

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DERANDOMIZED ONLINE-TO-NON-CONVEX CON- VERSION FOR STOCHASTIC WEAKLY CONVEX OPTI- MIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Online-to-non-convex conversion (O2NC) is an online updates learning framework for producing Goldstein (δ, ϵ) -stationary points of non-smooth non-convex functions with optimal oracle complexity $\mathcal{O}(\delta^{-1}\epsilon^{-3})$. Subject to auxiliary *random interpolation or scaling*, O2NC recapitulates the stochastic gradient descent with momentum (SGDM) algorithm popularly used for training neural networks. Randomization, however, introduces deviations from practical SGDM. So a natural question arises: Can we derandomize O2NC to achieve the same optimal guarantees while resembling SGDM? On the negative side, the general answer is *no* due to the impossibility results of Jordan et al. (2023), showing that no dimension-free rate can be achieved by deterministic algorithms. On the positive side, as the primary contribution of the present work, we show that O2NC can be naturally derandomized for *weakly convex* functions. Remarkably, our deterministic algorithm converges at an optimal rate as long as the weak convexity parameter is no larger than $\mathcal{O}(\delta^{-1}\epsilon^{-1})$. In other words, the stronger stationarity is expected, the higher non-convexity can be tolerated by our optimizer. Additionally, we develop a periodically restarted variant of our method to allow for more progressive update when the iterates are far from stationary. The resulting algorithm, which corresponds to a momentum-restarted version of SGDM, has been empirically shown to be effective and efficient for training ResNet and ViT networks.

1 INTRODUCTION

Classic machine learning optimization methods often rely crucially on convexity and/or smoothness assumptions to guarantee the convergence to optima (Nesterov et al., 2018; Bubeck, 2015; Snyman, 2005). However, many modern large-scale machine learning models, such as residual neural networks and transformers (He et al., 2016; Vaswani et al., 2017), involve non-convex and non-smooth objective functions. These models achieve state-of-the-art performance precisely thanks to their capability to learn highly complex, nonlinear hidden representations in data. With such widespread use, efficient non-convex non-smooth optimization algorithms are of fundamental interest.

Specifically, this paper is concerned with stochastic gradient algorithms for solving the following expected risk minimization problem ubiquitous in statistical learning:

$$\min_{w \in \mathbb{R}^d} R(w) := \mathbb{E}_{Z \sim \mathcal{D}}[\ell(w; Z)], \quad (1)$$

where $\ell : \mathbb{R}^d \times \mathcal{Z} \mapsto \mathbb{R}^+$ is a non-negative loss function whose value $\ell(w; z)$ measures the loss evaluated at $z \in \mathcal{Z}$ with parameter $w \in \mathbb{R}^d$ and \mathcal{D} represents a distribution over the measurable set \mathcal{Z} . We consider the setting where the loss ℓ is Lipschitz continuous with respect to its first argument, yet potentially neither convex nor smooth. In contrast to the smooth counterpart, finding an ϵ -stationary point (or even a neighborhood around it) of a non-smooth objective in 1 is generally intractable (Zhang et al., 2020; Kornowski & Shamir, 2022). This intractability motivates the employment of Goldstein (δ, ϵ) -stationarity (see Definition 1) as a notion of approximate convergence for non-convex non-smooth functions (Zhang et al., 2020). The study of efficient algorithms with finite-time complexity guarantees for finding (δ, ϵ) -stationary points has since received ever emerging interests in non-smooth, non-convex optimization (Zhang et al., 2020; Davis et al., 2022; Cutkosky et al., 2023; Jordan et al., 2023; Tian & So, 2024; Kong & Lewis, 2025).

Pioneered by Cutkosky et al. (2023), the online-to-non-convex conversion (O2NC) method identifies (δ, ϵ) -stationary points of 1 using $\mathcal{O}(\delta^{-1}\epsilon^{-3})$ calls to a stochastic gradient oracle, which achieves the optimal first-order complexity. As outlined in Algorithm 1, O2NC essentially converts an online convex learner (in light red) to a stochastic gradient optimizer (in light blue). To be more precise, it recursively updates the increments $\Delta_n := w_n - w_{n-1}$ between two adjacent iterates via invoking an online convex optimization (OCO) algorithm \mathcal{A} to minimize the regret $\sum_{n=1}^N \langle \hat{g}_n, \Delta_n - \Delta \rangle$, where the stochastic subgradient \hat{g}_n is evaluated at a random intermediate state $v_n = w_{n-1} + s_n \Delta_n$ with a uniform $s_n \in [0, 1]$. The optimal oracle complexity can be implied by any instantiations of \mathcal{A} with optimal regret bound, such as online gradient descent (OGD) (Zinkevich, 2003).

In addition to theoretical optimality, another attractiveness of the O2NC framework lies in its potential power for recovering stochastic momentum-based optimizers commonly used in training neural networks. Indeed, subject to the random interpolation on the iterates, O2NC equipped with projected OGD turns out to be a clipped variant of SGD with momentum (SGDM) Cutkosky et al. (2023). Alternatively, Zhang & Cutkosky (2024) proposed the Exponentiated O2NC (E-O2NC) framework with exponential random scaling on the updates, which almost exactly recovers the standard SGDM when applied with unconstrained online mirror descent (OMD) (Beck & Teboulle, 2003).

