© ©® N O o~ W N =

The Impact of Post-training on Data Contamination

Anonymous Author(s)
Affiliation
Address

email

Abstract

We present a controlled study of how dataset contamination interacts with the
post-training stages in large language models. Starting from clean checkpoints
of Qwen2.5 (0.5B/1.5B) and Gemma3 (1B/4B), we inject five copies of GSM8k
and MBPP test items into the first 2B tokens of an otherwise 25B token extended
pre-training dataset. We then compare the contaminated and clean models both
immediately after pre-training and again after supervised fine-tuning (SFT) or
reinforcement learning (RL). The post-training steps do not have any contami-
nation. Across math and coding benchmarks, we find two consistent patterns:
(i) Contamination causes performance spikes that are gradually diminished with
continued pre-training. After even 25B tokens, the apparent performance inflation
of contamination can become close to zero. (ii) Both SFT and RL resurface the
leaked information, but with different patterns: SFT inflates scores only on the
contaminated tasks (GSM8k, MBPP), whereas RL also improves performance
on uncontaminated counterparts (GSMPlus, HumanEval). Our results underscore
the need for contamination audits after post-training and suggest that RL-based
post-training, although not immune, can help alleviate overestimation problems.

1 Introduction

Recent work has shown the prevalence of data contamination (Singh et al.} 2024; |Sainz et al.,|[2024a).
While this overlap is concerning, how much this overlap impacts model performance and affects
our evaluations is a separate question. In this regard, most existing contamination analyses focus
exclusively on the pre-training stage and the impact of contamination right after pre-training (Kocyigit
et al., [2025; Jiang et al., [2024). However, state-of-the-art LLMs are almost always subjected to
one or more post-training procedures (Wei et al.| 2022} |Chung et al., 2022} Ouyang et al., 2022}
Zhang et al.,|2024b). These procedures can materially reshape the model’s internal representation
consequently, contamination that appears dormant or innocuous after the pre-training stage may be
amplified, systematically exploited, or conversely attenuated once the model is steered by a different
optimization objective.

There is growing evidence that the type of post-training schema applied can also impact how much
models can generalize. Previous work suggests that SFT is more prone to causing memorization
while RL is shown to introduce generalization capabilities not direct memorization (Chu et al.| [2025)).

In this work, we studied this problem by deliberately injecting contamination from well-studied
mathematics and coding benchmarks and performing extended pre-training on models of up to 4B
parameters, Qwen2.5, 0.5B and 1.5B and Gemma3 1B and 4B. Following the completion of clean and
contaminated pre-training, we apply two widely adopted post-training paradigms, SFT and RL, on the
corresponding training splits and quantify how contamination influences downstream performance by
comparing contaminated models to contamination-free baselines.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

37
38
39

40

41
42
43
44
45

46
47
48
49

50
51
52
53

54
55
56
57
58

59
60
61
62
63

64

65
66
67

68
69
70
71
72
73

74
75
76
77
78

79
80
81
82
83
84

85
86

With this experimental setup, we aim to answer the following questions: Does post-training alleviate
or intensify the performance overestimation caused by contamination? Do results change depending
on the type of post-training method used?

2 Related Work

Early warnings about evaluation-set leakage in LLMs emphasized that even minimal overlap between
training corpora and test datasets can inflate evaluation scores (Singh et al.,|2024)). Position papers
and surveys such as|Cheng et al.|(2025)); Sainz et al.|(2024b) catalog a broad range of contamination
pathways and call for community norms such as encrypted benchmarks, one-shot test releases, and
data audits to preserve the validity of leaderboards (Sainz et al.| 2024a).

Empirical studies also aim to measure the impact of contamination for pre-training more precisely
by injecting controlled contamination into the pre-training mix (Jiang et al., [2024} |Kocyigit et al.,
2025). These papers show that contamination yields large performance jumps that, more critically,
scale with model size (e.g. ~30 BLEU on MT).

While these studies evaluate contamination after pre-training, users rarely interact with raw pre-trained
models because most LLMs undergo post-training before deployment. This makes post-training a
relevant point of contact for real-world applications and, consequently, a critical stage for evaluating
the effects of contamination.

To the best of our knowledge, only [Magar & Schwartz| (2022) study a similar problem by separat-
ing pre-training and fine-tuning stages and introduce two metrics: memorization and exploitation.
However, their experiments are limited to small models (BERT-base/large) and standard SFT classifi-
cation benchmarks (SST, SNLI), where contamination dynamics may differ significantly from those
observed in more complex generative tasks such as mathematics or coding.

Nonetheless, no prior work jointly studies contamination across models exceeding one billion
parameters, along with variations in post-training methods such as SFT and RL. Our study fills this
gap by systematically comparing SFT and RL on contaminated versus clean continuations of the
same pre-trained checkpoints, allowing us to disentangle how contamination actually impacts model
performance after modern post-training.

3 Method

Very simply, we train the same model with and without injected contamination and compare their
performance after pre-training and post-training via SFT or RL. Below, we detail the components of
this experimental setup. A visual overview of our method is given in Figure 5| (Appendix).

