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Abstract001

Recently, decomposing complex problems into002
simple subtasks–a crucial part of human-like003
natural planning–to solve the given problem004
has significantly boosted the performance of005
large language models (LLMs). However,006
leveraging such planning structures during007
post-training to boost the performance of008
smaller open-source LLMs remains underex-009
plored. Motivated by this, we introduce PLAN-010
TUNING, a unified post-training framework011
that (i) distills synthetic task decompositions012
(termed “planning trajectories”) from large-013
scale LLMs and (ii) fine-tunes smaller mod-014
els via supervised and reinforcement-learning015
objectives designed to mimic these planning016
processes to improve complex reasoning. On017
GSM8k and the MATH benchmarks, plan-018
tuned models outperform strong baselines by019
an average ∼ 7%. Furthermore, plan-tuned020
models show better generalization capabili-021
ties on out-of-domain datasets, with average022
∼ 10% and ∼ 12% performance improve-023
ments on OlympiadBench and AIME 2024, re-024
spectively. Our detailed analysis demonstrates025
how planning trajectories improves complex026
reasoning capabilities, showing that PLAN-027
TUNING is an effective strategy for improving028
task-specific performance of smaller LLMs1.029

1 Introduction030

Natural planning aligns more with real-world tasks031

such as trip or meeting planning (Zheng et al.,032

2024). Decomposing complex problems into sim-033

pler subtasks is a key to human-like natural plan-034

ning (Jiao et al., 2024; Parmar et al., 2025). For035

instance, when prompted with “How to plan a036

trip to . . . ”, recent LLMs naturally generate sub-037

tasks such as selecting a mode of transport, esti-038

mating a budget, and determining the trip duration039

(see App. A for examples). Recent large-scale040

1Data and source code are available at https://
anonymous.4open.science/r/plan-tuning-6113

Question: How many vertical asymptotes does the graph of 𝑦 = 2
𝑥2 + 𝑥 − 6

   have? Answer:  2

Reasoning Process:

< Plan Generation >

 Here’s a plan to solve the problem of finding the number of vertical asymptotes:

 1. Identify the Key Concept: Vertical asymptotes occur where the denominator of a rational function
equals zero, and the numerator is non-zero at that point.
 2. Find Potential Vertical Asymptotes:
  • Set the denominator of the function equal to zero: 𝑥2 + 𝑥 − 6 = 0
  • Solve the quadratic equation for 𝑥. This will give us the potential locations of the vertical asymptotes. This
can be done by factoring, using the quadratic formula, or completing the square.
 3. Check for Holes (Removable Discontinuities):
  • After finding the values of 𝑥 that make the denominator zero, check if any of those 𝑥-values also make
the numerator zero. If they do, then there’s a “hole” (removable discontinuity) at that 𝑥-value, not a vertical
asymptote.
  • In this specific case, the numerator is 2, which is never zero. This simplifies the process.
 4. Determine the Number of Vertical Asymptotes:
  • The solutions from step 2 that don’t cause the numerator to be zero (from step 3) are the locations of the
vertical asymptotes.
  • Count the distinct values of 𝑥 that are vertical asymptotes.

 < / Plan Generation >

 < Plan Execution >

 1. Identify the Key Concept: Vertical asymptotes occur where the denominator of a rational function
equals zero, and the numerator is non-zero at that point.
 2. Find Potential Vertical Asymptotes:
  • Set the denominator equal to zero: 𝑥2 + 𝑥 − 6 = 0
  • Solve the quadratic equation. We can factor: (𝑥 + 3)(𝑥 − 2) = 0. This gives us 𝑥 = − 3 and 𝑥 = 2.
 3. Check for Holes (Removable Discontinuities):
  • The numerator is 2, which is never zero. Therefore, neither 𝑥 = − 3 nor 𝑥 = 2 will create a hole.
 4. Determine the Number of Vertical Asymptotes:
  • The solutions from step 2, 𝑥 = − 3 and 𝑥 = 2, are the locations of the vertical asymptotes.
  • There are two distinct values of 𝑥 that are vertical asymptotes.

 < / Plan Execution >

 Final Predicted Answer: 2

Figure 1: An example planning trajectory for a problem
adapted from the MATH (Hendrycks et al., 2021).

LLMs such as o4 (Zhong et al., 2024), Gemini- 041

2.0-Pro (Team et al., 2023), and Deepseek-v3 (Liu 042

et al., 2024) have demonstrated this ability, and 043

it significantly boosts their performance on com- 044

plex reasoning tasks (Rein et al., 2024; He et al., 045

2024). Figure 1 illustrates a synthetic planning 046

trajectory distilled from Gemini-2.0-Pro: a com- 047

plex problem is first decomposed into intermediate 048

subgoals (e.g., “identify relevant quantities,” “for- 049

mulate equations,” “solve subexpressions”), which 050

guide the model through a structured solution path. 051

However, these capabilities have largely been 052

explored at inference time and on large-scale pro- 053

prietary models (Wang et al., 2024a; Parmar et al., 054

2025); smaller open-source LLMs still struggle 055

to leverage the decomposition step from natural 056

planning effectively, limiting their performance 057

on complex tasks. Thus, we address the re- 058

search question: “Can we improve the perfor- 059

mance of smaller LLMs on complex tasks by 060

1

https://anonymous.4open.science/r/plan-tuning-6113
https://anonymous.4open.science/r/plan-tuning-6113


Large-Scale
LLM

Plan
Verifier

Planning
Trajectories

Plan
Execution

P

Verified
Plans

Plan
Execution

A

O
ptim

al Trajectory
for Training

Exact
Answers

Policy
Model

Plan

Execution
+

Answer

Loss

P

A

Loss

Ra

Rp

A

P

SF
T

O
bj

ec
tiv

e

R
L

O
bjective

Training Data Synthesis Training Process

Figure 2: Left: Large-scale LLM generates multiple planning candidates (green = high-quality, red = low-quality).
A Plan Verifier scores plans, and an Answer Verifier confirms the final answer; only trajectories passing both
become the training corpus. Right: These trajectories train the policy model via SFT and RL objectives. P and A
denote gold synthetic planning and answer trajectories, while Rp and Ra are their respective rewards.