Algorithm 1: Online-to-non-convex Conversion (O2NC) (Cutkosky et al., 2023)

Input : OCO algorithm \mathcal{A} , $K, T \in \mathbb{N}$, initial point w_0 and increment Δ_1 . Set $N = K \times T$.

for $n = 1, \dots, N$ **do**

/* Stochastic gradient optimizer */
 Update $w_n = w_{n-1} + \Delta_n$;
 Compute random interpolation $v_n = w_{n-1} + s_n \Delta_n$, where $s_n \sim \text{Unif}([0, 1])$;
 Randomly sample $z_n \sim \mathcal{D}$ and obtain $\hat{g}_n \in \partial \ell(v_n; z_n)$;

/* Online learning of increment */
 Send the linear loss $\langle \hat{g}_n, \Delta \rangle$ to \mathcal{A} and receive the next increment Δ_{n+1} from \mathcal{A}

end

Set $w_t^{(k)} = w_{(k-1)T+t}$, $\forall k \in [K], t \in [T]$, and $\bar{w}^{(k)} = \frac{1}{T} \sum_{t=1}^T w_t^{(k)}$.

Output: $\bar{w}_T \sim \text{Unif}(\{\bar{w}^{(k)} : k \in [K]\})$.

Despite the promise of O2NC in justifying the effectiveness/efficiency of SGDM-style optimizers, the recovered algorithmic resemblance will inheritably be subject to some auxiliary randomization operations, say uniform interpolation on iterates or exponential scaling on increments. However, these randomization components are seldom, if not never, employed in the practical implementations of SGDM. Such a fundamental gap motivates us to address the following question:

Can the O2NC technique be derandomized to still achieve optimal dimension-free guarantees and close resemblance to SGDM in the non-smooth and non-convex setting?

The general answer to the above question is unfortunately *negative* as it has been shown by Jordan et al. (2023, Theorem 1) that in the worst case no dimension-free rate can be achieved by deterministic algorithms. Fortunately, on the positive side, we will show in this paper that for a broad class of the so-called weakly convex functions, it is indeed possible to develop deterministic variants of O2NC for identifying Goldstein-style stationary solutions with optimal rates.

1.1 OVERVIEW OF OUR RESULTS

Our main contribution is a derandomized O2NC framework (Algorithm 2) for solving the stochastic optimization problem 1 with a ρ -weakly convex risk function, i.e., $R(\cdot) + \frac{\rho}{2} \|\cdot\|^2$ is convex. Inspired by the original O2NC, the main development here is using the definition of weak convexity to naturally convert the optimization of iterates w_n to the online learning of increments Δ_n over quadratic losses $\langle \hat{g}_n, \cdot \rangle + \frac{\gamma}{2} \|\cdot\|^2$ for some $\gamma \geq \rho$. Differently, instead of evaluating the gradients at a random intermediate point v_n lying between the two iterates w_n and w_{n-1} , our algorithm exactly evaluates the gradients at each iterate $w_n = w_{n-1} + \Delta_n$, and thus is deterministic (of course, up to the stochastic estimation of gradients). Concretely, we propose two optional online learners for updating the increments Δ_n , which are summarized below:

108 **Derandomized O2NC with clipped OGD (Section 3.2).** The first option is a naive projected OGD
 109 algorithm under a suitable ball constraint. The resulting algorithm can be interpreted as a clipped
 110 version of SGDM but without needing additional random interpolations. Our convergence analy-
 111 sis result (Corollary 1) shows that the proposed deterministic method identifies a (δ, ϵ) -stationary
 112 point with $\mathcal{O}(\delta^{-1}\epsilon^{-3} + \rho^3\delta^2 + \delta^{-1})$ calls to stochastic gradient oracle, which is dominated by the
 113 optimal rate $\delta^{-1}\epsilon^{-3}$. Strikingly, the weak-convexity parameter ρ does not appear in such a domi-
 114 nant component, and it is allowed to scale as large as $\mathcal{O}(\delta^{-1}\epsilon^{-1})$ in its involved component before
 115 matching the optimal rate. This phenomenon indicates that the smaller (δ, ϵ) are demanded, the
 116 higher non-convexity can be tolerated by our optimizer for achieving optimal complexity.

117 **Derandomized O2NC with periodically restarted OGD (Section 3.3).** Like in the original O2NC,
 118 our first option of OGD under explicit ball constraint is expected to be over conservative for incre-
 119 ments update, and it is also impractical from the perspective of SGDM implementation. To address
 120 this issue, as the second option, we further introduce a novel periodically restarted OGD proce-
 121 dure which is characterized by *resetting the increments to zero after a period of iteration*. The
 122 resulting method is almost identical to the standard SGDM algorithm, with the only difference that
 123 the momentum update is now enforced to start over again periodically. Under a novel notion of
 124 (μ, ϵ) -regularized stationarity (see Definition 2), which is equivalent to the Goldstein stationarity,
 125 we establish in Corollary 2 that the proposed deterministic and unconstrained O2NC algorithm con-
 126 verges with a composite rate $\mathcal{O}(\mu^{1/2}\epsilon^{-7/2} + \rho^{7/3}\mu^{-2/3} + \mu^{1/2})$, in which $\rho = \mathcal{O}(\mu^{1/2}\epsilon^{-3/2})$ is
 127 allowable without dominating the optimal component of $\mu^{1/2}\epsilon^{-7/2}$. **Coupled with our theoretical**
 128 **findings, we have performed a series of numerical experiments on benchmark tasks to verify that the**
 129 **proposed momentum-restarted SGDM variant achieves performance comparable to or even superior**
 130 **to the standard SGDM in training deep residual networks and vision transformers (Section 4).**

131
 132 **1.2 RELATED WORK**

133 Our contribution is situated within a broad landscape of non-smooth and non-convex optimization.
 134 Below we provide an incomplete review on some prior works most closely related to ours.