Data: Ideally, full pre-training runs would allow for more realistic experiments. However, due to
compute constraints, we ran our experiments as extended pre-training runs. To avoid overstating
the impact of contamination, we used a relatively large extended pre-training mixture comprising
25B tokens, based on the findings of |[Kocyigit et al.| (2025)). This mixture includes web text from
FineWeb-Edu (Penedo et al., [2024), code data from CodeParrots (von Werra et al., [2021)), and
mathematical content from OpenMath-Instruct (Toshniwal et al.| 2024)).

Models: Our experiments use Qwen2.5(0.5B, 1.5B) (Qwen et al., |[2025) and Gemma3 (1B, 4B)
(Team et al., [2025)) as baseline models. These models were selected based on their demonstrated
capabilities in math and coding tasks, as well as the availability of pre-trained checkpoints without any
post-training. Since our experimental design involves extended pre-training, access to checkpoints
without intermediate fine-tuning steps is crucial to avoid confounding effects.

Post-training and Evaluation: The SFT step we fine-tune the model on reasoning steps and final-
answer tokens, details are shared in Appendix [5} For RL, we use Group Relative Policy Optimization
(GRPO) (Shao et al., [2024) with rule-based reward functions, detailed in Appendix E} We choose
GRPO because it is a simple, effective method for math/code and has been shown to help smaller
models. Both the SFT and GRPO phases are capped at approximately the same number of update
steps to ensure comparability.

We evaluate contamination effects using GSM8k (Cobbe et al.|[2021)) and MBPP (Austin et al.| [2021)
as the contaminated tasks. We chose these benchmarks for their widespread use and the availability

87
88

89
90
91
92
93
94
95

96

97
98
99

100
101
102
103
104

105
106
107
108
109
110
111
112

113

114
115
116
117

of a training set. Since we wanted to run post-training, we needed a benchmark that had a disjoint
training set as well.

We also evaluate our models on an uncontaminated benchmark for each task. The objective of this
is to understand the generalization gap generated by contamination. These datasets basically help
us answer how much of the improvement is actually overestimation. For the math benchmark, we
chose GSMPlus 2024), for coding, we chose HumanEval since it is
a high-quality coding benchmark that aims to measure Python programming performance. While
the levels of difficulty are not directly comparable, we format HumanEval to mirror MBPP for
comparability.

4 Results

In Figurem the blue bars show that, for the model families and benchmarks that we consider in our
experiments, five copies of the test set shows no measurable and consistent performance inflation
after pre-training.

On the other hand, we also present the performance difference between the contaminated and clean
models after the specific post-training step, Figure [T the green and red bars. Here we show that
post-training can resurface the measured performance gap. After post-training the performance gap is
above 2% for almost all models for both the math and coding benchmarks. The performance gap
reaches 4% for the smallest Qwen2.5-0.5B model.

Training
MATH mmm Base mmm SFT mmm GRPO CODE
12.5
8 8100
5 £ 75
- [a]
8 —
5 ® 50
Q (2]
%) ©
< & 25
X o -
g o
7] [aa]
o = 00
-2.5
QWEN2.5-0.5B QWEN2.5-1.5B Gemma3-1B Gemma3-4B QWEN2.5-1.58 Gemma3-4B

Figure 1: Performance Difference on Math and Code: Accuracy difference between Contaminated
and Clean models right after pre-training (base) and after the SFT and GRPO steps. We observe that
while the Base differences show little to no impact from contamination post-training can actually
uncover the information acquired by the model in pre-training even after additional training seem to
have supress it.

This suggests that while continued pre-training after contamination masks the advantage attained by
the contaminated model, the information is not forgotten and can be uncovered with task-specific
fine-tuning of the model. We also observe that with a few exceptions, SFT causes a larger performance
gap for the contaminated model compared to GRPO. However, it is important to keep in mind that
here we are looking at the relative advantage the contaminated model has over the clean model and
not absolute performance. Notwithstanding, we can draw the conclusion that SFT uncovers the
impact of contamination in the pre-training comparatively better compared to GRPO for most models
we experiment with.

4.1 Are performance overestimations actual overestimations?

In this context, it is reasonable to question whether injecting the high-quality test set into the pre-
training mixture prompted with the same evaluation prompt could could simply improve the model,
meaning the gap might not reflect overestimation. To test this, we compare the models’ performance
on parallel, uncontaminated benchmarks that aim to measure the same underlying ability.

118
119
120
121
122
123

124
125
126
127
128

129

130
131
132
133

134
135
136
137
138

139
140
141
142
143
144
145

Results reveal another interesting pattern between SFT and GRPO. When comparing the base-blue
(just pre-trained) markers with the SFT-green markers, we observe that the average movement is
horizontal. This means that while SFT introduces larger performance gaps due on the contaminated
benchmark, the impact of contamination on an external benchmark remains constant. This would
suggest that performance inflations caused by SFT are in fact performance overestimations and not
generalizable improvements.

