
Reinforcement Learning Conference (August 2024)

Coordination Machines for Minimizing Communi-
cation in Multi-Agent Reinforcement Learning

Jacob Heglund
jheglun2@illinois.edu
Department of Aerospace Engineering
University of Illinois Urbana-Champaign

Huy Tran
huytran1@illinois.edu
Department of Aerospace Engineering
University of Illinois Urbana-Champaign

Abstract

Multi-agent systems (MAS) are a promising solution for many real-world prob-
lems. However, complete and perfect communications are not guaranteed in the
real-world. A key problem in MAS is thus ensuring that agents can meet global
specifications while minimizing communication cost. We approach this problem by
proposing a hierarchical model that decomposes a global, multi-agent task given by
a linear temporal logic (LTL) formula into an equivalent automaton defined over
subtasks given as LTL formulae. Our key idea is that each subtask may require
different levels of inter-agent communication, and that modeling a global task as
the composition of subtasks enables context-aware communication. To solve this
problem, we formulate a hierarchical agent which solves an optimization problem
to ensure an MAS satisfies a probabilistic task-completion specification while min-
imizing inter-agent communication. We then develop an algorithm to optimize the
hierarchical agent based on the performance of a low-level team of agents that are
trained to solve subtasks using multi-agent reinforcement learning (MARL). We
then compare our approach to a baseline monolithic task model that approximates
a common formulation used in MARL, and show our method provides a significant
reduction in communication cost compared to the baseline.

1 Introduction

Autonomous agents typically act under conditions of incomplete observations, which makes commu-
nication an important mechanism to enable multiple agents to coordinate their current and future
actions. However, key questions in the design of communication policies, such as when to commu-
nicate, what to communicate, and with which other agents to communicate, remain open research
questions Zhu et al. (2024). Two broad classes of methods to learn multi-agent communication in-
clude those that define communication policies with a fixed global parameter Böhmer et al. (2020);
Wang et al. (2022); Kim et al. (2019), and those that learn communication end-to-end as a function
of state Kim et al. (2019); Li et al. (2021). These classes exist on opposite ends of a spectrum, where
methods in the first class may struggle to model context-aware communication, while methods in the
second class may struggle with the sample efficiency of learning an optimal communication policy.
We propose a method somewhere in-between these two classes which uses a hierarchical model to de-
compose a global task into subtasks, then learns optimal communication within each subtask. This
design choice ensures our method is context-aware, while trading off global optimality for sample
efficiency and satisfactory performance.

Our goal is design a method to train a team of agents to successfully complete a task with proba-
bility of at least pc while minimizing inter-agent communication. To accomplish this, we design a
hierarchical model of a team of agents that we refer to as a coordination machine, which decom-
poses a global task into an equivalent, probabilistic automaton defined over subtasks. We then use
the coordination machine to formulate a hierarchical agent that solves an optimization problem to

1

Reinforcement Learning Conference (August 2024)

ensure the MAS minimizes the inter-agent communication needed to satisfy a global probabilistic
task-completion specification. Finally, we show that our approach provides a median 36% reduction
in communication cost across the sampled values of pc compared to a baseline that approximates a
commonly-used formulation of tasks in MARL.

2 Related Work

There are several approaches to designing communication between agents in MAS. One class of
methods involves learning an optimized message policy to control messages sent between agents based
on a global parameter. SchedNet Kim et al. (2019) approaches this problem by optimizing a message
scheduler and message policy based on a global bandwidth constraint. Meanwhile, Böhmer et al.
(2020) approaches this problem by assuming a fixed coordination graph topology that defines inter-
agent communication. Finally, Wang et al. (2022) learns a dynamic coordination graph topology, but
defines a global upper-bound on communication. One issue with these methods is that they rely on
at least one global parameter to define their communication policies (i.e., a fixed graph topology, a
fixed upper-bound on communication bandwidth, etc.), and therefore cannot model communication
policies where these parameters may vary based on context.

