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Abstract

Retrosynthesis prediction is a fundamental problem in organic synthesis, where
the task is to identify precursor molecules that can be used to synthesize a target
molecule. A key consideration in building neural models for this task is aligning
model design with strategies adopted by chemists. Building on this viewpoint,
this paper introduces a graph-based approach that capitalizes on the idea that the
graph topology of precursor molecules is largely unaltered during a chemical
reaction. The model first predicts the set of graph edits transforming the target into
incomplete molecules called synthons. Next, the model learns to expand synthons
into complete molecules by attaching relevant leaving groups. This decomposition
simplifies the architecture, making its predictions more interpretable, and also
amenable to manual correction. Our model achieves a top-1 accuracy of 53.7%,
outperforming previous template-free and semi-template-based methods.

1 Introduction

Retrosynthesis prediction, first formalized by E. J. Corey [Corey, 1991] is a fundamental problem
in organic synthesis that attempts to identify a series of chemical transformations for synthesizing
a target molecule. In the single-step formulation, the task is to identify a set of reactant molecules
given a target. Beyond simple reactions, many practical tasks involving complex organic molecules
are difficult even for expert chemists. As a result, substantial experimental exploration is needed
to cover for deficiencies of analytical approaches. This has motivated interest in computer-assisted
retrosynthesis [Corey and Wipke, 1969], with a recent surge in machine learning methods [Chen
etal., 2019, Coley et al., 2017b, Dai et al., 2019, Zheng et al., 2019, Genheden et al., 2020].

Computationally, the main challenge is how to explore the combinatorial space of reactions that can
yield the target molecule. Largely, previous methods for retrosynthesis prediction can be divided into
template-based [Coley et al., 2017b, Dai et al., 2019, Segler and Waller, 2017] and template-free
[Chen et al., 2019, Zheng et al., 2019] approaches. Template-based methods match a target molecule
against a large set of templates, which are molecular subgraph patterns that highlight changes during
a chemical reaction. Despite their interpretability, these methods fail to generalize to new reactions.
Template-free methods bypass templates by learning a direct mapping from the SMILES [Weininger,
1988] representations of the product to reactants. Despite their greater generalization potential, these
methods generate reactant SMILES character by character, increasing generation complexity.
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Figure 1: Overview of Our Approach. a. Edit Prediction. We train a model to learn a distribution
over possible graph edits. In this case, the correct edit corresponds to breaking the bond marked in
red. Applying this edit produces two synthons. b. Synthon Completion. Another model is trained
to pick candidate leaving groups (blue) for each synthon from a discrete vocabulary, which are then
attached to produce the final reactants.

Another important consideration in building retrosynthesis models is aligning model design with
strategies adopted by expert chemists. These strategies are influenced by fundamental properties of
chemical reactions, independent of complexity level: (i.) the product atoms are always a subset of the
reactant atoms', and (ii.) the molecular graph topology is largely unaltered from products to reactants.
For example, in the standard retrosynthesis dataset, only 6.3% of the atoms in the product undergo
any change in connectivity.

This consideration has received more attention in recent semi-template-based methods [Shi et al., 2020,
Yan et al., 2020], that generate reactants from a product in two stages: (i.) first identify intermediate
molecules called synthons, (ii.) and then complete synthons into reactants by sequential generation of
atoms or SMILES characters.. Our model GRAPHRETRO also uses a similar workflow. However, we
avoid sequential generation for completing synthons by instead selecting subgraphs called leaving
groups from a precomputed vocabulary. This vocabulary is constructed during preprocessing by
extracting subgraphs that differ between a synthon and the corresponding reactant. The vocabulary
has a small size (170 for USPTO-50k) indicating remarkable redundancy, while covering 99.7% of
the test set. Operating at the level of these subgraphs greatly reduces the complexity of reactant
generation, with improved empirical performance. This formulation also simplifies our architecture,
and makes our predictions more transparent, interpretable and amenable to manual correction.