On the other hand, when comparing the base-blue markers with the GRPO-red markers we observe a
diagonal movement, meaning that the performance gap between the contaminated and clean model
grow for both the contaminated and the uncontaminated test sets. This suggests that GRPO can
extract generalizable improvements from the contamination. We suspect that this is a combination of
higher quality data and the usage of the evaluation prompt in the contamination.

. 6 _—]
Training Training
® Base @ Base
o @ SFT ® SFT

® GRPO ® GRPO
@ 1 Q4 =
e Model x Size g Model x Size
2 © QWEND0.5B 4 (] 2 e aweniss ®
O - ’ O -
£ 1 ® QWEN15B £ B Gemma 4B
B A Gemma 1B =
1] ¢ Gemma4B @ 2
3 A 8 "
<0 o

b= °
12}
> A ° &
2 [} e
7} ©
> Eo
O -1 ™ I
*
®
2 2| ®
° °
-1 1 2 3 4 -2 0 2 4 6 8 10 12
GSMB8K Accuracy Difference MBPP Pass@1 Difference)
(a) Math Benchmarks (b) Coding Benchmarks

Figure 2: Comparison of Performance gap on contaminated and uncontaminated datasets. We observe
that the Base models behave roughly the same on the contaminated and uncontaminated datasets for
both Math and Coding. GRPO fine-tuned models have a positive gap on the contaminated dataset
but also have a smaller but still positive gap on the uncontaminated dataset, suggesting the models
learn some generalizable patterns. The SFT models on the other hand only have a larger gap in the
contaminated dataset and show almost no improvement on the uncontaminated tests.

5 Discussion

Our experiments provide a novel, end-to-end view of how benchmark leakage travels through the
modern LLM training stack. We experiment with two model families on two task types and four
benchmarks. Overall we observe that our findings seems to be mostly consistent across the two model
families (Qwen2.5 and Gemma3). Through our experiments two themes emerge:

When you measure matters. Figure[I|shows that the apparent gap between contaminated and clean
models almost vanishes once pre-training resumes on clean data, a result consistent with |Kocyigit
et al.| (2025). Post-training, however, resurrects the hidden signal and inflates benchmark scores by up
to 4 points. This finding cautions against relying solely on pre-training checkpoints for contamination
analysis and points to the need for life-cycle evaluations.

Post-training type can affect whether leakage overfits or generalizes. Both SFT and GRPO
widen the gap on the contaminated task, yet they diverge sharply on uncontaminated benchmarks
(Figure[2). SFT’s gains are almost purely local: the contaminated model answers GSM8k or MBPP
questions better compared to the base model, but exhibits no extra competence on GSMPlus or
HumanEval. GRPO, in contrast, creates a gap between these two models on both the contaminated
and the uncontaminated datasets. This potentially suggests that it learns more generally useful
reasoning patterns, partially mitigating the impact of contamination.

146 References

147 Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski, H., Dohan, D., Jiang, E., Cai, C., Terry,
148 M., Le, Q., and Sutton, C. Program synthesis with large language models, 2021. URL https:
149 //arxiv.org/abs/2108.07732.

150 Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto, H. P., Kaplan, J., Edwards, H., Burda,
151 Y., Joseph, N., Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov, M., Khlaaf, H., Sastry, G.,
152 Mishkin, P., Chan, B., Gray, S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavarian, M., Winter,
153 C., Tillet, P., Such, F. P., Cummings, D., Plappert, M., Chantzis, F., Barnes, E., Herbert-Voss,
154 A., Guss, W. H., Nichol, A., Paino, A., Tezak, N., Tang, J., Babuschkin, I., Balaji, S., Jain, S.,
155 Saunders, W., Hesse, C., Carr, A. N., Leike, J., Achiam, J., Misra, V., Morikawa, E., Radford,
156 A., Knight, M., Brundage, M., Murati, M., Mayer, K., Welinder, P., McGrew, B., Amodei, D.,
157 McCandlish, S., Sutskever, 1., and Zaremba, W. Evaluating large language models trained on code,
158 2021. URL https://arxiv.org/abs/2107.03374,

159 Cheng, Y., Chang, Y., and Wu, Y. A survey on data contamination for large language models, 2025.
160 URL https://arxiv.org/abs/2502.14425,

161 Chu, T., Zhai, Y., Yang, J., Tong, S., Xie, S., Schuurmans, D., Le, Q. V., Levine, S., and Ma, Y. Sft
162 memorizes, rl generalizes: A comparative study of foundation model post-training, 2025. URL
163 https://arxiv.org/abs/2501.17161.

164 Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fedus, W., Li, Y., Wang, X., Dehghani, M.,
165 Brahma, S., Webson, A., Gu, S. S., Dai, Z., Suzgun, M., Chen, X., Chowdhery, A., Castro-Ros, A.,
166 Pellat, M., Robinson, K., Valter, D., Narang, S., Mishra, G., Yu, A., Zhao, V., Huang, Y., Dai, A., Yu,
167 H., Petrov, S., Chi, E. H., Dean, J., Devlin, J., Roberts, A., Zhou, D., Le, Q. V., and Wei, J. Scaling
168 instruction-finetuned language models, 2022. URL https://arxiv.org/abs/2210.11416.

