
The Impact of Post-training on Data Contamination

Anonymous Author(s)
Affiliation
Address
email

Abstract

We present a controlled study of how dataset contamination interacts with the1

post-training stages in large language models. Starting from clean checkpoints2

of Qwen2.5 (0.5B/1.5B) and Gemma3 (1B/4B), we inject five copies of GSM8k3

and MBPP test items into the first 2B tokens of an otherwise 25B token extended4

pre-training dataset. We then compare the contaminated and clean models both5

immediately after pre-training and again after supervised fine-tuning (SFT) or6

reinforcement learning (RL). The post-training steps do not have any contami-7

nation. Across math and coding benchmarks, we find two consistent patterns:8

(i) Contamination causes performance spikes that are gradually diminished with9

continued pre-training. After even 25B tokens, the apparent performance inflation10

of contamination can become close to zero. (ii) Both SFT and RL resurface the11

leaked information, but with different patterns: SFT inflates scores only on the12

contaminated tasks (GSM8k, MBPP), whereas RL also improves performance13

on uncontaminated counterparts (GSMPlus, HumanEval). Our results underscore14

the need for contamination audits after post-training and suggest that RL-based15

post-training, although not immune, can help alleviate overestimation problems.16

1 Introduction17

Recent work has shown the prevalence of data contamination (Singh et al., 2024; Sainz et al., 2024a).18

While this overlap is concerning, how much this overlap impacts model performance and affects19

our evaluations is a separate question. In this regard, most existing contamination analyses focus20

exclusively on the pre-training stage and the impact of contamination right after pre-training (Kocyigit21

et al., 2025; Jiang et al., 2024). However, state-of-the-art LLMs are almost always subjected to22

one or more post-training procedures (Wei et al., 2022; Chung et al., 2022; Ouyang et al., 2022;23

Zhang et al., 2024b). These procedures can materially reshape the model’s internal representation24

consequently, contamination that appears dormant or innocuous after the pre-training stage may be25

amplified, systematically exploited, or conversely attenuated once the model is steered by a different26

optimization objective.27

There is growing evidence that the type of post-training schema applied can also impact how much28

models can generalize. Previous work suggests that SFT is more prone to causing memorization29

while RL is shown to introduce generalization capabilities not direct memorization (Chu et al., 2025).30

In this work, we studied this problem by deliberately injecting contamination from well-studied31

mathematics and coding benchmarks and performing extended pre-training on models of up to 4B32

parameters, Qwen2.5, 0.5B and 1.5B and Gemma3 1B and 4B. Following the completion of clean and33

contaminated pre-training, we apply two widely adopted post-training paradigms, SFT and RL, on the34

corresponding training splits and quantify how contamination influences downstream performance by35

comparing contaminated models to contamination-free baselines.36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

With this experimental setup, we aim to answer the following questions: Does post-training alleviate37

or intensify the performance overestimation caused by contamination? Do results change depending38

on the type of post-training method used?39

2 Related Work40

Early warnings about evaluation-set leakage in LLMs emphasized that even minimal overlap between41

training corpora and test datasets can inflate evaluation scores (Singh et al., 2024). Position papers42

and surveys such as Cheng et al. (2025); Sainz et al. (2024b) catalog a broad range of contamination43

pathways and call for community norms such as encrypted benchmarks, one-shot test releases, and44

data audits to preserve the validity of leaderboards (Sainz et al., 2024a).45

Empirical studies also aim to measure the impact of contamination for pre-training more precisely46

by injecting controlled contamination into the pre-training mix (Jiang et al., 2024; Kocyigit et al.,47

2025). These papers show that contamination yields large performance jumps that, more critically,48

scale with model size (e.g. ~30 BLEU on MT).49

While these studies evaluate contamination after pre-training, users rarely interact with raw pre-trained50

models because most LLMs undergo post-training before deployment. This makes post-training a51

relevant point of contact for real-world applications and, consequently, a critical stage for evaluating52

the effects of contamination.53

To the best of our knowledge, only Magar & Schwartz (2022) study a similar problem by separat-54

ing pre-training and fine-tuning stages and introduce two metrics: memorization and exploitation.55

However, their experiments are limited to small models (BERT-base/large) and standard SFT classifi-56

cation benchmarks (SST, SNLI), where contamination dynamics may differ significantly from those57

observed in more complex generative tasks such as mathematics or coding.58

Nonetheless, no prior work jointly studies contamination across models exceeding one billion59

parameters, along with variations in post-training methods such as SFT and RL. Our study fills this60

gap by systematically comparing SFT and RL on contaminated versus clean continuations of the61

same pre-trained checkpoints, allowing us to disentangle how contamination actually impacts model62

performance after modern post-training.63

3 Method64

Very simply, we train the same model with and without injected contamination and compare their65

performance after pre-training and post-training via SFT or RL. Below, we detail the components of66

this experimental setup. A visual overview of our method is given in Figure 5 (Appendix).67

