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Abstract

This paper investigates score-based diffusion models when the underlying target
distribution is concentrated on or near low-dimensional manifolds within the
higher-dimensional space in which they formally reside, a common characteristic
of natural image distributions. Despite previous efforts to understand the data
generation process of diffusion models, existing theoretical support remains highly
suboptimal in the presence of low-dimensional structure, which we strengthen in
this paper. For the popular Denoising Diffusion Probabilistic Model (DDPM), we
find that the dependency of the error incurred within each denoising step on the
ambient dimension d is in general unavoidable. We further identify a unique design
of coefficients that yields a converges rate at the order of O(k2/

√
T ) (up to log

factors), where k is the intrinsic dimension of the target distribution and T is the
number of steps. This represents the first theoretical demonstration that the DDPM
sampler can adapt to unknown low-dimensional structures in the target distribution,
highlighting the critical importance of coefficient design. All of this is achieved by
a novel set of analysis tools that characterize the algorithmic dynamics in a more
deterministic manner.

1 Introduction

Score-based diffusion models are a class of generative models that have gained prominence in the
field of machine learning and artificial intelligence for their ability to generate high-quality new data
instances from complex distributions, such as images, audio, and text [23, 11, 25, 24, 9]. These models
operate by gradually transforming noise into samples from the target distribution through a denoising
process guided by pre-trained neural networks that approximate the score functions. In practice,
score-based diffusion models have demonstrated remarkable performance in generating realistic and
diverse content across various domains [19, 20, 21, 7], achieving state-of-the-art performance in
generative AI.

1.1 Diffusion models

The development of score-based diffusion models is deeply rooted in the theory of stochastic processes.
At a high level, we consider a forward process:

X0
add noise−→ X1

add noise−→ · · · add noise−→ XT , (1.1)

which draws a sample from the target data distribution (i.e., X0 ∼ pdata), then progressively diffuses
it to Gaussian noise over time. The key aspect of the diffusion model is to construct a reverse process:

YT
denoise−→ YT−1

denoise−→ · · · denoise−→ Y0 (1.2)
∗Equal contribution.
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satisfying Yt
d
≈ Xt for all t, which starts with pure Gaussian noise (i.e., YT ∼ N (0, Id)) and

gradually converts it back to a new sample Y0 sharing a similar distribution to pdata.

The classical results on time-reversal of SDEs [1, 10] provide the theoretical foundation for the above
task. Consider a continuous time diffusion process:

dXt = −1

2
β(t)Xtdt+

√
β(t)dWt (0 ≤ t ≤ T ), X0 ∼ pdata (1.3)

for some function β : [0, T ] → R+, where (Wt)0≤t≤T is a standard Brownian motion. For a wide
range of functions β, this process converges exponentially fast to a Gaussian distribution. Let pXt

(·)
be the density of Xt. One can construct a reverse-time SDE:

dỸt = −1

2
β(t)

(
Ỹt + 2∇ log pXT−t

(Ỹt)
)
+
√
β(t)dZt (0 ≤ t ≤ T ), Ỹ0 ∼ pXT

, (1.4)

where (Zt)0≤t≤T is another standard Brownian motion. Define Yt = ỸT−t. It is well-known that

Xt
d
= Yt for all 0 ≤ t ≤ T . Here, ∇ log pXt

is called the score function for the law of Xt, which is
not explicitly known.

The above result motivates the following paradigm: we can construct the forward process (1.1) by
time-discretizing the diffusion process (1.3), and construct the reverse process (1.2) by discretizing
the reverse-time SDE (1.4) and learning the score functions from the data. This approach leads to the
popular DDPM sampler [11, 16]. Although the idea of the DDPM sampler is rooted in the theory of
SDEs, the algorithm and analysis presented in this paper do not require any prior knowledge of SDEs.

This paper examines the accuracy of the DDPM sampler by establishing the proximity between the
output distribution of the reverse process and the target data distribution. Since these two distributions
are identical in the continuous time limit with perfect score estimation, the performance of the DDPM
sampler is influenced by two sources of error: discretization error (due to a finite number of steps)
and score estimation error (due to imperfect estimation of the scores). This paper views the score
estimation step as a black box (often addressed by training a large neural network) and focuses on
understanding how time discretization and imperfect score estimation affect the accuracy of the
DDPM sampler.

1.2 Inadequacy of existing results

The past few years have witnessed a significant interest in studying the convergence guarantees for
the DDPM sampler [4, 6, 3, 14, 13]. To facilitate discussion, we consider an ideal setting with perfect
score estimation. In this context, existing results can be interpreted as follows: to achieve ε-accuracy
(i.e., the total variation distance between the target and the output distribution is smaller than ε), it
suffices to take a number of steps exceeding the order of poly(d)/ε2 (ignoring logarithm factors),
where d is the problem dimension. Among these results, the state-of-the-art is given by [3], which
achieved linear dependency on the dimension d.

However, there seems to be a significant gap between the practical performance of the DDPM sampler
and the existing theory. For example, for two widely used image datasets, CIFAR-10 (dimension
d = 32× 32× 3) and ImageNet (dimension d ≥ 64× 64× 3), it is known that 50 and 250 steps (also
known as NFE, the number of function evaluations) are sufficient to generate good samples [16, 9].
This is in stark contrast with the existing theoretical guarantees discussed above, which suggest that
the number of steps T should exceed the order of the dimension d to achieve good performance.

Empirical evidence suggests that the distributions of natural images are concentrated on or near
low-dimensional manifolds within the higher-dimensional space in which they formally reside
[22, 18]. In view of this, a reasonable conjecture is that the convergence rate of the DDPM sampler
actually depends on the intrinsic dimension rather than the ambient dimension. However, the
theoretical understanding of diffusion models when the support of the target data distribution has a
low-dimensional structure remains vastly under-explored. As some recent attempts, [8] established
the first convergence guarantee under the Wasserstein-1 metric. However, their error bound has
linear dependence on the ambient dimension d and exponential dependence on the diameter of the
low-dimensional manifold. Another line of works [5, 26, 17] focused mainly on score estimation with
properly chosen neural networks that exploit the low-dimensional structure, which is also different
from our main focus.

2



1.3 Our contributions

In light of the large theory-practice gap and the insufficiency of prior results, this paper takes a step
towards understanding the performance of the DDPM sampler when the target data distribution has
low-dimensional structure. Our main contributions can be summarized as follows:

• We show that, with a particular coefficient design, the error of the DDPM sampler, evaluated by
the total variation distance between the laws of X1 and Y1, is upper bounded by

k2√
T

+

√√√√ 1

T

T∑
t=1

E
[
∥st (Xt)− s⋆t (Xt)∥22

]
,

up to some logarithmic factors, where k is the intrinsic dimension of the target data distribution
(which will be rigorously defined later), and s⋆t (resp. st) is the true (resp. learned) score function at
each step. The first term represents the discretization error (which vanishes as the number of steps
T goes to infinity), while the second term should be interpreted as the score matching error. This
bound is nearly dimension-free — the ambient dimension d only appears in logarithmic terms.

• We also show that our choice of the coefficients is, in some sense, the unique schedule that does
not incur discretization error proportional to the ambient dimension d at each step. This is in sharp
contrast with the general setting without a low-dimensional structure, where a fairly wide range of
coefficient designs can lead to convergence rates with polynomial dependence on d. Additionally,
this confirms the observation that the performance of the DDPM sampler can be improved through
carefully designing coefficients [2, 16].

As far as we know, this paper provides the first theory demonstrating the capability of the DDPM
sampler in adapting to unknown low-dimensional structures.

2 Problem set-up

In this section, we introduce some preliminaries and key ingredients for the diffusion model and the
DDPM sampler.

Forward process. We consider the forward process (1.1) of the form

Xt =
√
1− βtXt−1 +

√
βtWt (t = 1, . . . , T ), X0 ∼ pdata, (2.1)

where W1, . . . ,WT
i.i.d.∼ N (0, Id), and the learning rates βt ∈ (0, 1) will be specified later. For each

t ≥ 1, Xt has a probability density function (PDF) supported on Rd, and we will use qt to denote the
law or PDF of Xt. Let αt := 1− βt and αt :=

∏t
i=1 αi. It is straightforward to check that

Xt =
√
αtX0 +

√
1− αt W t where W t ∼ N (0, Id). (2.2)

We will choose the learning rates βt to ensure that αT becomes vanishingly small, such that qT ≈
N (0, Id).

Score functions. The key ingredients for constructing the reverse process with the DDPM sampler
are the score functions s⋆t : Rd → Rd associated with each qt, defined as

s⋆t (x) := ∇ log qt(x) (t = 1, . . . , T ).

These score functions are not explicitly known. Here we assume access to an estimate st(·) for each
s⋆t (·), and we define the averaged ℓ2 score estimation error as

ε2score :=
1

T

T∑
t=1

EX∼qt

[
∥st(X)− s⋆t (X)∥22

]
.

This quantity captures the effect of imperfect score estimation in our theory.
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The DDPM sampler. To construct the reverse process (1.2), we use the DDPM sampler

Yt−1 =
1

√
αt

(
Yt + ηtst (Yt) + σtZt

)
(t = T, . . . , 1), YT ∼ N (0, Id) (2.3)

where Z1, . . . , ZT
i.i.d.∼ N (0, Id). Here ηt, σt > 0 are the hyperparameters that play an important

role in the performance of the DDPM sampler, especially when the target data distribution has
low-dimensional structure. As we will see, our theory suggests the following choice

η⋆t = 1− αt and σ⋆2
t =

(1− αt) (αt − αt)

1− αt
. (2.4)

For each 1 ≤ t ≤ T , we will use pt to denote the law or PDF of Yt.

Target data distribution. Let X ⊆ Rd be the support set of the target data distribution pdata, i.e.,
the smallest closed set C ⊆ Rd such that pdata(C) = 1. To allow for the greatest generality, we use
the notion of ε-net and covering number (see e.g., [27]) to characterize the intrinsic dimension of X .
For any ε > 0, a set Nε ⊆ X is said to be an ε-net of X if for any x ∈ X , there exists some x′ in Nε

such that ∥x− x′∥2 ≤ ε. The covering number Nε(X ) is defined as the smallest possible cardinality
of an ε-net of X .

• (Low-dimensionality) Fix ε = T−cε , where cε > 0 is some sufficiently large universal constant.
We define the intrinsic dimension of X to be some quantity k > 0 such that

logNε(X ) ≤ Ccoverk log T

for some constant Ccover > 0.

• (Bounded support) Suppose that there exists a universal constant cR > 0 such that

sup
x∈X

∥x∥2 ≤ R where R := T cR .

Namely we allow polynomial growth of the diameter of X in the number of steps T .