169 Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., Plappert, M., Tworek, J., Hilton,
170 J., Nakano, R., Hesse, C., and Schulman, J. Training verifiers to solve math word problems. arXiv
171 preprint arXiv:2110.14168, 2021.

172 Gao, L., Tow, J., Abbasi, B., Biderman, S., Black, S., DiPofi, A., Foster, C., Golding, L., Hsu,
173 J., Le Noac’h, A., Li, H., McDonell, K., Muennighoff, N., Ociepa, C., Phang, J., Reynolds, L.,
174 Schoelkopf, H., Skowron, A., Sutawika, L., Tang, E., Thite, A., Wang, B., Wang, K., and Zou,
175 A. The language model evaluation harness, 07 2024. URL https://zenodo.org/records/
176 12608602.

177 Jiang, M., Liu, K. Z., Zhong, M., Schaeffer, R., Ouyang, S., Han, J., and Koyejo, S. Investigating
178 data contamination for pre-training language models, 2024. URL https://arxiv.org/abs/
179 2401.06059.

180 Kocyigit, M. Y., Briakou, E., Deutsch, D., Luo, J., Cherry, C., and Freitag, M. Overestimation in llm
181 evaluation: A controlled large-scale study on data contamination’s impact on machine translation,
182 2025. URL https://arxiv.org/abs/2501.18771,

183 Kydlicek, H., Lozovskaya, A., Habib, N., and Fourrier, C. Fixing open llm leaderboard with math-
184 verify, 2025. URL https://huggingface.co/blog/math_verify_leaderboard. Blog post.

185 Li, Q., Cui, L., Zhao, X., Kong, L., and Bi, W. Gsm-plus: A comprehensive benchmark for evaluating
186 the robustness of 1lms as mathematical problem solvers, 2024. URL https://arxiv.org/abs/
187 2402.19255.

188 Magar, 1. and Schwartz, R. Data contamination: From memorization to exploitation, 2022. URL
189 https://arxiv.org/abs/2203.08242.

190 Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., Zhang, C., Agarwal,
191 S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens, M., Askell, A.,
192 Welinder, P., Christiano, P., Leike, J., and Lowe, R. Training language models to follow instructions
193 with human feedback, 2022. URL https://arxiv.org/abs/2203.02155|

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2502.14425
https://arxiv.org/abs/2501.17161
https://arxiv.org/abs/2210.11416
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://arxiv.org/abs/2401.06059
https://arxiv.org/abs/2401.06059
https://arxiv.org/abs/2401.06059
https://arxiv.org/abs/2501.18771
https://huggingface.co/blog/math_verify_leaderboard
https://arxiv.org/abs/2402.19255
https://arxiv.org/abs/2402.19255
https://arxiv.org/abs/2402.19255
https://arxiv.org/abs/2203.08242
https://arxiv.org/abs/2203.02155

194
195
196

197
198
199
200
201

202
203
204
205

207
208
209
210

211
212
213

214
215
216

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

239
240
241
242
243
244
245

246
247
248

Penedo, G., Kydli¢ek, H., allal, L. B., Lozhkov, A., Mitchell, M., Raffel, C., Werra, L. V., and
Wolf, T. The fineweb datasets: Decanting the web for the finest text data at scale, 2024. URL
https://arxiv.org/abs/2406.17557.

Qwen, :, Yang, A., Yang, B., Zhang, B., Hui, B., Zheng, B., Yu, B., Li, C., Liu, D., Huang, F., Wei,
H., Lin, H., Yang, J., Tu, J., Zhang, J., Yang, J., Yang, J., Zhou, J., Lin, J., Dang, K., Lu, K., Bao,
K., Yang, K., Yu, L., Li, M., Xue, M., Zhang, P., Zhu, Q., Men, R., Lin, R., Li, T., Tang, T., Xia,
T., Ren, X., Ren, X., Fan, Y., Su, Y., Zhang, Y., Wan, Y., Liu, Y., Cui, Z., Zhang, Z., and Qiu, Z.
Qwen2.5 technical report, 2025. URL https://arxiv.org/abs/2412.15115.

Sainz, O., Garcia Ferrero, 1., Agirre, E., Ander Campos, J., Jacovi, A., Elazar, Y., and Goldberg, Y.
(eds.). Proceedings of the 1st Workshop on Data Contamination (CONDA), Bangkok, Thailand,
August 2024a. Association for Computational Linguistics. URL https://aclanthology.org/
2024 .conda-1.0/.