The benchmark dataset for evaluating retrosynthesis models is USPTO-50k [Schneider et al., 2016],
which consists of 50000 reactions across 10 reaction classes. The dataset contains an unexpected
shortcut towards predicting the edit, in that the product atom with atom-mapping 1 is part of the edit
in 75% of the cases, allowing predictions that depend on the position of the atom to overestimate
performance. We canonicalize the product SMILES and remap the existing dataset, thereby removing
the shortcut. On this remapped dataset, GRAPHRETRO achieves a top-1 accuracy of 53.7% when the
reaction class is not known, outperforming both template-free and semi-template-based methods.

2 Related Work

Retrosynthesis Prediction Existing machine learning methods for retrosynthesis prediction can
be divided into template-based, template-free and recent semi-template-based approaches.

Template-Based: Templates are either hand-crafted by experts [Hartenfeller et al., 2011, Szymkué
et al., 2016], or extracted algorithmically from large databases Coley et al. [2017a], Law et al.
[2009]. Exhaustively applying large template sets is expensive due to the involved subgraph
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matching procedure. Template-based methods therefore utilize different ways of prioritizing
templates, by either learning a conditional distribution over the template set [Segler and Waller,
2017], ranking templates based on molecular similarities to precedent reactions [Coley et al.,
2017b] or directly modelling the joint distribution of templates and reactants using logic variables
[Dai et al., 2019]. Despite their interpretability, these methods fail to generalize outside their rule
set.

Template-Free: Template-free methods [Liu et al., 2017, Zheng et al., 2019, Chen et al., 2019]
learn a direct transformation from products to reactants using architectures from neural machine
translation and a string based representation of molecules called SMILES [Weininger, 1988].
Linearizing molecules as strings does not utilize the inherently rich chemical structure. In addition,
the reactant SMILES are generated from scratch, character by character. Attempts have been
made to improve validity by adding a syntax correcter [Zheng et al., 2019] and a mixture model
to improve diversity of suggestions [Chen et al., 2019], but the performance remains worse than
[Dai et al., 2019] on the standard retrosynthesis dataset. Sun et al. [2021] formulate retrosynthesis
using energy-based models, with additional parameterizations and loss terms to enforce the
duality between forward (reaction prediction) and backward (retrosynthesis) prediction.

Semi-Template-Based: Our work is closely related to recently proposed semi-template-based
methods [Shi et al., 2020, Yan et al., 2020], which first identify synthons and then expand
synthons into reactants through sequential generation using either a graph generative model [Shi
et al., 2020] or a Transformer [Yan et al., 2020]. To reduce the complexity of reactant generation,
we instead complete synthons using subgraphs called leaving groups selected from a precomputed
vocabulary. This allows us to view synthon completion as a classification problem instead of a
generative one. We also utilize the dependency graph between possible edits, and update edit
predictions using a message passing network (MPN) [Gilmer et al., 2017] on this graph. Both
innovations together yield a 4.8% and 3.3% performance improvement respectively over previous
semi-template-based methods.

Reaction Center Identification The reaction center covers a small number of participating atoms
involved in the reaction. Our work is also related to models that predict reaction outcomes by learning
to rank atom pairs based on their likelihood to be in the reaction center [Coley et al., 2019, Jin et al.,
2017]. The task of identifying the reaction center is related to the step of deriving the synthons in our
formulation. Our work departs from [Coley et al., 2019, Jin et al., 2017] as we utilize the property
that new bond formations occur rarely (~0.1%) from products to synthons, allowing us to predict a
score only for existing bonds and atoms and reduce prediction complexity from O(N?) to O(N). We
also utilize the dependency graph between possible edits, and update edit predictions using a MPN
on this graph.

Utilizing Substructures Substructures have been utilized in various tasks from sentence generation
by fusing phrases to molecule generation and optimization [Jin et al., 2018, 2020]. Our work is
closely related to [Jin et al., 2020] which uses precomputed substructures as building blocks for
property-conditioned molecule generation. However, instead of precomputing, synthons —analogous
building blocks for reactants— are indirectly learnt during training.