135 **Non-smooth optimization.** The groundwork for non-smooth optimization date back to the early
 136 developments of Clarke (1975); Goldstein (1977). There is a rich history of research on asymptotic
 137 analysis for non-smooth optimization problems (Benaïm et al., 2005; Davis et al., 2020; Bolte &
 138 Pauwels, 2021). Despite these advances, non-asymptotic guarantees have long been left mysteri-
 139 ous for generic non-smooth problems. Recently, Zhang et al. (2020) revolutionized the study on
 140 subgradient algorithms with finite-time complexity for finding Goldstein stationary points, which
 141 has since attracted much attention (Davis et al., 2022; Kornowski & Shamir, 2022; Cutkosky et al.,
 142 2023; Jordan et al., 2023; Kornowski & Shamir, 2024). Particularly, inspired by the idea of online-
 143 to-batch conversion Cesa-Bianchi et al. (2004), Cutkosky et al. (2023) introduced the O2NC frame-
 144 work which for the first time established the optimal rate for stochastic non-smooth non-convex
 145 optimization. By instantiating different online learners within this framework, it is possible to re-
 146 cover several popular optimizers: SGDM corresponds to choosing online mirror descent (Zhang &
 147 Cutkosky, 2024), the Adam optimizer (Kingma & Ba, 2015) corresponds to a variant of follow-
 148 the-regularized leader (Ahn & Cutkosky, 2024), and very recently Ahn et al. (2025) showed that a
 149 generalized O2NC framework captures the schedule-free SGD (Defazio et al., 2024).

150 **Stochastic weakly convex optimization.** The class of weakly convex functions, first introduced
 151 in English by Nurminskii (1973), is broad and easy to identify in the sense that it encompasses all
 152 composition forms $h \circ c$ of convex functions and smooth maps. For this class of problem, a vast body
 153 of asymptotic convergence results have been established for stochastic optimization algorithms (Er-
 154 mol’ev & Norkin, 1998; Duchi & Ruan, 2018). The finite-time non-asymptotic rates, however,
 155 remained largely open until recently a series of breakthrough results were achieved by Davis &
 156 Grimmer (2019); Davis & Drusvyatskiy (2019); Mai & Johansson (2020), showing that various
 157 SGD/SGDM algorithms can achieve the $\mathcal{O}(\epsilon^{-4})$ optimal rate for producing an ϵ -stationary point of
 158 the Moreau envelope of objectives. In terms of the variational analysis, several different notions of
 159 approximate subdifferentials were analyzed and compared for weakly convex functions (van Ackooij
 160 et al., 2024). In practice, weakly convex optimization has found rich applications in deep learning,
 161 signal processing and control theory (see, e.g., Duchi & Ruan, 2018; Davis & Drusvyatskiy, 2019;
 Drusvyatskiy & Paquette, 2019; Pougkakiotis & Kalogerias, 2023, and the references therein).

162 **2 PRELIMINARIES**

164 Let us begin by formally introducing some notation, key assumptions, and preliminary results on
 165 non-convex and non-smooth optimization.

167 **2.1 NOTATION AND ASSUMPTIONS**

169 **Notation.** Throughout this paper, we denote $\|\cdot\|$ as the Euclidean norm, and $\langle \cdot, \cdot \rangle$ as the Euclidean
 170 inner product. For a vector set $V \subseteq \mathbb{R}^d$, we denote $\text{dist}(0, V) := \inf_{v \in V} \|v\|$ and $\text{conv}\{V\}$ the
 171 convex hull of V . For any positive integer N , we abbreviate $[N] = \{1, \dots, N\}$. The symbol $\mathbb{B}_\delta(w)$
 172 denotes the closed ball of radius δ centered on w , and $\text{clip}_D(w) := w \min \left\{ 1, \frac{D}{\|w\|} \right\}$ denotes
 173 the Euclidean projection operator associated with the constraint of $\mathbb{B}_D(0)$. For a pair of functions
 174 $f, f' \geq 0$, we use $f = \mathcal{O}(f')$ to denote $f \leq c f'$ for some universal constant $c > 0$.

175 We say that a function $f : \mathbb{R}^d \mapsto \mathbb{R}$ is G -Lipschitz continuous if $|f(w) - f(w')| \leq G\|w - w'\|$ for
 176 all $w, w' \in \mathbb{R}^d$. The Clarke subdifferential (Clarke, 1990) of a non-smooth function f at $w \in \mathbb{R}^d$
 177 is denoted by $\partial f(w)$. Recall that f is said to be ρ -weakly convex if the quadratically regularized
 178 function $f(\cdot) + \frac{\rho}{2}\|\cdot\|^2$ is convex, or equivalently

$$180 \quad f(w) \geq f(w') + \langle g', w - w' \rangle - \frac{\rho}{2}\|w - w'\|^2, \quad \forall w, w' \in \mathbb{R}^d, g' \in \partial f(w').$$

182 A prominent source of weakly convex functions is the composite form $f(x) = h(c(x))$ where h
 183 is a convex and G -Lipschitz continuous function, and c is a smooth mapping with a L -Lipschitz
 184 Jacobian. These composite functions are neither smooth nor convex, but rather GL -weakly convex
 185 (Davis & Drusvyatskiy, 2019). A concrete example, as considered in our experimental study,
 186 is neural networks equipped with smooth activation functions (e.g., softplus and GeLU): the loss
 187 function is of composite form $h \circ c$ where h is a convex top-layer predictor (e.g., cross-entropy loss)
 188 and c is a smooth hierarchical feature mapping. For more examples of weakly convex functions, we
 189 refer interested readers to Davis & Drusvyatskiy (2019); Asi & Duchi (2019).