Sainz, O., Garcfa-Ferrero, 1., Jacovi, A., Campos, J. A., Elazar, Y., Agirre, E., Goldberg, Y., Chen,
W.-L., Chim, J., Choshen, L., D’ Amico-Wong, L., Dell, M., Fan, R.-Z., Golchin, S., Li, Y., Liu, P.,
Pahwa, B., Prabhu, A., Sharma, S., Silcock, E., Solonko, K., Stap, D., Surdeanu, M., Tseng, Y.-M.,
Udandarao, V., Wang, Z., Xu, R., and Yang, J. Data contamination report from the 2024 conda
shared task, 2024b. URL https://arxiv.org/abs/2407.21530.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Bi, X., Zhang, H., Zhang, M., Li, Y. K., Wu, Y., and
Guo, D. Deepseekmath: Pushing the limits of mathematical reasoning in open language models,
2024. URL https://arxiv.org/abs/2402.03300.

Singh, A. K., Kocyigit, M. Y., Poulton, A., Esiobu, D., Lomeli, M., Szilvasy, G., and Hupkes, D.
Evaluation data contamination in 1lms: how do we measure it and (when) does it matter?, 2024.
URL https://arxiv.org/abs/2411.03923,

Team, G., Kamath, A., Ferret, J., Pathak, S., Vieillard, N., Merhej, R., Perrin, S., Matejovicova,
T., Ramé, A., Riviere, M., Rouillard, L., Mesnard, T., Cideron, G., bastien Grill, J., Ramos, S.,
Yvinec, E., Casbon, M., Pot, E., Penchev, ., Liu, G., Visin, F., Kenealy, K., Beyer, L., Zhai, X.,
Tsitsulin, A., Busa-Fekete, R., Feng, A., Sachdeva, N., Coleman, B., Gao, Y., Mustafa, B., Barr,
L., Parisotto, E., Tian, D., Eyal, M., Cherry, C., Peter, J.-T., Sinopalnikov, D., Bhupatiraju, S.,
Agarwal, R., Kazemi, M., Malkin, D., Kumar, R., Vilar, D., Brusilovsky, L., Luo, J., Steiner, A.,
Friesen, A., Sharma, A., Sharma, A., Gilady, A. M., Goedeckemeyer, A., Saade, A., Feng, A.,
Kolesnikov, A., Bendebury, A., Abdagic, A., Vadi, A., Gyorgy, A., Pinto, A. S., Das, A., Bapna,
A., Miech, A., Yang, A., Paterson, A., Shenoy, A., Chakrabarti, A., Piot, B., Wu, B., Shahriari,
B., Petrini, B., Chen, C., Lan, C. L., Choquette-Choo, C. A., Carey, C., Brick, C., Deutsch, D.,
Eisenbud, D., Cattle, D., Cheng, D., Paparas, D., Sreepathihalli, D. S., Reid, D., Tran, D., Zelle, D.,
Noland, E., Huizenga, E., Kharitonov, E., Liu, F., Amirkhanyan, G., Cameron, G., Hashemi, H.,
Klimczak-Pluciniska, H., Singh, H., Mehta, H., Lehri, H. T., Hazimeh, H., Ballantyne, 1., Szpektor,
I., Nardini, 1., Pouget-Abadie, J., Chan, J., Stanton, J., Wieting, J., Lai, J., Orbay, J., Fernandez,
J., Newlan, J., yeong Ji, J., Singh, J., Black, K., Yu, K., Hui, K., Vodrahalli, K., Greff, K., Qiu,
L., Valentine, M., Coelho, M., Ritter, M., Hoffman, M., Watson, M., Chaturvedi, M., Moynihan,
M., Ma, M., Babar, N., Noy, N., Byrd, N., Roy, N., Momchev, N., Chauhan, N., Sachdeva, N.,
Bunyan, O., Botarda, P., Caron, P., Rubenstein, P. K., Culliton, P., Schmid, P, Sessa, P. G., Xu,
P., Stanczyk, P., Tafti, P., Shivanna, R., Wu, R., Pan, R., Rokni, R., Willoughby, R., Vallu, R.,
Mullins, R., Jerome, S., Smoot, S., Girgin, S., Igbal, S., Reddy, S., Sheth, S., Pdder, S., Bhatnagar,
S., Panyam, S. R., Eiger, S., Zhang, S., Liu, T., Yacovone, T., Liechty, T., Kalra, U., Evci, U.,
Misra, V., Roseberry, V., Feinberg, V., Kolesnikov, V., Han, W., Kwon, W., Chen, X., Chow, Y.,
Zhu, Y., Wei, Z., Egyed, Z., Cotruta, V., Giang, M., Kirk, P, Rao, A., Black, K., Babar, N., Lo, J.,
Moreira, E., Martins, L. G., Sanseviero, O., Gonzalez, L., Gleicher, Z., Warkentin, T., Mirrokni,
V., Senter, E., Collins, E., Barral, J., Ghahramani, Z., Hadsell, R., Matias, Y., Sculley, D., Petrov,
S., Fiedel, N., Shazeer, N., Vinyals, O., Dean, J., Hassabis, D., Kavukcuoglu, K., Farabet, C.,
Buchatskaya, E., Alayrac, J.-B., Anil, R., Dmitry, Lepikhin, Borgeaud, S., Bachem, O., Joulin, A.,
Andreev, A., Hardin, C., Dadashi, R., and Hussenot, L. Gemma 3 technical report, 2025. URL
https://arxiv.org/abs/2503.19786.

