
PokéChamp: an Expert-level Minimax Language Agent

Seth Karten * 1 Andy Luu Nguyen 1 Chi Jin 1

Abstract

We introduce PokéChamp, a minimax agent
powered by Large Language Models (LLMs) for
Pokémon battles. Built on a general framework
for two-player competitive games, PokéChamp
leverages the generalist capabilities of LLMs to
enhance minimax tree search. Specifically, LLMs
replace three key modules: (1) player action sam-
pling, (2) opponent modeling, and (3) value func-
tion estimation, enabling the agent to effectively
utilize gameplay history and human knowledge to
reduce the search space and address partial observ-
ability. Notably, our framework requires no addi-
tional LLM training. We evaluate PokéChamp
in the popular Gen 9 OU format. When powered
by GPT-4o, it achieves a win rate of 76% against
the best existing LLM-based bot and 84% against
the strongest rule-based bot, demonstrating its su-
perior performance. Even with an open-source 8-
billion-parameter Llama 3.1 model, PokéChamp
consistently outperforms the previous best LLM-
based bot, Pokéllmon powered by GPT-4o, with
a 64% win rate. PokéChamp attains a projected
Elo of 1300-1500 on the Pokémon Showdown
online ladder, placing it among the top 30%-10%
of human players. In addition, this work compiles
the largest real-player Pokémon battle dataset, fea-
turing over 3 million games, including more than
500k high-Elo matches. Based on this dataset,
we establish a series of battle benchmarks and
puzzles to evaluate specific battling skills. We fur-
ther provide key updates to the local game engine.
This work establishes Pokémon as a benchmark to
integrate LLM technologies with game-theoretic
algorithms addressing general multi-agent prob-
lems. Videos, code, and dataset are available on-
line.

*Equal contribution 1Princeton University. Correspondence to:
Seth Karten <sethkarten@princeton.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Figure 1. PokéChamp achieves the 70%-90% percentile of play-
ers and a 1300-1500 Elo rating against real players. Higher Elo
and percentile denote better performance.

1. Introduction
Realizing superintelligence or "takeoff" demands a cycle
of recursive self-improvement in which each model itera-
tion can outplay the last—a capacity currently bottlenecked
by the strategic search and coordination challenges we ob-
serve in competitive games. Prior work in reinforcement
learning has achieved significant success, attaining super-
human performance in a wide range of games, including
Chess, Go, and Poker, through extensive imitation learning
and self-play (Campbell et al., 2002; Silver et al., 2017;
2016; Brown & Sandholm, 2019; 2018; Vinyals et al., 2019;
Berner et al., 2019). However, these approaches typically
require substantial task-specific training and engineering.
In contrast, Large Language Models (LLMs), which often
function as generalist agents, have demonstrated remarkable
capabilities across various domains. Language agents can
leverage prior knowledge of game strategies and generalize
to new situations without additional training.

Despite their promise, recent studies highlight limitations
in the planning capabilities of text-based language agents
(Topsakal & Harper, 2024). These agents frequently un-
derperform compared to rule-based heuristic bots in game
environments (Küttler et al., 2020) and struggle to grasp ba-
sic game mechanics (Hu et al., 2024b). To overcome these
challenges and further investigate the potential of LLMs
in complex game environments, this paper focuses on a
fast-paced, strategy-rich, and challenging two-player com-
petitive game—Pokémon battles.

1

https://github.com/sethkarten/pokechamp
https://huggingface.co/datasets/milkkarten/pokechamp
https://sites.google.com/view/pokechamp-llm
https://sites.google.com/view/pokechamp-llm

PokéChamp: an Expert-level Minimax Language Agent

Pokémon battles present a unique and formidable challenge
for AI systems. With over 1000 Pokémon species, each pos-
sessing unique abilities, moves, typing, and stats, the state
space complexity is estimated to be on the order of 10354

for the first turn alone (The-Third-Build, 2022). The game
features partial observability, where information about the
opponent’s team is gradually revealed through gameplay,
maintains this vast search space throughout the battle. Fur-
thermore, Pokémon battles can last anywhere from 6 to over
100 turns, making exhaustive tree search over all possible
branches computationally intractable.

We argue that an informative prior can help constrain mini-
max search to the space of human strategies. LLMs, trained
on diverse datasets that include Pokémon-related informa-
tion, offer a promising foundation for this approach. To
harness the potential of LLMs effectively, we seek to de-
velop an agent capable of:

1. Proposing strategic actions to provide diverse and
human-like strategies.

2. Accurately modeling the opponent based on their move
history, team composition, and skill level.

3. Evaluating and reflecting internally on planned game
trajectories.

To achieve these objectives, we introduce PokéChamp,
a competitive language agent that achieves human-expert
level performance in two-player turn-based Pokémon battles.
PokéChamp leverages a large language model to power
minimax tree search algorithm by replacing three of its key
modules with LLMs: (1) player action sampling, (2) op-
ponent modeling, and (3) value function estimation. This
enables our agent to effectively utilize gameplay history and
human knowledge to reduce the search space and tackle
partial observability. Within our framework, the LLM func-
tions as a black box, allowing for flexibility in selecting
any frontier model based on budget and computational re-
sources. Our approach does not require additional training
or fine-tuning of LLM on Pokémon-specific data, relying
instead on the LLM’s pre-existing knowledge and our novel
integration with game-theoretic planning algorithms.

To enable effective planning, we developed a world model
that approximates game transition and addresses the chal-
lenges of partial observability and intricate game mechanics.
This world model incorporates a one-step lookahead that
mathematically computes core game dynamics and lever-
ages historical data from real player games to estimate likely
stats for the opponent’s team. Our Pokémon battling dataset,
containing over 3 million games across various skill levels
and game modes, provides a rich source of information for
opponent modeling and strategy development.

We evaluate PokéChamp through a comprehensive set of
experiments designed to assess its performance across vari-

ous competitive scenarios. Our evaluation includes arena-
style comparisons against established Pokémon bots, encom-
passing both heuristic-based approaches and the state-of-the-
art LLM-based agent PokéLLMon (Hu et al., 2024b). To
gauge PokéChamp’s versatility, we conduct performance
analyses in two popular game modes: Generation 8 Ran-
dom Battles and Generation 9 OverUsed Meta. These for-
mats present distinct challenges, with Random Battles test-
ing adaptability to unpredictable team compositions and
OverUsed (OU) format battles examining strategic depth
with carefully crafted teams. Finally, to assess real-world
applicability, we pit PokéChamp against human players
in online ladder battles, providing insights into its perfor-
mance against skilled opponents in a dynamic, competitive
environment.

Our results demonstrate that PokéChamp significantly out-
performs existing bots and AI agents, achieving a 76% win-
rate against the strongest LLM-based bot and an 84% win-
rate against the most advanced heuristic bot in the Gener-
ation 9 OverUsed Meta. Notably, PokéChamp using the
open-source 8 billion parameter Llama 3.1 model consis-
tently wins (64%) against the prior strongest LLM-based
bot utilizing GPT-4o, highlighting the effectiveness of our
approach even with smaller language models. In online lad-
der battles, PokéChamp attains an expert-level projected
Elo rating of 1300-1500, placing it within the top 30%-10%
of competitive players. This performance demonstrates the
agent’s ability to compete at a high level against skilled
human opponents in a dynamic, partially observable envi-
ronment.