Our setting allows X to be concentrated on or near low-dimensional manifolds, which is less stringent
than assuming an exact low-dimensional structure. In fact, our definition of the intrinsic dimension k
is the metric entropy of X (see e.g., [28]), which is widely used in statistics and learning theory to
characterize the complexity of a set or a class. The low-dimensionality is also a concept of complexity,
therefore it is natural to use covering number, or metric entropy to characterize the intrinsic dimension.
As a sanity check, when X resides in an r-dimensional subspace of Rd, a standard volume argument
(see e.g., [27, Section 4.2.1]) gives logNε(X ) ≍ r log(R/ε) ≍ r log T , suggesting that the intrinsic
dimension k is of order r in this case. In addition, in applications like image generation, the data is
naturally bounded, as pixel values are typically normalized within the range [−1, 1]. For example,
the ℓ2 norm of an image from the CIFAR dataset is typically below 60.

Learning rate schedule. Following [14], we adopt the following learning rate schedule

β1 =
1

T c0
, βt+1 =

c1 log T

T
min

{
β1

(
1 +

c1 log T

T

)t

, 1

}
(t = 1, . . . , T − 1) (2.5)

for some sufficiently large constants c0, c1 > 0. This schedule is not unique – any other schedule of
βt satisfying the properties in Lemma 8 can lead to the same result in this paper.

3 Main results

We are now positioned to present our main theoretical guarantees for the DDPM sampler.

3.1 Convergence analysis

We first present the convergence theory for the DDPM sampler. The proof can be found in Section 4.
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Theorem 1. Suppose that we take the coefficients for the DDPM sampler (2.3) to be ηt = η⋆t and
σt = σ⋆

t (cf. (2.4)), then there exists some universal constant C > 0 such that

TV (q1, p1) ≤ C
(k + log d)

2
log3 T√

T
+ Cεscore log T. (3.1)

Several implications of Theorem 1 follow immediately. The two terms in (3.1) correspond to
discretization error and score matching error, respectively. Assuming perfect score estimation
(i.e., εscore = 0) for the moment, our error bound (3.1) suggests an iteration complexity of order
k4/ε2 (ignoring logarithmic factors) for achieving ε-accuracy, for any nontrivial target accuracy level
ε < 1. In the absence of low-dimensional structure (i.e., k ≍ d), our result also recovers the iteration
complexity in [4, 6, 3, 14] of order poly(d)/ε2.2 This suggests that our choice of coefficients (2.4)
allows the DDPM sampler to adapt to any potential (unknown) low-dimensional structure in the target
data distribution, and remains a valid criterion in the most general settings. The score matching error
in (3.1) scales proportionally with εscore, suggesting that the DDPM sampler is stable to imperfect
score estimation.

3.2 Uniqueness of coefficient design

In this section, we examine the importance of the coefficient design in the adaptivity of the DDPM
sampler to intrinsic low-dimensional structure. Our goal is to show that, unless the coefficients ηt, σt

of the DDPM sampler (2.3) are chosen according to (2.4), discretization errors proportional to the
ambient dimension d will emerge in each denoising step.

In this paper, as well as in most previous DDPM literature, the analysis on the error TV(q1, p1)
usually starts with the following decomposition

TV2(q1, p1)
(i)
≤ 1

2
KL (pX1

∥pY1
)

(ii)
≤ 1

2
KL (pX1,...,XT

∥pY1,...,YT
) (3.2)

(iii)
=

1

2
KL (pXT

∥pYT
)︸ ︷︷ ︸

initialization error

+
1

2

T∑
t=2

Ext∼qt

[
KL
(
pXt−1|Xt

( · |xt) ∥ pYt−1|Yt
( · |xt)

)]︸ ︷︷ ︸
error incurred in the (T+1−t)-th denoising step

.

Here step (i) follows from Pinsker’s inequality, step (ii) utilizes from the data-processing inequality,
while step (iii) uses the chain rule of KL divergence. We may interpret each term in the above
decomposition as the error incurred in each denoising step. In fact, this decomposition is also closely
related to the variational bound on the negative log-likelihood of the reverse process, which is the
optimization target for training DDPM [11, 2, 16].

We consider a target distribution pdata = N (0, Ik), where Ik ∈ Rd×d is a diagonal matrix with
Ii,i = 1 for 1 ≤ i ≤ k and Ii,i = 0 for k + 1 ≤ i ≤ d. This is a simple distribution over Rd that
is supported on a k-dimensional subspace.3 Our second theoretical result provides a lower bound
for the error incurred in each denoising step for this target distribution. The proof can be found in
Appendix B.

Theorem 2. Consider the target distribution pdata = N (0, Ik) and assume that k ≤ d/2. For
the DDPM sampler (2.3) with perfect score estimation (i.e., st(·) = s⋆t (·) for all t) and arbitrary
coefficients ηt, σt > 0, we have

Ext∼qt

[
KL
(
pXt−1|Xt

( · |xt) ∥ pYt−1|Yt
( · |xt)

)]
≥ d

4
(ηt − η⋆t )

2
+

d

40

(
σ⋆2
t

σ2
t

− 1

)2

for each 2 ≤ t ≤ T . See (2.4) for the definitions of η⋆t and σ⋆
t .

2Our result exhibits a quartic dimension dependency, which is worse than the linear dependency in [3]. This
is mainly because we use a completely different analysis. It is not clear whether their analysis, which utilizes the
SDE and stochastic localization toolbox, can tackle the problem with low-dimensional structure.

3Although this is not a bounded distribution, similar results can be established if we truncate N (0, Ik) at the
radius R = T cR . However this is not essential and will make the result unnecessarily complicated, hence is
omitted for clarity.
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Theorem 2 shows that, unless we choose ηt and σ2
t to be identical (or exceedingly close) to η⋆t and

σ⋆2
t , the corresponding denoising step will incur an undesired error that is linear in the ambient

dimension d. This highlights the critical importance of coefficient design for the DDPM sampler,
especially when the target distribution exhibits a low-dimensional structure.

Finally, we would like to make note that the above argument only demonstrates the impact of
coefficient design on an upper bound (3.2) of the error TV(q1, p1), rather than the error itself. It
might be possible that a broader range of coefficients can lead to dimension-independent error bound
like (3.1), while the upper bound (3.2) remains dimension-dependent. This calls for new analysis
tools (since we cannot use the loose upper bound (3.1) in the analysis), which we leave for future
works.

4 Analysis for the DDPM sampler (Proof of Theorem 1)

This section is devoted to establishing Theorem 1. The idea is to bound the error incurred in each
denoising step as characterized in the decomposition (3.2), namely for each 2 ≤ t ≤ T , we need to
bound

Ext∼qt

[
KL
(
pXt−1|Xt

( · |xt) ∥ pYt−1|Yt
( · |xt)

)]
.

This requires connecting the two conditional distributions pXt−1|Xt
and pYt−1|Yt

. It would be conve-
nient to decouple the errors from time discretization and imperfect score estimation by introducing
auxiliary random variables

Y ⋆
t−1 :=

1
√
αt

(Yt + η⋆t s
⋆
t (Yt) + σ⋆

tZt) (2 ≤ t ≤ T ). (4.1)

On a high level, for each 2 ≤ t ≤ T , our proof consists of the following steps:

1. Identify a typical set At ⊆ Rd × Rd such that (Xt, Xt−1) ∈ At with high probability.
2. Establish point-wise proximity pXt−1|Xt

(xt−1 |xt) ≈ pY ⋆
t−1|Yt

(xt−1 |xt) for (xt, xt−1) ∈ At.

3. Characterize the deviation of pY ⋆
t−1|Yt

from pYt−1|Yt
caused by imperfect score estimation.

4.1 Step 1: identifying high-probability sets

For simplicity of presentation, we assume without loss of generality that k ≥ log d throughout the
proof.4 Let {x⋆

i }1≤i≤Nε
be an ε-net of X , and let {Bi}1≤i≤Nε

be a disjoint ε-cover for X such that
x⋆
i ∈ Bi. Let

I := {1 ≤ i ≤ Nε : P(X0 ∈ Bi) ≥ exp(−C1k log T )} ,

G :=
{
ω ∈ Rd : ∥ω∥2 ≤ 2

√
d+

√
C1k log T , and

|(x⋆
i − x⋆

j )
⊤ω| ≤

√
C1k log T∥x⋆

i − x⋆
j∥2 for all 1 ≤ i, j ≤ Nε

}
,

where C1 > 0 is some sufficiently large universal constants. Then ∪i∈IBi and G can be interpreted
as high probability sets for the variable X0 and a standard Gaussian random variable in Rd. For each
t = 1, . . . T , we define a typical set for each Xt as follows

Tt :=
{√

αtx0 +
√
1− αtω : x0 ∈ ∪i∈IBi, ω ∈ G

}
,

and a typical set for (Xt, Xt−1) jointly as follows

At :=
{
(xt, xt−1) : xt ∈ Tt,

xt −
√
αtxt−1√

1− αt
∈ G

}
.

The following lemma shows that At is indeed a high-probability set for (Xt, Xt−1).
Lemma 1. Suppose that C1 ≫ Ccover. Then for each 1 ≤ t ≤ T we have

P ((Xt, Xt−1) /∈ At) ≤ exp
(
− C1

4
k log T

)
.

Proof. See Appendix A.3.
4If k < log d, we may redefine k := log d, which does not change the desired bound (3.1).
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4.2 Step 2: connecting conditional densities pXt−1|Xt
and pY ⋆

t−1|Yt

Given the definition of Y ⋆
t−1 in (4.1), we can write down the conditional density pY ⋆

t−1|Yt
as follows

pY ⋆
t−1|Yt

(xt−1 |xt) =

(
αt

2πσ⋆2
t

)d/2

exp

(
−
∥√αtxt−1 − xt − η⋆t s

⋆
t (xt) ∥22

2σ⋆2
t

)
. (4.2)

Next, we will investigate the conditional density pXt−1|Xt
for the forward process. For each x0 ∈ X ,

we define the shorthand notation

x̂0 := E [X0 |Xt = xt] =

∫
x0

x0pX0|Xt
(x0 |xt) dx0, (4.3)

and define a function ∆xt,xt−1
: X → R as follows

∆xt,xt−1 (x0) := −
√
αt

αt − αt
(
√
αtxt−1 − xt)

⊤
(x̂0 − x0)−

(1− αt)αt

2 (αt − αt) (1− αt)
∥x̂0 − x0∥22

− (1− αt)
√
αt

(αt − αt) (1− αt)

(
xt −

√
αtx̂0

)⊤
(x̂0 − x0) . (4.4)

The next lemma provides a characterization for pXt−1|Xt
that shows an explicit connection with

pY ⋆
t−1|Yt

.

Lemma 2. For any pair (xt, xt−1) ∈ Rd × Rd, we have

pXt−1|Xt
(xt−1 |xt) =

(
αt

2πσ⋆2
t

)d/2

exp

(
−
∥√αtxt−1 − xt − η⋆t s

⋆
t (xt) ∥22

2σ⋆2
t

)
·
∫
X
exp

(
∆xt,xt−1

(x0)
)
pX0|Xt

(x0 |xt) dx0.