incorporating such capabilities through post-061

training, rather than relying solely on inference-062

time prompts?” To this end, we propose PLAN-063

TUNING, a post-training method that uses syn-064

thetic planning trajectories—sequences of natu-065

ral decomposition steps—to teach a model how066

to plan as part of its parameterized knowledge.067

PLAN-TUNING incorporates planning trajectories068

in supervised and Reinforcement Learning (RL)069

settings, with customized objectives (loss) and re-070

ward functions to improve planning capabilities.071

Our plan-tuned smaller LLMs show improved rea-072

soning skills, focused on mathematical reasoning.073

For distilling high-quality planning trajectories074

from large-scale LLM, we leverage the Best-of-N075

approach from the recent PlanGEN framework pro-076

posed by Parmar et al. (2025). For the MATH and077

GSM8k (Cobbe et al., 2021) training sets, we gen-078

erate five candidate plans per problem. Each plan079

is then evaluated by the verification agent from080

PlanGEN, and only those exceeding a predefined081

quality threshold are retained. Because gold final082

answers are available for training data, we next083

execute every retained plan and verify that it pro-084

duces the correct final answer. At last, we include085

only those trajectories in PLAN-TUNING that both086

pass the agent-based scoring threshold and yield087

the correct solution; all others are discarded. The088

whole process is illustrated in Figure 2.089

In PLAN-TUNING, we explore two post-training090

paradigms, supervised fine-tuning (SFT) and RL091

to incorporate planning in smaller LLMs. In SFT,092

we examine (1) an end-to-end setting where the093

model learns to map problem statements directly094

to a step-by-step plan and final answer, and (2) a095

two-stage pipeline that first generates only the plan096

and then executes it to derive the solution. In RL,097

we introduce Group Relative Policy Optimization 098

(GRPO) (Shao et al., 2024), in which we augment 099

the RL objective with planning-specific rewards to 100

incorporate high-quality plan generation. We eval- 101

uate PLAN-TUNING against two strong baselines: 102

an SFT model trained using reasoning chains and 103

answers, and a vanilla GRPO model that optimizes 104

preferences without any planning-based reward. 105

We evaluate four mathematical reasoning bench- 106

marks—two in-domain (GSM8k and MATH) for 107

both training and evaluation, and two out-of- 108

domain (OlympiadBench (He et al., 2024) and 109

AIME (Sun et al., 2025)) to assess generalization. 110

For SFT, we use Gemma-3-12B-it (Team et al., 111

2025) and Qwen3-8B (Yang et al., 2024), and 112

for RL, we use Gemma-3-1B-it, and Qwen3-4B. 113

Across both in-domain tasks, plan-tuned models 114

consistently outperform these baselines, yielding 115

∼ 7% ↑ on GSM8k and ∼ 20% ↑ on MATH. They 116

also demonstrate stronger reasoning-based gener- 117

alization, achieving ∼ 10% ↑ and ∼ 12% ↑ on 118

OlympiadBench and AIME, respectively. More- 119

over, our detailed analysis results in several inter- 120

esting findings, such as mixing GSM8k and MATH 121

during plan-tuning actually degrades performance, 122

and plan-tuned models substantially mitigate the 123

token-repetition issues. In summary, our work pro- 124

poses PLAN-TUNING, a method to distill plan- 125

ning trajectories from large-scale LLMs and fine- 126

tune smaller LLMs to incorporate this ability to 127

solve complex problems. We believe that PLAN- 128

TUNING can be an effective method for improving 129

complex reasoning in smaller LLMs. 130

2 Related Works 131

Inference-time Scaling in LLMs Inference- 132

time algorithms have recently shown a powerful 133
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way to optimize LLM output during inference, pro-134