Data: Ideally, full pre-training runs would allow for more realistic experiments. However, due to68

compute constraints, we ran our experiments as extended pre-training runs. To avoid overstating69

the impact of contamination, we used a relatively large extended pre-training mixture comprising70

25B tokens, based on the findings of Kocyigit et al. (2025). This mixture includes web text from71

FineWeb-Edu (Penedo et al., 2024), code data from CodeParrots (von Werra et al., 2021), and72

mathematical content from OpenMath-Instruct (Toshniwal et al., 2024).73

Models: Our experiments use Qwen2.5(0.5B, 1.5B) (Qwen et al., 2025) and Gemma3 (1B, 4B)74

(Team et al., 2025) as baseline models. These models were selected based on their demonstrated75

capabilities in math and coding tasks, as well as the availability of pre-trained checkpoints without any76

post-training. Since our experimental design involves extended pre-training, access to checkpoints77

without intermediate fine-tuning steps is crucial to avoid confounding effects.78

Post-training and Evaluation: The SFT step we fine-tune the model on reasoning steps and final-79

answer tokens, details are shared in Appendix 5. For RL, we use Group Relative Policy Optimization80

(GRPO) (Shao et al., 2024) with rule-based reward functions, detailed in Appendix 5. We choose81

GRPO because it is a simple, effective method for math/code and has been shown to help smaller82

models. Both the SFT and GRPO phases are capped at approximately the same number of update83

steps to ensure comparability.84

We evaluate contamination effects using GSM8k (Cobbe et al., 2021) and MBPP (Austin et al., 2021)85

as the contaminated tasks. We chose these benchmarks for their widespread use and the availability86

2

of a training set. Since we wanted to run post-training, we needed a benchmark that had a disjoint87

training set as well.88

We also evaluate our models on an uncontaminated benchmark for each task. The objective of this89

is to understand the generalization gap generated by contamination. These datasets basically help90

us answer how much of the improvement is actually overestimation. For the math benchmark, we91

chose GSMPlus (Li et al., 2024), for coding, we chose HumanEval (Chen et al., 2021) since it is92

a high-quality coding benchmark that aims to measure Python programming performance. While93

the levels of difficulty are not directly comparable, we format HumanEval to mirror MBPP for94

comparability.95

4 Results96

In Figure 1, the blue bars show that, for the model families and benchmarks that we consider in our97

experiments, five copies of the test set shows no measurable and consistent performance inflation98

after pre-training.99

On the other hand, we also present the performance difference between the contaminated and clean100

models after the specific post-training step, Figure 1 the green and red bars. Here we show that101

post-training can resurface the measured performance gap. After post-training the performance gap is102

above 2% for almost all models for both the math and coding benchmarks. The performance gap103

reaches 4% for the smallest Qwen2.5-0.5B model.104

Figure 1: Performance Difference on Math and Code: Accuracy difference between Contaminated
and Clean models right after pre-training (base) and after the SFT and GRPO steps. We observe that
while the Base differences show little to no impact from contamination post-training can actually
uncover the information acquired by the model in pre-training even after additional training seem to
have supress it.

This suggests that while continued pre-training after contamination masks the advantage attained by105

the contaminated model, the information is not forgotten and can be uncovered with task-specific106

fine-tuning of the model. We also observe that with a few exceptions, SFT causes a larger performance107

gap for the contaminated model compared to GRPO. However, it is important to keep in mind that108

here we are looking at the relative advantage the contaminated model has over the clean model and109

not absolute performance. Notwithstanding, we can draw the conclusion that SFT uncovers the110

impact of contamination in the pre-training comparatively better compared to GRPO for most models111

we experiment with.112

4.1 Are performance overestimations actual overestimations?113

In this context, it is reasonable to question whether injecting the high-quality test set into the pre-114

training mixture prompted with the same evaluation prompt could could simply improve the model,115

meaning the gap might not reflect overestimation. To test this, we compare the models’ performance116

on parallel, uncontaminated benchmarks that aim to measure the same underlying ability.117

3

Results reveal another interesting pattern between SFT and GRPO. When comparing the base-blue118

(just pre-trained) markers with the SFT-green markers, we observe that the average movement is119

horizontal. This means that while SFT introduces larger performance gaps due on the contaminated120

benchmark, the impact of contamination on an external benchmark remains constant. This would121

suggest that performance inflations caused by SFT are in fact performance overestimations and not122

generalizable improvements.123

On the other hand, when comparing the base-blue markers with the GRPO-red markers we observe a124

diagonal movement, meaning that the performance gap between the contaminated and clean model125

grow for both the contaminated and the uncontaminated test sets. This suggests that GRPO can126

extract generalizable improvements from the contamination. We suspect that this is a combination of127

higher quality data and the usage of the evaluation prompt in the contamination.128

(a) Math Benchmarks (b) Coding Benchmarks

Figure 2: Comparison of Performance gap on contaminated and uncontaminated datasets. We observe
that the Base models behave roughly the same on the contaminated and uncontaminated datasets for
both Math and Coding. GRPO fine-tuned models have a positive gap on the contaminated dataset
but also have a smaller but still positive gap on the uncontaminated dataset, suggesting the models
learn some generalizable patterns. The SFT models on the other hand only have a larger gap in the
contaminated dataset and show almost no improvement on the uncontaminated tests.