Toshniwal, S., Du, W., Moshkov, 1., Kisacanin, B., Ayrapetyan, A., and Gitman, I. Openmathinstruct-
2: Accelerating ai for math with massive open-source instruction data. arXiv preprint
arXiv:2410.01560, 2024.

https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2412.15115
https://aclanthology.org/2024.conda-1.0/
https://aclanthology.org/2024.conda-1.0/
https://aclanthology.org/2024.conda-1.0/
https://arxiv.org/abs/2407.21530
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2411.03923
https://arxiv.org/abs/2503.19786

249
250
251

252
253
254

255
256

257
258
259

260

261
262
263
264

265
266
267

269
270
271
272
273

274
275
276
277
278
279

280

281
282

284
285

von Werra, L., Allal, L. B., and Wolf, T. Codeparrot train v2 near-dedup. https://huggingface.
co/datasets/codeparrot/codeparrot-train-v2-near-dedupl 2021. Dataset on the Hug-
ging Face Hub. See the accompanying blog post “Training CodeParrot from Scratch”.

Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W,, Lester, B., Du, N., Dai, A. M., and Le, Q. V.
Finetuned language models are zero-shot learners, 2022. URL https://arxiv.org/abs/2109,
01652,

Zhang, P., Zeng, G., Wang, T., and Lu, W. Tinyllama: An open-source small language model. arXiv
preprint arXiv:2401.02385, 2024a.

Zhang, S., Dong, L., Li, X., Zhang, S., Sun, X., Wang, S., Li, J., Hu, R., Zhang, T., Wu, F,
and Wang, G. Instruction tuning for large language models: A survey, 2024b. URL https:
//arxiv.org/abs/2308.10792.

Appendix A - Details of training and evaluation

Table[T]provides the details of data composition. Preliminary experiments using only web text even
with high-quality sources like books resulted in significant performance drops on math and coding
tasks, rendering some experiments ineffective. Consequently, we opted for a more balanced mixture
that includes task-specific data.

We perform extended pre-training with a short warm-up phase, followed by a fixed small learning
rate typically used as the minimum learning rate in full pre-training schedules (Zhang et al.| 2024a).
This choice reflects the fact that the models have already been pre-trained on large corpora and the
final learning rate in their training probably approached the minimum.

For evaluation, we employ the LM Evaluation Harness (Gao et al., |2024) and make necessary
adjustments to prompts and tokenization to closely replicate baseline scores reported in prior work
(Qwen et al.,|2025; Team et al.||2025)), minimizing variance from evaluation artifacts. We also use the
math-verify library to parse responses for math tasks, as differences in output formatting especially
in base models can significantly impact measured performance (Kydlicek et al., 2025).

For contamination, five copies of GSM8k and MBPP test sets prompted as shown in Appendix [3] are
randomly inserted into the first 2B tokens of the contaminated training mixture. This way the model
is trained on more than 23B tokens after it is exposed to the contamination, making our findings more
realistic. [Kocyigit et al.| (2025) show that late contamination, when set up in a correct way, does not
necessarily yield higher performance inflation compared to uniformly distributing contamination
across the entire training corpora.

Dataset Token Count

OpenMath-Instruct | 6,495,049,388

CodeParrots 3,647,426,066

FineWeb-Edu 14,869,906,469
Total 25B

Table 1: Token Counts for Components of the Pre-training data.

Appendix B - Change of performance with time

Initially, we examined how the contaminated and clean model performance changes over the training
process. Specifically in Figure[3] we present Qwen2.5-1.5B’s contaminated and clean accuracies on
the GSM8k benchmark. Similar to previous work (Kocyigit et al.,[2025), we observe that performance
of the contaminated model spikes at the time of contamination then decreases back to the same level
as the clean model. This observation is also supported by the base results shown i

https://huggingface.co/datasets/codeparrot/codeparrot-train-v2-near-dedup
https://huggingface.co/datasets/codeparrot/codeparrot-train-v2-near-dedup
https://huggingface.co/datasets/codeparrot/codeparrot-train-v2-near-dedup
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2308.10792
https://arxiv.org/abs/2308.10792
https://arxiv.org/abs/2308.10792

286

287
288
289

290

291
292
293
294
295

297

298
299
300
301
302
303

304

305

306

308
309

Model Model
+— Clean 50 +— Clean
Contaminated Contaminated

y
/
L
Pass@1

1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Training Steps Training Steps.

(a) Math Scores: GSM8k (b) Coding Scores: MBPP

Figure 3: Performance Over Time: Accuracy and Pass@1 of the Clean and Contaminated Qwen2.5-
1.5B models on the GSM8k Benchmark. The contamination is within the first 500 steps. We observe
that the performance gap is much bigger at the exposure point but then closes as the model is trained
on more data. For MBPP we observe that the peak is much higher meaning contamination of code is
memorized better at sight however overtime the performance normalizes just like math.

Appendix C - How does model scale impact the generalization gap?