190 The Moreau envelope (Rockafellar, 1997) of a ρ -weakly convex function f with parameter $\lambda \in (0, \rho^{-1})$ is defined by $f_\lambda(w) := \inf_{u \in \mathbb{R}^d} \{f(u) + \frac{1}{2\lambda}\|u - w\|^2\}$, and the associated proximal mapping
 191 operator is written by $\text{prox}_{\lambda f}(w) := \arg \min_{u \in \mathbb{R}^d} \{f(u) + \frac{1}{2\lambda}\|u - w\|^2\}$. The following
 192 standard result (see, e.g., Böhm & Wright, 2021) summarizes the continuously differential property
 193 of the Moreau envelope functions.

195 **Lemma 1.** *Let f be a ρ -weakly convex and $\lambda \in (0, \rho^{-1})$ be a scalar. Then the Moreau envelope
 196 f_λ is continuously differentiable with gradient $\nabla f_\lambda(w) = \frac{1}{\lambda}(w - \text{prox}_{\lambda f}(w)) \in \partial f(\text{prox}_{\lambda f}(w))$,
 197 which is L -Lipschitz continuous with parameter $L = \max \left\{ \lambda^{-1}, \frac{\rho}{1-\rho\lambda} \right\}$.*

199 **Assumptions.** We next impose some basic assumptions on the loss and risk functions in problem 1
 200 for stochastic gradient-based optimization.

201 **Assumption 1.** *For any $z \in \mathcal{Z}$, the loss function $\ell(\cdot; z)$ is G -Lipschitz with respect to its first
 202 argument. Moreover, the expected risk function R is ρ weakly-convex.*

203 **Assumption 2** (Stochastic oracle). *For each $w \in \mathbb{R}^d$, it holds that $\ell'(w) = \mathbb{E}_{Z \sim \mathcal{D}}[\ell'(w; Z)] \in$
 204 $\partial R(w)$, where $\ell'(w; z) \in \partial \ell(w; z)$ for any $z \in \mathcal{Z}$.*

206 Also, we assume that $R^* = \min_{w \in \mathbb{R}^d} R(w) > -\infty$ and abbreviate $\Delta R_0 := R(w_0) - R^*$.

208 **2.2 REGULARIZED GOLDSTEIN STATIONARITY CRITERION**

210 For generic non-smooth non-convex functions, the Goldstein (δ, ϵ) -stationarity (Goldstein, 1977) is
 211 a standard criterion for convergence analysis, as defined below.

212 **Definition 1** $((\delta, \epsilon)$ -Stationarity). *The Goldstein δ -subdifferential of a Lipschitz function f at a point
 213 $w \in \mathbb{R}^d$ is the convex hull of all Clarke subgradients at points in a δ -ball around w , i.e.,*

$$214 \quad \partial_\delta f(w) := \text{conv} \left\{ \bigcup_{v \in \mathbb{B}_\delta(w)} \partial f(v) \right\}.$$

215 A point w is called a (δ, ϵ) -stationary point if $\text{dist}(0, \partial_\delta f(w)) \leq \epsilon$.

Despite that the finite-time guarantees on the (δ, ϵ) -stationarity have been well studied in the original O2NC (Cutkosky et al., 2023), the corresponding analysis essentially needs the online increments update to be explicitly constrained inside a tiny ball of radius $\delta\epsilon^2$ which could be over conservative. Inspired by Zhang & Cutkosky (2024), we next introduce a novel regularized version of (δ, ϵ) -stationarity which obviates the need for such explicit constraints, and thus allows for potentially more aggressive update of increments. Given a subset $V \subseteq \mathbb{R}^d$, we denote $\partial_V f := \text{conv} \{ \cup_{v \in V} \partial f(v) \}$. Let us define

$$\|\partial f(w)\|_{+\mu} := \inf_{V \subseteq \mathbb{R}^d} \left\{ \text{dist}(0, \partial_V f) + \mu \sup_{v \in V} \|v - w\|^2 \right\}.$$

Definition 2 $((\mu, \epsilon)$ -Regularized Stationarity). A point w is said to be a (μ, ϵ) -regularized stationary point of a Lipschitz function f if $\|\partial f(w)\|_{+\mu} \leq \epsilon$.

Remark 1. Intuitively, the (μ, ϵ) -stationarity simultaneously controls the scale of a convex hull of subgradients at points in an underlying subset V and the proximity of V to w . Compared to the relaxed Goldstein stationarity introduced by Zhang & Cutkosky (2024, Definition 2.2), our version uses supreme norm penalty instead of its on-average counterpart, which yields exact equivalence to the original (δ, ϵ) -stationarity, as summarized in the lemma below (see Appendix A.1 for its proof).

Lemma 2. Let $\delta, \epsilon, \mu > 0$ be arbitrary positive values. Consider a Lipschitz function f .

- (a) If w is a (δ, ϵ) -stationary point, then it is also a $(\frac{\epsilon}{\delta^2}, 2\epsilon)$ -regularized stationary point.
- (b) If w is a (μ, ϵ) -regularized stationary point, then it is also a $(\sqrt{\frac{\epsilon}{\mu}}, \epsilon)$ -stationary point.

We further state the following lemma which shows the monotonicity of $\|\partial f(w)\|_{+\mu}$ with respect to the regularization strength μ . See Appendix A.2 for its proof.

Lemma 3. Let f be a Lipschitz function. Then for any $w \in \mathbb{R}^d$ and $0 < \mu_1 \leq \mu_2$, it holds that $\|\partial f(w)\|_{+\mu_1} \leq \|\partial f(w)\|_{+\mu_2}$.