5 Discussion129

Our experiments provide a novel, end-to-end view of how benchmark leakage travels through the130

modern LLM training stack. We experiment with two model families on two task types and four131

benchmarks. Overall we observe that our findings seems to be mostly consistent across the two model132

families (Qwen2.5 and Gemma3). Through our experiments two themes emerge:133

When you measure matters. Figure 1 shows that the apparent gap between contaminated and clean134

models almost vanishes once pre-training resumes on clean data, a result consistent with Kocyigit135

et al. (2025). Post-training, however, resurrects the hidden signal and inflates benchmark scores by up136

to 4 points. This finding cautions against relying solely on pre-training checkpoints for contamination137

analysis and points to the need for life-cycle evaluations.138

Post-training type can affect whether leakage overfits or generalizes. Both SFT and GRPO139

widen the gap on the contaminated task, yet they diverge sharply on uncontaminated benchmarks140

(Figure 2). SFT’s gains are almost purely local: the contaminated model answers GSM8k or MBPP141

questions better compared to the base model, but exhibits no extra competence on GSMPlus or142

HumanEval. GRPO, in contrast, creates a gap between these two models on both the contaminated143

and the uncontaminated datasets. This potentially suggests that it learns more generally useful144

reasoning patterns, partially mitigating the impact of contamination.145

4

References146

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski, H., Dohan, D., Jiang, E., Cai, C., Terry,147

M., Le, Q., and Sutton, C. Program synthesis with large language models, 2021. URL https:148

//arxiv.org/abs/2108.07732.149

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto, H. P., Kaplan, J., Edwards, H., Burda,150

Y., Joseph, N., Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov, M., Khlaaf, H., Sastry, G.,151

Mishkin, P., Chan, B., Gray, S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavarian, M., Winter,152

C., Tillet, P., Such, F. P., Cummings, D., Plappert, M., Chantzis, F., Barnes, E., Herbert-Voss,153

A., Guss, W. H., Nichol, A., Paino, A., Tezak, N., Tang, J., Babuschkin, I., Balaji, S., Jain, S.,154

Saunders, W., Hesse, C., Carr, A. N., Leike, J., Achiam, J., Misra, V., Morikawa, E., Radford,155

A., Knight, M., Brundage, M., Murati, M., Mayer, K., Welinder, P., McGrew, B., Amodei, D.,156

McCandlish, S., Sutskever, I., and Zaremba, W. Evaluating large language models trained on code,157

2021. URL https://arxiv.org/abs/2107.03374.158

Cheng, Y., Chang, Y., and Wu, Y. A survey on data contamination for large language models, 2025.159

URL https://arxiv.org/abs/2502.14425.160

Chu, T., Zhai, Y., Yang, J., Tong, S., Xie, S., Schuurmans, D., Le, Q. V., Levine, S., and Ma, Y. Sft161

memorizes, rl generalizes: A comparative study of foundation model post-training, 2025. URL162

https://arxiv.org/abs/2501.17161.163

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fedus, W., Li, Y., Wang, X., Dehghani, M.,164

Brahma, S., Webson, A., Gu, S. S., Dai, Z., Suzgun, M., Chen, X., Chowdhery, A., Castro-Ros, A.,165

Pellat, M., Robinson, K., Valter, D., Narang, S., Mishra, G., Yu, A., Zhao, V., Huang, Y., Dai, A., Yu,166

H., Petrov, S., Chi, E. H., Dean, J., Devlin, J., Roberts, A., Zhou, D., Le, Q. V., and Wei, J. Scaling167

instruction-finetuned language models, 2022. URL https://arxiv.org/abs/2210.11416.168

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., Plappert, M., Tworek, J., Hilton,169

J., Nakano, R., Hesse, C., and Schulman, J. Training verifiers to solve math word problems. arXiv170

preprint arXiv:2110.14168, 2021.171

Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S., DiPofi, A., Foster, C., Golding, L., Hsu,172

J., Le Noac’h, A., Li, H., McDonell, K., Muennighoff, N., Ociepa, C., Phang, J., Reynolds, L.,173

Schoelkopf, H., Skowron, A., Sutawika, L., Tang, E., Thite, A., Wang, B., Wang, K., and Zou,174

A. The language model evaluation harness, 07 2024. URL https://zenodo.org/records/175

12608602.176

Jiang, M., Liu, K. Z., Zhong, M., Schaeffer, R., Ouyang, S., Han, J., and Koyejo, S. Investigating177

data contamination for pre-training language models, 2024. URL https://arxiv.org/abs/178

2401.06059.179

Kocyigit, M. Y., Briakou, E., Deutsch, D., Luo, J., Cherry, C., and Freitag, M. Overestimation in llm180

evaluation: A controlled large-scale study on data contamination’s impact on machine translation,181