Another class of methods focuses on end-to-end learning of agent communication as a function
of state. Singh et al. (2019) uses a gating mechanism to learn when to communicate between
agents, and assumes environments with individual rewards to develop a method that can scale to
many agents. While this method shows improved performance compared to competitive baselines,
their use of individual rewards does not address environments where the reward function cannot
be decomposed at the level of individual agents. Meanwhile, Niu et al. (2021) and Li et al. (2021)
use variations of a graph attention network to learn contextual communication as a function of the
joint state, and are not subject to the individual reward constraint. However, one key issue with
these methods is that communication policies which are learned end-to-end present roadblocks in
developing models of the contexts in which certain levels of communication are needed to achieve a
given level of performance. This is not desirable in designing real-world communication networks,
since, without an understanding of these contexts, resources would have to be allocated to provide
the capability of maximum communication bandwidth at all times, which may waste resources that
may be better-used elsewhere. Please see Zhu et al. (2024) and Yuan et al. (2023) for in-depth
reviews of communication in MAS.

Early frameworks for studying hierarchical models in RL, such as semi-MDPs and options, typically
formulate abstracted actions as sequences of low-level actions. However, these methods typically do
not define global relationships between abstracted actions, and are therefore of little use for ensuring
global properties of MAS Hutsebaut-Buysse et al. (2022). Meanwhile, work in communities such as
formal methods, supervisory control, and concurrent computing has focused on developing frame-
works to prove such properties Cassandras & Lafortune (2008), typically by defining an abstracted
state space which tracks an MAS’s behavior by creating an isomorphism between the abstracted
state and truth-values of sentences about the MAS expressed in a system of formal logic. This
approach can easily model non-Markovian tasks Icarte et al. (2018), can enable compositionality of
tasks Jothimurugan et al. (2021), and can be used to prove global properties such as verifiable per-
formance Neary et al. (2022) and safety Anderson et al. (2020). One weakness of these approaches
is they have not been developed for use in designing multi-agent communication policies in complex
environments.

3 Preliminaries

3.1 Multi-Agent Reinforcement Learning

One common approach to extending RL to a multi-agent setting is a Decentralized POMDP
(Dec-POMDP) Oliehoek & Amato (2016). A Dec-POMDP is defined by a tuple M =
(D,S, b0,A, P,O, O, R, T, γ) where D = {1, . . . , n} is the set of agents, S is the set of joint states,

2

Reinforcement Learning Conference (August 2024)

b0 ∈ ∆(S) is the joint state distribution at time 0, A is the joint action space, P : S ×A → ∆(S) is
the transition probability function, O is the set of observations, O is the set of observation proba-
bility functions, R : S ×A×S → R is the global reward function shared by all agents, T is the time
horizon, and γ ∈ (0, 1] is the discount factor. A common goal in multi-agent reinforcement learning
is to learn an optimal joint policy, π∗ : S → ∆(A), which maximizes the expected sum of discounted
joint rewards over an infinite horizon, Gt =

∑∞
i=0 γirt+i, where rt = R(st, at, st+1).

3.2 Formal methods for task decomposition

Systems of formal logic provide useful foundations for reasoning about behaviors of autonomous
systems. In particular, linear temporal logic (LTL) Pnueli (1977), is a modal temporal logic that
extends propositional logic by introducing temporal modal operators such as next (◦), always (□),
until (U), and eventually (⋄) Wongpiromsarn et al. (2023). LTL formulae can also be translated into
an equivalent automaton Gastin & Oddoux (2001), which provides a context-aware representation
of a system’s behavior that can be used to prove global properties such as verifiable performance
Neary et al. (2022).

4 Coordination Machines

High-Level PFA Env.

(Coordination Machine)

(A)

(6)

(7)

(2)(1) (5)

(4)

(3)

High-Level

PFA Agent

(B)

Low-Level

Dec-POMDP Envs.
Low-Level

Dec-POMDP Envs.

Low-Level

Dec-POMDP

Envs.