3 DERANDOMIZED O2NC FOR WEAKLY CONVEX OPTIMIZATION

Building on the O2NC framework, we develop in this section a derandomized stochastic subgradient method for producing Goldstein-style stationary points of weakly convex functions. The overview of algorithm is presented in Section 3.1. There are two optional subroutines for updating the increments in the online learning module of our algorithm: projected OGD and periodically restarted OGD, which are described and analyzed in details respectively in Section 3.2 and Section 3.3.

3.1 ALGORITHM

The pseudo-code of our Derandomized O2NC (D-O2NC) algorithm is outlined in Algorithm 2. In contrast to the original O2NC (Algorithm 1), the stochastic optimizer module (in light blue) of our algorithm simply eliminates the random interpolation step $v_n = w_{n-1} + s_n \Delta_n$, and directly evaluates the subgradients at each iterate $w_n = w_{n-1} + \Delta_n$. In the online learning module (in light red), we propose two optional variants of OGD for updating the increments Δ_n , both of which are designed for regret minimization over quadratic losses $\langle \hat{g}_n, \cdot \rangle + \frac{\gamma}{2} \|\cdot\|^2$, as described below:

- **Option-I (Clipped OGD):** The online learner \mathcal{A} is instantiated by a standard projected OGD iteration $\Delta_{n+1} = \text{clip}_D [(1 - \eta\gamma)\Delta_n - \eta\hat{g}_n]$ with learning rate η over a D -ball constraint.
- **Option-II (Periodically restarted OGD):** We adopt an unconstrained OGD iteration $\Delta_{n+1} = (1 - \eta\gamma)\Delta_n - \eta\hat{g}_n$, but reset $\Delta_{n+1} = 0$ whenever $\text{mod}(n + 1, T) \equiv 1$. That is, the OGD update of Δ_n is enforced to restart from scratch after every T steps of iteration.

Inspired by the original O2NC, the motivation behind online minimizing a series of quadratic losses in our algorithm is that for a ρ -weakly convex objective and any $\gamma \geq \rho$, we will have $R(w_n) - R(w_{n-1}) \leq \mathbb{E} [\langle \hat{g}_n, \Delta_n \rangle + \frac{\gamma}{2} \|\Delta_n\|^2]$. This suggests that the increments Δ_n might be chosen in a

270

Algorithm 2: Derandomized O2NC

271

Input : $\gamma, \eta > 0, D > 0$ (optional), $K, T \in \mathbb{N}$, initial w_0 and $\Delta_1 = 0$. Set $N = K \times T$.

272

for $n = 1, \dots, N$ **do**

273

```
    /* Stochastic gradient optimizer */
    Update  $w_n = w_{n-1} + \Delta_n$ ;
    Randomly sample  $z_n \sim \mathcal{D}$  and compute  $\hat{g}_n \in \partial \ell(w_n; z_n)$ ;
```

277

```
    /* Online learning of increments */
```

278

```
(Option-I) Update  $\Delta_{n+1} = \text{clip}_D[(1 - \eta\gamma)\Delta_n - \eta\hat{g}_n]$ ; /* Clipped OGD */
```

279

```
(Option-II) /* Periodically restarted OGD */
```

280

```
    if  $\text{mod}(n + 1, T) \not\equiv 1$  then
```

281

```
        | Update  $\Delta_{n+1} = (1 - \eta\gamma)\Delta_n - \eta\hat{g}_n$ ;
```

282

```
    end
```

283

```
    else
```

284

```
        | Set  $\Delta_{n+1} = 0$ ;
```

285

```
    end
```

286

Set $w_t^{(k)} = w_{(k-1)T+t}$, $\forall k \in [K], t \in [T]$, and $\bar{w}^{(k)} = \frac{1}{T} \sum_{t=1}^T w_t^{(k)}$.

287

Output: $\bar{w}_T \sim \text{Unif}(\{\bar{w}^{(k)} : k \in [K]\})$.

288

289

290

sequential manner to make the regret $\sum_{n=1}^N \langle \hat{g}_n, \Delta_n \rangle + \frac{\gamma}{2} \|\Delta_n\|^2$ as low as possible, such that the function value gap $R(w_N) - R(w_0)$ can be well upper bounded. See Appendix C for more details on the guarantees of OGD for producing optimal regret over quadratic loss functions.

294

3.2 RESULTS FOR D-O2NC UNDER CLIPPED OGD

296

Recall that in Option-I, the increments are updated with $\Delta_{n+1} = \text{clip}_D[(1 - \eta\gamma)\Delta_n - \eta\hat{g}_n]$ which is a projected OGD iteration over the quadratic loss functions $\langle \hat{g}_n, \Delta \rangle + \frac{\gamma}{2} \|\Delta\|^2$ under a D -ball constraint. It is interesting to show a connection of this update to the SGDM method popularly used in training deep learning models (Sutskever et al., 2013; Cutkosky & Orabona, 2019).

300

Recover SGDM. Let $m_n = -\gamma\Delta_n$ and $\beta = \eta\gamma$, we can reexpress the update with Option-I as

302

$$w_n = w_{n-1} - \gamma^{-1}m_n;$$

303

$$m_{n+1} = \text{clip}_D[(1 - \beta)m_n + \beta\hat{g}_n].$$

304

The above procedure can be viewed as a clipped variant of SGDM where m_n is the search direction (which is restricted inside a D -ball), \hat{g}_n is the stochastic subgradient, γ is the learning rate, and β is the momentum parameter. Compared to the clipped SGDM formula implied by the original O2NC (Cutkosky et al., 2023), ours above does not introduce any random perturbation on iterates.