To analyze the impact of model scale on model generalization, we now track the contamination-gap
difference, defined for each training recipe ¢t € {Base, SFT, GRPO} and each model-size pair (m, s)
as

dm,si = AM{(m,s) — AMS(m,s), (1

GSMB8k gain GSMPlus gain

where the per-metric contamination improvement is

AMH(m,s) = M (m,s) — M (m,s).)

where k& € {1 (GSM8k), 2 (GSMPlus)}. A positive d, s ; therefore means the contaminated model
gains more on GSMS8k than on GSMPlus after recipe ¢; a negative value indicates the opposite.
We present the results in Figure d Here we see that for the pure pre-trained Base model and the
supervised fine-tuned model, the contamination-gap difference increases as model scale increases,
which suggests more overestimation from contamination. However, for the model post-trained with
GRPO, as the model scale increases, the model is actually able to learn more generalizable features
and the contamination-gap difference is smaller.

Scale amplifies the contrast. Sectiondand Figure | reveal that larger SFT models extract more
benefit from contamination that does not translate into a relative benefit on non-contaminated
benchmarks. GRPO shows the opposite trend: bigger models channel additional capacity toward
broad generalization and thus dilute relative overestimation. The interplay between scale and
alignment methods, therefore, deserves careful attention, but our findings are in line with (Chu et al.
(2025)

Appendix D — GRPO Details

D.1 Dataset

Our experiments fine-tune on the GSM8k (openai/GSM8k, main split). Each prompt begins with a
system message that prescribes the <reasoning> / <answer> XML schema, followed by a single
worked example (“What is 2 + 2?” — 4), and finally the user question drawn from GSM8k. The
gold integer answer is extracted from the dataset for the correctness reward.

310

311
312
313
314

315

316
317
318

323
324
325
326
327
328
329
330

332
333

Training
—e— Base
—e— SFT
—e— GRPO

Agsmsk — DGsmpius
N w

-

0.5 1.0 1.5 2.0 25 3.0 3.5 4.0 4.5
Model Size (billions of parameters)

Figure 4: Contamination-gap Difference for Math: We measure the contamination-gap difference as
in Eq[I] We see that the gap increases with model size for the just pre-trained base model as well as
the model post-trained with SFT. However for the models post-trained with GRPO the gap actually
gets smaller, even negative as the model size increases.

D.2 Model and Tokenizer

The script supports any causal-LM checkpoint that fits on GPU, and has been validated on Google’s
Gemma-3-1B-IT and Gemma-3-4B-IT as well Qwen2.5-0.5B-IT and Qwen2.5-1.5B-IT. The tokenizer
comes from the same directory; we set the padding token equal to \eos and enable a beginning-of-
sequence token. This particularly impacts the performance of Gemma3 models.

D.3 GRPO Training Configuration

We train with GRPO (Group Regularised Policy Optimisation) for a single epoch over GSMS8k train
set. Optimisation uses 8-bit AdamW. The model produces sixteen candidate generations for each
input example.

D.4 Reward Functions

Policy updates rely on lightweight heuristic rewards, each returning a scalar per generated sample;
their contributions are summed without additional weighting. The complete Python implementation
is reproduced below.

Listing 1: Reward functions used by GRPO

—— Math Reward functions
def format_reward_func(completions , #x_):
"""l pt for a perfectly formatted XML response.
pattern = r"“<reasoning >(?:(?!</reasoning >).)*</reasoning >\n"
\

"o

r"<answer >(?:(?! </answer >).) x</answer>$"
responses = [c[O]["content"] for c in completions]
return [1.0 if re.match(pattern, r) else 0.0 for r in
responses]

s34« def correctness_reward_func (prompts, completions, answer, ##x_):

335 """2 pt when <answer> matches the gold integer."""

336 responses = [c[0]["content"] for c in completions]

337 preds = [extract_xml_answer(r) for r in responses]

338 return [2.0 if p == a else 0.0 for p, a in zip(preds, answer)]

339
s40 def int_reward_func (completions, xx_):

341 ""r0.5 pt if <answer> contains any integer. """

342 responses = [c[0]["content"] for c¢ in completions]

343 preds = [extract_xml_answer(r) for r in responses]

344 return [0.5 if p.isdigit() else 0.0 for p in preds]

345

s46 def strict_format_reward_func (completions , #%_):

347 """0.5 pt for newline—strict XML formatting."""

348 pat = r"~<reasoning >\n.x*?\n</reasoning >\n<answer >\n.*?\n</
349 answer >\n$"

350 responses = [c[O]["content"] for c in completions]

351 return [0.5 if re.match(pat, r) else 0.0 for r in responses]

352
353 def soft_format_reward_func(completions , #x_):

354 """0.5 pt for a laxer XML pattern (tags may abut)."""