In addition to our main contributions, we present several
supplementary advancements that enhance the scope and
impact of our research. We introduce the largest Poké-
mon battling dataset to date, encompassing over 3 million
games, with more than 500,000 high Elo matches, provid-
ing an unprecedented resource for analyzing competitive
play patterns and strategies. To rigorously evaluate bat-
tling proficiency, we develop a comprehensive series of
benchmarks derived from real player data and meticulously
crafted puzzles, designed to assess specific battling abilities
and decision-making skills. Furthermore, we implement
crucial updates to the local game engine, significantly im-
proving its accuracy and performance, thereby ensuring a
more faithful representation of official battle mechanics and
enabling more reliable simulations and evaluations.

Through PokéChamp, we demonstrate the potential of in-
tegrating LLMs with game-theoretic planning algorithms
to achieve expert-level performance in complex, partially
observable environments without task-specific training. Our
work opens new avenues for research in competitive multi-
agent settings and pushes the boundaries of AI performance
in strategic game play.

2

PokéChamp: an Expert-level Minimax Language Agent

2. Competitive Pokémon
Competitive Pokémon battling presents a complex, par-
tially observable Markov game environment with a vast
state space. Two players strategically deploy teams of six
Pokémon in turn-based combat, with only one Pokémon
active per player at a time. Each turn, a player can choose
to attack, reducing the opponent’s Pokémon’s health points,
or switch to another Pokémon in their team. The game
concludes when all Pokémon on one side have their health
points reduced to zero. The state space is immense, with an
estimated 10354 possibilities for the first turn alone, stem-
ming from over 1000 Pokémon species with varied types,
stats, and movesets. Players face asymmetric observation
spaces, having complete information about their own team
but only partial information about their opponent’s. Strate-
gic decisions must therefore be made under uncertainty.

Team construction, or "teambuilding" (as illustrated in Fig-
ure 3), is a critical pre-battle strategic element. For each
Pokémon, players configure moves, abilities, held items, a
nature, and a specific distribution of Effort Values (EVs) and
Individual Values (IVs) that determine the Pokémon’s statis-
tics. The observation and action space are depicted in Figure
2. The action space consists of move selection, Pokémon
switching, and generation-specific mechanics like Terastal-
lization. The transition function incorporates stochastic
elements like move accuracy and damage calculation, while
rewards are binary (win or loss). The competitive meta-
game evolves as players discover new strategies, making
adaptation essential. This complexity, combined with partial
observability, makes competitive Pokémon an ideal testbed
for game-theoretic research.

2.1. Pokémon Showdown Platform

Pokémon Showdown is a widely-used online battle simula-
tor that implements the official battle mechanics, providing
a platform for various competitive formats. It allows players
to engage in battles without the need for in-game breeding
or training, facilitating rapid experimentation and compet-
itive play. Showdown supports multiple battle formats, in-
cluding Singles, Doubles, and various tiered formats that
group Pokémon based on their usage and perceived strength.
The platform’s accessibility and faithful recreation of game
mechanics have made it a cornerstone of the competitive
Pokémon community and a valuable tool for AI research in
complex game environments.

Generation 9 OverUsed (OU), the latest generation’s most
popular competitive format, exemplifies the intricate balance
between diversity and strategic depth in Pokémon battling.
The OU format bans exceptionally powerful Pokémon while
maintaining a wide pool of viable options, creating a rich
and evolving metagame. This format introduces mechanics
like Terastallization, which allows a Pokémon to change its

type once per battle, significantly altering type matchups
and strategic considerations. Furthermore, the sheer num-
ber of possible Tera types (all 18 Pokémon types) for each
Pokémon drastically increases the state and action spaces.
As a result, agents need to navigate an evolving landscape
of popular Pokémon and counter-strategies, balancing indi-
vidual strengths with synergistic team compositions while
accounting for the dynamic type changes introduced by
Terastallization.

Each player has a total clock time of 150 seconds for the
entire match. In addition, each turn has an incremental time
limit of 15 seconds. If a player exceeds either the total clock
time or the incremental turn time, they automatically lose
the match. This time constraint adds another layer of com-
plexity, requiring efficient decision-making and preventing
exhaustive search strategies.

3. Mathematical Formalization
We can formalize Pokémon battles as a partially ob-
servable Markov game (POMG) defined by the tuple
(S,X ,Y,A,B, H, P, r), where S is the latent state space.
X and Y are the observation spaces (infosets) for the max-
player and the min-player, respectively. The observation
contains only information accessible to each player. A and
B are the action spaces for the max-player and min-player.
H is the horizon length. P : S × A × B → ∆(S) is the
transition function, where P (s′|s, a, b) denotes the probabil-
ity of transitioning to state s′ if starting from state s, and the
max-player and the min-player take action a, b respectively.
r : S × A × B → [0, 1] is the reward function. We say a
POMG has a tree structure and perfect recall if the follow-
ings hold. (1) Tree structure: for any state sh at step h, there
exists a unique history (s1, a1, b1, ..., sh−1, ah−1, bh−1) of
past states and actions that leads to sh. (2) Perfect recall: any
infoset xh of the max-player at step h, there exists a unique
history (x1, a1, b1, ..., xh−1, ah−1, bh−1) of past states and
actions that leads to xh. The same condition applies sym-
metrically to the min-player. Throughout this paper, we
assume the learner be the max-player who maximize the
reward, and let the opponent be the min-player.

In Pokemon battle, a state contains the history of the cur-
rent game and the complete information of both players’
Pokémon teams (including Pokemon health, stats, items,
status ailments, and other attributes), while an observation
contains the history of the current game and the complete
information of agent’s team but only the partial information
of the opponent’s team. That is, an observation can corre-
spond to multiple underlying states. The Pokemon battle is
a tree-structured POMG with perfect recall.

Policy and Nash equilibrium A policy for the max-player
is denoted by µ : X → ∆(A), which is a map from ob-

3

PokéChamp: an Expert-level Minimax Language Agent

Figure 2. PokéChamp uses one-step lookahead prompts to gain admissible heuristic information regarding the likely effect of actions
under the current metagame.

Figure 3. An example of teambuilding for competitive Pokémon.
A player must decide on six Pokémon for their team. For each
Pokémon, a player must configure the item, ability, moves, stats
(EVs/IVs), and nature.

servation space to the space of distribution over actions.
Similarly, a policy for the min-player can be denoted as
ν : Y → ∆(B). Denote the game trajectory over H steps to
be (s1, a1, b1, . . . , sH , aH , bH), then the value function for
a policy pair (µ, ν) is defined as:

V µ,ν = Eµ,ν

[
H∑

h=1

r(sh, ah, bh)

]

where the expectation is taken over the trajectories following
policies µ, ν.

The Nash equilibrium is defined as a pair of policies (µ∗, ν∗)
that no player has incentive to change her strategy while the
other players keep theirs unchanged. That is,

inf
ν
V µ∗,ν(s) = V µ∗,ν∗

(s) = sup
µ

V µ,ν∗
(s)

The minimax theorem holds in our setting, and Nash equi-
librium achieves the minimax value:

sup
µ

inf
ν
V µ,ν(s) = V µ∗,ν∗

(s) = inf
ν
sup
µ

V µ,ν(s) (1)

Combining two equations, it is not hard to see that Nash
equilibrium is also the optimal policy against the adversarial
opponent. This formalization captures the essential elements

Figure 4. PokéChamp replaces three components of minimax tree
search with LLM-based generations: (1) sampling potential actions
for the player corresponding to the first part of the edge between
states., (2) modeling the opponent and sampling opponent actions
corresponding to the second part of the edge between states, and
(3) generating a potential game state value based on the depth K
cutoff. PokéChamp provides the action with the best minimax
value to be used in battle.

of Pokémon battles, including partial observability, turn-
based actions, and the goal of maximizing expected rewards,
while providing the necessary context for the methodology
section.