Proof. See Appendix A.4.

Taking Lemma 2 and (4.2) collectively yields

pXt−1|Xt
(xt−1 |xt)

pY ⋆
t−1|Yt

(xt−1 |xt)
=

∫
X
exp

(
∆xt,xt−1

(x0)
)
pX0|Xt

(x0 |xt) dx0,

which allows us to control the density ratio by the magnitude of ∆xt,xt−1 . By a careful analysis of the
above integral for all (xt, xt−1) ∈ At, we show in the next lemma that the density ratio is uniformly
close to 1 within the typical set At.

Lemma 3. Suppose that T ≫ k2 log3 T . Then there exists some universal constant C5 > 0 such
that, for any 2 ≤ t ≤ T and any (xt, xt−1) ∈ At, we have∣∣∣∣∣pXt−1|Xt

(xt−1 |xt)

pY ⋆
t−1|Yt

(xt−1 |xt)
− 1

∣∣∣∣∣ ≤ C5
k2 log3 T

T
≤ 1

2
.

Proof. See Appendix A.5.

For (xt, xt−1) outside the typical set At, the following lemma gives a coarse uniform bound for the
density ratio, which is already sufficient for our later analysis.
Lemma 4. Suppose that T ≫ 1. Then for any 2 ≤ t ≤ T and any pair (xt, xt−1) ∈ Rd × Rd, we
have ∣∣∣∣∣log pXt−1|Xt

(xt−1 |xt)

pY ⋆
t−1|Yt

(xt−1 |xt)

∣∣∣∣∣ ≤ T c0+2cR (∥
√
αtxt−1 − xt∥2 + ∥xt∥2 + 1) .

Proof. See Appendix A.6.

Armed with Lemmas 3 and 4, we are ready to bound the expected KL divergence between the two
conditional distributions pXt−1|Xt

and pY ⋆
t−1|Yt

.
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4.3 Step 3: bounding the KL divergence between pXt−1|Xt
and pY ⋆

t−1|Yt

We first decompose the expected KL divergence between pXt−1|Xt
and pY ⋆

t−1|Yt
into

Ext∼qt

[
KL
(
pXt−1|Xt

( · |xt) ∥ pY ⋆
t−1|Yt

( · |xt)
)]

=

(∫
At

+

∫
Ac

t

)
pXt−1|Xt

(xt−1 |xt) log

(
pXt−1|Xt

(xt−1 |xt)

pY ⋆
t−1|Yt

(xt−1 |xt)

)
pXt

(xt) dxt−1dxt

=: ∆t,1 +∆t,2,

where ∆t,1 and ∆t,2 are the integrals over At and Ac
t . It boils down to bounding these two terms.

By a direct application of Lemma 3 together with the first-order Taylor expansion of log(x) around
x = 1, one can easily show that |∆t,1| ≲ k2 log3(T )/T . However this naive bound will lead to a
vacuous final bound on TV(q1, p1), which depends on the sum of ∆t,1 over all 2 ≤ t ≤ T according
to (3.2). By a more careful analysis, we achieve a better bound for ∆t,1, as shown in the following
lemma.
Lemma 5. Suppose that T ≫ k2 log3 T . Then for each 2 ≤ t ≤ T , we have

|∆t,1| ≤ 2C2
5

k4 log6 T

T 2
.

Proof. See Appendix A.7.

For ∆t,2, we can employ the course bound in Lemma 4 to show that it is exponentially small.
Lemma 6. Suppose that T ≫ 1. Then for each 2 ≤ t ≤ T , we have

|∆t,2| ≤ exp

(
−C1

16
k log T

)
.

Proof. See Appendix A.8.

By putting together Lemma 5 and Lemma 6, we achieve

Ext∼qt

[
KL
(
pXt−1|Xt

( · |xt) ∥ pY ⋆
t−1|Yt

( · |xt)
)]

= ∆t,1 +∆t,2 ≤ 3C2
5

k4 log6 T

T 2
(4.5)

provided that T is sufficiently large.

4.4 Step 4: bounding the KL divergence between pXt−1|Xt
and pYt−1|Yt

Since our goal is to bound the expected KL divergence between pXt−1|Xt
and pYt−1|Yt

, we also need
to upper bound the following difference

Ext∼qt

[
KL
(
pXt−1|Xt

( · |xt) ∥ pYt−1|Yt
( · |xt)

)]
− Ext∼qt

[
KL
(
pXt−1|Xt

( · |xt) ∥ pY ⋆
t−1|Yt

( · |xt)
)]

=

∫ [ ∫
pXt−1|Xt

(xt−1 |xt) log
pY ⋆

t−1|Yt
(xt−1 |xt)

pYt−1|Yt
(xt−1 |xt)

dxt−1

]
qt (xt) dxt (4.6)

=

∫
pXt−1,Xt

(xt−1, xt)

(
−αt∥xt−1 − µ⋆

t (xt) ∥22
2σ⋆2

t

+
αt∥xt−1 − µt (xt) ∥22

2σ⋆2
t

)
dxt−1dxt

=
η⋆2t
2σ⋆2

t

Ext∼qt

[
∥εt (xt) ∥22

]
+

η⋆t
√
αt

σ⋆2
t

∫
pXt−1,Xt

(xt−1, xt) (xt−1 − µ⋆
t (xt))

⊤
εt (xt) dxt−1dxt︸ ︷︷ ︸

=:Kt

,

where we define

εt (xt) := s⋆t (xt)− st (xt) , µ⋆
t (xt) :=

xt + η⋆t s
⋆
t (xt)√

αt
, µt (xt) :=

xt + η⋆t st (xt)√
αt

. (4.7)

It then boils down to bounding Kt, which is presented in the following lemma.
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Lemma 7. Suppose that T ≫ k2 log3 T . Then we have

|Kt| ≤ 4C5
k2 log3 T

T

√
c1 log T

T
E1/2
xt∼qt

[
∥εt (xt) ∥22

]
.

Proof. See Appendix A.8.

Hence we know that for 2 ≤ t ≤ T ,

Ext∼qt

[
KL
(
pXt−1|Xt

( · |xt) ∥ pYt−1|Yt
( · |xt)

)]
− Ext∼qt

[
KL
(
pXt−1|Xt

( · |xt) ∥ pY ⋆
t−1|Yt

( · |xt)
)]

≤ (1− αt) (1− αt)

2 (αt − αt)
Ext∼qt

[
∥εt (xt) ∥22

]
+ 4C5

1− αt

αt − αt

k2 log3 T

T

√
c1 log T

T
E1/2
xt∼qt

[
∥εt (xt) ∥22

]
≤ 4c1 log T

T
Ext∼qt

[
∥εt (xt) ∥22

]
+ 8C5

k2 log3 T

T

√
c1 log T

T
E1/2
xt∼qt

[
∥εt (xt) ∥22

]
. (4.8)

Here the first relation follows from Lemma 7 and (2.4); while the second relation follows from
Lemma 8 and holds provided that T is sufficiently large.

4.5 Step 5: putting everything together

By taking (4.5) and (4.8) collectively, we have

Ext∼qt

[
KL
(
pXt−1|Xt

( · |xt) ∥ pYt−1|Yt
( · |xt)

)]
≤ 3C2

5

k4 log6 T

T 2
+

4c1 log T

T
Ext∼qt

[
∥εt (xt) ∥22

]
+ 8C5

k2 log3 T

T

√
c1 log T

T
E1/2
xt∼qt

[
∥εt (xt) ∥22

]
≤ 7C2

5

k4 log6 T

T 2
+

8c1 log T

T
Ext∼qt

[
∥εt (xt) ∥22

]
. (4.9)

Here the last relation follows from an application of the AM-GM inequality

8C5
k2 log3 T

T

√
c1 log T

T
E1/2
xt∼qt

[
∥εt (xt) ∥22

]
≤ 4c1 log T

T
Ext∼qt

[
∥εt (xt) ∥22

]
+ 4C2

5

k4 log6 T

T 2
.

Finally we conclude that

TV2(q1, p1) ≤ KL (pXT
∥pYT

) +

T∑
t=2

Ext∼qt

[
KL
(
pXt−1|Xt

( · |xt) ∥ pYt−1|Yt
( · |xt)

)]
≤ 8C2

5

k4 log6 T

T
+

8c1 log T

T

T∑
t=2

Ext∼qt

[
∥εt (xt) ∥22

]
,

as claimed. Here the first relation follows from (3.2), while the second relation follows from the fact
that KL(pXT

∥pYT
)≤ T−100 provided that T is sufficiently large (see Lemma 10).

5 Simulation study

We conducted a simple simulation to compare our coefficient design (2.4) with another design

ηt = σ2
t = 1− αt for 1 ≤ t ≤ T, (5.1)

which has been widely adopted in theoretical analysis of diffusion model (see e.g., [14, 15]). We
consider the degenerated Gaussian distribution pdata = N (0, Ik) in Theorem 2 as a tractable ex-
ample, and run the DDPM sampler with exact score functions (so that the error only comes from
discretization). We fix the intrinsic dimension k = 8, and let the ambient dimension d grow from 10
to 103. We implement the experiment for four different number of steps T ∈ {100, 200, 500, 1000}.
Instead of using the learning rate schedule (2.5), which is chosen mainly to facilitate analysis, we
use the schedule in [11] that is commonly used in practice. Figure 1 displays the error, in terms of
both the TV distance TV(q1, p1) and KL divergence KL(q1∥p1), as the ambient dimension d varies.
As we can see, our design (2.4) leads to dimension-independent error while the other design (5.1)
incures an error that grows as d increases. This provides empirical evidence that (2.4) represents a
unique coefficient design for DDPM in achieving dimension-independent error.
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Figure 1: The KL divergence between q1 and p1 for T ∈ {100, 200, 500, 1000}, when pdata =
N (0, Ik). We fix the low intrinsic dimension k = 8, and let the ambient dimension d grow from 10
to 1000.