(C)
Low-Level

 MARL Agents

Hierarchical Coordination Machine Agent

(D)

Figure 1: Interfaces between subsystems
of the hierarchical coordination machine
agent: (1) low-level environment model,
(2) low-level policies, levels of commu-
nication, and success probabilities, (3)
high-level environment model, (4) high-
level actions and low-level policy indices,
(5) low-level policy indices, (6) selected
low-level actions, (7) rewards and obser-
vations.

Our goal is to design a method to train and verify that
a team of agents can successfully complete a task with
a probability of at least pc while minimizing inter-agent
communication. We approach this problem by designing
the hierarchical agent shown in Figure 1. This agent con-
sists of four subsystems: (A) a high-level, probabilistic
finite automaton (PFA) to model a global task’s internal
transition structure (i.e., transitions between subtasks),
(B) a high-level agent to make decisions in the PFA, (C)
a set of low-level, Dec-POMDP environments correspond-
ing to subtasks in the PFA, and (D) a team of low-level
agents trained to complete each subtask. This approach
allows us to optimize the high-level agent based on the
communication-dependent subtask success probabilities of
the low-level agents. To motivate our approach, we in-
troduce the environment shown in Figure 2 as a running
example where the global task is for three agents to reach
the goal states in the bottom right room. The agents be-
gin in the top left room and progress through one of two
possible paths, where each path requires that they cooperate to lift the red boxes which causes the
blue doorways to open.

4.1 Coordination Machines for Context-Aware Multi-Agent Communication

We begin by defining the high-level PFA environment model shown in Figure 1 (A). PFAs provide
a useful approach to model tasks as a composition of subtasks when there is uncertainty about a
low-level team’s capability to successfully complete a given subtask. Formally, a PFA is defined by a
tuple T = (U, Σ, uI , uF , δ) where U is a finite, nonempty set of PFA states, Σ is a finite set of input
symbols, uI ∈ U is the initial state, uF ∈ U is the final state, and δ : U × 2Σ → ∆(U) is the partial
probabilistic transition function Paz (1971). We assume the input string to the transition function
consists of two symbols, u′w, where u′ ∈ U ′ := U \uX specifies the desired next state, uX is a failure
state, w ∈ {0, 1, . . . , Nw} is associated with a low-level policy to complete the transition (u, u′), and
Nw is the number of communication levels considered for completing a given subtask. Due to our
definition of U ′, the PFA will not accept a string that is intended to cause a failure; however, due
to the probabilistic transition function, it is possible for the PFA to transition to uX .

3

Reinforcement Learning Conference (August 2024)

(a) (b) (c)

Figure 2: (a) Agents must reach the goal states in the bottom right room starting in the top left
room. (b) The CM representation of the task prior to selection of µ and ν, where each (u, u′)
represents a subtask. (c) µ defines the high-level agent’s policy in the CM, while ν selects a single
low-level policy for each subtask.

We extend the definition of a PFA to include relevant information about low-level decision-making
processes by specifying information about the low-level environments (Figure 1 (C)) and the set
of low-level agents (Figure 1 (D)). Figure 1 (1) represents the two pieces of information that our
extended PFA model needs about the low-level environments, namely, Muu′ , the low-level envi-
ronment model for transition (u, u′) (i.e., a Dec-POMDP), and ϕu′ , the binary subtask-completion
specification that must be satisfied for the PFA to transition into u′. Figure 1 (2) then represents
information about a set of Markovian low-level agents that directly interact withMuu′ using actions
selected by a joint policy, πuu′w ∈ Πuu′ := {πuu′0, . . . , πuu′Nw}, where Πuu′ is a set of Nw policies
that can be selected from to complete transition (u, u′) by satisfying ϕu′ . In our case, each w is
associated with a low-level policy that satisfies ϕu′ with probability puu′w using a level of communi-
cation λuu′w. To organize the information about low-level decision-making processes, we assume the
valid transitions in the PFA are given as the set of edges E , where each edge, e = (u, u′, w) ∈ E has
properties (u′w,Muu′ , ϕu′ , πuu′w, puu′w, λuu′w), where u′w is the entry condition for the edge. Given
the novel extension of a PFA we have defined, we now define a coordination machine as follows:

Definition (Coordination Machine) A coordination machine (CM) is a tuple C = (T , E) where T
is a PFA and E is a set of edges that model low-level, coordinated, group decision-making processes
in a low-level environment, where each edge has properties (u′w,Muu′ , ϕu′ , πuu′w, puu′w, λuu′w).