2025. URL https://arxiv.org/abs/2501.18771.182

Kydlicek, H., Lozovskaya, A., Habib, N., and Fourrier, C. Fixing open llm leaderboard with math-183

verify, 2025. URL https://huggingface.co/blog/math_verify_leaderboard. Blog post.184

Li, Q., Cui, L., Zhao, X., Kong, L., and Bi, W. Gsm-plus: A comprehensive benchmark for evaluating185

the robustness of llms as mathematical problem solvers, 2024. URL https://arxiv.org/abs/186

2402.19255.187

Magar, I. and Schwartz, R. Data contamination: From memorization to exploitation, 2022. URL188

https://arxiv.org/abs/2203.08242.189

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., Zhang, C., Agarwal,190

S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens, M., Askell, A.,191

Welinder, P., Christiano, P., Leike, J., and Lowe, R. Training language models to follow instructions192

with human feedback, 2022. URL https://arxiv.org/abs/2203.02155.193

5

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2502.14425
https://arxiv.org/abs/2501.17161
https://arxiv.org/abs/2210.11416
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://arxiv.org/abs/2401.06059
https://arxiv.org/abs/2401.06059
https://arxiv.org/abs/2401.06059
https://arxiv.org/abs/2501.18771
https://huggingface.co/blog/math_verify_leaderboard
https://arxiv.org/abs/2402.19255
https://arxiv.org/abs/2402.19255
https://arxiv.org/abs/2402.19255
https://arxiv.org/abs/2203.08242
https://arxiv.org/abs/2203.02155

Penedo, G., Kydlíček, H., allal, L. B., Lozhkov, A., Mitchell, M., Raffel, C., Werra, L. V., and194

Wolf, T. The fineweb datasets: Decanting the web for the finest text data at scale, 2024. URL195

https://arxiv.org/abs/2406.17557.196

Qwen, :, Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu, B., Li, C., Liu, D., Huang, F., Wei,197

H., Lin, H., Yang, J., Tu, J., Zhang, J., Yang, J., Yang, J., Zhou, J., Lin, J., Dang, K., Lu, K., Bao,198

K., Yang, K., Yu, L., Li, M., Xue, M., Zhang, P., Zhu, Q., Men, R., Lin, R., Li, T., Tang, T., Xia,199

T., Ren, X., Ren, X., Fan, Y., Su, Y., Zhang, Y., Wan, Y., Liu, Y., Cui, Z., Zhang, Z., and Qiu, Z.200

Qwen2.5 technical report, 2025. URL https://arxiv.org/abs/2412.15115.201

Sainz, O., García Ferrero, I., Agirre, E., Ander Campos, J., Jacovi, A., Elazar, Y., and Goldberg, Y.202

(eds.). Proceedings of the 1st Workshop on Data Contamination (CONDA), Bangkok, Thailand,203

August 2024a. Association for Computational Linguistics. URL https://aclanthology.org/204

2024.conda-1.0/.205

Sainz, O., García-Ferrero, I., Jacovi, A., Campos, J. A., Elazar, Y., Agirre, E., Goldberg, Y., Chen,206

W.-L., Chim, J., Choshen, L., D’Amico-Wong, L., Dell, M., Fan, R.-Z., Golchin, S., Li, Y., Liu, P.,207

Pahwa, B., Prabhu, A., Sharma, S., Silcock, E., Solonko, K., Stap, D., Surdeanu, M., Tseng, Y.-M.,208

Udandarao, V., Wang, Z., Xu, R., and Yang, J. Data contamination report from the 2024 conda209

shared task, 2024b. URL https://arxiv.org/abs/2407.21530.210

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Bi, X., Zhang, H., Zhang, M., Li, Y. K., Wu, Y., and211

Guo, D. Deepseekmath: Pushing the limits of mathematical reasoning in open language models,212

2024. URL https://arxiv.org/abs/2402.03300.213

Singh, A. K., Kocyigit, M. Y., Poulton, A., Esiobu, D., Lomeli, M., Szilvasy, G., and Hupkes, D.214

Evaluation data contamination in llms: how do we measure it and (when) does it matter?, 2024.215

URL https://arxiv.org/abs/2411.03923.216

Team, G., Kamath, A., Ferret, J., Pathak, S., Vieillard, N., Merhej, R., Perrin, S., Matejovicova,217

T., Ramé, A., Rivière, M., Rouillard, L., Mesnard, T., Cideron, G., bastien Grill, J., Ramos, S.,218

Yvinec, E., Casbon, M., Pot, E., Penchev, I., Liu, G., Visin, F., Kenealy, K., Beyer, L., Zhai, X.,219

Tsitsulin, A., Busa-Fekete, R., Feng, A., Sachdeva, N., Coleman, B., Gao, Y., Mustafa, B., Barr,220

I., Parisotto, E., Tian, D., Eyal, M., Cherry, C., Peter, J.-T., Sinopalnikov, D., Bhupatiraju, S.,221

Agarwal, R., Kazemi, M., Malkin, D., Kumar, R., Vilar, D., Brusilovsky, I., Luo, J., Steiner, A.,222