viding significant improvements in accuracy with-135

out scaling the model. Chain-of-thought (CoT)136

prompting and its variants (Wei et al., 2022; Ko-137

jima et al., 2022) showed that adding intermedi-138

ate reasoning steps during inference-time greatly139

boosts the performance of LLMs. New meth-140

ods have been proposed, such as self-consistency141

(Wang et al., 2022), which generates multiple rea-142

soning chains from LLM and then selects the fi-143

nal answer based on majority voting. One very144

popular approach is the use of Monte Carlo Tree145

Search (MCTS) (Zhang et al., 2024a), which it-146

eratively explores multiple solution paths during147

inference. This technique has been successfully148

applied to models like LLaMa-3-8B, which inte-149

grates a self-refinement mechanism that allows the150

model to revisit and improve its initial solutions151

over time. Another method, test-time optimization152

(Snell et al., 2024), focuses on dynamically adjust-153

ing computational resources during inference. By154

optimizing compute resources based on the com-155

plexity of a task, this approach strikes a balance156

between efficiency and accuracy, ensuring that dif-157

ficult tasks receive more attention while simpler158

tasks are processed with fewer resources. Addition-159

ally, compute-optimal inference (Wu et al., 2024)160

highlights the importance of effectively distribut-161

ing computational power during problem-solving162

tasks. Finally, repeated sampling (Brown et al.,163

2024) is a technique that uses multiple inference164

attempts to improve solution quality. Wang et al.165

(2024a) uses the inference time algorithms to im-166

prove LLMs planning capabilities to solve code167

synthesis problems. Recent works such as Par-168

mar et al. (2025) show that better natural language169

planning improves downstream reasoning capa-170

bilities of underlying LLMs. In contrast to all171

these approaches focused on increasing compute172

at inference-time, our work focuses on inference-173

aware post-training with planning trajectories.174

Post-training Methods for LLMs Past attempts175

have been made to improve the performance of176

smaller LMs using various types of training trajec-177

tories (Ouyang et al., 2022; Rafailov et al., 2023;178

Saeidi et al., 2024). Our work is closer to Jiao179

et al. (2024) where authors propose a two-stage180

approach: first, creating human-like, step-by-step181

planning trajectories, then automatically synthe-182

sizing detailed “process rewards” that score how183

accurately each trajectory follows its plan. In a184

similar direction, Song et al. (2024b) pioneers 185

an exploration-driven paradigm, generating multi- 186

ple candidate trajectories and iteratively refining 187

them via performance feedback to improve long- 188

horizon reasoning. Zhang et al. (2024b) proposes a 189

pipeline that unifies demonstration data, self-play 190

rollouts, and human preferences, demonstrating 191

that diverse training signals yield more robust agent 192

policies. Wang et al. (2024b) shows that incorpo- 193

rating explicitly negative trajectories during fine- 194

tuning helps the model learn to avoid erroneous or 195

unsafe actions. Other work investigates curriculum 196

design and data curation strategies, revealing that 197

carefully scheduled exposure to increasingly com- 198

plex tasks significantly boosts final policy qual- 199

ity (Chen et al., 2024). Meanwhile, Song et al. 200

(2024a) demonstrates that scaling up trajectory vol- 201

ume and diversity is key to robust generalization. 202

Unlike prior work that applies planning only at in- 203

ference or via large-scale behavior cloning, PLAN- 204

TUNING incorporates synthetic planning trajecto- 205

ries into small LLMs’ parameters through super- 206

vised and RL post-training objectives. 207

3 Proposed Method 208

3.1 Task Formulation 209

Defining Task Decomposition as Part of Natural 210

Planning In this work, we formalize natural plan- 211

ning—distinct from classical AI planning (which 212

is not the focus of this work)—as the process of 213

decomposing an input problem x into an ordered 214

sequence of intermediate subgoals that guide its so- 215

lution. Formally, we introduce a latent state space 216

S of partial reasoning states, with the initial state 217

s0 = x. A planning trajectory τ = (τ1, . . . , τK) is 218

then defined as a sequence of operators τk : S → S 219

such that 220

sk = τk(sk−1) for k = 1, . . . ,K, (1) 221

The final state sK encodes sufficient information 222

to extract the correct answer y. We model the 223

planner as a conditional distribution as below: 224

πθ(τ | x) =

K∏
k=1

πθ
(
τk | sk−1

)
, (2) 225

This equation indicates that the policy model 226

πθ assigns high probability to trajectories that (i) 227

follow high-quality, human-like decomposition pat- 228

terns and (ii) lead to a correct final solution. For 229
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the scope of this work, we use smaller LLMs as230

policy models for generating planning trajectories.231

Problem Statement We frame mathematical rea-232

soning with planning as learning a conditional233

model that, given a problem statement x ∈234

X , jointly generates a planning trajectory τ =235

(τ1, . . . , τK) ∈ T and a final answer y ∈ Y , as236

shown in the below equation.237

πθ(τ, y | x) = πθ(y | τ, x)πθ(τ | x) (3)238

The above equation is the policy of our plan-239

tuned LLM, parameterized by θ. We collect a240

training corpus D = {(xi, τi, yi)}Ni=1 of synthetic,241

high-quality trajectories paired with gold answers.242

For this purpose, we use large-scale LLMs such as243

Gemini-2.0-Flash along with a filtering module to244

synthesize high-quality data. Our learning process245

thus train model to first decompose problem into246

solvable subproblems through natural planning,247

and leverage two different objectives: supervised248

fine-tuning, which aligns πθ(τ, y | x) with the ob-249

served (τi, yi) pairs, and reinforcement learning,250

which maximizes expected rewards to encourage251

better generation, execution and correct answers.252

3.2 Data Generation253

Figure 1 and Figure 3 show illustrative examples254

of planning trajectories and their execution to get255

the final answer for the given problem2. Here, we256

provide a detailed discussion about the distillation257

of these high-quality planning trajectories using258

Gemini-2.0-Flash. For this purpose, we utilize the259

training sets of GSM-8k and MATH.260

Data Synthesis Let us denote the training set261

as {xi}Ni=1. Motivated by Parmar et al. (2025),262

for each problem xi, we employ a method similar263

to the PlanGEN (Best of N ) (with N = 5 and264

temperature to 0.7 for the underlying LLM M265

for diversity) to synthesize five distinct natural-266

language planning trajectories:267

{τ (1)i , . . . , τ
(5)
i } ∼ M( · | xi). (4)268

Each trajectory τ
(n)
i is passed through constraint-269

based verification agent—adapted from Parmar270

et al. (2025)—to compute a plan quality score.271

s
(n)
i = Rver(τ

(n)
i ), (5)272

2More examples are provided at https://anonymous.
4open.science/r/plan-tuning-6113