To model high-level decision-making in the CM, we assume the existence of a high-level agent
(Figure 1 (B)) that has access to the CM environment model (Figure 1 (3)), and uses this model
to output a string u′w (Figure 1 (4) and (5)) in each state u such that the agent specifies the
desired next state u′ and the index w which selects a single low-level policy from Πuu′ to complete
(u, u′) by satisfying ϕu′ . Due to the two-stage structure of decision-making, we define two decision-
making functions, namely µ : U → ∆(U ′), the agent’s stochastic action policy function, and ν :
U ×U ′×{0, . . . , Nw} → {0, 1}, the agent’s low-level policy-selection defined as an indicator function
such that

∑Nw

i=0 ν(u, u′, i) = 1. Figure 2 then shows the CM before (b) and after (c) the high-level
agent uses ν to select a single low-level policy for each transition. We now define the CM’s transition
function in terms of µ, ν, and u′w as,

δ(u, u′, w) =
{

u′ w.p. µ(u′ | u)ν(u, u′, w)puu′w

uX w.p. µ(u′ | u)ν(u, u′, w)(1− puu′w),
(1)

where we assume µ and ν are obtained prior to the high-level agent’s initialization in uI , and that
they are stationary, therefore inducing a Markov chain.

4

Reinforcement Learning Conference (August 2024)

We now define the high-level agent as a goal-directed agent by defining the CM as modeling the
agent completing a task with probability of at least pc. We start by defining the global task as an
LTL reachability specification, ⋄ϕG (i.e., eventually ϕG is satisfied). We then define ϕuF

:= ϕG such
that a high-level agent navigating a sequence of CM states (uI , . . . , uF) is equivalent to satisfying
ϕG. This implies that the probabilistic reachability specification P (⋄ϕG) ≥ pc is equivalent to
P (⋄(u = uF) | C, µ, ν) ≥ pc. In our running example, we define subtasks with specifications ϕu′ ∈
{lift_boxu′ , reach_goal}, and, as shown in Figure 2, we model two possible sequences that simulate
the global task, namely, (uI , u0, u1, uF) and (uI , u2, u3, uF). Given the novel structure of the system
we have defined, we now formally define the hierarchical coordination machine agent as follows:

Definition (Hierarchical Coordination Machine Agent) A hierarchical coordination machine
agent (Figure 1) is a tuple AC = (C, µ, ν, pc) which satisfies P (⋄(u = uF) | C, µ, ν) ≥ pc while
minimizing communication used by a low-level team of agents, where C is a CM, µ is the high-level
agent’s policy, and ν is the high-level agent’s policy-selection function.

4.2 Optimizing the High-Level Agent’s Policy and Policy-Selection Function

Our goal in this section is to formulate an optimization problem which ensures the hierarchical
CM agent satisfies P (⋄(u = uF) | C, µ, ν) ≥ pc while minimizing global communication used by a
team of low-level agents. We accomplish this by formulating a mixed-integer optimization problem
which selects µ and ν to satisfy the task-completion specification, pc. To model communication cost,
we define λuu′w ∈ [0, 1], where λuu′w models both the amount of communication used by a policy
and the cost of communication. Due to the modular nature of our hierarchical CM agent, many
MARL methods that make use of inter-agent communication could be used as part of our method
to train a team of low-level agents (Figure 1 (D)). In this work, we demonstrate our approach using
CASEC Wang et al. (2022), where we formulate λ to model the number of directed edges in the
coordination graph constructed by the algorithm. For other MARL algorithms, such as SchedNet
Kim et al. (2019), λ could model some combination of the Ksched and Lband parameters that control
the number of agents that are allowed to broadcast and the size of their messages.