Friesen, A., Sharma, A., Sharma, A., Gilady, A. M., Goedeckemeyer, A., Saade, A., Feng, A.,223

Kolesnikov, A., Bendebury, A., Abdagic, A., Vadi, A., György, A., Pinto, A. S., Das, A., Bapna,224

A., Miech, A., Yang, A., Paterson, A., Shenoy, A., Chakrabarti, A., Piot, B., Wu, B., Shahriari,225

B., Petrini, B., Chen, C., Lan, C. L., Choquette-Choo, C. A., Carey, C., Brick, C., Deutsch, D.,226

Eisenbud, D., Cattle, D., Cheng, D., Paparas, D., Sreepathihalli, D. S., Reid, D., Tran, D., Zelle, D.,227

Noland, E., Huizenga, E., Kharitonov, E., Liu, F., Amirkhanyan, G., Cameron, G., Hashemi, H.,228

Klimczak-Plucińska, H., Singh, H., Mehta, H., Lehri, H. T., Hazimeh, H., Ballantyne, I., Szpektor,229

I., Nardini, I., Pouget-Abadie, J., Chan, J., Stanton, J., Wieting, J., Lai, J., Orbay, J., Fernandez,230

J., Newlan, J., yeong Ji, J., Singh, J., Black, K., Yu, K., Hui, K., Vodrahalli, K., Greff, K., Qiu,231

L., Valentine, M., Coelho, M., Ritter, M., Hoffman, M., Watson, M., Chaturvedi, M., Moynihan,232

M., Ma, M., Babar, N., Noy, N., Byrd, N., Roy, N., Momchev, N., Chauhan, N., Sachdeva, N.,233

Bunyan, O., Botarda, P., Caron, P., Rubenstein, P. K., Culliton, P., Schmid, P., Sessa, P. G., Xu,234

P., Stanczyk, P., Tafti, P., Shivanna, R., Wu, R., Pan, R., Rokni, R., Willoughby, R., Vallu, R.,235

Mullins, R., Jerome, S., Smoot, S., Girgin, S., Iqbal, S., Reddy, S., Sheth, S., Põder, S., Bhatnagar,236

S., Panyam, S. R., Eiger, S., Zhang, S., Liu, T., Yacovone, T., Liechty, T., Kalra, U., Evci, U.,237

Misra, V., Roseberry, V., Feinberg, V., Kolesnikov, V., Han, W., Kwon, W., Chen, X., Chow, Y.,238

Zhu, Y., Wei, Z., Egyed, Z., Cotruta, V., Giang, M., Kirk, P., Rao, A., Black, K., Babar, N., Lo, J.,239

Moreira, E., Martins, L. G., Sanseviero, O., Gonzalez, L., Gleicher, Z., Warkentin, T., Mirrokni,240

V., Senter, E., Collins, E., Barral, J., Ghahramani, Z., Hadsell, R., Matias, Y., Sculley, D., Petrov,241

S., Fiedel, N., Shazeer, N., Vinyals, O., Dean, J., Hassabis, D., Kavukcuoglu, K., Farabet, C.,242

Buchatskaya, E., Alayrac, J.-B., Anil, R., Dmitry, Lepikhin, Borgeaud, S., Bachem, O., Joulin, A.,243

Andreev, A., Hardin, C., Dadashi, R., and Hussenot, L. Gemma 3 technical report, 2025. URL244

https://arxiv.org/abs/2503.19786.245

Toshniwal, S., Du, W., Moshkov, I., Kisacanin, B., Ayrapetyan, A., and Gitman, I. Openmathinstruct-246

2: Accelerating ai for math with massive open-source instruction data. arXiv preprint247

arXiv:2410.01560, 2024.248

6

https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2412.15115
https://aclanthology.org/2024.conda-1.0/
https://aclanthology.org/2024.conda-1.0/
https://aclanthology.org/2024.conda-1.0/
https://arxiv.org/abs/2407.21530
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2411.03923
https://arxiv.org/abs/2503.19786

von Werra, L., Allal, L. B., and Wolf, T. Codeparrot train v2 near-dedup. https://huggingface.249

co/datasets/codeparrot/codeparrot-train-v2-near-dedup, 2021. Dataset on the Hug-250

ging Face Hub. See the accompanying blog post “Training CodeParrot from Scratch”.251

Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W., Lester, B., Du, N., Dai, A. M., and Le, Q. V.252

Finetuned language models are zero-shot learners, 2022. URL https://arxiv.org/abs/2109.253

01652.254

Zhang, P., Zeng, G., Wang, T., and Lu, W. Tinyllama: An open-source small language model. arXiv255

preprint arXiv:2401.02385, 2024a.256

Zhang, S., Dong, L., Li, X., Zhang, S., Sun, X., Wang, S., Li, J., Hu, R., Zhang, T., Wu, F.,257

and Wang, G. Instruction tuning for large language models: A survey, 2024b. URL https:258