355 pat = r"<reasoning >.x*?</reasoning >\sx<answer >.x? </answer>"
356 responses = [c[0]["content"] for c in completions]

357 return [0.5 if re.match(pat, r) else 0.0 for r in responses]

358
359 def xmlcount_reward_func(completions , ##_):

360 """Fractional reward based on correct tag usage."""
361 responses = [c[O]["content"] for c in completions]
362 return [count_xml(r) for r in responses]

363 For the code specific post-training the main difference is the reward models that are used

Listing 2: Reward functions used by GRPO

364
ses # —— Code Reward functions
se6 def tests_reward_func(completions, =*, tests: List[str], =x_) —>
367 List[float]:

368 rewards = []

369 for ¢, t in zip(completions ,tests):

370 code = clean_completion(c[0]["content"])
371 #print(’—=" = 20)

372 #print(’ Running code:’, code)

373 try:

374 passed, _, _ = run_with_timeout(code, t, time_limit
375 =1.0)

376 rewards .append (2.0 % passed / len(t))
377 except Exception:

378 rewards .append (0.0)

379 return rewards

380
381
ss2 def typehint_reward_func (completions, =*x_) —> List[float]:

383 codes = [c[O]["content"] for c¢ in completions]

384 scores = []

385 for code in codes:

386 try:

387 tree = ast.parse(code)

388 hints = sum(bool(a.annotation) for a in ast.walk(tree)

10

389
390
391
392
393
394
395
396
397
398
399

400

401

402
403
404

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437

439
440

if isinstance(a, (ast.arg, ast.FunctionDef
)))
scores .append (min(0.25, 0.05 % hints)) # cap at 0.25
except Exception:
scores .append (0.0)
return scores

def brevity_reward_func(completions, #%_) —> List[float]:
codes = [c[O0]["content"] for c¢ in completions]
return [max(0.0, 0.25 - 0.002 = len(code.splitlines ())) for
code in codes]

Appendix E — Prompt Templates

E.1 Training Prompt - GRPO

Each training sample is a sequence of four chat messages. The placeholder {QUESTION? is substituted
with the GSM8k problem text; the corresponding ground-truth integer answer is kept separately for
reward computation.

<system>

A conversation between User and Assistant. The user asks a question,
and the Assistant solves it. The assistant first thinks about the
reasoning process in the mind and then provides the user with the
answer. The reasoning process and answer are enclosed within
<reasoning> </reasoning> and <answer> </answer> tags, respectively,
i.e., <reasoning> reasoning process here </reasoning>

<answer> answer here </answer>. The answer must be a single integer.
Format example:

<reasoning>

</reasoning>
<answer>
</answer>
</system>
<user>

What is 2+27
</user>

<assistant>

<reasoning>

To calculate 2+2, we simply add the numbers together: 2 + 2 = 4.
</reasoning>

<answer>

4

</answer>

</assistant>

<user>

{QUESTION}
</user>

E.2 Training Prompt - SFT

For SFT we take the training split of GSM8k and process the question, chain of thought and answer
separately. The model is trained on the prompt structure below but all the tokens before let’s think

11

441
442

443
444
445
446

447

448
449
450

451
452

453

454

456
457
458
459
460
461

462
463
464
465
466
467

step-by-step are masked to not produce any loss. Thus the model is only trained on the chain of
thought and answer given the input question.

Question: {QUESTION}\
Let’s think step by step.
{CHAIN_OF_THOUGHT}.

The answer is {ANSWER}

E.3 Evaluation Prompt

All evaluation follows the same format where we just prompt the model with the question followed
by a "Let’s think step by step." primer. We opted for zero shot evaluations as the few shot examples
can impact how we have contaminated the data as well.

Question: {QUESTION}\
Let’s think step by step.

Appendix F - Method Overview Plot
We present an overview of our method visually for readers who prefer to take a quick look.

EXTENDED PRE-TRAINING POST-TRAINING COMPARE PERF.

AL MIVW QL
> »
UNCONTAMINATED DATA
PRE-
~ TRAINED
- CKPT
L e

CONTAMINATED MODEL

Figure 5: An Overview of our Method: We take existing pre-trained models and run them through
extended pre-training with and without contamination. Afterwards we post-train them using SFT or
RL methods and compare their performance. The pre-trained checkpoints here are from Qwen2.5
and Gemma3 non-instruction tuned models.

Appendix G - Limitations and Future Work

Our study purposefully isolates a 5-copy, late-injection contamination scenario. Real-world leakage
can be multi-pass, paraphrased, or distributed throughout pre-training, and its effects may differ.
Moreover, we restrict model sizes to 4B parameters and focus on two open-weights families. That
said, larger proprietary models, different architectures, or alternative RLHF algorithms could behave
differently. Finally, our RL setting uses synthetic rule-based rewards; human-annotated preference
signals might have different effects.

With these limitations in mind, an immediate first step for future research is to run our experiment on
a larger scale. While we share some insights into how our results would scale, the analysis is still
very local and there are potentially mixed signals that would benefit more from further exploration.
Additionally, with more and more complex RL systems, the post-training stage can become just as
complex as the pre-training stage, warranting further investigations regarding the compute that goes
into the post-training stage and the impact it has on model behavior and performance.

12

	Introduction
	Related Work
	Method
	Results
	Are performance overestimations actual overestimations?

	Discussion