min
xuu′ ,νuu′w

J = (2)

∑
u∈U\{uX ,uF }

∑
u′∈U ′

xuu′

Nw∑
i=0

νuu′iλuu′i (3)

min
xuu′ ,νuu′w

J =
∑

u∈U\{uX ,uF }

∑
u′∈U ′

xuu′

Nw∑
i=0

νuu′iλuu′i (4)

s.t.
Nw∑
i=0

νuu′i = 1 ∀ (u, u′, w) ∈ E (5)

xuu′ ≥ 0 ∀ u ∈ U \ {uX , uF }, ∀ u′ ∈ U ′ (6)∑
u′∈U ′

xuu′ = [u = uI] +
∑

(up,u)∈pred(u)

xupu

Nw∑
i=0

νupuipupui ∀ u ∈ U \ {uX , uF } (7)

∑
(up,uF)∈pred(uF)

xupuF

Nw∑
i=0

νupuF ipupuF i ≥ pc (8)

Here, Equation (4) defines µ and ν as functions that minimize communication cost and Equation (5)
defines νuu′w ∈ {0, 1} as an indicator function that selects a single low-level policy πuu′w from a

5

Reinforcement Learning Conference (August 2024)

set of Nw policies. Equation (6) and Equation (7) (i.e., the Bellman-flow constraint) define xuu′

as selecting the expected number of times transition (u, u′) is completed by a high-level agent that
starts in uI and uses policy µ, where µ(u, u′) := xuu′∑

i∈U ′ xui
and pred(u) is the set of predecessor

state-action pairs associated with state u. Finally, Equation (8) enforces the hierarchical CM agent’s
satisfaction of P (⋄(u = uF) | C, µ, ν) ≥ pc. Please see Puterman (2014) and Etessami et al. (2008)
for more details about this formulation.

4.3 Optimizing the Set of Low-Level Policies in a Hierarchical CM Agent

Our goal in this section is to define a training algorithm for the case of a partially-specified CM
model. Here we assume the set of valid transitions in the CM is specified prior to training, but the
transition probabilities puu′w, are unknown and must be estimated to fully-specify the CM model
(Figure 1 (2)) prior to optimization of the high-level agent. We assume each low-level environment
model Muu′ is a Dec-POMDP with a final joint state distribution, bf,u′ . We also assume the set of
initial state distributions in the CM, B0, is fully specified prior to training as B0 := {b0,u}u∈U . In
our running example, we define each bf,u′ over a single joint state sf,u′ , which allows us to formally
define the LTL specifications for our subtasks as lift_boxu′ := ⋄

(
(s = sf,u′) ∧ (box_liftedu′)

)
, and

reach_goal := ⋄(s = sf,u′).

Algorithm 1 Optimizing a Hierarchical CM Agent based on a Partially-Specified CM
1: Input: C = (T , E), {b0,u}u∈U , pc, Ntr, Ntr, max, Np

2: Output: µ, ν, Πtmax

3: Π,B0 = InitPolicies(C), {b0,u}u∈U

4: Πtmax ,Ptmax = Π, [0]e∈E
5: for e = (u, u′, w) ∈ E do in parallel
6: while te < Ntr, max do
7: πe, te ← TrainPolicy(πe, Ntr,B0,u), te + Ntr
8: p̂e = SampleEps(πe, Np)
9: if p̂e > Ptmax,e then

10: Πtmax,e,Ptmax,e ← πe, p̂e

11: µ, ν = HLOpt(C,Ptmax , pc) ▷ Equations (4) to (8)
12: return µ, ν, Πtmax

We describe our algorithm to train low-level policies in Algorithm 1. Each iteration first trains a
set of low-level policies for Ntr steps, then estimates the probability that each policy can complete
a task successfully by sampling evaluation episodes. Here, we model the success or failure of an
episode as a Bernoulli random variable with parameter p estimated as the maximum likelihood
estimator, p̂uu′w = 1/Np