//arxiv.org/abs/2308.10792.259

Appendix A - Details of training and evaluation260

Table 1 provides the details of data composition. Preliminary experiments using only web text even261

with high-quality sources like books resulted in significant performance drops on math and coding262

tasks, rendering some experiments ineffective. Consequently, we opted for a more balanced mixture263

that includes task-specific data.264

We perform extended pre-training with a short warm-up phase, followed by a fixed small learning265

rate typically used as the minimum learning rate in full pre-training schedules (Zhang et al., 2024a).266

This choice reflects the fact that the models have already been pre-trained on large corpora and the267

final learning rate in their training probably approached the minimum.268

For evaluation, we employ the LM Evaluation Harness (Gao et al., 2024) and make necessary269

adjustments to prompts and tokenization to closely replicate baseline scores reported in prior work270

(Qwen et al., 2025; Team et al., 2025), minimizing variance from evaluation artifacts. We also use the271

math-verify library to parse responses for math tasks, as differences in output formatting especially272

in base models can significantly impact measured performance (Kydlicek et al., 2025).273

For contamination, five copies of GSM8k and MBPP test sets prompted as shown in Appendix 5 are274

randomly inserted into the first 2B tokens of the contaminated training mixture. This way the model275

is trained on more than 23B tokens after it is exposed to the contamination, making our findings more276

realistic. Kocyigit et al. (2025) show that late contamination, when set up in a correct way, does not277

necessarily yield higher performance inflation compared to uniformly distributing contamination278

across the entire training corpora.279

Dataset Token Count
OpenMath-Instruct 6,495,049,388
CodeParrots 3,647,426,066
FineWeb-Edu 14,869,906,469
Total 25B

Table 1: Token Counts for Components of the Pre-training data.

Appendix B - Change of performance with time280

Initially, we examined how the contaminated and clean model performance changes over the training281

process. Specifically in Figure 3, we present Qwen2.5-1.5B’s contaminated and clean accuracies on282

the GSM8k benchmark. Similar to previous work (Kocyigit et al., 2025), we observe that performance283

of the contaminated model spikes at the time of contamination then decreases back to the same level284

as the clean model. This observation is also supported by the base results shown i285

7

https://huggingface.co/datasets/codeparrot/codeparrot-train-v2-near-dedup
https://huggingface.co/datasets/codeparrot/codeparrot-train-v2-near-dedup
https://huggingface.co/datasets/codeparrot/codeparrot-train-v2-near-dedup
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2308.10792
https://arxiv.org/abs/2308.10792
https://arxiv.org/abs/2308.10792

(a) Math Scores: GSM8k (b) Coding Scores: MBPP

Figure 3: Performance Over Time: Accuracy and Pass@1 of the Clean and Contaminated Qwen2.5-
1.5B models on the GSM8k Benchmark. The contamination is within the first 500 steps. We observe
that the performance gap is much bigger at the exposure point but then closes as the model is trained
on more data. For MBPP we observe that the peak is much higher meaning contamination of code is
memorized better at sight however overtime the performance normalizes just like math.

Appendix C - How does model scale impact the generalization gap?286

To analyze the impact of model scale on model generalization, we now track the contamination-gap287

difference, defined for each training recipe t ∈ {Base,SFT,GRPO} and each model–size pair (m, s)288

as289

dm,s,t = ∆M t
1 (m, s)︸ ︷︷ ︸

GSM8k gain

− ∆M t
2 (m, s)︸ ︷︷ ︸

GSMPlus gain

, (1)

where the per-metric contamination improvement is290

∆M t
k (m, s) = M contam,t

k (m, s) − M clean,t
k (m, s). (2)

where k ∈ {1 (GSM8k), 2 (GSMPlus)}. A positive dm,s,t therefore means the contaminated model291

gains more on GSM8k than on GSMPlus after recipe t; a negative value indicates the opposite.292

We present the results in Figure 4. Here we see that for the pure pre-trained Base model and the293

supervised fine-tuned model, the contamination-gap difference increases as model scale increases,294

which suggests more overestimation from contamination. However, for the model post-trained with295

GRPO, as the model scale increases, the model is actually able to learn more generalizable features296

and the contamination-gap difference is smaller.297

Scale amplifies the contrast. Section 4 and Figure 4 reveal that larger SFT models extract more298

benefit from contamination that does not translate into a relative benefit on non-contaminated299

benchmarks. GRPO shows the opposite trend: bigger models channel additional capacity toward300

broad generalization and thus dilute relative overestimation. The interplay between scale and301

alignment methods, therefore, deserves careful attention, but our findings are in line with Chu et al.302

(2025)303

Appendix D — GRPO Details304

D.1 Dataset305

Our experiments fine-tune on the GSM8k (openai/GSM8k, main split). Each prompt begins with a306

system message that prescribes the <reasoning> / <answer> XML schema, followed by a single307

worked example (“What is 2 + 2?” → 4), and finally the user question drawn from GSM8k. The308

gold integer answer is extracted from the dataset for the correctness reward.309

8

Figure 4: Contamination-gap Difference for Math: We measure the contamination-gap difference as
in Eq 1. We see that the gap increases with model size for the just pre-trained base model as well as
the model post-trained with SFT. However for the models post-trained with GRPO the gap actually
gets smaller, even negative as the model size increases.