This score assesses coherence, logical sound- 273

ness, and alignment with human-like decomposi- 274

tion patterns. Simultaneously, we execute each 275

τ
(n)
i by feeding it into our execution module (an- 276

other underlying LLM) to obtain an answer y(n)i . 277

This yields a candidate set as below, capturing both 278

plan quality and solution correctness. 279{
xi, τ

(n)
i , y

(n)
i , s

(n)
i

}
i=1,...,N
n=1,...,5

, 280

The whole process of doing this data synthesis 281

is presented in Figure 2, and a detailed example is 282

presented in Figure 3. Also, prompts used for this 283

data synthesis method are provided in App. B. 284

Training Data Quality To ensure high-quality 285

supervision, we apply a two-stage filtering process. 286

First, we retain only trajectories whose verification 287

score exceeds a threshold α = 80: 288

s
(n)
i ≥ 80, (6) 289

This threshold we decided based on manual anal- 290

ysis presented in Parmar et al. (2025) that plans 291

above this score have a high likelihood of yielding 292

correct solutions. Now, for the training set, we 293

have the gold final answer available. Hence, we 294

validate each selected trajectory by checking exe- 295

cution correctness, i.e., y(n)i = y∗i , where y∗i is the 296

gold answer. Only those (xi, τ
(n)
i , y

(n)
i ) triples sat- 297

isfying both criteria are included in the final train- 298

ing corpus; all remaining candidates are discarded. 299

This selection yields a dataset of <problem, plan, 300

plan execution, final answer> that balances 301

plan quality with solution accuracy, creating high- 302

quality training data. 303

3.3 PLAN-TUNING 304

We utilize two post-training methods: (i) super- 305

vised fine-tuning (SFT), and (ii) reinforcement 306

learning via Gradient-based Reward Policy Op- 307

timization (GRPO)—each aimed to incorporate 308

planning abilities in underlying LLMs. 309

3.3.1 PLAN-TUNING: SFT Training 310

In SFT, we compare two approaches: (1) joint 311

plan and answer Generation teaches models to pro- 312

duce complete solutions (plans, step-by-step exe- 313

cution, and final answers) from problems, while 314

(2) plan-only generation focuses exclusively on 315

creating high-quality plans. These methods use dif- 316

ferent loss functions to optimize model parameters, 317
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Question: Weng earns $12 an hour 
for babysitting. Yesterday, she just 
did 50 minutes of babysitting. How 
much did she earn?

<plan> 
Here's a plan to solve the babysitting 
earnings problem: 1. Identify the 
Hourly Rate, 2. Convert Minutes to 
Hours … 
</plan>
<output> 
Plan Execution: 1. Weng's hourly rate 
is $12, 2.  50 minutes / 60 
minutes/hour = 5/6 hours … 
</output> 
Answer: 10

Large LLM

Step 1: Natural Planning Trajectories Step 2: Filtering Quality Training 
Data

Plan 1 Plan 2 Plan 3 Plan 4 Plan 5

Plan-Verifier

Verifier generates the 
scores, and we use 
predefined threshold for 
plan selection

S1 S2 S3 S4 S5

Plan Executor
We only execute plans 
above certain threshold

A1 A2 A3

Math Verifier is used for Answer Verification

Step 3: Training with Data

SFT Training

RL Training

Policy Model

Policy Model

Figure 3: Overview of the PLAN-TUNING pipeline. First, a large LLM generates multiple candidate natural-
language planning trajectories for each problem. Next, a Plan Verifier scores and filters these trajectories, and a
Math Verifier executes and validates only those above a quality threshold. Finally, the curated plan–answer pairs
are used to train the target model via both SFT and RL (GRPO) objectives.

with the joint approach minimizing negative log-318

likelihood across all solution components and the319

plan-only approach focusing only on plan quality.320

Method 1 The model learns to map each prob-321

lem xi to the concatenated sequence (τi, ei, yi),322

where τi is the plan, ei is the step-by-step execu-323

tion of that plan, and yi is the final answer. We324

minimize the negative log-likelihood using below:325

Ljoint
SFT(θ) = −

N∑
i=1

log πθ
(
τi, ei, yi

∣∣ xi
)

(7)326

Method 2 The model focuses exclusively on gen-327

erating high-quality plans τi. The objective we use328

to optimize is given below:329

Lplan
SFT(θ) = −

N∑
i=1

log πθ
(
τi

∣∣ xi
)

(8)330

Once we have generated a high-quality plan τi,331

we use the same off-the-shelf base LLM to exe-332

cute that plan and produce the final answer. No333

additional training is performed on this execution334

model. In the rest of the paper, we refer to method335

1 as M1, and method 2 as M2.336

3.3.2 PLAN-TUNING: GRPO Training337

In this approach, we apply GRPO, a policy-338

gradient algorithm that directly maximizes339

sequence-level returns. Let q denote a problem 340

statement and o = (o1, . . . , o|o|) the model’s gen- 341

erated output/rollouts (the plan, its execution, and 342

the final answer). We define a combined reward 343

for each sampled trajectory as below: 344

r(.) = Rplan(τ) + Rans(y), (9) 345

where Rplan(τ) is the plan-quality score produced 346

by our similarity function (discussed later in the 347

section), and Rans(y) is a binary correctness indi- 348

cator (2 if y matches the gold answer, 0 otherwise). 349

Background GRPO, a PPO (Schulman et al., 350

2017) variant, estimates the advantage by aggre- 351

gating reward scores of a group of n sampled 352

responses to a given query q. Formally, let πθ 353

and πθold be the current and old policy models 354

respectively. Let q and oi be the query and 355

ith response sampled from the dataset and the 356

old policy, respectively. Let r(.) be the reward 357

function, which measures the correctness of a 358

given response. Then, the GRPO objective is 359

defined as follows: 360

361
JGRPO(θ) = E

[
q ∼ D, {oi}ni=1 ∼ πθold(O | q)

]
{
1

n

n∑
i=1

1

|oi|

|oi|∑
t=1

min
[

πθ(oi,t|q,oi,<t)
πθold

(oi,t|q,oi,<t)
Âi,t,

clip
( πθ(oi,t|q,oi,<t)
πθold

(oi,t|q,oi,<t)
, 1− ϵ, 1 + ϵ

)
Âi,t

]
− β DKL

[
πθ

∥∥ πref
]}

362
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Here, the advantage is calculated as the normal-363