∑Np

i=1

[
ϕu′,i

]∣∣∣
π=πuu′w,tmax

, where [·] denotes the Iverson bracket defined as

[P] = 1 if P is True for declarative sentence P and 0 otherwise. We define Np := z2(1/2)(1− 1/2)
d2

based on a worst-case number of sampled evaluation episodes (Thompson, 2012, Equation 5.2) to
ensure |p̂uu′w − puu′w|< d with confidence α where z is the upper α/2 point of the standard normal
distribution. During training, we identify the best-performing policies for each subtask, πuu′w,tmax ,
where tmax := arg maxt p̂uu′wt, which we then use to form the set of estimated success probabilities,
Ptmax and solve for µ and ν.

5 Experiments and Discussion

We evaluate our method by training a multi-agent team to solve the gridworld environment shown in
Figure 2, where each agent can choose to move in the four cardinal directions, stay still, and attempt

6

Reinforcement Learning Conference (August 2024)

0.96

0.98

1.00

0.0 (0) 0.25 (2) 0.5 (4) 0.75 (6) 1.0 (8)
Level of Communication, (Num. CG Edges)

State Sequence: (uI, u0, u1, uF)

0.0
0.1
0.2
0.3
0.4

u′ = u0
u′ = u1
u′ = uF

0.0 (0) 0.25 (2) 0.5 (4) 0.75 (6) 1.0 (8)
Level of Communication, (Num. CG Edges)

State Sequence: (uI, u2, u3, uF)

u′ = u3
u′ = u4
u′ = uF

p

Figure 3: The agents learn near-optimal policies for most levels of communication, but do not
learn optimal policies when no communication is used in the box-lifting subtasks that terminate in
u0, u1, u3 and u4.

to lift an adjacent object. We model environment dynamics based on the Frozen Lake environment
Towers et al. (2023) such that an agent will move in the selected direction with probability 95%
and in a perpendicular direction with probability 2.5%, where agent movement order is randomly
selected at each time step. We use the box-lifting dynamics shown in Table 1 to model subtasks that
require different types of coordination, where plift,N is the probability the box will be successfully
lifted if N agents attempt to simultaneously lift the box. We assign different boxes to the two
modeled sequences of states to generate sequences of subtasks that may require different levels of
communication to achieve a given success rate.

(u, u′) Box Type (plift,1, plift,2, plift,3)
(uI , u0) Large and heavy (0.5, 0.75, 1)
(u0, u1) Small and light (0.7, 0.95, 0.7)
(uI , u2) Large and light (0.8, 0.9, 1)
(u2, u3) Small and heavy (0.5, 0.95, 0.5)

Table 1: Our environment’s probabilistic box-
lifting dynamics.

We train each policy using CASEC Wang et al.
(2022), using the training algorithm outlined
in Section 4.3, where λ corresponds to the five
possible numbers of directed edges in the con-
structed coordination graph as shown in Fig-
ure 3. Since λ also represents the cost of com-
munication, we choose values that are equally-
spaced to ensure the marginal cost of commu-
nication is constant. We then train each policy
for a total of Ntr, max = 750, 000 steps, where
each CM training iteration involves training the policies for Ntr = 10, 000 steps, then evaluating
for Np = 601 episodes to estimate the success probability with a confidence level of α = 0.05 and
d = 0.04. We then train policies for two random seeds with all other hyperparameters held constant.
Finally, we implement and solve the optimization problem described in Equations (4) to (8) using
Gurobi 11.0 Gurobi Optimization, LLC (2024).

Figure 3 then shows the resulting estimated success probability for each level of communication and
subtask. Most of the policies and levels of communication obtain near-optimal solutions, although a
few runs fail to solve the task. This figure is useful to identify subtasks and levels of communication
where hyperparameter tuning may be most-helpful to improve the system’s overall performance.