4. Agent Architecture and Application
PokéChamp implements a novel approach that leverage
the power of large language models and integrate them
into minimax tree search. We first describe the generic
framework which applies to general two-player zero-sum
games. We then discuss specializations we make to adapt
our framework for Pokémon battle.

Minimax tree search framework. Due to computation
constraints and tight inference time requirement, we focus
on pure strategies and compute the best action that is safe

4

PokéChamp: an Expert-level Minimax Language Agent

even against the adversarial play of the opponent. The
overall strategy corresponds to minimax tree search which
is described at Figure 4:

At step h, the learner observes an infoset xh, chooses an
action ah, and the opponent chooses an action bh. The game
transition to the new infoset xh+1. We repeat this process
until game terminates at step H , which leads to a tree of
depth H − h where each path of the tree corresponds to
a 3(H − h)-tuple (ah, bh, xh+1, . . . , aH−1, bH−1, xH). In
the end, we receive the reward r(xH) for every infoset xH at
the step H . The minimax tree search algorithm recommend
action âh to the learner at xh according to the following
criteria:

âh = argmax
ah

min
bh

Exh+1
. . .max

aH−1

min
bH−1

ExH
r(xH)

It is not hard to see that, the size of the tree grows exponen-
tially with respect to the search depth H − h, and thus a
comprehensive search over the entire tree quickly becomes
infeasible.

We propose a novel minimax agent framework that inte-
grates LLMs into three key modules of classical minimax
tree search, significantly enhancing its performance:

• Player Action Sampling: We provide the LLM with
key information about the current infoset and prompt
it to sample a small set of viable actions for tree expan-
sion. This aggressively prunes the search tree, reducing
computational costs.

• Opponent Modeling: Similarly, we prompt the LLM to
sample the most likely opponent actions. Unlike player
action sampling, opponent modeling is more complex
due to partial observability, requiring the LLM to infer
hidden states based on the player’s observations.

• Value Function Estimation: Instead of expanding the
search tree to the end of the game, we limit expansion
to a depth of k steps and use LLMs as value function
to evaluate infosets at this time step, replacing termi-
nal rewards. It is challenging to estimate this value
accurately through traditional methods, as it requires a
deep understanding of game mechanics and effective
state embeddings. In contrast, LLMs leverage common
sense and gameplay knowledge from the internet, serv-
ing as an effective approximation for value functions.

4.1. PokéChamp

We now describe the implementation of PokéChamp and
the design of its three key modules.

Approximate game transition One challenge in our
system is simulating game transitions, represented as
Ph(sh+1|sh, ah, bh), under partial observability. In our set-
ting, the learner only has access to the observation xh rather

than the latent state sh. To infer hidden information and ap-
proximate latent state, we leverage the statistical data from
Pokémon Showdown, including Pokémon move pools, EV
spreads, item usage, etc., aggregated from gameplay over
a given period. Additionally, we incorporate LLM predic-
tions to estimate hidden opponent variables, particularly the
attack (A) and defense (D) stats, inferred from game history.
The relationship between these stats and damage output is
captured by the following equation:

Damage =

(
1

50

((
2

5
· Level + 2

)
·Power · A

D

)
+2

)
·M

where A represents the attacker’s relevant attack stat and
D the defender’s relevant defense stat. The M term en-
capsulates various game-specific modifiers (detailed in the
appendix, equation 2). After predicting sh, we obtain sh+1

by simulating the game using our local Showdown simula-
tor. Notably, the actual Pokemon game features stochastic
transition—for example, many attack moves have a prob-
ability of missing. To alleviate computational burden, we
adopt a simplified approach that computes the expected
value within these transitions.

Player action sampling For a given infoset xh at step
h, PokéChamp generates a set of candidate actions
{aih}mi=1 ⊂ A to form the edges of the minimax search
tree. The input prompt for action sampling includes:

• Team strategy: An LLM-generated overall strategy
based on both players’ teams.

• Observable state: xh ∈ X , including the player’s
team, items, and visible opponent Pokémon.

• Battle history: Information from the last N turns,
representing the perfect recall assumption.

• Approximate State Transition Heuristic: We use
the approximate state transition to create an admis-
sible heuristic for each player action. Using a one
step lookahead from the approximate state transition,
we can calculate the least number of turns to knock
out (KO, a term for defeating the opponent’s current
Pokémon). This information is commonly available
and used by players on the online ladder on Pokémon
Showdown.

• Available actions: The set of legal actions Ah(xh) ⊂
A under the current info set.

In addition to LLM generated actions, we also include a few
candidate actions from our tools, including (1) the top move
choice from our one step lookahead and (2) the top switch
choice from the Abyssal bot.

Opponent modeling To address the partial observability
of the opponent’s actions and hidden state information, we
employ a combination of historical data analysis and LLM-
based prediction:

5

PokéChamp: an Expert-level Minimax Language Agent

Figure 5. Left: Elo distribution for collected battles across game formats. Right: Relationship between game length and player Elo rating.

• Stat estimation: For unknown opponent stats (A and
D in equation 4.1), we use historical data to estimate
the likelihood of different stat distributions. This al-
lows us to approximate the true state sh ∈ S given the
observation yh ∈ Y .

• Action prediction: The LLM generates likely oppo-
nent actions bh ∈ B based on a prompt similar to the
action sampling process, but focused on the opponent’s
perspective.

Value function Due to the computational constraints of
live gameplay (150 seconds per player, with up to 15 ad-
ditional seconds per turn), we employ an LLM-generated
value function to evaluate leaf nodes at depth k of our mini-
max tree. The LLM generates a score based on the following
criteria:

• Positive factors: Effectiveness of current moves, num-
ber of remaining Pokémon, and win probability.

• Negative factors: Excessive switching, opponent
move effectiveness, speed disadvantage, opponent’s
remaining Pokémon, and strength of remaining oppo-
nent Pokémon.

We then compute the minimax optimal action âh according
to:

âh = argmax
ah

min
bh

Exh+1
. . . max

ah+k−1

min
bh+k−1

Exh+k
V (xh+k)

By combining these three components - action sampling,
opponent modeling, and value function approximation -
PokéChamp effectively navigates the complex, partially
observable state space of Pokémon battles, approximating
optimal play within the constraints of real-time gameplay.

5. Evaluation
In this section, we describe our evaluation methods which
evaluate PokéChamp via both offline dataset and online
games on Showdown platform.

Pokémon Battling Dataset. We compiled a comprehen-
sive dataset of over 3 million Pokémon battles from the
Pokémon Showdown platform. This dataset serves as a rich
source of information for estimating transition probabilities

Ph(sh+1|sh, ah, bh) and opponent policies νh(·|yh). The
dataset includes over 3 million game replays across various
formats, with more than 500,000 high-Elo games (Elo >
1600). It contains detailed information on team composi-
tions, move choices, and battle outcomes, providing a robust
foundation for our analysis and modeling efforts.

Figure 5 illustrates the distribution of Elo ratings and game
lengths across different formats in our dataset. The left
panel shows a stacked histogram of Elo ratings for various
game formats, revealing a multi-modal distribution with two
primary modes at approximately 1150 and 1350 Elo. This
distribution provides insights into the skill levels of play-
ers across different game modes. The right panel presents a
scatter plot of average game length versus Elo rating, demon-
strating a general trend where higher Elo matches typically
have longer durations. This relationship suggests that more
skilled players engage in more complex and protracted bat-
tles.