309

Complexity guarantees. The following theorem is our main result on the convergence of Algorithm 2 for finding (δ, ϵ) -stationary points. See Appendix B.2 for a proof of this result.

311

Theorem 1. Suppose that Assumption 1 and Assumption 2 hold. Let $\gamma \geq \rho$ be an arbitrary scalar. Suppose that $\eta \leq \frac{1}{8\gamma}$. Let K and T be positive integers and D be an arbitrary positive number. Then for any $\delta \geq TD$, the sequence $\{\bar{w}^{(k)}\}_{k=1}^K$ generated by Algorithm 2 with Option-I satisfies

314

$$\mathbb{E} \left[\frac{1}{K} \sum_{k=1}^K \text{dist}(0, \partial_\delta R(\bar{w}^{(k)})) \right] \leq \frac{\eta G^2}{D} + \left(\gamma T + \frac{2}{\eta} \right) \frac{D}{T} + \frac{G}{\sqrt{T}} + \frac{\Delta R_0}{DKT}.$$

315

As a direct consequence, the following corollary shows the complexity of Algorithm 2 (with Option-I) for producing Goldstein (δ, ϵ) -stationary point. See Appendix B.3 for its proof.

316

Corollary 1. Suppose that Assumption 1 and Assumption 2 hold. Let $\delta, \epsilon > 0$ be the desired Goldstein stationarity parameters and N be the total budget of iterates. Set

323

$$T = \lceil (\delta N)^{2/3} \rceil, K = \left\lceil \frac{N}{T} \right\rceil, \gamma = \frac{N^{1/3}}{\delta^{2/3}}, \eta = \frac{1}{8N}, D = \frac{\delta^{1/3}}{N^{2/3}}.$$

324 Suppose that N is sufficiently large such that

$$326 \quad N \geq \frac{(G^2 + G + 17 + \Delta R_0)^3}{\delta \epsilon^3} + \rho^3 \delta^2 + \frac{1}{\delta}.$$

327 Then the output \bar{w}_T by Algorithm 2 with Option-I satisfies

$$329 \quad \mathbb{E} [\text{dist}(0, \partial_\delta R(\bar{w}_T))] \leq \epsilon.$$

330 **Remark 2.** We comment that the $\mathcal{O}(\delta^{-1}\epsilon^{-3})$ rate, which dominates the composite complexity bound
331 of Corollary 1, is indeed tight for weakly convex functions. The key insight is that the $\mathcal{O}(\delta^{-1}\epsilon^{-3})$
332 rate is known to be optimal for all $\epsilon \leq \mathcal{O}(\delta)$ (Cutkosky et al., 2023)—a result that holds even for
333 smooth functions, let alone their superclass of weakly convex functions.

334 **Remark 3.** It is interesting to note that the weak-convexity parameter ρ does not appear in this
335 dominant rate, but rather in a suboptimal component $\rho^3 \delta^2$ which allows it to scale as large as
336 $\mathcal{O}(\delta^{-1}\epsilon^{-1})$ without dominating the optimal rate. In other words, the higher convergence precision
337 is required, the larger weak-convexity can be tolerated by our algorithm to preserve optimality.

338 **Remark 4.** The hyperparameter choices outlined in Corollary 1 are uniquely determined by the
339 iterate budget N and desired stationarity precisions δ, ϵ , which can typically be specified by users
340 in practical applications. For instance, with $\delta = \epsilon = \mathcal{O}(N^{-1/4})$, Corollary 1 prescribes $T =$
341 $\mathcal{O}(N^{-1/2})$, $K = \mathcal{O}(N^{1/2})$, $\gamma = \mathcal{O}(N^{1/2})$, $\eta = \mathcal{O}(N^{-1})$ and $D = N^{-3/4}$.

342 3.3 RESULTS FOR D-O2NC UNDER PERIODICALLY RESTARTED OGD

344 While Algorithm 2 with Option-I can achieve optimal dimension-free iteration complexity, the
345 clipped OGD iteration enforces the increments Δ_n to stay inside a sufficiently small ball, which
346 could be too conservative. To deal with this issue, we further propose a novel periodically restarted
347 OGD procedure as the Option-II in our algorithm for implementing the OCO module. More pre-
348 cisely, at each time step $n \geq 1$, we update $\Delta_{n+1} = (1 - \eta\gamma)\Delta_n - \eta\hat{g}_n$, and reset $\Delta_{n+1} = 0$
349 whenever $\text{mod}(n+1, T) \equiv 1$. Such an unconstrained OGD procedure allows for more progressive
350 update especially when the iterates are far from stationary.

351 **Remark 5.** In regard with OCO module design, our Algorithm 2 with Option-II shares some spirits
352 with E-O2NC (Zhang & Cutkosky, 2024) where the OCO module is instantiated by an unconstrained
353 OMD. While bearing some similarity, our algorithm has two clear differences from theirs: 1) ours
354 is deterministic without requiring any random scaling on the increments; 2) our algorithm neither
355 needs to exponentially weight the subgradients in constructing losses, nor uses exponential aggrega-
356 tion of iterates for generating output, and thus is perhaps more relevant to practical implementation.

357 **Remark 6.** It is noteworthy that the proposed periodically restarted OGD can be immediately ex-
358 tended to the original O2NC for generic non-smooth, non-convex optimization. This is true because
359 under the so-called well-behavedness assumption (Cutkosky et al., 2023), similar quadratic losses
360 of the form $\langle \hat{g}_n, \cdot \rangle + \frac{\gamma}{2} \|\cdot\|^2$ can also be constructed in O2NC (or E-O2NC) with arbitrary $\gamma > 0$.