ized reward, i.e., Âi,t = r̃(oi) = r(oi)−mean(r)
std(r) .364

This Âi,t centers and scales each trajectory’s return365

r across the sampled batch. By weighting each366

token’s log-probability gradient by Â, GRPO am-367

plifies updates for outputs yielding above-average368

combined reward and suppresses those with below-369

average reward.370

Our Modification (Plan GRPO) In the above371

formulation, our focus is to modify r(.) function,372

and incorporate planning-based reward. So, the373

final reward function consists: (1) plan-quality re-374

ward Rplan(τ) ensures that generated trajectories375

closely match high-quality synthetic plans distilled376

from large-scale LLMs, and (2) answer correctness377

reward Rans(y) guarantees that following these378

plans leads to right solutions. Thus, the final re-379

ward is presented in Equation 9. By normalizing380

and combining these signals, GRPO fine-tunes the381

policy model πθ to generate both good plans, accu-382

rate execution, and a correct final answer.383

Details on Planning Reward Rplan(τ) is com-384

puted by measuring how closely a model-generated385

plan τ matches its reference τ∗ using our Gemini-386

based similarity scorer. Here, reference τ∗ is the387

plan synthesized from above section. It is distilled388

from large-scale LLMs (Gemini-2.0 in our case).389

We first extract the plan segments. We parse each390

model completion to pull out only the <plan> por-391

tion. Then, we prompt Gemini for similarity. We392

construct a natural-language prompt comparing393

the generated plan to the gold plan and send it to394

Gemini-2.0-Flash, asking it to rate plan similar-395

ity on a 0–1 scale. At last, we parse the numeric396

score. We apply a flexible regular expression to the397

returned text to extract the score.398

Rplan(τi) = ScoreGemini

(
τi, τ

∗
i

)
∈ [0, 1].399

These per-example rewards are then fed into our400

GRPO objective JGRPO, so that higher-quality401

plans receive proportionally larger policy-gradient402

updates. The prompt for calculating Rplan(τ) is403

presented in App. C.404

4 Results and Analysis405

4.1 Experimental Setup406

Datasets We evaluate our PLAN-TUNING on407

four mathematical reasoning benchmarks. As408

Dataset Train Eval

GSM-8k 6,586 1,319
MATH 10,000 500

OlympiadBench – 674
AIME – 933

Table 1: Statistics of the datasets used in our exper-
iments. Training set sizes are shown for in-domain
benchmarks, and evaluation set sizes for both in-domain
and out-of-domain benchmarks.

shown in Table 1, GSM-8k (Cobbe et al., 2021) and 409

MATH (Hendrycks et al., 2021) provide in-domain 410

datasets for both training and evaluation. After 411

filtering out lower-quality examples, the GSM-8k 412

training set contains 6,586 problems (from an origi- 413

nal 7,500), with 1,319 held out for evaluation. The 414

MATH training set comprises 10,000 problems 415

(from 12,000), with 500 held-out for evaluation. 416

To evaluate out-of-domain generalization, we use 417

the text-only version of OlympiadBench (MATH) 418

(674 problems) (He et al., 2024) and AIME (933 419

problems), for only evaluation purposes. 420

Models For data synthesis, we use Gemini-2.0- 421

Flash (Checkpoint: April 2025). We fine-tune four 422

pretrained HuggingFace checkpoints: Gemma-3- 423

12B-It and Qwen3-8B for PLAN-TUNING: SFT; 424

and Gemma-3-1B-It and Qwen3-4B for PLAN- 425

TUNING: GRPO. 426

Baselines Our two baselines for these training 427

paradigms: (i) an SFT model that learns to output 428

conventional chain-of-thought reasoning and final 429

answers, and (ii) a “vanilla” GRPO model opti- 430

mized only on answer correctness Rans(y) without 431

any planning-specific rewards Rplan(τ). 432

Proposed Experiments For PLAN-TUNING: 433

SFT, we experiment with both methods: (i) 434

M1, a joint plan-and-answer formulation, where 435

the model maps each input x to the tuple 436

⟨Plan, Execution, Answer⟩, and (ii) M2, a plan- 437

only variant in which the model simply generates 438

⟨Plan⟩. Both SFT variants use a batch size of 8, 439

an adaptive learning rate of 5 × 10−6, a single 440

training epoch, and a cosine learning-rate sched- 441

uler. Second, we apply GRPO Training: a vanilla 442

GRPO baseline that optimizes only the answer cor- 443

rectness reward Rans(y), and a planning-specific 444

GRPO that additionally incorporates the Gemini- 445

based planning reward Rplan(τ) into the objective 446

Rplan + Rans. For GRPO, we use a batch size of 447
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Models Methods Datasets Evaluated using M(GSM8k) Datasets evaluated using M(MATH)

GSM8k OlympiadBench
(MATH) AIME 2024 MATH OlympiadBench

(MATH) AIME 2024

Gemma-3

Baseline SFT 81.43 31.45 28.62 65.40 22.11 14.04
Vanilla GRPO 19.94 02.52 00.00

M1 86.20 32.20 32.27 74.20 27.00 20.04
M2 86.35 34.27 33.98 83.80 31.75 29.37

Plan GRPO 28.35 04.30 03.00

Qwen-3

Baseline SFT 80.74 28.78 29.05 53.20 12.02 05.57
Vanilla GRPO 84.27 24.63 17.68

M1 87.11 30.27 32.05 73.80 23.44 19.08
M2 85.67 30.12 31.94 79.40 31.01 31.51

Plan GRPO 86.57 25.07 15.22

Table 2: This table reports the accuracy (%) of the base LLM and its two plan-tuned variants (custom SFT and
GRPO) on four mathematical reasoning benchmarks. Columns 1–2 show in-domain performance on GSM8K and
MATH. Columns 3–4 present out-of-domain generalization on OlympiadBench and AIME 2024. These results
demonstrate that leveraging synthetic planning trajectories via both SFT and RL objectives improves reasoning
accuracy in smaller LLMs. M (GSM8k): Model trained using GSM8k dataset, M (MATH): Similar for MATH.