6 Discussion

The present paper investigates the DDPM sampler when the target distribution is concentrated on
or near low-dimensional manifolds. We identify a particular coefficient design that enables the
adaptivity of the DDPM sampler to unknown low-dimensional structures and establish a dimension-
free convergence rate at the order of k2/

√
T (up to logarithmic factors). We conclude this paper by

pointing out several directions worthy of future investigation. To begin with, our theory yields an
iteration complexity that scales quartically in the intrinsic dimension k, which is likely sub-optimal.
Improving this dependency calls for more refined analysis tools. Recent work [15] achieved a
convergence rate of order O(d/T ), suggesting the potential for enhancing the dependence on T .
Furthermore, as we have discussed in the end of Section 3.2, it is not clear whether our coefficient
design (2.4) is unique in terms of achieving dimension-independent error TV(q1, p1). Finally, the
analysis ideas and tools developed for the DDPM sampler might be extended to study another popular
DDIM sampler.
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A Proof of auxiliary lemmas for the DDPM sampler

A.1 Preliminaries

Fix any xt ∈ Tt, there exists an index i(xt) ∈ I, two points x0(xt) ∈ Bi(xt) and ω ∈ G such that

xt =
√
αtx0(xt) +

√
1− αtω. (A.1)

For any r > 0, define a set

I (xt; r) :=
{
1 ≤ i ≤ Nε : αt∥x⋆

i − x⋆
i(xt)

∥22 ≤ r · k(1− αt) log T
}
. (A.2)

For some sufficiently large constant C3 > 0, define

Xt (xt) :=
⋃

i∈I(xt;C3)

Bi and Yt (xt) :=
⋃

i/∈I(xt;C3)

Bi.

Namely, Xt(xt) (resp. Yt(xt)) contains the indices of the ε-covering that are close (resp. far) from
Bi(xt). We require that

ε ≪
√

1− αt

αt
min

{
1,

√
k log T

d

}
, (A.3)

which is guaranteed by our assumption that ε = T−cε for some sufficiently large constant cε > 0.
Under this condition, for any x, x′ ∈ Xt(xt) we have

∥x−x′∥2 ≤ ∥x−x⋆
i(xt)

∥2+∥x′−x⋆
i(xt)

∥2 ≤ 2

√
C3k(1− αt) log T

αt
+2ε ≤ 3

√
C3k(1− αt) log T

αt

Hence for any x, x′ ∈ Xt(xt) we have

αt∥x− x′∥22 ≤ 9C3k (1− αt) log T. (A.4)

In addition, for any x, x′ ∈ X , suppose that x ∈ Bi and x′ ∈ Bj . For any ω ∈ G, we have∣∣ω⊤ (x− x′)
∣∣ = ∣∣ω⊤ (x⋆

i − x⋆
j

)∣∣+ ∣∣ω⊤ (x− x⋆
i )
∣∣+ ∣∣ω⊤ (x⋆

j − x′)∣∣
(i)
≤
√
C1k log T∥x⋆

i − x⋆
j∥2 + ∥x− x⋆

i ∥2 ∥ω∥2 +
∥∥x′ − x⋆

j

∥∥
2
∥ω∥2

(ii)
≤
√

C1k log T∥x⋆
i − x⋆

j∥2 + 2
(
2
√
d+

√
C1k log T

)
ε

(iii)
≤
√
C1k log T∥x− x′∥2 + 2

√
C1k log Tε+ 2

(
2
√
d+

√
C1k log T

)
ε

≤
√
C1k log T∥x− x′∥2 +

(
4
√
d+ 4

√
C1k log T

)
ε. (A.5)

Here step (i) follows from ω ∈ G and the Cauchy-Schwarz inequality; steps (ii) and (iii) follows
from∥x− x⋆

i ∥2 ≤ ε and ∥x′ − x⋆
j∥2 ≤ ε, as well as ∥ω∥2 ≤

√
d+

√
C1k log T , which is a property

for ω ∈ G.

A.2 Understanding the conditional density pXt|X0
(· |x0)

Conditional on Xt = xt, for any 1 ≤ i ≤ Nε we have

P (X0 ∈ Bi |Xt = xt) =
P (X0 ∈ Bi, Xt = xt)

pXt
(xt)

=
P (X0 ∈ Bi, Xt = xt)∑

1≤j≤Nε
P (X0 ∈ Bj , Xt = xt)

≤ P (X0 ∈ Bi, Xt = xt)

P
(
X0 ∈ Bi(xt), Xt = xt

) =
P (X0 ∈ Bi)P (Xt = xt |X0 ∈ Bi)

P
(
X0 ∈ Bi(xt)

)
P
(
Xt = xt |X0 ∈ Bi(xt)

)
≤ exp (C1k log T ) ·

P (Xt = xt |X0 ∈ Bi)

P
(
Xt = xt |X0 ∈ Bi(xt)

) · P (X0 ∈ Bi) . (A.6)
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Here the last relation follows from P(X0 ∈ Bi(xt)) ≥ exp(−C1k log T ) due to i(xt) ∈ I. We have

P (Xt = xt |X0 ∈ Bi) =
P (Xt = xt, X0 ∈ Bi)

P (X0 ∈ Bi)
=

1

P (X0 ∈ Bi)

∫
x̃∈Bi

P (Xt = xt, X0 = x̃) dx̃

=
1

P (X0 ∈ Bi)

∫
x̃∈Bi

P (Xt = xt |X0 = x̃)P (X0 = x̃) dx̃

≤ max
x̃∈Bi

P (Xt = xt |X0 = x̃) . (A.7)

For any x̃ ∈ Bi, since Xt |X0 = x̃ ∼ N (
√
αtx̃, (1− αt)Id), we have

P (Xt = xt |X0 = x̃) = [2π (1− αt)]
−d/2

exp

(
−∥xt −

√
αtx̃∥22

2 (1− αt)

)
≤ [2π (1− αt)]

−d/2
exp

(
− (∥xt −

√
αtx

⋆
i ∥2 −

√
αtε)

2

2 (1− αt)

)
. (A.8)

Taking (A.7) and (A.8) collectively to achieve

P (Xt = xt |X0 ∈ Bi) ≤ [2π (1− αt)]
−d/2

exp

(
− (∥xt −

√
αtx

⋆
i ∥2 −

√
αtε)

2

2 (1− αt)

)
. (A.9)

By similar argument in (A.7), (A.8) and (A.9), we can show that

P
(
Xt = xt |X0 ∈ Bi(xt)

)
≥ [2π (1− αt)]

−d/2
exp

(
−

(∥xt −
√
αtx

⋆
i(xt)

∥2 +
√
αtε)

2

2 (1− αt)

)
.

(A.10)
Combine (A.9) and (A.10) to achieve

P (Xt = xt |X0 ∈ Bi)

P
(
Xt = xt |X0 ∈ Bi(xt)

) ≤ exp

[
− (∥xt −

√
αtx

⋆
i ∥2 −

√
αtε)

2

2 (1− αt)
+

(∥xt −
√
αtx

⋆
i(xt)

∥2 +
√
αtε)

2

2 (1− αt)

]

≤ exp

[
−
∥xt −

√
αtx

⋆
i ∥22 − ∥xt −

√
αtx

⋆
i(xt)

∥22 − 2
√
αtε(∥xt −

√
αtx

⋆
i ∥2 + ∥xt −

√
αtx

⋆
i(xt)

∥2)
2 (1− αt)

]
.

(A.11)

Next, we will discuss the implication of the above analysis for Bi ⊆ Xt(xt) and Bi ⊆ Yt(xt)
respectively.

A.2.1 Case 1: Bi ⊆ Xt(xt)

For any i ∈ I(xt; 0, C3), we have

∥xt −
√
αtx

⋆
i ∥22 − ∥xt −

√
αtx

⋆
i(xt)

∥22 = αt∥x⋆
i(xt)

− x⋆
i ∥22 + 2

√
αt(x

⋆
i(xt)

− x⋆
i )

⊤(xt −
√
αtx

⋆
i(xt)

)

(i)
= αt∥x⋆

i(xt)
− x⋆

i ∥22 + 2
√
αt (1− αt)(x

⋆
i(xt)

− x⋆
i )

⊤ω + 2αt

√
1− αt(x

⋆
i(xt)

− x⋆
i )

⊤(x0(xt)− x⋆
i(xt)

)

(ii)
≥ αt∥x⋆

i(xt)
− x⋆

i ∥22 − 2
√
C1αt (1− αt)

√
k log T∥x⋆

i(xt)
− x⋆

i ∥2 − 2αt

√
1− αtε∥x⋆

i(xt)
− x⋆

i ∥2
(iii)
≥ C3k (1− αt) log T − 2 (1− αt) (

√
C1k log T +

√
αtε)

√
C3k log T

(iv)
≥ (C3/2)k (1− αt) log T. (A.12)

Here step (i) uses the decomposition (A.1); step (ii) follows from ω ∈ G, Cauchy-Schwarz inequality
and the fact that ∥x0(xt)− x⋆

i(xt)
∥2 ≤ ε; step (iii) follows from i ∈ I(xt; 0, C3) and holds provided

that C3 ≫ 1; while step (iv) holds when C3 ≫ C1 and ε ≤ 1. In view of the decomposition (A.1),
we have

∥xt −
√
αtx

⋆
i ∥2 + ∥xt −

√
αtx

⋆
i(x0)

∥2 ≤
√
αt∥x0(xt)− x⋆

i ∥2 +
√
αt∥x0(xt)− x⋆

i(xt)
∥2 + 2

√
1− αt∥ω∥2

(a)
≤ 6
√
C3k(1− αt) log T + 2

√
1− αt

(
2
√
d+

√
C1k log T

)
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(b)
≤

√
1− αt

(
8
√

C3k log T + 4
√
d
)
, (A.13)

where step (a) follows from (A.4), as well as the facts that x0(xt), x
⋆
i , x

⋆
i(xt)

∈ Xt(xt) and ε ∈ G;
while step (b) holds provided that C3 ≫ C1. By substituting the bounds (A.12) and (A.13) into
(A.11), we have

P(Xt = xt |X0 ∈ Bi)

P(Xt = xt |X0 ∈ Bi(xt))
≤ exp

− (C3/2)k(1− αt) log T − 2ε
√

αt (1− αt)
(
8
√
C3k log T + 4

√
d
)

2 (1− αt)


≤ exp (−(C3/8)k log T ) (A.14)

provided that (A.3) holds and C3 is sufficiently large. In view of (A.6) and (A.14), we know that for
any i ∈ I(xt; 0, C3), we have

P (X0 ∈ Bi |Xt = xt) ≤ exp (C1k log T − (C3/8)k log T )P (X0 ∈ Bi)

≤ exp (−(C3/16)k log T )P (X0 ∈ Bi) (A.15)

as long as C3 ≫ C1. Therefore we have

P (X0 /∈ Xt(xt) |Xt = xt) =
∑

i/∈I(xt;C3/2)

P (X0 ∈ Bi |Xt = xt) ≤ exp

(
−C3

16
k log T

)
.