3 Model Design

Our approach leverages the property that graph topology is largely unaltered from products to
reactants. To achieve this, we first derive suitable building blocks from the product called synthons,
and then complete them into valid reactants by adding specific functionalities called leaving groups.
These derivations, called edits, are characterized by modifications to bonds or hydrogen counts on
atoms. We first train a neural network to predict a score for possible edits (Section 3.1). The edit with
the highest score is then applied to the product to obtain synthons. Since the number of unique leaving
groups are small, we model leaving group selection as a classification problem over a precomputed
vocabulary (Section 3.2). To produce candidate reactants, we attach the predicted leaving group to
the corresponding synthon through chemically constrained rules. The overall process is outlined
in Figure 1. Before describing the two modules, we introduce relevant preliminaries that set the
background for the remainder of the paper.



Retrosynthesis Prediction A retrosynthesis pair R is described by a pair of molecular graphs
(Gp, Gr), where G, are the products and G, the reactants. A molecular graph is describedas G = (V, €)
with atoms ) as nodes and bonds £ as edges. Prior work has focused on the single product case, while
reactants can have multiple connected components, i.e. G, = {G,, }¢_,. Retrosynthesis pairs are
atom-mapped so that each product atom has a unique corresponding reactant atom. The retrosynthesis
task then, is to infer {G, }<_; given G,,.

Edits Edits consist of (i.) atom pairs {(a;, a;)} where the bond type changes from products to
reactants, and (ii.) atoms {a;} where the number of hydrogens attached to the atom change from
products to reactants. We denote the set of edits by E. Since retrosynthesis pairs in the training set
are atom-mapped, edits can be automatically identified by comparing the atoms and atom pairs in the
product to their corresponding reactant counterparts.

Synthons and Leaving Groups Applying edits E to the product G, results in incomplete molecules
called synthons. Synthons are analogous to rationales or building blocks, which are expanded into
valid reactants by adding specific functionalities called leaving groups that are responsible for its
reactivity. We denote synthons by G, and leaving groups by G;. We further assume that synthons and
leaving groups have the same number of connected components as the reactants, i.e G, = {G,.}< ;
and G, = {G;, }¢_|. This assumption holds for 99.97% reactions in the training set.

c=1"
Formally, our model generates reactants by first predicting the set of edits £ that transform G,, into
G,, followed by predicting a leaving group G;, to attach to each synthon G,_. The model is defined as

P(Gr|Gp) = Y P(E|G,)P(Gi|Gp, Gs), (1)

E.G

where G, G, are deterministic given F, G;, and G,,.

3.1 Edit Prediction

For a given retrosynthesis pair R = (G,, G, ), we predict an edit score only for existing bonds and
atoms, instead of every atom pair as in [Coley et al., 2019, Jin et al., 2017]. This choice is motivated
by the low frequency (~0.1%) of new bond formations in the training set examples. Coupled with
the sparsity of molecular graphs, this reduces the prediction complexity from O(N?) to O(N) for a
product with N atoms. Our edit prediction model has variants tailored to single and multiple edit
prediction. Since 95% of the training set consists of single edit examples, the remainder of this
section describes the setup for single edit prediction. A detailed description of our multiple edit
prediction model can be found in Appendix ??.

Each bond (u,v) in G, is associated with a label y,,; € {0, 1} indicating whether its bond type
k has changed from the products to reactants. Each atom u is associated with a label y,, € {0, 1}
indicating a change in hydrogen count. We predict edit scores using representations that are learnt
using a graph encoder.

Graph Encoder To obtain atom representations, we use a variant of the message passing network
(MPN) described in [Gilmer et al., 2017]. Each atom u has a feature vector x,, indicating its atom
type, degree and other properties. Each bond (u, v) has a feature vector x,,,, indicating its aromaticity,
bond type and ring membership. For simplicity, we denote the encoding process by MPN(-) and
describe architectural details in Appendix ??. The MPN computes atom representations {c,|u € G}
via

{Cu} = MPN(gv {Xu}a {Xuv}ve./\/'(u))a (2

where NV (u) denotes the neighbors of atom . The graph representation cg is an aggregation of atom
representations, i.e. cg = >, -y, €,. When G has connected components {G; }, we get a set of graph
representations {cg, }. For abond (u, v), we define its representation ¢, = (ABS(cy, ¢y)||Cu +Co),
where ABS denotes absolute difference and || refers to concatenation. This ensures our representations
are permutation invariant. These representations are then used to predict atom and bond edit scores
using corresponding neural networks,



5y = Ual T(Wac, + b) 3)
Suvk = ukTT(WkCuv + bk)a (4)

where 7(-) is the ReLU activation function.