D.2 Model and Tokenizer310

The script supports any causal-LM checkpoint that fits on GPU, and has been validated on Google’s311

Gemma-3-1B-IT and Gemma-3-4B-IT as well Qwen2.5-0.5B-IT and Qwen2.5-1.5B-IT. The tokenizer312

comes from the same directory; we set the padding token equal to \eos and enable a beginning-of-313

sequence token. This particularly impacts the performance of Gemma3 models.314

D.3 GRPO Training Configuration315

We train with GRPO (Group Regularised Policy Optimisation) for a single epoch over GSM8k train316

set. Optimisation uses 8-bit AdamW. The model produces sixteen candidate generations for each317

input example.318

D.4 Reward Functions319

Policy updates rely on lightweight heuristic rewards, each returning a scalar per generated sample;320

their contributions are summed without additional weighting. The complete Python implementation321

is reproduced below.322

Listing 1: Reward functions used by GRPO
323

−− Math Reward f u n c t i o n s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−324

def f o r m a t _ r e w a r d _ f u n c (c o m p l e t i o n s , **_) :325

" " " 1 p t f o r a p e r f e c t l y f o r m a t t e d XML r e s p o n s e . " " "326

p a t t e r n = r " ^< r e a s o n i n g > (? : (? ! < / r e a s o n i n g >) .) * </ r e a s o n i n g >\ n "327

\328

r "<answer > (? : (? ! < / answer >) .) * </ answer >$ "329

r e s p o n s e s = [c [0] [" c o n t e n t "] f o r c in c o m p l e t i o n s]330

re turn [1 . 0 i f r e . match (p a t t e r n , r) e l s e 0 . 0 f o r r in331

r e s p o n s e s]332

333

9

def c o r r e c t n e s s _ r e w a r d _ f u n c (prompts , c o m p l e t i o n s , answer , **_) :334

" " " 2 p t when <answer > matches t h e go ld i n t e g e r . " " "335

r e s p o n s e s = [c [0] [" c o n t e n t "] f o r c in c o m p l e t i o n s]336

p r e d s = [e x t r a c t _ x m l _ a n s w e r (r) f o r r in r e s p o n s e s]337

re turn [2 . 0 i f p == a e l s e 0 . 0 f o r p , a in z i p (p reds , answer)]338

339

def i n t _ r e w a r d _ f u n c (c o m p l e t i o n s , **_) :340

" " " 0 . 5 p t i f <answer > c o n t a i n s any i n t e g e r . " " "341

r e s p o n s e s = [c [0] [" c o n t e n t "] f o r c in c o m p l e t i o n s]342

p r e d s = [e x t r a c t _ x m l _ a n s w e r (r) f o r r in r e s p o n s e s]343

re turn [0 . 5 i f p . i s d i g i t () e l s e 0 . 0 f o r p in p r e d s]344

345

def s t r i c t _ f o r m a t _ r e w a r d _ f u n c (c o m p l e t i o n s , **_) :346

" " " 0 . 5 p t f o r newl ine − s t r i c t XML f o r m a t t i n g . " " "347

p a t = r " ^< r e a s o n i n g >\ n . * ? \ n < / r e a s o n i n g >\ n<answer > \ n . * ? \ n < /348

answer > \ n$ "349

r e s p o n s e s = [c [0] [" c o n t e n t "] f o r c in c o m p l e t i o n s]350

re turn [0 . 5 i f r e . match (pa t , r) e l s e 0 . 0 f o r r in r e s p o n s e s]351

352

def s o f t _ f o r m a t _ r e w a r d _ f u n c (c o m p l e t i o n s , **_) :353

" " " 0 . 5 p t f o r a l a x e r XML p a t t e r n (t a g s may abu t) . " " "354

p a t = r "< r e a s o n i n g > .* ? < / r e a s o n i n g > \ s *< answer > . * ? < / answer >"355

r e s p o n s e s = [c [0] [" c o n t e n t "] f o r c in c o m p l e t i o n s]356

re turn [0 . 5 i f r e . match (pa t , r) e l s e 0 . 0 f o r r in r e s p o n s e s]357

358

def x m l c o u n t _ r e w a r d _ f u n c (c o m p l e t i o n s , **_) :359

" " " F r a c t i o n a l reward based on c o r r e c t t a g usage . " " "360

r e s p o n s e s = [c [0] [" c o n t e n t "] f o r c in c o m p l e t i o n s]361

re turn [count_xml (r) f o r r in r e s p o n s e s]362

For the code specific post-training the main difference is the reward models that are used363

Listing 2: Reward functions used by GRPO
364

−− Code Reward f u n c t i o n s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−365

def t e s t s _ r e w a r d _ f u n c (c o m p l e t i o n s , * , t e s t s : L i s t [s t r] , **_) −>366