A.2.2 Case 2: Bi ⊆ Yt(xt)

For any i /∈ I(xt;C3), we have

∥xt −
√
αtx

⋆
i ∥22 − ∥xt −

√
αtx

⋆
i(xt)

∥22
(i)
≥ αt∥x⋆

i(xt)
− x⋆

i ∥22 − 2
√
C1αt (1− αt)

√
k log T∥x⋆

i(xt)
− x⋆

i ∥2 − 2αt

√
1− αtε∥x⋆

i(xt)
− x⋆

i ∥2
(ii)
≥ 1

2
αt∥x⋆

i(xt)
− x⋆

i ∥22. (A.16)

Here step (i) follows from an intermediate step of (A.12), while the correctness of step (ii) is equivalent
to √

αt∥x⋆
i(xt)

− x⋆
i ∥2 ≥ 4

√
C1 (1− αt)

√
k log T + 4

√
αt (1− αt)ε,

which follows from i /∈ I(xt;C3), the assumptions that C3 ≫ C1, and (A.3). In addition, we also
have

∥xt −
√
αtx

⋆
i ∥2 + ∥xt −

√
αtx

⋆
i(x0)

∥2
(i)
≤

√
αt∥x0(xt)− x⋆

i ∥2 +
√
αt∥x0(xt)− x⋆

i(xt)
∥2 + 2

√
1− αt∥ω∥2

(ii)
≤

√
αt∥x⋆

i(xt)
− x⋆

i ∥2 + 2
√
αt∥x0(xt)− x⋆

i(xt)
∥2 + 2

√
1− αt

(
2
√
d+

√
C1k log T

)
(iii)
≤

√
αt∥x⋆

i(xt)
− x⋆

i ∥2 + 3
√
1− αt

(
2
√
d+

√
C1k log T

)
. (A.17)

Here step (i) follows from the intermediate step of (A.13); step (ii) utilizes the triangle inequality;
whereas step (iii) follows from ∥x0(xt)− x⋆

i(xt)
∥2 ≤ ε and the condition (A.3). Similar to (A.14),

we can substitute the bounds (A.16) and (A.17) into (A.11) to get

P(Xt = xt |X0 ∈ Bi)

P(Xt = xt |X0 ∈ Bi(xt))
≤ exp

(
− αt

8 (1− αt)
∥x⋆

i(xt)
− x⋆

i ∥22
)
. (A.18)

Since i /∈ I(xt;C3), we know that αt∥x⋆
i(xt)

− x⋆
i ∥22 > C3k(1− αt) log T , hence when C3 ≫ C1,

we learn from (A.6) and (A.18) that

P (X0 ∈ Bi |Xt = xt) ≤ exp

(
C1k log T − αt

8 (1− αt)
∥x⋆

i(xt)
− x⋆

i ∥22
)
P (X0 ∈ Bi)

≤ exp

(
− αt

16 (1− αt)
∥x⋆

i(xt)
− x⋆

i ∥22
)
P (X0 ∈ Bi) . (A.19)
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A.3 Proof of Lemma 1

It is straightforward to check that

P ((Xt, Xt−1) ∈ At)
(i)
= P (Xt ∈ Tt,Wt ∈ G)

(ii)
≤ P

(
X0 ∈ ∪i∈IBi,Wt ∈ G,W t ∈ G

)
,

where step (i) follows from the update rule (2.1), and step (ii) follows from the relation (2.2).
Therefore we have

P ((Xt, Xt−1) /∈ At) ≤ P (X0 /∈ ∪i∈IBi) + P (Wt /∈ G) + P
(
W t /∈ G

)
. (A.20)

By definition of the set I, we have

P (X0 /∈ ∪i∈IBi) ≤ Nε exp (−C1k log T ) ≤ exp (Ccoverk log T − C1k log T ) ≤
1

3
exp

(
−C1

4
k log T

)
(A.21)

as long as C1 ≫ Ccover. In addition, since Wt,W t ∼ N (0, Id), by the definition of G we know that

P (Wt /∈ G) ≤ P
(
∥Wt∥2 >

√
d+

√
C1k log T

)
+

Nε∑
i=1

Nε∑
j=1

P
(
|(x⋆

i − x⋆
j )

⊤Wt| >
√
C1k log T∥x⋆

i − x⋆
j∥2
)

(i)
≤
(
N2

ε + 1
)
exp

(
−C1

2
k log T

)
≤ (exp (2Ccoverk log T ) + 1) exp

(
−C1

2
k log T

)
(ii)
≤ 1

3
exp

(
−C1

4
k log T

)
(A.22)

Here step (i) follows from concentration bounds for Gaussian and chi-square variables (see Lemma 9);
while step (ii) holds as long as C1 ≫ Ccover. The same bound also holds for P(W t /∈ G). Taking
(A.20), (A.21) and (A.22) collectively yields

P ((Xt, Xt−1) /∈ At) ≤ exp

(
−C1

4
k log T

)
as claimed.

A.4 Proof of Lemma 2

For any deterministic pairs (xt, xt−1), we have

pXt−1|Xt
(xt−1 |xt) =

1

pXt (xt)
pXt−1,Xt

(xt−1, xt) =
pXt−1 (xt−1)

pXt (xt)
pXt|Xt−1

(xt |xt−1) .

(A.23)

Recall that Xt |Xt−1 = xt−1 ∼ N (
√
αtxt−1, (1− αt)Id), therefore we have

pXt|Xt−1
(xt |xt−1) = [2π (1− αt)]

−d/2
exp

(
− 1

2 (1− αt)
∥xt −

√
αtxt−1∥22

)
. (A.24)

Next, we analyze the density ratio pXt−1
(xt−1)/pXt

(xt). It would be easier to do a change of
variable

pXt−1
(xt−1) = α

d/2
t p√αtXt−1

(
√
αtxt−1) . (A.25)

Since
√
αtXt−1 |X0 = x0 ∼ N (

√
αtx0, (αt − αt)Id), we can write

p√αtXt−1

(√
αtxt−1

)
pXt

(xt)
=

1

pXt
(xt)

∫
x0

pX0
(x0) p√αtXt−1|X0

(
√
αtxt−1 |x0) dx0

=
1

pXt
(xt)

∫
x0

pX0
(x0) [2π (αt − αt)]

−d/2
exp

(
−
∥√αtxt−1 −

√
αtx0∥22

2(αt − αt)

)
dx0.

(A.26)

We hope to connect the above quantity with the conditional density

pX0|Xt
(x0 |xt) =

pX0,Xt
(x0, xt)

pXt (xt)
=

pX0
(x0)

pXt (xt)
pXt|X0

(xt |x0)
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=
pX0

(x0)

pXt (xt)

1

[2π(1− αt)]
d/2

exp

(
−∥xt −

√
αtx0∥22

2 (1− αt)

)
. (A.27)

Towards this, we can deduce that

p√αtXt−1

(√
αtxt−1

)
pXt

(xt)

(i)
=

(
1− αt

αt − αt

)d/2 ∫
x0

pX0 (x0)

pXt
(xt)

[2π(1− αt)]
−d/2

exp

(
−
∥√αtxt−1 −

√
αtx0∥22

2(αt − αt)

)
dx0

(ii)
=

(
1− αt

αt − αt

)d/2 ∫
x0

pX0|Xt
(x0 |xt) exp

(
∥xt −

√
αtx0∥22

2 (1− αt)
−

∥√αtxt−1 −
√
αtx0∥22

2(αt − αt)

)
dx0,

(A.28)

where step (i) follows from (A.26) and step (ii) utilizes (A.27). The terms in the exponent can be
rearranged into

∥xt −
√
αtx0∥22

2 (1− αt)
−

∥√αtxt−1 −
√
αtx0∥22

2 (αt − αt)
=

∥xt −
√
αtx0∥22 − ∥√αtxt−1 −

√
αtx0∥22

2 (αt − αt)
− (1− αt) ∥xt −

√
αtx0∥22

2 (αt − αt) (1− αt)

= −
∥√αtxt−1 − xt∥22 + 2

(√
αtxt−1 − xt

)⊤ (
xt −

√
αtx0

)
2 (αt − αt)

− (1− αt) ∥xt −
√
αtx0∥22

2 (αt − αt) (1− αt)

= −
∥√αtxt−1 − xt∥22 + 2

(√
αtxt−1 − xt

)⊤ (
xt −

√
αtx̂0

)
2 (αt − αt)

− (1− αt) ∥xt −
√
αtx̂0∥22

2 (αt − αt) (1− αt)
+ ∆xt,xt−1 (x0)

where we define
x̂0 := E [X0 |Xt = xt] =

∫
x0

x0pX0|Xt
(x0 |xt) dx0,

and

∆xt,xt−1 (x0) := −
√
αt

αt − αt
(
√
αtxt−1 − xt)

⊤
(x̂0 − x0)−

(1− αt)
√
αt

(αt − αt) (1− αt)

(
xt −

√
αtx̂0

)⊤
(x̂0 − x0)

− (1− αt)αt

2 (αt − αt) (1− αt)
∥x̂0 − x0∥22.

Substituting the above relation into (A.28) yields

p√αtXt−1

(√
αtxt−1

)
pXt (xt)

=

(
1− αt

αt − αt

)d/2

exp

[
−
∥√αtxt−1 − xt∥22

2 (αt − αt)

]
· exp

[
−
(√

αtxt−1 − xt

)⊤ (
xt −

√
αtx̂0

)
αt − αt

− (1− αt) ∥xt −
√
αtx̂0∥22

2 (αt − αt) (1− αt)

]

·
∫
x0

pX0|Xt
(x0 |xt) exp

(
∆xt,xt−1

(x0)
)
dx0. (A.29)

Therefore we have

pXt−1|Xt
(xt−1 |xt)

(i)
= α

d/2
t

p√αtXt−1

(√
αtxt−1

)
pXt

(xt)
pXt|Xt−1

(xt |xt−1) (A.30)

(ii)
= α

d/2
t

(
1− αt

αt − αt

)d/2

exp

(
−
(√

αtxt−1 − xt

)⊤ (
xt −

√
αtx̂0

)
αt − αt

− (1− αt) ∥xt −
√
αtx̂0∥22

2 (αt − αt) (1− αt)

)

· [2π (1− αt)]
−d/2

exp

(
−
(1− αt)

∥∥xt −
√
αtxt−1

∥∥2
2

2 (1− αt) (αt − αt)

)
·
∫
x0

pX0|Xt
(x0 |xt) exp

(
∆xt,xt−1

(x0)
)
dx0

(iii)
=

α
d/2
t

(2πσ⋆2
t )

d/2
exp

(
−
∥√αtxt−1 − xt − η⋆t s

⋆
t (xt) ∥22

2σ⋆2
t

)
·
∫
x0

pX0|Xt
(x0 |xt) exp

(
∆xt,xt−1 (x0)

)
dx0.