To demonstrate the value of our hierarchical approach, which relies on decomposing tasks into
subtasks to minimize communication (Figure 4 (a)), we compare our approach to a baseline in which
a single level of communication is used across all subtasks. This baseline approximates a common
formulation used in MARL works in which tasks are not decomposed into subtasks (Figure 4 (b)),
and therefore the resulting policies are constrained to use a single level of communication for the
entire task. To optimize the high-level agent using our method and the baseline method, we use the
estimated success probabilities from Figure 3 to solve Equations (4) to (8), where the baseline is

7

Reinforcement Learning Conference (August 2024)

subject to an additional constraint such that νw = νuu′w = ∀ (u, u′, ·) ∈ E . Figure 5 shows the results
of this optimization across a range of pc, where we note that the cost is guaranteed to monotonically
increase as pc increases.

(a) (b)

Figure 4: (a) We model context-aware commu-
nication by decomposing a global task into sub-
tasks. (b) Our baseline approximates a mono-
lithic task model.

0.90 0.92 0.94 0.96 0.98 1.00
Task Completion Spec., pc

0.5

0.6

0.7

Co
m

m
un

ica
tio

n
Co

st
, J

Ours
Baseline

Figure 5: Our method incurs a cost less than or
equal to the baseline across all sampled values of
pc.

We find our method incurs a cost that is less than or equal to the baseline at all sampled values of
pc, with a 36% median reduction in cost across the sampled values of pc and a maximum reduction
in cost of 40% for pc = 0.9. We observe that the baseline selects λ = 0.25 for all subtasks and all
levels of pc, while our approach selects λuI ,u0 = 0 for pc ≤ 0.98, and λuI ,u0 = 0.25 for pc > 0.98.
This is because the baseline model has fewer degrees of freedom, and therefore cannot optimize
communication based on the performance within each subtask. This result supports the key thesis
of this work, namely, that decomposing a global task into subtasks allows us to ensure the MAS
satisfies a given level of performance while minimizing inter-agent communication, while at the same
time ensuring the global communication cost is less than or equal to a baseline monolithic model. We
also find the increase in cost for our method is nonlinear. We note the communication cost increases
by 35% when pc increases from 0.98 to 0.99, which is significant compared to the increase in cost of
1.2% when pc increases from 0.97 to 0.98. This is useful because it can be used to identify regions
where small changes in pc can cause large changes in the required communication. This behavior
can be explained as a result of the formulation of Equations (4) to (8). In particular, because νuu′w

is discrete and xuu′ is continuous, the optimizer can select values of νuu′w that are optimal for a
range of pc, within which xuu′ can vary to meet the probabilistic task-completion specification.

6 Conclusion

This work develops a novel hierarchical agent that satisfies a high-level probabilistic task-completion
specification while minimizing communication between low-level agents. Using this model, we for-
mulate an optimization problem that solves for the high-level agent’s policy and policy selection
function, and a training algorithm to train low-level MARL policies with varying communication
cost. We demonstrate that our approach provides a significant reduction in communication cost
compared to a baseline that approximates an approach used by many works in MARL. Future ex-
tensions of this work include more-extensive empirical validation of our method and developing a
CM training algorithm to allow less-restrictive formulations of subtask specifications.

References
Greg Anderson, Abhinav Verma, Isil Dillig, and Swarat Chaudhuri. Neurosymbolic reinforcement

learning with formally verified exploration. Advances in neural information processing systems,
33:6172–6183, 2020.

Wendelin Böhmer, Vitaly Kurin, and Shimon Whiteson. Deep coordination graphs. In International
Conference on Machine Learning, pp. 980–991. PMLR, 2020.

8

Reinforcement Learning Conference (August 2024)

Christos G Cassandras and Stéphane Lafortune. Introduction to discrete event systems. Springer,
2008.

Kousha Etessami, Marta Kwiatkowska, Moshe Y Vardi, and Mihalis Yannakakis. Multi-objective
model checking of markov decision processes. Logical Methods in Computer Science, 4, 2008.