Updating Bond Edit Scores Unlike a typical classification problem where the labels are indepen-
dent, edits can have possible dependencies between each other. For example, bonds part of a stable
system such as an aromatic ring have a greater tendency to remain unchanged (label 0). We attempt
to leverage such dependencies to update initial edit scores. To this end, we build a graph with bonds
(u,v) as nodes, and introduce an edge between bonds sharing an atom. We use another MPN(-) on
this graph to learn aggregated neighborhood messages m,,,,, and update the edit scores s, in a
manner similar to how LSTMs update representations,

fuok = o(Whx,, + WEk,m, ) (5)
tuok = 0(WiaX,, + Wignm,,) ©)
Muvk = UmT(WiGx,, + Wig,m,,, ) )
Suvk = fuvk * Suvk + fuvk * Muvk- 3

Training We train by minimizing the cross-entropy loss over possible bond and atom edits

Le = - Z Z yuvklog(guvk) + Z yulog(su) . (9)

(Gp: E) \((w,v),k)€E u€l

The cross-entropy loss enforces the model to learn a distribution over possible edits instead of
reasoning about each edit independently, as with the binary cross entropy loss used in [Jin et al., 2017,
Coley et al., 2019].

3.2 Synthon Completion

Synthons are completed into valid reactants by adding specific functionalities called leaving groups.
This involves two complementary tasks: (i.) selecting the appropriate leaving group, and (ii.) attaching
the leaving group to the synthon. As ground truth leaving groups are not directly provided, we extract
the leaving groups and construct a vocabulary X of unique leaving groups during preprocessing.

The vocabulary has a limited size (]X| = 170 for a standard dataset with 50,000 examples, and
72000 synthons) indicating the redundancy of leaving groups used in accomplishing retrosynthetic
transformations. This redundancy also allows us to formulate leaving group selection as a classi-
fication problem over X, while retaining the ability to generate diverse reactants using different
combinations of leaving groups.

Vocabulary Construction Before constructing the vocabulary, we align connected components
of synthon and reactant graphs by comparing atom mapping overlaps. Using aligned pairs G5, =
(Vs,,Es.) and G, = (V;.., &, ) as input, the leaving group vocabulary X is constructed by extracting
subgraphs G;, = (V,,&;,) such that V;, =V, \ Vs, . Atoms {a;} in the leaving groups that attach
to synthons are marked with a special symbol. We also add three tokens to X namely START, which
indicates the start of synthon completion, END, which indicates that there is no leaving group to add
and PAD, which is used to handle variable numbers of synthon components in a minibatch.

Leaving Group Selection For synthon component ¢ < C, where C is the number of connected
components in the synthon graph, we use three inputs for leaving group selection — the product
representation cg,, the synthon component representation cg, , and the leaving group representation
for the previous synthon component, e;, ,. The product and synthon representations are learnt
using the MPN(-). For each x; € X, representations can be learnt by either training independent
embedding vectors (ind) or by treating each x; as a subgraph and using the MPN(+) (shared). In the
shared setting, we use the same MPN(+) as the product and synthons.



The leaving group probabilities are then computed by combining cg,, cg, and e
layer neural network and softmax function

.., viaasingle

G, = softmax (UT (ch% + Wacg, + Wgel(kn)) , (10)

where ¢, is distribution learnt over X. Using the representation of the previous leaving group e;,_,
allows the model to understand combinations of leaving groups that generate the desired product
from the reactants. We also include the product representation cg, as the synthon graphs are derived
from the product graph.