32, the same learning rate and scheduler as SFT,448

one epoch, 4 rollouts per policy update, and a KL-449

coefficient of 0.04. Due to resource and time con-450

straints, our GRPO experiments are limited to the451

GSM8k dataset.452

Metrics We report dataset-specific accuracy on453

each benchmark to assess in-domain performance454

and out-of-domain generalization. In particular, we455

use micro-average accuracy for OlympiadBench456

similar to He et al. (2024), and Exact Match (EM)457

for all other datasets.458

4.2 Main Results459

Baseline Performance on In-Domain Tasks460

From Table 2, the off-the-shelf SFT model trained461

on GSM8K achieves 81.43% accuracy when eval-462

uated on GSM8K and 65.4% on the MATH bench-463

mark for the Gemma-3. In comparison, the Qwen-464

3 SFT baseline shows 80.74% on GSM8K and only465

53.2% on MATH. This is a ∼ 15% drop between466

the two in-domain datasets, highlighting that, with-467

out explicit natural planning, smaller LLMs strug-468

gle to generalize from more complex and con-469

strained math word problems where the diverse,470

multi-step reasoning is required.471

Supervised Fine-Tuning Variants Introducing472

supervised planning trajectories yields consistent473

gains across both model families. For Gemma-474

3, the joint plan-and-answer SFT (M1) improves475

GSM8K accuracy to 86.2% (+4.8%) and MATH476

to 74.2% (+8.8%), while the plan-only SFT (M2)477

further boosts these to 86.35% on GSM8K and an 478

83.8% on MATH. Qwen-3 exhibits similar trends: 479

joint SFT improves up to 87.11% on GSM8K 480

(+6.4%) and 73.8% on MATH (+20.6%), whereas 481

plan-only fine-tuning yields 85.67% and 79.4%, re- 482

spectively. In particular, large gains on MATH 483

suggest that guiding the model to focus purely 484

on plan generation better incorporates the struc- 485

tured decomposition strategies needed for complex, 486

multi-step reasoning tasks. 487

Out-of-Domain Generalization When evalu- 488

ated on Olympiad-level math benchmarks, the im- 489

portance of PLAN-TUNING is even more prominent. 490

Gemma-3 baseline SFT achieves only 31.45% on 491

OlympiadBench and 14.04% on AIME. Joint SFT 492

(Method 1) improves it to 32.2% and 20.04%; plan- 493

only SFT (Method 2) improves them further to 494

34.27% and 29.37%. Qwen-3 follows the same 495

trend: baseline SFT is 28.78%/5.57% (Olympiad- 496

Bench/AIME), joint SFT 30.27%/19.08%, and 497

plan-only 30.12%/31.51%. These gains, often im- 498

proving twice or more AIME performance, demon- 499

strate that high-quality planning exemplars for 500

training are especially critical for tackling novel, 501

complex Olympiad-level math problems. 502

Improvements with Plan-GRPO From Table 503

2, we present results for vanilla-GRPO and Plan- 504

GRPO where the model is trained using the 505

GSM8k dataset. From the results, we can ob- 506

serve that, for Gemma-3-1B-It, plan-GRPO im- 507

proves performance on GSM8k to 28.35% com- 508
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pared to vanilla-GRPO (19.94%). A similar trend509

can be observed for the Qwen3-4B model in terms510

of GSM8k. Now, on out-of-domain datasets, for511

Gemma-3, plan-tuned models are achieving better512

generalization. However, for Qwen-3 models, we513

are seeing a performance drop for AIME. Training514

with GRPO is highly dependent on reward func-515

tions. Also, the lower performance on Olympiad-516

Bench and AIME is subject to the smaller sizes of517

LLMs, 1B and 4B, used for GRPO training.518

4.3 Analysis519

Synthesis and Distribution-shift Considerations520

Together, these results indicate that embedding ex-521

plicit natural planning into smaller LLMs—first522

via supervised trajectories and then through an RL-523

based policy refinement—yields substantial im-524

provements in both in-domain accuracy and out-of-525

domain robustness. The significant improvements526

on AIME highlight how enforcing intermediate cor-527

rectness reduces arithmetic drift, while consistent528

gains across two model families indicate the gener-529

ality of our PLAN-TUNING post-training approach530

in bridging distributional gaps between training531

and evaluation domains.532

Longer Reasoning Chains on OlympiadBench533

The reason behind the higher performance of534

PLAN-TUNED models is that SFT provides clear535

templates for breaking down multi-step proofs, giv-536

ing the model a reliable blueprint for structured537

decomposition. Plan-GRPO builds on this by re-538

warding diverse, high-quality plan, encouraging539

the model to flexibly combine reasoning fragments540

when it encounters novel or unexpected subgoals.541

Variance in Plan Quality For short, arithmetic-542

focused GSM8K tasks, both methods quickly543

converge to high accuracy using straightforward544

reasoning chains. On more complex olympiad-545

level tasks—like geometry or combinatorics sub-546

cases—the RL objective in Plan-GRPO improves547

the impact of diverse, intermediate-valid plans, en-548

abling the discovery of novel solution paths.549

Mixing GSM8k and MATH during PLAN-550

TUNING Figure 4 compares PLAN-TUNING on551

GSM8K and MATH when training on each dataset552

separatelyvs. training on their combination. In553

both the joint plan-and-answer (M1) and plan-only554

((M2)) variants, tuning on a single dataset yields555

the best accuracy on its own benchmark, 86.2% on556

GSM8K and 83.8% on MATH—whereas mixing557

GSM8k MATH0

20

40

60

80

100

Ex
ac

t M
at

ch
 (%

)

86
.2

74
.2

84
.8

4

75
.6

86
.3

5

83
.8

85
.5

2

81
.4

1(Single Datset)
1(GSM8k and MATH)

2(Single Datset)
2(GSM8k and MATH)

Figure 4: Comparison of plan-tuning accuracy on
GSM8K and MATH when trained on each dataset in-
dividually vs. their combined corpus. Mi (Single
Dataset) indicates that the respective method is trained
on a given dataset (green), while other indicates that the
respective method is trained on both datasets (blue).