361 **Recover SGDM.** As an interesting consequence of using periodically restarted OGD, we can ex-
362 plicitly write the update of Algorithm 2 with Option-II as

$$363 \quad w_n = w_{n-1} - \gamma^{-1} m_n; \\ 364 \quad m_{n+1} = ((1 - \beta)m_n + \beta\hat{g}_n) \mathbf{1}_{\{\text{mod}(n+1, T) \neq 1\}},$$

366 where $m_n = -\gamma\Delta_n$, $\beta = \eta\gamma$, and $\mathbf{1}_{\{\cdot\}}$ represents the indication function. The above update formula
367 is almost identical to the standard SGDM, with the only difference that the update of search direction
368 m_n is now enforced to start over again after every T rounds of iteration. Similar resemblance
369 to SGDM was also revealed for the E-O2NC method (Zhang & Cutkosky, 2024), though under
370 somewhat more sophisticated algorithmic designs as commented in Remark 5.

371 **Complexity guarantees.** The following is our main result on the convergence rate of Algorithm 2
372 with periodically restarted OGD (Option-II). A proof of this result is provided in Appendix B.4.

373 **Theorem 2.** Suppose that Assumption 1 and Assumption 2 hold. Let $\gamma \geq \rho$ be an arbitrary scalar.
374 Suppose that $\eta \leq \frac{1}{8\gamma}$. Let K and T be positive integers and D be an arbitrary positive number.
375 Then for any $\mu \leq \frac{\gamma}{8DT^2}$, the sequence $\{\bar{w}^{(k)}\}_{k=1}^K$ generated by Algorithm 2 with Option-II satisfies

$$376 \quad \mathbb{E} \left[\frac{1}{K} \sum_{k=1}^K \left\| \partial R(\bar{w}^{(k)}) \right\|_{+\mu} \right] \leq \frac{\eta G^2}{D} + \left(\gamma T + \frac{1}{\eta} \right) \frac{D}{T} + \frac{G}{\sqrt{T}} + \frac{\Delta R_0}{DKT}.$$

378 **Remark 7.** Unlike in Theorem 1 where D is a hyperparameter in Option-I, the scalar D in Theorem 2 does not actually show up in Option-II: it is introduced for analysis purpose only.

381 Based on Theorem 2, we can further establish the following result on the complexity of Algorithm 2
382 (with Option-II) for producing (μ, ϵ) -regularized stationary points. See Appendix B.5 for its proof.

383 **Corollary 2.** Suppose that Assumption 1 and Assumption 2 hold. Let $\mu, \epsilon > 0$ be the desired
384 regularized-stationarity parameters and N be the total budget of iterates. Set

$$385 \quad T = \left\lceil N^{4/7} \mu^{-2/7} \right\rceil, K = \left\lfloor \frac{N}{T} \right\rfloor, \gamma = N^{3/7} \mu^{2/7}, \eta = \frac{1}{8N}.$$

387 Suppose that

$$388 \quad N \geq \frac{(4G^2 + 1 + 32\Delta R_0)^{7/2} \mu^{1/2}}{\epsilon^{7/2}} + \frac{\rho^{7/3}}{\mu^{2/3}} + \mu^{1/2}.$$

390 Then the output \bar{w}_T by Algorithm 2 with Option-II satisfies

$$392 \quad \mathbb{E} \left[\|\partial R(\bar{w}_T)\|_{+\mu} \right] \leq \epsilon.$$

393 **Remark 8.** In view of Lemma 2, by setting $\mu = \delta^{-2}\epsilon$, the bound in Corollary 2 implies an
394 $\mathcal{O}(\delta^{-1}\epsilon^{-3} + \rho^{7/3}\delta^{4/3}\epsilon^{-2/3} + \delta^{-1}\epsilon^{1/2})$ complexity for producing (δ, ϵ) -stationary points, which
395 is dominated by the optimal term $\delta^{-1}\epsilon^{-3}$. Similar to the discussion in Remark 2, the weak-convexity
396 parameter is allowed to scale as $\rho = \mathcal{O}(\mu^{1/2}\epsilon^{-3/2})$ without dominating the optimal component.

398 3.4 COMPARISON WITH PRIOR RESULTS

400 In Table 1, we summarize the complexity bounds and some important properties of D-O2NC with
401 comparison to several other subgradient-based methods for weakly convex optimization, including
402 SGD (Davis & Drusvyatskiy, 2019), SGDM (Mai & Johansson, 2020) and Interpolated Normalized
403 Gradient Descent (INGD) (Davis et al., 2022). A few comments are in order.