5.1. Action Prediction

To evaluate the effectiveness of our modules of player ac-
tion sampling and opponent modeling, we conducted ex-
periments on predicting human actions using our collected
dataset. This task is particularly challenging due to the
partial observability of the game state.

The replay data is collected from a spectator’s perspective,
where key information such as EV spreads and item choices
for both players remains hidden. This contrasts with the
standard player perspective, where only the opponent’s team
information is obscured, while the player’s own team de-
tails are fully accessible. To bridge this gap, we reverse-
engineered the moves, team compositions, and stats from
the replay data. We then supplemented this information with
additional switching and move options based on historical
likelihood. We use this processed data as proxy to real game-
play with a standard player perspective. This processed data
was then fed into our prompt generator, enabling our bot to
predict both player and opponent actions.

We compared the accuracy of these predictions with the
historical data across various Elo ratings. Table 1 presents
the results of our action prediction experiments. The player

6

PokéChamp: an Expert-level Minimax Language Agent

Table 1. Player and opponent action prediction accuracy by Elo rating. Random baseline performance is 7% for player prediction and less
than 1% for opponent prediction due to partial observability.

Elo Top 1 Top 2 Top 3 Top 4 Top 5

Player’s
action
prediction

1200 30% 40% 48% 53% 58%
1400 26% 23% 30% 32% 43%
1600 27% 30% 39% 44% 53%
1800 30% 42% 55% 62% 66%

Opponent’s
action
prediction

1200 16% 30% 40% 46% 53%
1400 16% 17% 20% 26% 39%
1600 13% 21% 26% 35% 40%
1800 15% 29% 40% 50% 53%

Figure 6. Left: PokéChamp utilizes Terastallization to change
type matchups. Right: PokéChamp employs Dynamax to in-
crease hit points and move power, enabling consecutive knockouts.

prediction accuracy for PokéChamp varies between 26%
and 30% as Elo increases, while the opponent prediction
accuracy is lower, ranging from 13% to 16%. These re-
sults demonstrate that predicting opponent actions is more
challenging given the limited state information available.

We can see that LLM prediction is significantly better than
random prediction (7% for player, 1% for opponent) in both
cases. It’s worth noting that there may be multiple "cor-
rect" actions in many situations, as several strategies could
be equally viable. Therefore we included in the table the
performance for top k prediction, and observe the accuracy
increases significantly as k increases.

5.2. Evaluating on Small Game Puzzles

To assess PokéChamp’s ability to navigate complex game
states and make optimal decisions, we developed a series of
game puzzles as benchmarks. These puzzles are designed
to test the agent’s understanding of core game mechanics
and its ability to approximate optimal policies µ∗ and ν∗.

1v1 Battles. We created a benchmark of 1,000 1v1 battle
scenarios to assess PokéChamp’s ability to find optimal
move sequences. Each scenario s1 ∈ S1 is carefully se-
lected to ensure a feasible win condition, allowing us to
evaluate the agent’s performance in finding the optimal pol-
icy µ∗. We selected matchups from the gen8randombattles
meta, with each matchup consisting of one Pokémon on
each team. To ensure a feasible win condition, we rejected
samples that could not be won by the Abyssal bot. However,
due to the stochastic nature of move damage, this does not

Figure 7. Left: Pairwise win rates in Gen 9 OU. Right: Impact of
team composition on win rates.

guarantee a 100% win rate in every instance.

The results of this benchmark show PokéChamp’s perfor-
mance of 86% winrate is higher than PokéLLMon’s of 76%.
Our method achieves a 10% higher win rate. Since this is a
constrained setting that does not require Pokémon switching,
a key factor contributing to our agent’s superior performance
is its effective utilization of one-step lookahead.

Puzzles for special mechanics: Terastallization and
Dynamax. To evaluate PokéChamp’s ability to utilize
generation-specific game mechanics, we developed puzzles
focusing on Terastallization and Dynamax. These mechan-
ics introduce additional complexity to the state space S and
action space A. Our world model and prompting mecha-
nism for PokéChamp allow it to understand and use these
generation-specific game mechanics effectively. The agent
is informed about the mechanics’ effects, and the one step
lookahead provides information about different outcomes
when using these mechanics.

Figure 6 illustrates PokéChamp’s proficiency in leverag-
ing these mechanics to gain a strategic advantage. In the
left panel, PokéChamp demonstrates its understanding of
the changed weakness of Roaring Moon after Terastalliza-
tion, deciding to switch after Glimmora is chosen. In the
right panel, PokéChamp employs Dynamax to increase its
hit points and move power, enabling it to knock out two
Pokémon in succession.

These benchmarks demonstrate PokéChamp’s ability to

7

PokéChamp: an Expert-level Minimax Language Agent

Table 2. Performance in Gen 9 OU battles with terastallize mechanic and custom teams.

Method LLM Win Rate vs. Elo Avg. # TurnsAbyssal (%)

PokéChamp GPT-4o 84 1268 15.7
PokéChamp Llama 3.1:8b 56 1204 16.9
PokéLLMon GPT-4o 40 1020 22.6
Abyssal N/A N/A 1117 17.9
One Step Lookahead N/A 44 1107 17.9
Max Power N/A 16 885 19.5
Random N/A 0 399 21.2

Table 3. Gen 9 OU mirror matchups without terastallize mechanic.

Method LLM Win Rate vs.
Abyssal (%)

PokéChamp GPT-4o 90
PokéChamp Llama 3.1:8b 83
PokéLLMon GPT-4o 60
One Step Lookahead N/A 56

navigate complex game states and make strategic decisions
that approximate optimal policies in the presence of special
mechanics. The agent’s performance in these puzzles high-
lights its capacity to adapt to various game scenarios and
utilize advanced mechanics to gain a competitive edge.

5.3. Evaluating on Full Games

In this section, we evaluate PokéChamp’s performance
in the Gen 9 OU (OverUsed) format, which includes the
terastallize mechanic and uses custom teams. We evalu-
ate PokéChamp against other baselines as well as on the
online ladder against real human players. Additional experi-
ments for the Gen 8 Random Battles format are provided in
Appendix D.

Against other bots and agents. We compare
PokéChamp against state-of-the-art open-source bots and
LLM-based agents. Each experiment consists of at least 25
matches between any two methods, resulting in a minimum
of 100 games per method for Elo calculations. The LLM
agents utilize either Llama3.1:8b (Dubey et al., 2024) or
GPT-4o-2024-05-13 (Achiam et al., 2023). Our baselines
include:

• PokéLLMon (Hu et al., 2024b): An LLM-based agent
using self-consistency prompting.

• Abyssal Bot: A rule-based heuristic bot used in official
Pokémon games.

• One Step Lookahead Bot: Our admissible heuristic
bot using the approximate state transition from Sec-
tion 4.1.

• Max Power Bot: A bot that selects moves based solely
on power level.

• Random: A bot that selects actions randomly.

PokéChamp with GPT-4o achieves the highest perfor-
mance, with an 84% win rate against the Abyssal bot
and an Elo rating of 1268. Notably, PokéChamp using
Llama 3.1:8b outperforms PokéLLMon powered by GPT-
4o, demonstrating the effectiveness of our approach even
with smaller language models. Figure 7 illustrates the pair-
wise win rates between methods (left) and the impact of
team composition on performance (right). To isolate the
effects of team composition and the terastallize mechanic,
we conducted additional experiments using mirror matchups
without terastallize. Table 3 presents these results. These
results suggest that team composition significantly impacts
performance, with PokéChamp achieving a 90% win rate
against Abyssal in mirror matchups.