Training For step ¢, given the one hot encoding of the true leaving group ¢;,, we minimize the
cross-entropy loss

C

Lo=" LG, a.) (1)

c=1

Training utilizes teacher-forcing [Williams and Zipser, 1989] so that the model makes predictions
given correct histories. During inference, at every step, we use the representation of leaving group
from the previous step with the highest predicted probability.

Leaving Group Attachment Attaching leaving groups to synthons is a deterministic process and
not learnt during training. The task involves identification of the type of bonds to add between
attaching atoms in the leaving group (marked during vocabulary construction), and the atom(s)
participating in the edit. These bonds can be inferred by applying the valency constraint, which
determines the maximum number of neighbors for each atom. The attachment process does not
modify any stereochemistry. Given synthons and leaving groups, the attachment process has a 100%
accuracy. The detailed procedure is described in Appendix ??.

3.3 Inference

Inference is performed using beam search with a log-likelihood scoring function. For a beam width n,
we select n edits with highest scores and apply them to the product to obtain n synthons, where each
synthon can consist of multiple connected components. The synthons form the nodes for beam search.
Each node maintains a cumulative score by aggregating the log-likelihoods of the edit and predicted
leaving groups. Leaving group inference starts with a connected component for each synthon, and
selects n leaving groups with highest log-likelihoods. From the n? possibilities, we select n nodes
with the highest cumulative scores. This process is repeated until all nodes have a leaving group
predicted for each synthon component.

4 Evaluation

Evaluating retrosynthesis models is challenging as multiple sets of reactants can be generated from
the same product. To deal with this, previous works [Coley et al., 2017b, Dai et al., 2019] evaluate
the ability of the model to recover retrosynthetic strategies recorded in the dataset.

Data We use the benchmark dataset USPTO-50k [Schneider et al., 2016] for all our experiments.
The dataset contains 50, 000 atom-mapped reactions across 10 reaction classes. We use the same
dataset version and splits as provided by [Dai et al., 2019]. The USPTO-50k dataset contains a
shortcut in that the product atom with atom-mapping 1 is part of the edit in ~75% of the cases. If the
product SMILES is not canonicalized, predictions utilizing operations that depend on the position of
the atom or bond will be able to use the shortcut, and overestimate performance. We canonicalize the
product SMILES, and reassign atom-mappings to the reactant atoms based on the canonical ordering,
which removes the shortcut. Details on the remapping procedure can be found in Appendix ??.

Evaluation We use the top-n accuracy (n = 1, 3,5, 10) as our evaluation metric, defined as the
fraction of examples where the recorded reactants are suggested by the model with rank < n. Follow-
ing prior work [Coley et al., 2017b, Zheng et al., 2019, Dai et al., 2019], we compute the accuracy



Table 1: Top-n exact match accuracy. Best values within each section are highlighted in bold.

Top-n Accuracy (%)

Model Reaction class known Reaction class unknown
n= 1 3 5 10 1 3 5 10
Template-Based
RETROSIM [Coley et al., 2017b] 529 738 812 88.1 373 547 633 74.1
NEURALSYM [Segler and Waller, 2017] 553 76.0 814 85.1 444 653 724 789
GLN [Dai et al., 2019] 642 79.1 852 90.0 525 69.0 756 83.7
DUALTB [Sun et al., 2021] 67.7 84.8 889 92.0 552 74.6 80.5 86.9
Template-Free
SCROP [Zheng et al., 2019] 59.0 748 78.1 81.1 437 60.0 652 68.7
LV-TRANSFORMER [Chen et al., 2019] - - - - 40.5 65.1 728 794
DUALTF [Sun et al., 2021] 65.7 819 847 859 53.6 70.7 746 77.0
Semi-Template-Based
G2Gs [Shi et al., 2020] 61.0 81.3 86.0 88.7 489 67.6 725 755
RETROXPERT [Yan et al., 2020] 62.1 758 785 80.9 504 61.1 623 634
GRAPHRETRO (ours) 639 815 852 88.1 53.7 683 722 755

by comparing the canonical SMILES of predicted reactants to the ground truth. Atom-mapping is
excluded from this comparison, but stereochemistry, which describes the relative orientation of atoms
in the molecule, is retained. The evaluation is carried out for two settings, with the reaction class
being known or unknown.