Paul Gastin and Denis Oddoux. Fast ltl to büchi automata translation. In Computer Aided Veri-
fication: 13th International Conference, CAV 2001 Paris, France, July 18–22, 2001 Proceedings
13, pp. 53–65. Springer, 2001.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL https://www.gurobi.
com.

Matthias Hutsebaut-Buysse, Kevin Mets, and Steven Latré. Hierarchical reinforcement learning: A
survey and open research challenges. Machine Learning and Knowledge Extraction, 4(1):172–221,
2022.

Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano, and Sheila McIlraith. Using reward ma-
chines for high-level task specification and decomposition in reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 2107–2116. PMLR, 2018.

Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, and Rajeev Alur. Compositional reinforce-
ment learning from logical specifications. Advances in Neural Information Processing Systems, 34,
2021.

Daewoo Kim, Sangwoo Moon, David Hostallero, Wan Ju Kang, Taeyoung Lee, Kyunghwan Son,
and Yung Yi. Learning to schedule communication in multi-agent reinforcement learning. In
International Conference on Learning Representations, 2019. URL https://openreview.net/
forum?id=SJxu5iR9KQ.

Sheng Li, Jayesh K Gupta, Peter Morales, Ross Allen, and Mykel J Kochenderfer. Deep implicit
coordination graphs for multi-agent reinforcement learning. In AAMAS, pp. 764–772, 2021.

Cyrus Neary, Christos Verginis, Murat Cubuktepe, and Ufuk Topcu. Verifiable and compositional
reinforcement learning systems. In Proceedings of the International Conference on Automated
Planning and Scheduling, volume 32, pp. 615–623, 2022.

Yaru Niu, Rohan Paleja, and Matthew Gombolay. Magic: Multi-agent graph-attention communica-
tion. In Mair2 Workshop at International Conference on Computer Vision (ICCV), 2021.

Frans A Oliehoek and Christopher Amato. A concise introduction to decentralized POMDPs.
Springer, 2016.

Azaria Paz. Introduction to probabilistic automata. Academic Press, 1971.

Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of
Computer Science (sfcs 1977), pp. 46–57. ieee, 1977.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Amanpreet Singh, Tushar Jain, and Sainbayar Sukhbaatar. Learning when to communicate at
scale in multiagent cooperative and competitive tasks. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=rye7knCqK7.

Steven K Thompson. Sampling, volume 755. John Wiley & Sons, 2012.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, Andrea
Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymnasium,
March 2023. URL https://zenodo.org/record/8127025.

9

https://www.gurobi.com
https://www.gurobi.com
https://openreview.net/forum?id=SJxu5iR9KQ
https://openreview.net/forum?id=SJxu5iR9KQ
https://openreview.net/forum?id=rye7knCqK7
https://zenodo.org/record/8127025

Reinforcement Learning Conference (August 2024)

Tonghan Wang, Liang Zeng, Weijun Dong, Qianlan Yang, Yang Yu, and Chongjie Zhang. Context-
aware sparse deep coordination graphs. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=wQfgfb8VKTn.

Tichakorn Wongpiromsarn, Mahsa Ghasemi, Murat Cubuktepe, Georgios Bakirtzis, Steven Carr,
Mustafa O Karabag, Cyrus Neary, Parham Gohari, and Ufuk Topcu. Formal methods for au-
tonomous systems. arXiv preprint arXiv:2311.01258, 2023.

Lei Yuan, Ziqian Zhang, Lihe Li, Cong Guan, and Yang Yu. A survey of progress on cooperative
multi-agent reinforcement learning in open environment. arXiv preprint arXiv:2312.01058, 2023.

Changxi Zhu, Mehdi Dastani, and Shihan Wang. A survey of multi-agent deep reinforcement learning
with communication. Autonomous Agents and Multi-Agent Systems, 38(1):4, 2024.

10

https://openreview.net/forum?id=wQfgfb8VKTn