Against human players on the online ladder. To assess
real-world performance, we evaluated PokéChamp on the
Pokémon Showdown online ladder between September 1st
and September 7th, 2024, where it faced human opponents
in the Gen 9 OU format. Each player has 2 minutes and
30 seconds to play the game and the player will lose im-
mediately if one fails to make a decision within the time
limit (similar to a chess clock). Players can receive up to
15 additional seconds added to their time per move. For
about one third of the games, PokéChamp lost by exceed-
ing the turn time limit. Within the remaining two thirds
of games, PokéChamp achieved a 76% win rate. After
50 games, PokéChamp reaches an Elo score above 1300
on the online Showdown ladder. If removing losses due to
timeout, we can estimate its Elo rating, where PokéChamp
will achieve an Elo rating of 1300-1500, which places it in
the top 30%-10% of players. We then use the win rates of
each bot (PokéLLMon, Abyssal, etc.) against PokéChamp
to estimate the Elo range of each method in Figure 1.

On March 3rd, 2025, we investigated a speed-optimized vari-
ant of our method, PokéChamp-Fast, where the LLM
dynamically chose between using the calculated one-step
lookahead action or performing a truncated minimax search
based on the current game state. This was designed to al-
leviate time constraint issues. However, the resulting Elo

8

PokéChamp: an Expert-level Minimax Language Agent

performance ranged between 1150-1310 without conver-
gence, a decrease compared to our standard method. We
attribute this performance difference to a covariate shift
in the competitive metagame over time. Specifically, the
LLM’s pre-training data, which has a fixed cutoff date, likely
biases its decision-making even when provided with up-
dated historical statistics about the current metagame. This
suggests that the LLM’s inherent prior knowledge can out-
weigh real-time statistical information, particularly when
deciding between strategic exploration (minimax search)
and exploitation (one-step lookahead).

We observed that PokéChamp struggled against two spe-
cific strategies: stall tactics and excessive switching. These
challenges likely stem from the limited lookahead depth
necessitated by time constraints and the difficulty of accu-
rately modeling such strategies in-context. Further analysis
of these weaknesses is provided in Appendix C.1 and C.2.
During live demos, we note that games played against hu-
mans who knew they were playing against PokéChamp
were able to determine the excessive switching limitation
and tailor an adversarial strategy to take advantage of these
limitations. Thus, we emphasize anonymity for accurate
performance analysis.

In summary, our evaluation demonstrates that PokéChamp
achieves state-of-the-art performance in Pokémon battles,
outperforming both heuristic and LLM-based baselines
while exhibiting expert-level play against human opponents.
These results underscore the effectiveness of our approach
in leveraging LLMs for complex, partially observable game
environments.

6. Related Work
Competitive Games. RL self-play has produced superhu-
man agents in Chess (Campbell et al., 2002; Silver et al.,
2017), Go (Silver et al., 2016), Poker (Brown & Sandholm,
2019; 2018), StarCraft II (Vinyals et al., 2019), and Dota
2 (Berner et al., 2019), and has recently scaled to domains
such as Street Fighter (Li et al., 2024) and Gran Turismo
Sport (Wurman et al., 2022). For Pokémon, prior work
combines self-play with heuristics to reach competitive
strength (Huang & Lee, 2019; Whidden, 2023). In con-
trast, PokéChamp attains expert-level play without any
explicit training.

Language Agents for Games. LLMs remain weak plan-
ners—for example, they still miss the Nash strategy in Tic-
Tac-Toe (Topsakal & Harper, 2024)—but a growing liter-
ature explores augmentations (Hu et al., 2024a). Prompt-
based agents have been demonstrated for Pokémon (Hu et al.,
2024b), StarCraft (Ma et al., 2023), and Avalon (Shi et al.,
2023; Stepputtis et al., 2023); tool-use extensions tackle
NetHack (Küttler et al., 2020; Jeurissen et al., 2024); open-

world settings include Minecraft (Wang et al., 2023) and
Spring (Wu et al., 2024); and finetuning on human tran-
scripts enables Diplomacy play (, FAIR). Complementary
approaches study distillation (Nalty & Rosenthal, 2024),
online self-play finetuning (Zhou et al., 2024), and reward
shaping with LLM feedback (Klissarov et al., 2023).

Prompting and Planning. Prompt strategies—chain-of-
thought (Wei et al., 2022), self-consistency (Wang et al.,
2022), Tree-of-Thoughts (Yao et al., 2024), and ReAct (Yao
et al., 2022)—improve reasoning, while search and RL fur-
ther enhance control. RAP treats an LLM as both plan-
ner and world model (Hao et al., 2023); TS-LLM applies
AlphaZero-style tree search during decoding (Feng et al.,
2023); and commonsense planners query LLMs as knowl-
edge sources (Zhao et al., 2023). Self-correction methods
such as SCoRe (Kumar et al., 2024) and Reflexion (Shinn
et al., 2024) refine policies via linguistic feedback without
heavy finetuning.

7. Conclusion
In this paper, we introduce PokéChamp, which augments
minimax tree search with the following LLM-based compo-
nents: (1) action sampling, (2) opponent modeling, and (3)
a state value function. PokéChamp achieves state-of-the-
art performance against heuristic and LLM-based bots and
expert performance against real players on the online ladder.
The objective of our framework lies at the intersection of
imitation learning, best response estimation, and Nash equi-
librium approximation. While imitation learning estimates
the best response to the meta-game, and computing the ex-
act Nash policy may be intractable, PokéChamp aims to
strike a balance between these approaches. Our max-min
formulation in the minimax search finds a conservative ac-
tion that approximates the true best response, although the
exact relationship between our method and the optimal best
response remains an open question for future investigation.
Further performance enhancements are currently limited
by the accuracy of opponent modeling and the method’s
online computational budget. By increasing the breadth and
depth size of the search, we expect to see further improve-
ment’s to the performance of the method. Additionally, our
work can be taken advantage of adversarially due to static
opponent modeling. Our work leaves open challenges in
opponent modeling and generative minimax planning for
future work exploring competitive multi-agent settings and
future superhuman performance in Pokémon battling. Our
benchmark explores LLMs and test time planning for com-
petitive POMG in Pokémon battling. However, we provide
a generalized framework of action sampling, one step looka-
head world modeling, opponent modeling, and value that
may be easily applied to other frameworks.

9

PokéChamp: an Expert-level Minimax Language Agent

Acknowledgement
The authors acknowledge the support of Office of Naval
Research Grant N00014-22-1-2253, National Science Foun-
dation Grant NSF-OAC-2411299, the National Science
Foundation Graduate Research Fellowship Program under
Grant No. DGE-2039656, and computational resources
from Princeton Language and Intelligence (PLI).