the two corpora in a sample batch drops GSM8K 558

performance by ∼ 2% and fails to improve MATH 559

beyond its single-dataset result. This consistent 560

degradation indicates that PLAN-TUNING relies on 561

dataset-specific patterns of problem structure and 562

reasoning style; when these patterns become het- 563

erogeneous, the model struggles to internalize a 564

coherent planning policy, so domain-focused tun- 565

ing can be more effective. 566

Qualitative Analysis We provide an example of 567

how PLAN-TUNED models improve reasoning and 568

problem-solving capabilities over SFT in App. D. 569

5 Conclusions 570

We introduce PLAN-TUNING, a novel post- 571

training method that incorporates synthetic natural 572

planning trajectories into smaller LLMs’ parame- 573

ters, rather than relying solely on inference-time 574

prompts. We develop two complementary post- 575

training strategies—SFT to imitate high-quality 576

plan decompositions and GRPO to reinforce plan 577

quality alongside answer correctness—thereby 578

teaching models both how to plan and how to ex- 579

ecute. Across two in-domain datasets (GSM8K, 580

MATH), PLAN-TUNED models achieve an av- 581

erage ∼ 7% accuracy boost over strong baselines; 582

on out-of-domain benchmarks (OlympiadBench, 583

AIME), they significantly improved the perfor- 584

mance. Through detailed analyses, we show (i) 585

that a good plan relies on dataset-specific con- 586

sistency—mixing heterogeneous sources degrades 587

performance, and (ii) that plan-tuning substantially 588

mitigates the token-repetition issue. 589

8



Limitations590

Our approach relies on a large base LLM to gener-591

ate and verify planning trajectories; errors or biases592

in that upstream model can propagate into train-593

ing data and limit downstream gains. Generating,594

filtering, and executing multiple candidate plans595

per example incurs non-trivial computational cost596

and implementation complexity, which may hinder597

large-scale or real-time applications. All experi-598

ments focus on mathematical reasoning; it remains599

to be validated whether PLAN-TUNING gener-600

alizes to other problem types (e.g., commonsense,601

code synthesis) without substantial adaptation. Key602

thresholds (e.g., plan-quality cutoff, reward weight-603

ing) require manual tuning and may not transfer604

directly across datasets or languages.605

Ethics Statement606

The use of proprietary LLMs such as GPT-4, Gem-607

ini, and Claude-3 in this study adheres to their poli-608

cies of usage. We have used AI assistants (Gram-609

marly and Gemini) to address the grammatical er-610

rors and rephrase the sentences.611
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A Example Prompts and Responses793

These prompts exemplify everyday reasoning tasks794

that require multi-step planning and decision-795

making, making them ideal for evaluating LLMs’796

ability to perform structured, goal-oriented rea-797

soning. From organizing a trip or scheduling a798

meeting to planning a birthday party or solving a799

math problem, each scenario involves decompos-800

ing a high-level objective into coherent subtasks.801

The corresponding responses reflect how a well-802

structured plan can guide users through complex803

decisions—highlighting both procedural thinking804

and domain knowledge. Such prompts can be used805

as qualitative case studies to assess models’ com-806

petence in natural planning, temporal sequencing,807

and commonsense reasoning.808

How to plan a trip to Japan809

Response

1. Decide on Travel Dates – Choose the season
(e.g., cherry blossom in spring or autumn foliage)
and trip duration.

2. Set a Budget – Estimate total costs including
flights, transport, lodging, food, and attractions.

3. Check Entry Requirements – Look into visa
policies, passport validity, and any travel restric-
tions.

4. Choose Destinations – Select cities and regions
(e.g., Tokyo, Kyoto, Osaka, Nara, Hokkaido, Oki-
nawa) based on your interests.

5. Book Flights and Accommodation – Use plat-
forms like Google Flights, Booking.com, or
Airbnb; book early in peak seasons.

6. Plan Transportation Within Japan – Consider
a Japan Rail Pass and IC cards (Suica, Pasmo) for
local travel.

7. Create an Itinerary – Map out a day-by-day plan
including travel time, attractions, and rest periods.

8. Arrange Travel Essentials – Pocket Wi-Fi/SIM
card, power adapter (Type A/B), Japanese yen
(cash is still widely used).

9. Learn Local Etiquette – Study basic customs
(e.g., removing shoes indoors, quiet on trains, no
tipping).

10. Pack Appropriately – Bring weather-appropriate
clothing, walking shoes, and a small daypack for
city exploration.

810

How to schedule a meeting with your PhD 811

colleague 812

813

Response

1. Define the Purpose – Clarify the topic (e.g., pa-
per discussion, experiment planning).

2. Propose a Timeframe – Suggest a few potential
date/time slots that work for you.

3. Use Scheduling Tools – Use Doodle, Google
Calendar, or Outlook to find mutual availability.

4. Check Their Availability – Send a quick mes-
sage (email/Slack/WhatsApp) asking for their
availability.

5. Suggest a Duration – Be clear about how long
you expect the meeting to take (30 mins, 1 hour,
etc.).

6. Decide the Format – In-person or virtual (Zoom,
Teams, Google Meet).

7. Send Calendar Invite – Include topic, agenda (if
needed), and location or meeting link.

8. Follow Up Politely – If they don’t respond in a
day or two, send a short, polite reminder.

9. Prepare Materials – If needed, send any relevant
documents or reading material beforehand.

10. Confirm on the Day – Send a quick message con-
firming the meeting a few hours before, especially
for virtual calls.

814

How to organize a party for the birthday 815

Response

1. Set a Budget – Decide how much you want to
spend overall.

2. Choose a Date & Time – Pick a convenient day
for the birthday person and guests.

3. Pick a Venue – At home, a restaurant, park, or
rented space—based on budget and guest size.

4. Decide a Theme (optional) – Themes like retro,
beach, movie night, or favorite colors add fun.

5. Make a Guest List – Know how many people
you’re inviting to plan food and space.

6. Send Invitations – Use digital invites (WhatsApp,
email, Evite) or printed cards.

7. Plan Food & Drinks – Homemade, catered, or
ordered—match it to the guest profile and theme.

8. Arrange Decorations & Cake – Buy or DIY
decorations and order a cake in advance.

9. Plan Activities or Entertainment – Music,
games, speeches, or photo booth to keep guests
engaged.

816
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10. Prepare a Backup Plan – Especially for outdoor
events, have a Plan B in case of weather or other
issues.