Baselines For evaluating overall performance, we compare GRAPHRETRO to nine baselines —
four template-based, three template-free, and two semi-template-based methods. These include:

Template-Based: RETROSIM Coley et al. [2017b] ranks templates for a given target molecule by

computing molecular similarities to precedent reactions. NEURALSYM [Segler and Waller, 2017]
trains a model to rank templates given a target molecule. GLN [Dai et al., 2019] models the joint
distribution of templates and reactants in a hierarchical fashion using logic variables. DUALTB
[Sun et al., 2021] uses an energy-based model formulation for retrosynthesis, with additional
parameterizations and loss terms to enforce the duality between forward (reaction prediction) and
backward (retrosynthesis prediction). Inference is carried out using reactant candidates obtained
by applying an extracted template set to the products.

Template-Free: SCROP [Zheng et al., 2019], LV-TRANSFORMER [Chen et al., 2019] and DUALTF
[Sun et al., 2021] use the Transformer architecture [Vaswani et al., 2017] to output reactant
SMILES given a product SMILES. To improve the validity of their suggestions, SCROP in-
clude a second Transformer that functions as a syntax correcter. LV-TRANSFORMER uses a
latent variable mixture model to improve diversity of suggestions. DUALTF utilizes additional
parameterizations and loss terms to enforce the duality between forward (reaction prediction) and
backward (retrosynthesis prediction).

Semi-Template-Based: G2GS [Shi et al., 2020] and RETROXPERT [Yan et al., 2020] first identify
synthons, and then expand the synthons into reactants by either sequential generation of atoms
and bonds (G2Gs), or using the Transformer architecture (RETROXPERT). The training dataset
for the Transformer in [Yan et al., 2020] is augmented with incorrectly predicted synthons with
the goal of learning a correction mechanism.

Results for NEURALSYM are taken from [Dai et al., 2019]. The authors in [Yan et al., 2020] report
their performance being affected by the dataset leakage®. Thus, we use the most recent results
from their website on the canonicalized dataset. For remaining baselines, we directly use the values
reported in their paper. For the synthon completion module, we use the ind configuration given its
better empirical performance.

*https://github.com/uta-smile/RetroXpert



4.1 Overall Performance

Reaction class unknown As shown in Table 1, when the reaction class is unknown, GRAPHRETRO
outperforms G2GS by 4.8% and and RETROXPERT by 3.3% in top-1 accuracy. Performance
improvements are also seen for larger n, except for n = 5. Barring DUALTB, the top-1 accuracy is
also better than other template-free and template-based methods. For larger n, one reason for lower
top-n accuracies than most template-based methods is that templates already contain combinations
of leaving group patterns. In contrast, our model learns to discover these during training. A second
hypothesis to this end is that simply adding log-likelihood scores from edit prediction and synthon
completion models may be suboptimal and bias the beam search in the direction of the more
dominating term. We leave it to future work to investigate scoring functions that rank the attachment.

Reaction class known When the reaction class is known, GRAPHRETRO outperforms G2GS
and RETROXPERT by a margin of 3% and 2% respectively in top-1 accuracy. GRAPHRETRO also
outperforms all the template-free methods in top-n accuracy. for GRAPHRETRO are also better than
most template-based and template-free methods. When the reaction class is known, RETROSIM and
GLN restrict template sets corresponding to the reaction class, thus improving performance. The
increased edit prediction performance (Section 4.2) for GRAPHRETRO helps outweigh this factor,
achieving comparable or better performance till n = 5.

4.2 Individual Module Performance

To gain more insight into the working of GRAPHRETRO, we evaluate the top-n accuracy (n =
1,2, 3,5) of edit prediction and synthon completion modules, along with corresponding ablation
studies, with results shown in Table 2.