Impact Statement
In our work, we use a small number of games with our
method on the community-maintained open-source com-
petitive Pokémon platform, Pokémon Showdown. As the
popularity of AI agents for Pokémon increases, we urge
researchers to limit use of the online ladder evaluation to
avoid data contamination and overwhelming human users
of the platform with AI opponents. Rather, we recommend
that researchers compete AI agents against other AI agents.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023. 5.3

Berner, C., Brockman, G., Chan, B., Cheung, V., Dębiak, P.,
Dennison, C., Farhi, D., Fischer, Q., Hashme, S., Hesse,
C., et al. Dota 2 with large scale deep reinforcement
learning. arXiv preprint arXiv:1912.06680, 2019. 1, 6

Brown, N. and Sandholm, T. Superhuman ai for heads-
up no-limit poker: Libratus beats top professionals.
Science, 359(6374):418–424, 2018. doi: 10.1126/
science.aao1733. URL https://www.science.
org/doi/abs/10.1126/science.aao1733. 1,
6

Brown, N. and Sandholm, T. Superhuman ai for multiplayer
poker. Science, 365(6456):885–890, 2019. doi: 10.1126/
science.aay2400. URL https://www.science.
org/doi/abs/10.1126/science.aay2400. 1,
6

Campbell, M., Hoane Jr, A. J., and Hsu, F.-h. Deep blue.
Artificial intelligence, 134(1-2):57–83, 2002. 1, 6

Ding, Z., Su, D., Liu, Q., and Jin, C. A deep reinforcement
learning approach for finding non-exploitable strategies in
two-player atari games. arXiv preprint arXiv:2207.08894,
2022.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024. 5.3

(FAIR)†, M. F. A. R. D. T., Bakhtin, A., Brown, N., Di-
nan, E., Farina, G., Flaherty, C., Fried, D., Goff, A.,
Gray, J., Hu, H., Jacob, A. P., Komeili, M., Konath, K.,
Kwon, M., Lerer, A., Lewis, M., Miller, A. H., Mitts,
S., Renduchintala, A., Roller, S., Rowe, D., Shi, W.,
Spisak, J., Wei, A., Wu, D., Zhang, H., and Zijlstra,
M. Human-level play in the game of diplomacy by
combining language models with strategic reasoning.
Science, 378(6624):1067–1074, 2022. doi: 10.1126/
science.ade9097. URL https://www.science.
org/doi/abs/10.1126/science.ade9097. 6

Feng, X., Wan, Z., Wen, M., McAleer, S. M., Wen, Y.,
Zhang, W., and Wang, J. Alphazero-like tree-search can
guide large language model decoding and training. arXiv
preprint arXiv:2309.17179, 2023. 6

Foerster, J. N., Chen, R. Y., Al-Shedivat, M., Whiteson, S.,
Abbeel, P., and Mordatch, I. Learning with opponent-
learning awareness. arXiv preprint arXiv:1709.04326,
2017.

Hao, S., Gu, Y., Ma, H., Hong, J. J., Wang, Z., Wang, D. Z.,
and Hu, Z. Reasoning with language model is planning
with world model. arXiv preprint arXiv:2305.14992,
2023. 6

Hu, S., Huang, T., Ilhan, F., Tekin, S., Liu, G., Kompella,
R., and Liu, L. A survey on large language model-based
game agents. arXiv preprint arXiv:2404.02039, 2024a. 6

Hu, S., Huang, T., and Liu, L. Pok\’ellmon: A human-
parity agent for pok\’emon battles with large language
models. arXiv preprint arXiv:2402.01118, 2024b. 1, 1,
5.3, 6, B.4, 4

Huang, D. and Lee, S. A self-play policy optimization
approach to battling pokémon. In 2019 IEEE conference
on games (CoG), pp. 1–4. IEEE, 2019. 6

Jeurissen, D., Perez-Liebana, D., Gow, J., Cakmak, D.,
and Kwan, J. Playing nethack with llms: Poten-
tial & limitations as zero-shot agents. arXiv preprint
arXiv:2403.00690, 2024. 6

Klissarov, M., D’Oro, P., Sodhani, S., Raileanu, R., Bacon,
P.-L., Vincent, P., Zhang, A., and Henaff, M. Motif:
Intrinsic motivation from artificial intelligence feedback.
arXiv preprint arXiv:2310.00166, 2023. 6

Kozuno, T., Ménard, P., Munos, R., and Valko, M. Learn-
ing in two-player zero-sum partially observable markov
games with perfect recall. Advances in Neural Informa-
tion Processing Systems, 34:11987–11998, 2021.

Kumar, A., Zhuang, V., Agarwal, R., Su, Y., Co-Reyes, J. D.,
Singh, A., Baumli, K., Iqbal, S., Bishop, C., Roelofs,
R., et al. Training language models to self-correct via

10

https://www.science.org/doi/abs/10.1126/science.aao1733
https://www.science.org/doi/abs/10.1126/science.aao1733
https://www.science.org/doi/abs/10.1126/science.aay2400
https://www.science.org/doi/abs/10.1126/science.aay2400
https://www.science.org/doi/abs/10.1126/science.ade9097
https://www.science.org/doi/abs/10.1126/science.ade9097

PokéChamp: an Expert-level Minimax Language Agent

reinforcement learning. arXiv preprint arXiv:2409.12917,
2024. 6

Küttler, H., Nardelli, N., Miller, A., Raileanu, R., Selvatici,
M., Grefenstette, E., and Rocktäschel, T. The nethack
learning environment. Advances in Neural Information
Processing Systems, 33:7671–7684, 2020. 1, 6

Li, W., Ding, Z., Karten, S., and Jin, C. Fightladder: A
benchmark for competitive multi-agent reinforcement
learning. In Forty-first International Conference on Ma-
chine Learning, 2024. URL https://openreview.
net/forum?id=FQQ4476dT2. 6

Ma, W., Mi, Q., Yan, X., Wu, Y., Lin, R., Zhang, H., and
Wang, J. Large language models play starcraft ii: Bench-
marks and a chain of summarization approach. arXiv
preprint arXiv:2312.11865, 2023. 6

Nalty, C. and Rosenthal, S. Pokéll-
mon trainer: Llm model distillation.
https://cnalty.github.io/files/PokeLLMonTrainer.pdf,
2024. 6

Shi, Z., Fang, M., Zheng, S., Deng, S., Chen, L., and Du,
Y. Cooperation on the fly: Exploring language agents
for ad hoc teamwork in the avalon game. arXiv preprint
arXiv:2312.17515, 2023. 6

Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K., and
Yao, S. Reflexion: Language agents with verbal rein-
forcement learning. Advances in Neural Information
Processing Systems, 36, 2024. 6

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016. 1, 6

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Grae-
pel, T., et al. Mastering chess and shogi by self-play
with a general reinforcement learning algorithm. arXiv
preprint arXiv:1712.01815, 2017. 1, 6

Stepputtis, S., Campbell, J., Xie, Y., Qi, Z., Zhang, W. S.,
Wang, R., Rangreji, S., Lewis, M., and Sycara, K. Long-
horizon dialogue understanding for role identification in
the game of avalon with large language models. arXiv
preprint arXiv:2311.05720, 2023. 6

The-Third-Build. How an a.i. is becoming the world’s best
pokemon player, 2022. URL https://youtu.be/
rhvj7CmTRkg?si=HJdvk7-H-ZbHpeu6. 1

Topsakal, O. and Harper, J. B. Benchmarking large language
model (llm) performance for game playing via tic-tac-toe.
Electronics, 13(8):1532, 2024. 1, 6

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds,
T., Georgiev, P., et al. Grandmaster level in starcraft ii
using multi-agent reinforcement learning. Nature, 575
(7782):350–354, 2019. 1, 6

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu,
Y., Fan, L., and Anandkumar, A. Voyager: An open-
ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023. 6

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang,
S., Chowdhery, A., and Zhou, D. Self-consistency im-
proves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022. 6

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837,
2022. 6

Whidden, P. Training ai to play pokemon with reinforce-
ment learning, 2023. URL https://youtu.be/
DcYLT37ImBY?si=8bbb9bUK1Jiu61TI. 6

