 87.1 94.1% 85.4 89.9% 84.2 90.0%

Table 3: Segmentation results on seen languages.

et al. (2019), a mechanism that was already present553

in the Fairseq Speech-to-text library (Wang et al.,554

2020). The encoder and the decoder embeddings555

are shared. We select the hyper-parameters of the556

original implementation,11 except for the learning557

rate that is set to 1 · 10−3, which is higher since558

we skipped the pre-processing phase. The vocabu-559

lary is generated using SentencePiece (Kudo and560

Richardson, 2018), setting the size to 10k unigrams561

both for the mono- and multilingual segmenters.562

Figure 1: Multimodal segmenter architecture.

For the supervised baseline (Supervised) us-563

ing OpenSubtitles data, we follow the data selec-564

tion process for the highest-performing segmenter565

in (Karakanta et al., 2020c) (OpenSubs- 42). We566

first filter sentences with subtitles of maximum 42567

characters. Since line breaks are not present in568

OpenSubtitles, we substitute <eob> symbols with569

<eol> with a probability of 0.25, paying attention570

not to insert two consecutive <eol>. This propor-571

tion reflects the <eol>/<eob> distribution fea-572

tured by the MuST-Cinema training set. We noted573

that almost 90% of the sentences filtered contain574

only one subtitle. This is not very informative for575

the segmenter, since the only operation required is576

inserting one <eob> at the end of the sentence. For577

11https://github.com/pytorch/fairseq/
blob/main/examples/speech_to_text/docs/
mustc_example.md

this reason, we further select only sentences with 578

at least two subtitles (or two subtitle lines). This 579

results in 2,956,207 sentences for Es and 683,382 580

sentences for Nl. We then add the same number of 581

sentences containing only one subtitle. After this 582

process, we obtain 5,912,414 sentences for Es and 583

1,366,764 sentences for Nl. The supervised base- 584

line is trained with the same settings as the textual 585

monolingual segmenter. 586

We also compare the segmenter models with a 587

rule-based baseline (Count Chars) of inserting 588

a break before reaching the 42-character limit, as 589

per TED guidelines. If the 42-character limits is 590

reached in the middle of a word, the break is in- 591

serted before this word. This method will always 592

obtain a 100% conformity to the length constraint. 593

As with the data filtering process, <eol> is in- 594

serted with probability of 0.25. 595

For the SubST models discussed in Section 4, 596

we use the speech-to-text task small architecture of 597

fairseq with the additional CTC module. 598

We use 4 GPUs K80 for training all the archi- 599

tectures: it takes around 1 day for the textual-only 600

and around 1 week for the multimodal segmenters. 601

However, all results are obtained by averaging 7 602

checkpoints (best, three preceding and three suc- 603

ceeding checkpoints). 604

B Segmentation on seen languages 605

We train the mono/multi-lingual versions of our 606

Textual/Multimodal segmenters for the four lan- 607

guage (De, En, Fr, It), measuring their performance 608

in terms of BLEU and CPL. The results are shown 609

in Table 3. The values of BLEU without breaks 610

(BLEUnb) are not reported since they always ap- 611

proach 100 i.e., the system learnt to perfectly copy 612

the input text, as desired. 613

Looking at the BLEU values, both the Textual 614

and the Multimodal segmenter perform higher than 615

the rule-based baseline, despite a small drop in 616

CPL. The Multimodal segmenter always outper- 617
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forms the Textual one by at least 5.0 BLEU points,618

and inserts break symbols more accurately. More-619

over, it benefits from multilingual training on all620

languages. In contrast, overall subtitle conformity621

is higher for the Textual segmenter in 3 out of 4622

languages, where its CPL scores are 1.2-2.6 per-623

centage points above those obtained by the Mul-624

timodal one. Moreover, except for one case (Ger-625

man), higher CPL values are obtained under the626

monolingual training regime.627
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