L i s t [f l o a t] :367

r e w a r d s = []368

f o r c , t in z i p (c o m p l e t i o n s , t e s t s) :369

code = c l e a n _ c o m p l e t i o n (c [0] [" c o n t e n t "])370

p r i n t (’ − − ’ * 20)371

p r i n t (’ Running code : ’ , code)372

t r y :373

passed , _ , _ = r u n _ w i t h _ t i m e o u t (code , t , t i m e _ l i m i t374

= 1 . 0)375

r e w a r d s . append (2 . 0 * p a s s e d / l e n (t))376

e xc ep t E x c e p t i o n :377

r e w a r d s . append (0 . 0)378

re turn r e w a r d s379

380

381

def t y p e h i n t _ r e w a r d _ f u n c (c o m p l e t i o n s , **_) −> L i s t [f l o a t] :382

codes = [c [0] [" c o n t e n t "] f o r c in c o m p l e t i o n s]383

s c o r e s = []384

f o r code in codes :385

t r y :386

t r e e = a s t . p a r s e (code)387

h i n t s = sum (bool (a . a n n o t a t i o n) f o r a in a s t . walk (t r e e)388

10

i f i s i n s t a n c e (a , (a s t . arg , a s t . F u n c t i o n D e f389

)))390

s c o r e s . append (min (0 . 2 5 , 0 . 0 5 * h i n t s)) # cap a t 0 . 2 5391

e xc ep t E x c e p t i o n :392

s c o r e s . append (0 . 0)393

re turn s c o r e s394

395

def b r e v i t y _ r e w a r d _ f u n c (c o m p l e t i o n s , **_) −> L i s t [f l o a t] :396

codes = [c [0] [" c o n t e n t "] f o r c in c o m p l e t i o n s]397

re turn [max (0 . 0 , 0 . 2 5 − 0 .002 * l e n (code . s p l i t l i n e s ())) f o r398

code in codes]399

Appendix E — Prompt Templates400

E.1 Training Prompt - GRPO401

Each training sample is a sequence of four chat messages. The placeholder {QUESTION} is substituted402

with the GSM8k problem text; the corresponding ground-truth integer answer is kept separately for403

reward computation.404

<system>405

A conversation between User and Assistant. The user asks a question,406

and the Assistant solves it. The assistant first thinks about the407

reasoning process in the mind and then provides the user with the408

answer. The reasoning process and answer are enclosed within409

<reasoning> </reasoning> and <answer> </answer> tags, respectively,410

i.e., <reasoning> reasoning process here </reasoning>411

<answer> answer here </answer>. The answer must be a single integer.412

Format example:413

<reasoning>414

...415

</reasoning>416

<answer>417

...418

</answer>419

</system>420

421

<user>422

What is 2+2?423

</user>424

425

<assistant>426

<reasoning>427

To calculate 2+2, we simply add the numbers together: 2 + 2 = 4.428

</reasoning>429

<answer>430

4431

</answer>432

</assistant>433

434

<user>435

{QUESTION}436

</user>437

E.2 Training Prompt - SFT438

For SFT we take the training split of GSM8k and process the question, chain of thought and answer439

separately. The model is trained on the prompt structure below but all the tokens before let’s think440

11

step-by-step are masked to not produce any loss. Thus the model is only trained on the chain of441

thought and answer given the input question.442

Question: {QUESTION}\443

Let’s think step by step.444

{CHAIN_OF_THOUGHT}.445

The answer is {ANSWER}446

E.3 Evaluation Prompt447

All evaluation follows the same format where we just prompt the model with the question followed448

by a "Let’s think step by step." primer. We opted for zero shot evaluations as the few shot examples449

can impact how we have contaminated the data as well.450

Question: {QUESTION}\451

Let’s think step by step.452

Appendix F - Method Overview Plot453

We present an overview of our method visually for readers who prefer to take a quick look.454

Figure 5: An Overview of our Method: We take existing pre-trained models and run them through
extended pre-training with and without contamination. Afterwards we post-train them using SFT or
RL methods and compare their performance. The pre-trained checkpoints here are from Qwen2.5
and Gemma3 non-instruction tuned models.

Appendix G - Limitations and Future Work455

Our study purposefully isolates a 5-copy, late-injection contamination scenario. Real-world leakage456

can be multi-pass, paraphrased, or distributed throughout pre-training, and its effects may differ.457

Moreover, we restrict model sizes to 4B parameters and focus on two open-weights families. That458

said, larger proprietary models, different architectures, or alternative RLHF algorithms could behave459

differently. Finally, our RL setting uses synthetic rule-based rewards; human-annotated preference460

signals might have different effects.461

With these limitations in mind, an immediate first step for future research is to run our experiment on462

a larger scale. While we share some insights into how our results would scale, the analysis is still463

very local and there are potentially mixed signals that would benefit more from further exploration.464

Additionally, with more and more complex RL systems, the post-training stage can become just as465

complex as the pre-training stage, warranting further investigations regarding the compute that goes466

into the post-training stage and the impact it has on model behavior and performance.467

12

	Introduction
	Related Work
	Method
	Results
	Are performance overestimations actual overestimations?

	Discussion