Here step (i) follows from (A.23) and (A.25); step (ii) follows from (A.24) and (A.29); whereas step
(iii) follows from the definition of η⋆t and σ⋆

t (cf. (2.4)) as well as the fact that

s⋆t (xt) = − 1

1− αt

∫
x0

pX0|Xt
(x0 |xt)

(
x−

√
αtx0

)
dx0 = − 1

1− αt

(
xt −

√
αtx̂0

)
.
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A.5 Proof of Lemma 3

For any (xt, xt−1) ∈ At, we know that ω′ := (xt −
√
αtxt−1)/

√
1− αt ∈ G. We will upper bound

the integral with two terms∫
x0

pX0|Xt
(x0 |xt) exp (∆ (xt, xt−1, x0)) dx0 =

∫
Xt(xt)

pX0|Xt
(x0 |xt) exp (∆ (xt, xt−1, x0)) dx0︸ ︷︷ ︸

=:I1

+

∫
Yt(xt)

pX0|Xt
(x0 |xt) exp (∆ (xt, xt−1, x0)) dx0︸ ︷︷ ︸

=:I2

,

where we recall that

∆(xt, xt−1, x0) =

√
αt (1− αt)

αt − αt
(x̂0 − x0)

⊤
ω′︸ ︷︷ ︸

=:∆1(x0)

− (1− αt)
√
αt

(αt − αt)
√
1− αt

(x̂0 − x0)
⊤
ω︸ ︷︷ ︸

=:∆2(x0)

− (1− αt)αt

(αt − αt) (1− αt)
(x0(xt)− x̂0)

⊤
(x̂0 − x0)︸ ︷︷ ︸

=:∆3(x0)

− (1− αt)αt

2 (αt − αt) (1− αt)
∥x̂0 − x0∥22︸ ︷︷ ︸

=:∆4(x0)

.

In what follows, we will use ∆(x0) instead of ∆(xt, xt−1, x0) when there is no confusion. Since
(xt, xt−1) ∈ At, we know that ω′ := (xt −

√
αtxt−1)/

√
1− αt ∈ G. We decompose x̂0 into

x̂0 =

∫
x0

x′
0pX0|Xt

(x0 |xt) dx
′
0

= x⋆
i(xt)

+

∫
Xt(xt)

(x′
0 − x⋆

i(xt)
)pX0|Xt

(x0 |xt) dx
′
0︸ ︷︷ ︸

=:x0

+

∫
Yt(xt)

(x′
0 − x⋆

i(xt)
)pX0|Xt

(x′
0 |xt) dx

′
0︸ ︷︷ ︸

=:δ

.

(A.31)

Since Xt(xt) is a ball in Rd centered at x⋆
i(xt)

, it is straightforward to check that x0 ∈ Xt(xt). We
also have

∥δ∥2 ≤
∫
Yt(xt)

∥x′
0 − x⋆

i(xt)
∥2pX0|Xt

(x0 |xt) dx
′
0

(i)
≤

∑
i/∈I(xt;C3)

(
∥x⋆

i − x⋆
i(xt)

∥2 + ε
)
P (X0 ∈ Bi |Xt = xt)

(ii)
≤

∑
i/∈I(xt;C3)

(
∥x⋆

i − x⋆
i(xt)

∥2 + ε
)
exp

(
− αt

16 (1− αt)
∥x⋆

i(xt)
− x⋆

i ∥22
)
P (X0 ∈ Bi) .

Here step (i) holds since for any i /∈ I(xt;C3) and x′
0 ∈ Bi,

∥x′
0 − x⋆

i(xt)
∥2 ≤ ∥x⋆

i − x⋆
i(xt)

∥2 + ∥x′
0 − x⋆

i ∥2 ≤ ∥x⋆
i − x⋆

i(xt)
∥2 + ε;

while step (ii) follows from (A.19). For any i /∈ I(xt;C3), we know that αt∥x⋆
i(xt)

− x⋆
i ∥22 >

C3k(1− αt) log T , hence we can check that(
∥x⋆

i − x⋆
i(xt)

∥2 + ε
)
exp

(
− αt

16 (1− αt)
∥x⋆

i(xt)
− x⋆

i ∥22
)

≤

(√
C3k(1− αt) log T

αt
+ ε

)
exp

(
−C3k log T

16

)
≤
√

1− αt

αt
exp

(
−C3k log T

32

)
as long as C3 is sufficiently large and the condition (A.3) holds. Therefore

∥δ∥2 ≤
∑

i/∈I(xt;C3)

√
1− αt

αt
exp

(
−C3k log T

32

)
P (X0 ∈ Bi) ≤

√
1− αt

αt
exp

(
−C3k log T

32

)
.

(A.32)
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A.5.1 Step 1: deriving an upper bound for ∆(x0)

Suppose that x0 ∈ Bi for some 1 ≤ i ≤ Nε (notice that here we are not requiring that i ∈ I). We
will bound each of |∆i(x0) for i = 1, 2, 3, 4. We first record two basic facts about the step sizes,
which are immediate consequences of Lemma 8:√

αt (1− αt)

αt − αt
=

√
αt

1− αt

√
1 +

1− αt

αt − αt

√
1− αt

αt − αt
≤
√

αt

1− αt

√
1 +

8c1 log T

T

√
8c1 log T

T

≤ 3

√
c1 log T

T

√
αt

1− αt
, (A.33)

as long as T is sufficiently large, and

(1− αt)
√
αt

(αt − αt)
√
1− αt

≤ 8c1 log T

T

√
αt

1− αt
. (A.34)

We learn from (A.5) that

max
{∣∣(x̂0 − x0)

⊤ω
∣∣ , ∣∣(x̂0 − x0)

⊤ω′∣∣} ≤
√
C1k log T∥x̂0 − x0∥2 +

(
4
√
d+ 4

√
C1k log T

)
ε.

(A.35)
We also have

∥x̂0 − x0∥2 ≤ ∥x0 − x0∥2 + ∥δ∥2
(i)
≤ ∥x⋆

i(xt)
− x⋆

i ∥2 + ∥x⋆
i(xt)

− x0∥2 + ε+ ∥δ∥2

(ii)
≤ ∥x⋆

i(xt)
− x⋆

i ∥2 + 3

√
C3k(1− αt) log T

αt
+ ε+

√
1− αt

αt
exp

(
−C3k log T

32

)
(iii)
≤ ∥x⋆

i(xt)
− x⋆

i ∥2 + 4

√
C3k(1− αt) log T

αt
. (A.36)

Here step (i) holds since x0 ∈ Bi, hence ∥x0 − x⋆
i ∥2 ≤ ε; step (ii) follows from (A.4) and the fact

that x⋆
i(xt)

, x0 ∈ Xt(xt); while step (iii) follows from (A.3) and holds provided that C3 is sufficiently
large. Then we have

|∆1(x0)| ≤
√
αt (1− αt)

αt − αt

∣∣(x̂0 − x0)
⊤ω
∣∣

(a)
≤ 3

√
c1 log T

T

√
αt

1− αt

(√
C1k log T∥x̂0 − x0∥2 +

(
4
√
d+ 4

√
C1k log T

)
ε
)

(b)
≤ 4

√
c1 log T

T

√
αt

1− αt

(√
C1k log T∥x⋆

i(xt)
− x⋆

i ∥2 + 4
√
C1C3k log T

√
1− αt

αt

)
.

(A.37a)

Here step (a) follows from (A.33) and (A.35); while step (b) utilizes (A.36), (A.3). Similarly we can
use (A.34) to show that

|∆2(x0)| ≤
9c1 log T

T

√
αt

1− αt

(√
C1k log T∥x⋆

i(xt)
− x⋆

i ∥2 + 4
√
C1C3k log T

√
1− αt

αt

)
.

(A.37b)

Notice that∣∣(x0(xt)− x̂0)
⊤(x̂0 − x0)

∣∣ (i)
≤ ∥x0(xt)− x̂0∥2 ∥x̂0 − x0∥2 ≤ (∥x0(xt)− x0∥2 + ∥δ∥2) ∥x̂0 − x0∥2
(ii)
≤

[
3

√
C3k(1− αt) log T

αt
+

√
1− αt

αt
exp

(
−C3k log T

32

)]
∥x̂0 − x0∥2

(iii)
≤ 4

√
C3k(1− αt) log T

αt
∥x̂0 − x0∥2 ,
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where step (i) utilizes the Cauchy-Schwarz inequality; step (ii) follows from (A.4), (A.32) and the
fact that x0(xt), x0 ∈ Xt(xt); step (iii) holds provided that C3 is sufficiently large. Therefore we
have

|∆3(x0)| ≤
(1− αt)αt

(αt − αt) (1− αt)

∣∣(x0(xt)− x̂0)
⊤(x̂0 − x0)

∣∣
≤ (1− αt)αt

(αt − αt) (1− αt)
· 4

√
C3k(1− αt) log T

αt
∥x̂0 − x0∥2

≤ 32c1
√
C3

log T

T

√
αt

1− αt

√
k log T

∥x⋆
i(xt)

− x⋆
i ∥2 + 4

√
C3k(1− αt) log T

αt

 ,

(A.37c)

where the last relation follows from Lemma 8 and (A.36). Finally we have

|∆4(x0)| ≤
(1− αt)αt

2 (αt − αt) (1− αt)
∥x̂0 − x0∥22

≤ 8c1 log T

T

αt

1− αt

(
∥x⋆

i(xt)
− x⋆

i ∥22 + 16
C3k(1− αt) log T

αt

)
. (A.37d)

Here step (a) follows from (A.36), step (b) follows from (A.4) and the fact that x⋆
i(xt)

, x⋆
i ∈

Xt(xt)Taking the bounds in (A.37) collectively leads to

|∆(x0)| ≤ 5
√
c1C1

√
k

T
log T

(√
αt

1− αt
∥x⋆

i(xt)
− x⋆

i ∥2 + 4
√
C3k log T

)
+

8c1 log T

T

αt

1− αt
∥x⋆

i(xt)
− x⋆

i ∥22. (A.38)

provided that T is sufficiently large.

A.5.2 Step 2: bounding I1

For x0 ∈ Xt(xt), we know that x0 ∈ Bi for some i ∈ I(xt;C3), hence αt∥x⋆
i − x⋆

i(xt)
∥22 ≤

C3k(1− αt) log T . This combined with (A.38) gives

|∆(x0)| ≤ 25
√
c1C1C3

√
k2 log3 T

T
+

8c1C3k log
2 T

T
≤ 26

√
c1C1C3

√
k2 log3 T

T
(A.39)

provided that T ≫ k2 log3 T . Similarly we can check that for each 1 ≤ i ≤ 4, |∆i(x0)| ≤ 1.
Then we know that for x0 ∈ Xt(xt), we have exp(∆(x0)) ≤ 1 + ∆(x0) + ∆2(x0) as long as
T ≫ k2 log3 T . Hence

I1 ≤ 1 +

∫
Xt(xt)

pX0|Xt
(x0 |xt)∆ (x0) dx0 +

∫
Xt(xt)

pX0|Xt
(x0 |xt)∆

2 (x0) dx0

= 1 +

∫
pX0|Xt

(x0 |xt)∆1 (x0) dx0 −
∫
Yt(xt)

pX0|Xt
(x0 |xt)∆1 (x0) dx0

+

∫
Xt(xt)

pX0|Xt
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+
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dx0︸ ︷︷ ︸

=:I1,2

.
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Here the last step follows from the fact that
∫
pX0|Xt

(x0 |xt)∆1(x0)dx0 = 0. The integral I1,1 can
be upper bounded similar to I2, hence we defer its analysis to the next section. For the integral I1,2,
we have

I1,2 ≤ max
x0∈Xt(xt)

{
|∆2 (x0) + ∆3 (x0) + ∆4 (x0)|+∆2 (x0)

}
(i)
≤ max
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{
4∆2

1 (x0) + 5 |∆2 (x0)|+ 5 |∆3 (x0)|+ 5 |∆4 (x0)|
}

(ii)
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√
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√
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√
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√
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√
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√C3k (1− αt) log T
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√
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+
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C3k (1− αt) log T

αt
+ 16

C3k(1− αt) log T

αt

)
≤ 2181c1C1C3

k2 log3 T

T
. (A.40)

Here step (i) follows from the Cauchy-Schwarz inequality and the facts that |∆i(x0)| ≤ 1 for
i = 2, 3, 4, while step (ii) follows from the bounds (A.37) and the fact that αt∥x⋆

i − x⋆
i(xt)

∥22 ≤
C3k(1− αt) log T .