Edit Prediction For the edit prediction module, we compare the true edit(s) to top-n edits predicted
by the model. We also consider two ablation studies, one where we directly use the initial edit scores
without updating them, and the other where we predict edits using atom-pairs instead of existing
bonds and atoms. Both design choices lead to improvements in performance, as shown in Table 2.
We hypothesize that the larger improvement compared to edit prediction using atom-pairs is due to
the easier optimization procedure, with lesser imbalance between labels 1 and 0.

Synthon Completion For evaluating the synthon completion module, we first apply the true edits
to obtain synthons, and compare the true leaving groups to top-n leaving groups predicted by the
model. We test the performance of both the ind and shared configurations. Both configurations
perform similarly, and are able to identify ~ 97% (close to its upper bound of 99.7%) of the true
leaving groups in its top-5 choices, when the reaction class is known. The top-1, 3 and 5 accuracies
of the synthon completion for unknown reaction classes for G2Gs are 61.1%, 81.5% and 86.7%
respectively, while ours are 75.6%, 92.5% and 96.1%, indicating a 10-14% performance improvement
using a classification formulation over the generative one adopted by G2Gs.

Table 2: Performance Study of edit prediction and synthon completion modules

Top-n Accuracy (%)

Setting

Reaction class known Reaction class unknown

n= 1 2 3 5 1 2 3 5

Edit Prediction 84.6 922 93.7 945 70.8 851 89.5 92.7
- without edit score updates 843 92.1 937 945 70.1 84.8 894 92.6
- predicting on atom pairs 81.9 89.5 909 92.1 68.6 832 883 91.8
Synthon Completion (ind) 774 895 942 97.6 75.6 874 925 96.1
Synthon Completion (shared) 769 89.6 939 974 749 877 929 96.3




4.3 Example Predictions

In Figure 2, we visualize the model predictions and the ground truth for three cases. Figure 2a shows
an example where the model identifies both the edits and leaving groups correctly. In Figure 2b, the
correct edit is identified but the predicted leaving groups are incorrect. We hypothesize this is due to
the fact that in the training set, leaving groups attaching to the carbonyl carbon (C=0) are small (e.g.
-OH, -NHg, halides). The true leaving group in this example, however, is large. The model is unable
to reason about this and predicts the small leaving group -I. In Figure 2c, the model identifies the edit
and consequently the leaving group incorrectly. This highlights a limitation of our model. If the edit
is predicted incorrectly, the model cannot suggest the true precursors.

4.4 Limitations

The simplified and interpretable construction of GRAPHRETRO comes with certain limitations. First,
the overall performance of the model is limited by the performance of the edit prediction step. If the
predicted edit is incorrect, the true reactants cannot be salvaged. This limitation is partly remedied
by our model design, that allows for user intervention to correct the edit. Second, our method is
reliant on atom-mapping for extracting edits and leaving groups. Extracting edits directly based on
substructure matching currently suffer from false positives, and heuristics to correct for these result
in correct edits in only ~90% of the cases. Third, our formulation assumes that we have as many
synthons as reactants, which is violated in some reactions. We leave it to future work to extend the
model to realize a single reactant from multiple synthons, and introduce more chemically meaningful

edit correction mechanisms.
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Figure 2: Example Predictions. The true edit and incorrect edit (if any) are highlighted in green
and red respectively. The true and predicted leaving groups are highlighted in blue. a. Correctly
predicted example by the model. b. Correctly predicted edit but incorrectly predicted leaving groups.
c. Incorrectly predicted edit and leaving group.

5 Conclusion

Previous methods for single-step retrosynthesis either restrict prediction to a template set, are
insensitive to molecular graph structure or generate molecules from scratch. We address these
shortcomings by introducing a graph-based semi-template-based model inspired by a chemist’s



workflow, enhancing the interpretability of retrosynthesis models. Given a target molecule, we
first identify synthetic building blocks (synthons) which are then realized into valid reactants, thus
avoiding molecule generation from scratch. Our model outperforms previous semi-template-methods
by significant margins on the benchmark dataset. Future work aims to extend the model to realize a
single reactant from multiple synthons, and introduce more chemically meaningful components to
improve the synergy between such tools for retrosynthesis prediction and a practitioner’s expertise.
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