817

How to solve a given mathematical reasoning818

problem819

Response

1. Understand the Problem – Read carefully and
identify what is being asked.

2. Identify Key Information – Extract numbers,
relationships, and conditions from the problem.

3. Break Down the Problem – Divide the complex
problem into smaller, manageable parts.

4. Visualize or Represent – Use diagrams, equa-
tions, or tables if helpful.

5. Recall Relevant Concepts – Think of formulas,
theorems, or reasoning strategies that apply.

6. Formulate a Plan – Decide on the method (e.g.,
algebra, logic, geometry) to approach the prob-
lem.

7. Execute Step-by-Step – Carry out your plan me-
thodically, solving subparts if needed.

8. Check Units and Logic – Make sure the answer
is in the correct form and logically consistent.

9. Verify Your Answer – Plug it back into the origi-
nal problem to confirm it satisfies all conditions.

10. Reflect on the Method – Consider if there’s a
more efficient or alternative solution strategy.

820

B Data Synthesis Prompts821

These prompts form a structured framework for822

evaluating and improving mathematical reason-823

ing in large language models. The Plan Gener-824

ation Prompt encourages models to decompose825

complex math problems into step-by-step solution826

strategies, fostering procedural thinking. The Con-827

straints Generation Prompt identifies key logical828

and mathematical conditions that must be satis-829

fied by any valid solution plan, serving as a ver-830

ification checklist. Finally, the Plan Verification831

Prompt introduces a rigorous reward-based scoring832

scheme, allowing evaluators to assign interpretable,833

constraint-aware scores to the quality of generated834

plans. This framework promotes transparency, ro-835

bustness, and fidelity in evaluating model reason-836

ing capabilities.837

Plan Generation Prompt 838

839

Prompt

Analyze the given maths question, and create a plan
to solve it:

<question>
{question}
</question>

Feel free to break down the problem in whatever way
you think is most effective. Consider key concepts,
formulas, relevant facts, or any logical approach that
would help solve this. Your task is to only provide a
plan and not solve it during this process.

840

Constraints Generation Prompt 841

Prompt

You are an expert in identifying explicit and implicit
constraints for verifying plans generated to solve
complex maths problems. Your job is to generate
those constraints for the following question, which
can be helpful in verifying and evaluating the given
plan.

<question>
{question}
</question>

Make sure to identify all constraints in the question.
Please output the constraints as a list. DO NOT
include any other text in your response.

842

Plan Verification Prompt 843

Prompt

Provide a reward score between -100 and 100 for the
plan quality, using very strict standards. Do not give
a full score above 95. Make sure the reward score is
an integer.
Input:
{input}

Generated plan to evaluate:
{response}

Consider constraints below while evaluating:

{verification_prompt}

Make sure to check all the constraints before giving
the reward score.
Please provide a reward in the format below:

• Steps: [step-by-step reasoning for the reward
score]

• Score: [Strictly provide the reward score as an
integer between -100 and 100]

844

C Prompt for Planning Reward 845

The box below defines the exact evaluation prompt 846

we use to score planning quality in GRPO. It asks 847

the model to compare a generated plan against a 848
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gold plan, provide a brief similarity analysis, and849

emit a single scalar score on a 0–1 scale. This850

score then serves directly as the planning reward851

during RL fine-tuning.852

Prompt

You are an expert evaluator of problem-solving plans.
Compare the following two plans and rate their simi-
larity on a scale from 0 to 1.
0.0 = Completely different plans with no shared ap-
proach or reasoning steps. 0.25 = Minimal similarity
with some overlapping concepts but fundamentally
different approaches. 0.5 = Moderate similarity with
shared key ideas but significant differences in execu-
tion or reasoning. 0.75 = High similarity with mostly
aligned reasoning and steps, with minor differences.
1.0 = Nearly identical plans that follow the same
approach and reasoning steps.

Generated Plan:
{generated plan}

Gold Plan:
{gold plan}

First, provide a brief analysis of the similarity, then
output only a single float number between 0 and 1,
representing the similarity score.
Please STRICTLY use the format below:

Analysis: [brief analysis]
Score: [float number between 0 and 1]

(Note: this score will be used as the planning reward
in GRPO.)

853

D Qualitative Analysis854

Question: Josh decides to try flipping a 
house.  He buys a house for $80,000 and then 
puts in $50,000 in repairs.  This increased the 
value of the house by 150%.  How much profit 

did he make?

SFT (Reasoning + Answer):

1. The house was worth $80,000 + $50,000 
= 130,000

2. The value increased by 150% of $80,000 
which is 1.5 * $80,000 = 120,000

3. So the house is now worth $130,000 + 
$120,000 = 250,000

4. So he made a profit of $250,000 - 
$130,000 = 120,000

Final Answer: 120000 (Wrong!!)

Plan-Tuned Model:
<plan>

1. Calculate the total cost: <description>
2. Calculate the increase in value: <description>
3. Calculate the new value of the house: 

<description>
4. Calculate the profit: <description>

</plan>
<Plan Execution>
1. The purchase price is $80,000 and the repair costs are 
$50,000. The total cost is $80,000 + $50,000 = 
$130,000.
2. The increase in value is 150% of the original purchase 
price, which is $80,000. 150% of $80,000 is (1.50) * 
$80,000 = $120,000.
3. The original purchase price was $80,000, and the 
increase in value is $120,000. The new value is $80,000 
+ $120,000 = $200,000.
4. The total cost was $130,000, and the final value of the 
house is $200,000. The profit is $200,000 - $130,000 = 
$70,000.

Answer: 70000  (Correct!!)
</Plan Execution>

SFT applies the 150% increase to $130 k (total cost) 
instead of the $80 k base, whereas Plan-Tuning 
correctly applies it to the original price.

Figure 5: Qualitative Example: Comparison of SFT vs.
PLAN-TUNING on a sample problem from GSM8k.

In this example, we demonstrate how planning855

trajectories steer the model toward a structured so-856

lution. The vanilla SFT model misapplies the 150%857

increase to the combined cost, yielding an incor-858

rect profit of $120,000. In contrast, the plan-tuned859

model explicitly decomposes the task into four860

subtasks—total cost, value increase, new house861

value, and profit—and arrives at the correct an-862

swer of $70,000. The SFT pipeline collapses sub- 863

tasks and propagates an early error, whereas our 864

PLAN-TUNING framework enforces step-by-step 865

reasoning aligned with human planning. This case 866

highlights the importance of decomposing complex 867

problems into clear intermediate goals to improve 868

both accuracy and interoperability. 869
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