A.5.3 Step 3: bounding I2.

For x0 ∈ Yt(xt), we know that x0 ∈ Bi for some i /∈ I(xt;C3), hence αt∥x⋆
i − x⋆

i(xt)
∥22 >

C3k(1− αt) log T . This combined with (A.38) gives

|∆(x0)| ≤

(
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√
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√
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T
+ 20

√
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C3

√
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T
+

8c1 log T
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∥x⋆
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i ∥22
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√
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√
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αt

1− αt
∥x⋆

i(xt)
− x⋆

i ∥22 (A.41)

as long as T is sufficiently large. Therefore we have

I2 =

∫
Yt(xt)

pX0|Xt
(x0 |xt) exp (∆ (x0)) dx0 ≤

∑
i/∈I(xt;C3)

P (X0 ∈ Bi |Xt = xt) max
x0∈Bi

exp (∆ (x0))

(i)
≤

∑
i/∈I(xt;C3)
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(
− αt

16 (1− αt)
∥x⋆

i(xt)
− x⋆
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√
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T

αt
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∥x⋆
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− x⋆
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)
P (X0 ∈ Bi)

(ii)
≤

∑
i/∈I(xt;C3)
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(
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32 (1− αt)
∥x⋆

i(xt)
− x⋆

i ∥22
)
P (X0 ∈ Bi)

(iii)
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(
−C3

32
k log T

)
. (A.42)

Here step (i) follows from (A.19) and (A.41); step (ii) holds as long as T is sufficiently large; while
step (iii) uses the fact that αt∥x⋆

i − x⋆
i(xt)

∥22 > C3k(1 − αt) log T for i /∈ I(xt;C3). By similar
analysis, we can show that

I1,1 =

∫
Yt(xt)

pX0|Xt
(x0 |xt) |∆1 (x0)|dx0 ≤

∑
i/∈I(xt;C3)

P (X0 ∈ Bi |Xt = xt) max
x0∈Bi

|∆1 (x0)|
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(a)
≤ 20
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(b)
≤ 20

√
c1C1k log

2 T

T

√
αt

1− αt

∑
i/∈I(xt;C3)

exp

(
− αt

16 (1− αt)
∥x⋆

i(xt)
− x⋆

i ∥22
)
P (X0 ∈ Bi) ∥x⋆

i(xt)
− x⋆

i ∥2
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. (A.43)

Here step (a) follows from (A.37a) and the fact that αt∥x⋆
i − x⋆

i(xt)
∥22 > C3k(1 − αt) log T for

i /∈ I(xt;C3); step (b) follows from (A.19); step (c) holds provided that C3 is sufficiently large; step
(d) follows again from the fact that αt∥x⋆

i − x⋆
i(xt)

∥22 > C3k(1− αt) log T for i /∈ I(xt;C3).

A.5.4 Step 4: putting everything together

Taking (A.40), (A.42) and (A.43) collectively, we have∫
x0

pX0|Xt
(x0 |xt) exp (∆ (xt, xt−1, x0)) dx0 = I1 + I2 ≤ 1 + I1,1 + I1,2 + I2

≤ 1 + 2182c1C1C3
k2 log3 T

T
,

provided that T is sufficiently large. By similar argument, i.e., using the lower bounding
exp(∆(x0)) ≥ 1 + ∆(x0)−∆2(x0) in Step 2 and repeat the same analysis, we can show that∫

x0

pX0|Xt
(x0 |xt) exp (∆ (x0)) dx0 ≥ 1− 2182c1C1C3

k2 log3 T

T
.

This gives the desired result.

A.6 Proof of Lemma 4

Recall that

log
pXt−1|Xt

(xt−1 |xt)

pY ⋆
t−1|Yt

(xt−1 |xt)
= log

[∫
x0

pX0|Xt
(x0 |xt) exp (∆ (xt, xt−1, x0)) dx0

]
.

For any x0 ∈ X , by the definition of ∆(xt, xt−1, x0) in (4.4), we have

|∆(xt, xt−1, x0)| ≤
√
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∥
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≤ 4RT c0∥

√
αtxt−1 − xt∥2 + 16c1RT c0−1 log T∥xt∥2 + 32c1R

2T c0−1 log T.

Here step (i) follows from x̂0, x0 ∈ X , hence max{∥x̂0∥2, ∥x0∥2} ≤ R; while step (ii) follows from
the facts that, for 2 ≤ t ≤ T ,

√
αt

αt − αt
≤ 1

αt −
∏t

i=1 αi

=
1

αt

(
1−

∏t−1
i=1 αi

) ≤ 2
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and in view of Lemma 8,

(1− αt)αt

(αt − αt) (1− αt)
≤ (1− αt)

√
αt

(αt − αt) (1− αt)
≤ 8c1 log T

T

1

1− αt
≤ 8c1T

c0−1 log T.

Hence we have∣∣∣∣∣log pXt−1|Xt
(xt−1 |xt)

pY ⋆
t−1|Yt

(xt−1 |xt)
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as long as T is sufficiently large.

A.7 Proof of Lemma 5

Regarding ∆t,1, we first utilize Lemma 3 to show that for any (xt, xt−1) ∈ At,∣∣∣∣∣1− pY ⋆
t−1|Yt

(xt−1 |xt)

pXt−1|Xt
(xt−1 |xt)

∣∣∣∣∣ ≤ C5
k2 log3 T

T
.

Since log(1− x) ≥ −x− x2 holds for any x ∈ [−1/2, 1/2], we know that when T ≫ k2 log3 T , we
have
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Hence we have
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Here the penultimate step follows from the fact that∫
pY ⋆

t−1|Yt
(xt−1 |xt) pXt

(xt) dxt−1dxt =

∫
pXt−1|Xt

(xt−1 |xt) pXt
(xt) dxt−1dxt = 1.

It boils down to bounding ∆t,3. In view of (A.30), we know that
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Here we use the fact that Y ⋆
t−1 |Yt = xt ∼ N

(
(xt + η⋆t s

⋆
t (xt))/

√
αt, (σ

⋆2
t /αt)Id

)
. Notice that
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t (Xt)−

√
αt − αt
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The following claim is cricial for understanding this random variable.
Claim 1. For any xt ∈ Tt, we have∥∥√1− αts
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Proof. See Appendix A.7.1.

Since Z ∼ N (0, Id), in view of Lemma 9, with probability exceeding 1− exp (−(C1/64)k log T ),√
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These combined with Claim 1 allow us to show that
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Taking the above inequality collectively with Lemma 1 gives
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Hence we have
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as long as T is sufficiently large.

A.7.1 Proof of Claim 1

Consider the decomposition xt =
√
αtx0(xt) +

√
1− αtω as in Appendix A.1, where x0(xt) ∈

Bi(xt) for some i(xt) ∈ I and ω ∈ G. Notice that
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where x̂0 := E[X0 |Xt = xt] is defined in (4.3), whereas x0 ∈ Xt(xt) and δ are defined in (A.31).
Therefore we can check that∥∥√1− αts
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(iii)
≤ 1
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(√
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√
C1k log T

)
.

Here step (i) follows from (A.4), the fact that ω ∈ G, and (A.32); step (ii) follows from Lemma 8;
while step (iii) holds provided that T is sufficiently large. In addition, for any 1 ≤ i ≤ j ≤ Nε we
have
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Here step (a) utilizes the Cauchy-Schwarz inequality; step (b) follows from (A.4), the fact that ω ∈ G,
and (A.32); step (c) follows from Lemma 8; while step (d) holds when T is sufficiently large.

A.8 Proof of Lemma 6

We can upper bound |∆t,2| by

|∆t,2|
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Here step (i) follows from Lemma 4; step (ii) follows from the update rule (2.1); step (iii) utilizes the
Cauchy-Schwarz inequality. In view of (2.2), we have

E
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where we use the fact that E[∥W t∥22] = d. Then we have
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Here step (a) utilizes (A.45) and the fact that E[∥Wt∥22] = d; step (b) follows from Lemma 1; while
step (c) makes use of the assumption that k ≥ log d and holds provided that C1 ≫ c0 + cR.

A.9 Proof of Lemma 7

We first decompose Kt into
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Proof. See Appendix A.9.1.
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|Kt,2| ≤ 2 exp

(
−C1

32
k log T

)
E1/2
xt∼qt

[
∥εt (xt) ∥22

]
.

Proof. See Appendix A.9.2.

Then we conclude that
|Kt| ≤ |Kt,1|+ |Kt,2|

(a)
≤ 3C5

k2 log3 T

T

√
c1 log T

T
Ext∼qt [∥εt (xt) ∥2] + 2 exp

(
−C1

32
k log T

)
E1/2
xt∼qt

[
∥εt (xt) ∥22

]
(b)
≤ 4C5

k2 log3 T

T

√
c1 log T

T
E1/2
xt∼qt

[
∥εt (xt) ∥22

]
as claimed. Here step (a) follows from Claim 2 and Claim 3; while step (b) utilizes Jensen’s inequality,
and holds provided that T is sufficiently large.