Wu, Y., Min, S. Y., Prabhumoye, S., Bisk, Y., Salakhutdinov,
R. R., Azaria, A., Mitchell, T. M., and Li, Y. Spring:
Studying papers and reasoning to play games. Advances
in Neural Information Processing Systems, 36, 2024. 6

Wurman, P. R., Barrett, S., Kawamoto, K., MacGlashan, J.,
Subramanian, K., Walsh, T. J., Capobianco, R., Devlic,
A., Eckert, F., Fuchs, F., et al. Outracing champion gran
turismo drivers with deep reinforcement learning. Nature,
602(7896):223–228, 2022. 6

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. React: Synergizing reasoning and acting
in language models. arXiv preprint arXiv:2210.03629,
2022. 6

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T., Cao, Y.,
and Narasimhan, K. Tree of thoughts: Deliberate problem
solving with large language models. Advances in Neural
Information Processing Systems, 36, 2024. 6

Zhao, Z., Lee, W. S., and Hsu, D. Large language models as
commonsense knowledge for large-scale task planning.
In Advances in Neural Information Processing Systems,
volume 36, pp. 31967–31987. Curran Associates, Inc.,
2023. 6

Zhou, A., Yan, K., Shlapentokh-Rothman, M., Wang, H.,
and Wang, Y.-X. Language agent tree search unifies
reasoning acting and planning in language models. arXiv
preprint arXiv:2310.04406, 2023.

11

https://openreview.net/forum?id=FQQ4476dT2
https://openreview.net/forum?id=FQQ4476dT2
https://youtu.be/rhvj7CmTRkg?si=HJdvk7-H-ZbHpeu6
https://youtu.be/rhvj7CmTRkg?si=HJdvk7-H-ZbHpeu6
https://youtu.be/DcYLT37ImBY?si=8bbb9bUK1Jiu61TI
https://youtu.be/DcYLT37ImBY?si=8bbb9bUK1Jiu61TI

PokéChamp: an Expert-level Minimax Language Agent

Zhou, R., Du, S. S., and Li, B. Reflect-rl: Two-player online
rl fine-tuning for lms. arXiv preprint arXiv:2402.12621,
2024. 6

12

PokéChamp: an Expert-level Minimax Language Agent

A. Appendix

B. Background
B.1. Pokémon Showdown and Competitive Battling

Pokémon Showdown is an online battle simulator that allows players to engage in competitive Pokémon battles without
the need for in-game breeding or training. It implements the official battle mechanics and provides a platform for various
competitive formats.

In competitive Pokémon battles, two players each bring a team of up to six Pokémon and engage in turn-based combat. The
objective is to make all of the opponent’s Pokémon faint. Each turn, players can choose to use one of their active Pokémon’s
moves, switch to a different Pokémon, or use an item.

Key aspects of competitive battling include:

• Type effectiveness: Each Pokémon and move has one or two types, with a complex system of type matchups affecting
damage calculations.

• Stats: Six core stats (HP, Attack, Defense, Special Attack, Special Defense, and Speed) determine a Pokémon’s
performance in battle.

• Abilities: Special traits that can provide various effects during battle.

• Held items: Objects that Pokémon can carry to gain additional effects or bonuses.

B.2. Battle Formats

Pokémon Showdown supports various battle formats, including:

• Singles: One-on-one battles where each player has one active Pokémon at a time.

• Doubles: Battles where each player has two active Pokémon simultaneously.

• Random Battles: Players are assigned random teams of fully-trained Pokémon.

• Tiered formats: Formats that group Pokémon based on their usage and perceived strength (e.g., OU, UU, RU).

Our research focuses primarily on the Generation 9 OverUsed (OU) format, which is a singles format featuring the most
commonly used Pokémon that are not considered too powerful for standard play.

B.3. Partial Observability in Pokémon Battles

Pokémon battles are partially observable Markov games. The partial observability stems from several factors:

• Players can only see their opponent’s active Pokémon, not their entire team.

• The exact stats, abilities, and movesets of the opponent’s Pokémon are unknown until revealed through battle actions.

• Some moves and abilities can temporarily change the game state in ways that are not fully observable to the opponent.

This partial observability adds a layer of complexity to decision-making and strategy, as players must make inferences about
their opponent’s team and potential actions based on limited information.

13

PokéChamp: an Expert-level Minimax Language Agent

B.4. Pokémon Battling AI

Various approaches have been developed for creating AI agents capable of playing Pokémon battles:

• Rule-based systems: These include the AI used in official Pokémon games, such as the Abyssal bot, which follows
pre-defined heuristics for decision-making.

• Search-based methods: Approaches like Expectiminimax have been attempted but face challenges due to the large
branching factor and enforced time limits per turn.

• Machine learning approaches: Some efforts have used supervised learning on battle data to predict opponent moves
and inform decision-making.

• Reinforcement learning: While successful in other game domains, the complexity and partial observability of
Pokémon battles have made this approach challenging.

Recent work has explored the use of large language models (LLMs) for Pokémon battling, such as PokéLLMon (Hu et al.,
2024b), which uses prompting techniques to generate actions based on battle state descriptions.

B.5. Evaluation Metrics

The primary metrics for evaluating Pokémon battling agents include:

• Win rate: The percentage of games won against a specific opponent or set of opponents.

• Elo rating: A relative skill rating system used in competitive gaming, where a higher Elo indicates stronger performance
against other rated players.

• Average number of turns: The typical length of games played by an agent, which can indicate efficiency or playstyle.

These metrics allow for comparison between different AI agents and human players, providing insights into the relative
strengths and weaknesses of various approaches.

B.6. Damage Calculation

The damage calculator is a crucial component of PokéChamp which helps use the LLM predicted information to get the
one step lookahead, implementing a key part of the transition function Ph(sh+1|sh, ah, bh). It uses the following equation
to compute the expected damage for a given move:

Damage =

(
1

50

((
2

5
· Level + 2

)
· Power · A

D

)
+ 2

)
· Targets
· PB
· Weather
· GlaiveRush
· Critical
· random (0.85,1.00]
· STAB
· Type
· Burn
· other
· ZMove
· TeraShield.

(2)

where:

14

PokéChamp: an Expert-level Minimax Language Agent

• A and D are the relevant attack and defense stats

• Targets is 0.75 if the move hits multiple targets in doubles/triples, 1 otherwise

• Weather is 1.5 for Water moves in Rain or Fire moves in Sun, 0.5 for the opposite, 1 otherwise

• Critical is 1.5 for critical hits, 1 otherwise

• STAB (Same Type Attack Bonus) is 1.5 if the move type matches the user’s type, 1 otherwise

• Type is the type effectiveness multiplier (0.25, 0.5, 1, 2, or 4)

• Burn is 0.5 for physical moves if the user is burned, 1 otherwise

• Other includes various move-specific and ability-based modifiers

This detailed calculation allows PokéChamp to accurately estimate the outcomes of different actions, informing its
decision-making process within the minimax tree search.

An example prompt that is generated by the damage calculator for all matchups is provided in listing 1.