A.9.1 Proof of Claim 2

The term Kt,1 can be upper bounded by

|Kt,1| =

∣∣∣∣∣
∫
At

(
pXt−1|Xt

(xt−1 |xt)

pY ⋆
t−1|Yt

(xt−1 |xt)
− 1
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t−1|Yt
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t (xt))
⊤
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∣∣∣∣∣
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(xt−1 |xt)

∣∣∣∣∣ pY ⋆
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(xt−1 |xt) pXt
(xt)

∣∣∣(xt−1 − µ⋆
t (xt))

⊤
εt (xt)

∣∣∣dxt−1dxt

(ii)
≤ C5

k2 log3 T

T

∫
At

pY ⋆
t−1|Yt

(xt−1 |xt) pXt
(xt)

∣∣∣(xt−1 − µ⋆
t (xt))

⊤
εt (xt)

∣∣∣dxt−1dxt

(iii)
= C5

k2 log3 T

T
E
[

σ⋆
t√
αt

∣∣Z⊤εt (Xt)
∣∣1{(Xt,

Xt + ηts
⋆
t (Xt) + σ⋆

tZ√
αt

)
∈ At

}]

≤ C5
k2 log3 T

T

√
(1− αt) (αt − αt)

αt (1− αt)
E
[∣∣Z⊤εt (Xt)

∣∣] (iv)
≤ C5

k2 log3 T

T

√
8c1 log T

T

2√
2π

E [∥εt(Xt)∥2]

≤ 3C5
k2 log3 T

T

√
c1 log T

T
Ext∼qt [∥εt (xt) ∥2] .

Here step (i) follows from Jensen’s inequality; step (ii) utilizes Lemma 3; step (iii) follows from
the definition of Y ⋆

t in (4.1) and of µ⋆
t in (4.7), and Zt ∼ N (0, Id) is independent of Xt; step (iv)

follows from Lemma 8 and the fact that Z⊤
t εt(Xt) |Xt ∼ N (0, ∥εt(Xt)∥22) and hence

E
[∣∣Z⊤

t εt (Xt)
∣∣] = E

[
E
[∣∣Z⊤

t εt (Xt)
∣∣ |Xt

]]
=

2√
2π

E [∥εt(Xt)∥2] .
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A.9.2 Proof of Claim 3

The term Kt,1 can be upper bounded by

|Kt,2| ≤
∫
Ac

t

(
pXt−1|Xt

(xt−1 |xt) + pY ⋆
t−1|Yt

(xt−1 |xt)
)
pXt (xt) ∥xt−1 − µ⋆

t (xt)∥2 ∥εt (xt)∥2 dxt−1dxt

≤

[∫
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t
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(xt−1 |xt)
)
pXt
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t (xt)∥22 dxt−1dxt

]1/2
︸ ︷︷ ︸

=:γ1

·

[∫
Ac

t

(
pXt−1|Xt

(xt−1 |xt) + pY ⋆
t−1|Yt

(xt−1 |xt)
)
pXt

(xt) ∥εt (xt)∥22 dxt−1dxt

]1/2
︸ ︷︷ ︸

=:γ2

.

The second term γ2 can be easily bounded by

γ2 ≤
√
2E1/2

xt∼qt

[
∥εt (xt) ∥22

]
.

In what follows, we will bound the first term γ1. Note that

γ2
1 =

∫
Ac

t

pXt−1,Xt
(xt−1, xt) ∥xt−1 − µ⋆

t (xt)∥22 dxt−1dxt︸ ︷︷ ︸
=:γ1,1

+

∫
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t

pY ⋆
t−1|Yt

(xt−1 |xt) pXt
(xt) ∥xt−1 − µ⋆

t (xt)∥22 dxt−1dxt︸ ︷︷ ︸
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.

We have

γ1,1 = E
[
∥Xt−1 − µ⋆

t (Xt)∥22 1 {(Xt, Xt−1) /∈ At}
] (i)
≤ E1/2

[
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t (Xt)∥42
]
P1/2 ((Xt, Xt−1) /∈ At)

(ii)
≤ α−2
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⋆
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∥∥4
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exp
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k log T
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(iii)
≤ 4E1/2

[∥∥√1− αtWt + η⋆t s
⋆
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∥∥4
2

]
exp

(
−C1

8
k log T

)
Here step (i) follows from Cauchy-Schwarz inequality; step (ii) follows from Lemma 1 and the
definition of µ⋆

t in (4.7); while step (iii) uses the fact that αt ≥ 1/2 (see Lemma 8). Recall the
definition of s⋆t (·)

s⋆t (xt) = − 1

1− αt

(
xt −

√
αtE [X0 |Xt = xt]

)
,

which leads to the following upper bound

∥s⋆t (Xt)∥ ≤ 1

1− αt
∥Xt∥2 +

√
αt

1− αt
R =

1

1− αt

∥∥√αtX0 +
√
1− αt W t

∥∥
2
+

√
αt

1− αt
R

≤ 1√
1− αt

∥∥W t

∥∥
2
+ 2

√
αt

1− αt
R. (A.46)

Hence we have

E
[∥∥√1− αtWt + η⋆t s

⋆
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∥∥4
2

] (i)
≤ 8 (1− αt)

2 E
[
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]
+ (1− αt)

4 E
[
∥s⋆t (Xt)∥42

]
(ii)
≤ 8

(
c1 log T

T

)2

E
[
∥Wt∥42

]
+

(
8c1 log T

T

)4

E
[(∥∥W t

∥∥
2
+R

)4]
(iii)
≤ 1

16

(
d2 +R4

)
.
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Here step (i) follows from the elementary inequality 8(x4 + y4) ≥ (x+ y)2; step (ii) follows from
Lemma 8 and (A.46); step (iii) follows from Wt,W t ∼ N (0, Id) and the proviso that T being
sufficiently large. Hence we have

γ1,1 ≤
√
d2 +R4 exp

(
−C1

8
k log T

)
≤ exp

(
−C0

16
k log T

)
as long as C0 ≫ cR and k ≥ log d. Regarding γ1,2, we have

γ1,2
(i)
= E

[∥∥∥∥Xt + ηts
⋆
t (Xt) + σ⋆
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[
∥Zt∥42

]
P1/2 ((Xt, Xt−1) /∈ At)

(iii)
≤ 8c1 log T

T
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(
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8
k log T

)
E1/2

[
∥Zt∥42

] (iv)
≤ exp

(
−C1

16
k log T

)
.

Here step (i) follows from the definition of Y ⋆
t in (4.1) and of µ⋆

t in (4.7); step (ii) follows from
the Cauchy-Schwarz inequality; step (iii) utilizes Lemma 8 and Lemma 1; while step (iv) follows
from Zt ∼ N (0, Id) and holds provided that T is sufficiently large and k ≥ log d. Taking the above
bounds collectively yields

|Kt,2| ≤ γ1γ2 ≤
√
γ1,1 + γ1,2γ2 ≤ 2 exp

(
−C1

32
k log T

)
E1/2
xt∼qt

[
∥εt (xt) ∥22

]
.

B Proof of Theorem 2

In view of the update rule (2.1), the variables X0, X1, . . . , XT are jointly Gaussian, and we can check
from (2.2) that

Xt =
√
αtX0 +

√
1− αt W t ∼ N (0, αtIk + (1− αt)Id) , (B.1)

hence the score functions

s⋆t (x) = − (αtIk + (1− αt)Id)
−1

x, ∀x ∈ Rd. (B.2)

We first derive the density of Xt−1 conditional on Xt = xt. Since the joint distribution of (Xt−1, Xt)
is[

Xt−1

Xt

]
∼ N

([
0
0

]
,

[
αt−1Ik + (1− αt−1)Id

√
αt (αt−1Ik + (1− αt−1)Id)√

αt (αt−1Ik + (1− αt−1)Id) αtIk + (1− αt)Id

])
,

we can derive that

Xt−1 |Xt = xt ∼ N
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√
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1− αt
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)
xt, (1− αt)

(
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1− αt
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))
.

In addition, with perfect score estimation, we can use (2.3) and (B.2) to achieve

Yt−1 =
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⋆
t (Yt) + σtZt√
αt

=
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which indicates that
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√
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(
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(
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)
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)
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σ2
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)
.

Then we can check that for any xt ∈ Rd,

KL
(
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( · |xt) ∥ pYt−1|Yt
( · |xt)

)
=

(1− αt − ηt)
2

2σ2
t

∥Ikxt∥22 +
k

2

(
αt (1− αt)

σ2
t

− log
αt (1− αt)

σ2
t

− 1

)
+

(1− αt − ηt)
2

2 (1− αt)
∥(Id − Ik)xt∥22 +

d− k

2

(
(1− αt) (αt − αt)

σ2
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One can check that

z − log z − 1 ≥ 0.1min
{
1, (z − 1)

2
}
, ∀ z > 0.

We combine the above two relations as well as the assumption that k ≤ d/2 to achieve

KL
(
pXt−1|Xt

( · |xt) ∥ pYt−1|Yt
( · |xt)

)
≥ (1− αt − ηt)

2

2 (1− αt)
∥(Id − Ik)xt∥22+

d

40

(
(1− αt) (αt − αt)

σ2
t (1− αt)

− 1

)2

.

By taking expectation w.r.t. xt, we have

Ext∼qt

[
KL
(
pXt−1|Xt

( · |xt) ∥ pYt−1|Yt
( · |xt)

)]
≥ d

4
(1− αt − ηt)

2
+

d

40

(
(1− αt) (αt − αt)

σ2
t (1− αt)

− 1

)2

,

where we use the fact that

Ext∼qt

[
∥(Id − Ik)xt∥22

]
= (d− k) (1− αt) ≥

d

2
(1− αt) .

C Technical lemmas

This section collects a few useful technical tools that are useful in the analysis.
Lemma 8. When T is sufficiently large, for 1 ≤ t ≤ T , we have

αt ≥ 1− c1 log T

T
≥ 1

2
.

In addition, for 2 ≤ t ≤ T , we have

1− αt

1− αt
≤ 1− αt

αt − αt
≤ 8c1 log T

T
.

Proof. See Appendix A.2 in [14].

Lemma 9. For Z ∼ N (0, 1) and any t ≥ 1, we know thatProposition 2.1.2

P (|Z| ≥ t) ≤ e−t2/2, ∀ t ≥ 1.

In addition, for a chi-square random variable Y ∼ χ2(d), we have

P(
√
Y ≥

√
d+ t) ≤ e−t2/2, ∀ t ≥ 1.

Proof. See Proposition 2.1.2 in [27] and Section 4.1 in [12].

Lemma 10. Suppose that T is sufficiently large. Then we have

KL (pXT
∥pYT

) ≤ T−100.

Proof. See Lemma 3 in [14].
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction reflect the paper’s contributions and
scope and are justified in the paper.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made in the

paper.
• The abstract and/or introduction should clearly state the claims made, including the contributions

made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitiation in Section 6.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that the paper

has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [Yes]
Justification: The full set of assumptions are provided in Section 2. The proof in Section 4 and the
appendix is complete and correct.
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Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear in

the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions to
provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be a
way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of closed-
source models, it may be that access to the model is limited in some way (e.g., to registered
users), but it should be possible for other researchers to have some path to reproducing or
verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [NA]
Justification: The paper does not include experiments.
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• The answer NA means that paper does not include experiments requiring code.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.
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symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
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8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conformes, in every respect, with the NeurIPS
Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA]

Justification: This is a theory paper. There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for moni-
toring misuse, mechanisms to monitor how a system learns from feedback over time, improving
the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.
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• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may

be required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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