1 Requires switch:
2 dragapult vs. primarina:
3 dragapult outspeeds primarina
4 dragapult’s moves:
5 dragondarts: 161 turns to KO opponent’s pokemon
6 uturn: 6 turns to KO opponent’s pokemon
7 quickattack: 5 turns to KO opponent’s pokemon
8 terablast: 5 turns to KO opponent’s pokemon
9 dragapult’s moves if opponent’s primarina uses ’terastallize’:

10 dragondarts: 3 turns to KO opponent’s pokemon
11 uturn: 11 turns to KO opponent’s pokemon
12 quickattack: 321 turns to KO opponent’s pokemon
13 terablast: 321 turns to KO opponent’s pokemon
14 dragapult’s moves if it uses ’terastallize’ and opponent’s primarina uses ’

terastallize’:
15 dragondarts: 4 turns to KO opponent’s pokemon
16 uturn: 6 turns to KO opponent’s pokemon
17 quickattack: 10 turns to KO opponent’s pokemon
18 terablast: 9 turns to KO opponent’s pokemon
19 dragapult’s moves if it uses ’terastallize’ and opponent’s primarina does NOT use ’

terastallize’:
20 dragondarts: 161 turns to KO opponent’s pokemon
21 uturn: 6 turns to KO opponent’s pokemon
22 quickattack: 5 turns to KO opponent’s pokemon
23 terablast: 5 turns to KO opponent’s pokemon
24 Opponent moves: primarina
25 moonblast: 2 turns to KO your pokemon
26 psychicnoise: 4 turns to KO your pokemon
27 surf: 4 turns to KO your pokemon
28 flipturn: 10 turns to KO your pokemon

Listing 1. Example prompt from damage calculator.

C. More Puzzles
To further evaluate PokéChamp’s strategic capabilities and identify areas for improvement, we developed additional puzzle
scenarios that test specific aspects of Pokémon battling.

15

PokéChamp: an Expert-level Minimax Language Agent

C.1. Stall Strategy

Stall strategies in Pokémon battles involve using defensive Pokémon with high HP and recovery moves to gradually wear
down the opponent. These strategies often rely on status effects, entry hazards, and passive damage to win battles over many
turns.

PokéChamp struggles with stall strategies due to the uncertainty they introduce in the current matchup. This uncertainty
often causes PokéChamp to switch its current Pokémon frequently, which can be counterproductive. The agent’s difficulty
in handling stall strategies stems from two main factors:

1. Limited lookahead: The minimax tree search used by PokéChamp may not extend far enough to fully capture the
long-term benefits of maintaining position against a stall team.

2. Overemphasis on immediate damage: The value function VK(sK) may not adequately account for the cumulative effects
of status conditions and passive damage over many turns.

Figure 8 (left) illustrates this behavior. In this scenario, PokéChamp initially chooses Darkrai against Blissey, recognizing
that Darkrai’s Focus Blast is strong against Blissey. However, the agent then decides to switch to Enamorus, which faints
from entry hazards. After sending Darkrai back in, it misses the first Focus Blast against Blissey. This miss increases
uncertainty in PokéChamp’s decision-making process, leading it to switch to another Pokémon rather than maintaining its
position.

C.2. Excessive Switching

Another challenging scenario for PokéChamp is when opponents employ excessive switching strategies. In this approach,
opponents frequently switch their Pokémon to disrupt the agent’s planning and exploit the limitations of short lookahead
methods.

PokéChamp struggles to capitalize on or defend against this strategy due to several factors:

1. Incomplete opponent modeling: The opponent policy νh(·|yh) may not accurately capture the likelihood of frequent
switching.

2. Myopic decision-making: The limited depth of the minimax tree search may prevent PokéChamp from recognizing the
long-term advantages of predicting and punishing switches.

3. Overcommitment to predicted optimal moves: Once PokéChamp identifies a strong move against the current opponent
Pokémon, it may persist in using that move even when it becomes suboptimal due to switches.

Figure 8 (right) demonstrates this weakness. In this example, PokéChamp consistently chooses Focus Blast, a Fighting-type
move, even as the opponent switches between two Pokémon that resist Fighting-type attacks. This behavior allows the
opponent to exploit PokéChamp’s predictability and inability to adapt to the switching strategy.

Figure 8. Left: Stall strategy: PokéChamp’s response to a stall tactic, illustrating its difficulty in maintaining a consistent strategy against
defensive play. Right: Opponent excessive switching strategy: PokéChamp’s struggle to adapt to an opponent’s frequent Pokémon
switches, demonstrating its tendency to persist with suboptimal move choices.

These puzzles highlight areas where PokéChamp’s decision-making process can be improved, particularly in handling

16

PokéChamp: an Expert-level Minimax Language Agent

long-term strategies and adapting to dynamic opponent behaviors.

D. Random Battles
To evaluate PokéChamp’s performance in a setting with higher uncertainty and variability, we conducted experiments in
the Gen 8 Random Battles format. This format presents unique challenges as players must adapt to randomly assigned
teams, testing the agent’s ability to quickly assess team strengths and weaknesses.

We compared PokéChamp against various baselines in two scenarios: with and without the dynamax mechanic. The
dynamax mechanic allows Pokémon to temporarily increase their power and HP, adding another layer of strategic complexity
to battles.

D.1. Results without Dynamax

Table 4 presents the results for Gen 8 Random Battles without the dynamax mechanic.

Table 4. Gen 8 Random Battles without dynamax mechanic.

Bot Method Language Model Win Rate vs.
Abyssal (%)

PokéChamp GPT-4o 70
PokéChamp Llama 3.1:8b 64
PokéLLMon (Hu et al., 2024b) GPT-4o 56
One Step Lookahead N/A 44

In this setting, PokéChamp with GPT-4o achieves a 70% win rate against the Abyssal bot, significantly outperforming
other methods. Notably, PokéChamp using the smaller Llama 3.1:8b model still outperforms PokéLLMon with GPT-4o,
demonstrating the effectiveness of our approach even with less powerful language models.

D.2. Results with Dynamax

Table 5 shows the results for Gen 8 Random Battles with the dynamax mechanic enabled.

Table 5. Gen 8 Random Battles with dynamax mechanic.

Method LLM Win Rate vs. Elo Avg. # Turns
Abyssal (%)

PokéChamp GPT-4o 56 1273 17.1
PokéChamp Llama 3.1:8b 52 1184 19.1
PokéLLMon GPT-4o 36 1048 22.5
Abyssal N/A N/A 1213 19.0
One Step Lookahead N/A 16 998 18.9
Max Power N/A 4 787 23.2
Random N/A 0 493 24.3

With dynamax enabled, PokéChamp maintains its superior performance, achieving the highest Elo rating of 1273 and the
shortest average game length of 17.1 turns. This indicates that PokéChamp can effectively utilize the dynamax mechanic
to gain advantages and close out games more quickly.

D.3. Analysis of Results

Figure 9 provides a detailed view of the pairwise matchups between different methods in Gen 8 Random Battles.

These results demonstrate several key points:

1. Adaptability: PokéChamp’s strong performance in Random Battles highlights its ability to quickly assess and adapt to

17

PokéChamp: an Expert-level Minimax Language Agent

Figure 9. Gen 8 Random Battles matchup matrix per method.

unfamiliar team compositions, a crucial skill in this format.

2. Effective use of dynamax: The maintained performance with dynamax enabled suggests that PokéChamp can effectively
incorporate this mechanic into its strategy, likely due to the LLM’s understanding of its impact on the game state.

3. Efficiency: The shorter average game length for PokéChamp indicates that it can identify and execute winning strategies
more quickly than other methods.

4. Robustness to randomness: The consistent outperformance of other methods, even with the added randomness of team
composition, demonstrates the robustness of PokéChamp’s decision-making process.

5. LLM size trade-off: While GPT-4o provides the best performance, the strong results with Llama 3.1:8b suggest a
favorable trade-off between model size and performance for resource-constrained applications.

These experiments in the Random Battles format further validate the versatility and effectiveness of PokéChamp, showing
that its performance advantages extend beyond fixed team compositions to scenarios with higher uncertainty and variability.

18