- 404 • **Comparison with INGD.** Our D-O2NC is deterministic up to the use of stochastic oracles,
405 with *dimension-free* and optimal complexity in terms of (δ, ϵ) -stationarity. In contrast, INGD is
406 randomized in design and hard to be extended to the stochastic setting; and its corresponding
407 complexity bound is *dimension-dependent*, but with sharper dependence on ρ and (δ, ϵ) .
- 408 • **Comparison with SGD and SGDM.** The listed optimal complexity of $\mathcal{O}(\epsilon^{-4})$ for SGD and
409 SGDM are about the ϵ -stationarity of Moreau envelope, i.e., $\|\nabla R_{1/\bar{\rho}}\| \leq \epsilon$ with $\bar{\rho} = \mathcal{O}(\rho)$.
410 While our optimal bounds are not directly comparable to this complexity due to the distinct
411 criteria adopted, we still have some observations worth highlighting: 1) Lemma 1 suggests that
412 a ϵ -stationary point of the Moreau envelope implies a $(\epsilon/(2\rho), \epsilon)$ -stationary point of the original
413 objective (see Remark 11 in Appendix D for details); thus the bounds of SGD and SGDM imply
414 an $\mathcal{O}(\delta^{-1}\epsilon^{-3})$ complexity for finding (δ, ϵ) -stationary points, albeit under a relatively restrictive
415 choice $\delta = \epsilon/(2\rho)$; 2) As we demonstrate in Theorem 3 (Appendix D) that a (δ, ϵ) -stationary
416 point implies an $(\epsilon + \sqrt{\delta})$ -stationary point of the Moreau envelope, which however yields
417 the suboptimal complexity $\mathcal{O}(\epsilon^{-5})$ for achieving ϵ -stationarity (Corollary 3); 3) For second-
418 order smooth functions, based on the result of Cutkosky et al. (2023, Proposition 15) it can be
419 readily shown that D-O2NC recovers the optimal $\mathcal{O}(\epsilon^{-3.5})$ complexity for finding ϵ -stationary
420 point, which however cannot be automatically implied by the tabulated results of SGD/SGDM.
421 Last but not least, the weak-convexity parameter ρ is allowed to be as large as $\delta^{-1}\epsilon^{-1}$ in our
422 bound without dominating the optimal rate, which is not applicable to those bounds of SGD and
423 SGDM.

425 4 EXPERIMENTS

427 In this section, we conduct a preliminary experimental study to evaluate the effectiveness of our D-
428 O2NC method when specified with the periodically restarted OGD optimizer (Option-II) for training
429 deep neural networks. Since our algorithm corresponds to a momentum-resetting version of SGDM,
430 we choose to use standard SGDM as a baseline algorithm for comparison. Additional experimental
431 results are provided in the Appendix section E. We emphasize that while our empirical study offers
insights into the numerical aspects of D-O2NC, this work is primarily a theoretical contribution.

Method	(δ, ϵ) -stationarity	ϵ -stationarity (Moreau envelope)	DET	SO
SGD (Davis & Drusvyatskiy, 2019)	–	$\mathcal{O}\left(\frac{\rho}{\epsilon^4}\right)$	✓	✓
SGDM (Mai & Johansson, 2020)	–	$\mathcal{O}\left(\frac{\rho^2}{\epsilon^4}\right)$	✓	✓
INGD (Davis et al., 2022)	$\mathcal{O}\left(\frac{d \log(\rho)}{\delta \epsilon}\right)$	–	✗	✗
D-O2NC with Option-I (ours)	$\mathcal{O}\left(\frac{1}{\delta \epsilon^3} + \rho^3 \delta^2 + \frac{1}{\delta}\right)$	–	✓	✓
D-O2NC with Option-II (ours)	$\mathcal{O}\left(\frac{1}{\delta \epsilon^3} + \frac{\rho^{7/3} \delta^{4/3}}{\epsilon^{3/2}} + \frac{1}{\delta}\right)$	–	✓	✓

Table 1: Comparison of subgradient-based weakly convex optimization algorithms in terms of complexity bounds, determinism (DET), and applicability with stochastic oracle (SO). The involved quantities: (δ, ϵ) : convergence precisions; ρ : weak-convexity parameter; d : dimension of model.

4.1 EXPERIMENT SETUP

Dataset and backbone. Our experiments are conducted on the CIFAR-10 image classification benchmark dataset Krizhevsky & Hinton (2009) popularly used for evaluating deep learning models and algorithms. It consists of 60,000 color images across 10 classes, with 50,000 allocated for training and 10,000 for testing. We employ ResNet-101 (He et al., 2016) and Vision Transformer (ViT) (Dosovitskiy et al., 2021) as two backbone networks for representation learning, using GeLU (Hendrycks & Gimpel, 2016) as activation functions in both cases. **Notably, neural networks with smooth activation functions (e.g., GeLU, softplus) typically match or even outperform their non-smooth ReLU-based counterparts (Clevert et al., 2016; Xu et al., 2015).**

Implementation details and performance metrics. For all considered algorithms, the model parameters are optimized over 400 epochs with a minibatch size of 256 for ResNet-101, and 600 epochs (with the same minibatch size) for ViT, where a patch size of 4 is adopted. The total number of minibatches per epoch is 196. The initial learning rate is 0.01, decayed via cosine annealing to facilitate smoother convergence. The optimizer employs a momentum of 0.99, along with a weight decay of 5×10^{-4} . Our periodically restarted O2NC method is implemented and compared under two different restarting frequency $T \in \{20, 50\}$. **For each experiment, we carried out three independent runs with distinct random seeds, recording the empirical loss and training accuracy during training, as well as the prediction accuracy on the test set.**

4.2 RESULTS

Figure 1 shows the convergence curves of the considered algorithms. **The results of the optimal iterate for each trial are documented in Table 2.** From this group of results we can see that D-O2NC converges considerably sharper than SGDM on both models, and averagely the former outperforms the latter in test accuracy by 0.9 percentage points on ResNet-101, and 1.96 on ViT. These obser-

Table 2: **Numerical results of the best iterate in each trial on CIFAR-10.**

Backbone	Metric	SGDM	D-O2NC ($T = 20$)	D-O2NC ($T = 50$)
ResNet101	Train Loss ($\times 10^{-3}$)	2.55 ± 0.08	0.55 ± 0.02	1.38 ± 0.01
	Train Accuracy (%)	99.98 ± 0.0	100 ± 0.0	100 ± 0.0
	Test Accuracy (%)	93.91 ± 0.55	94.64 ± 0.07	94.81 ± 0.34
ViT	Train Loss ($\times 10^{-1}$)	2.78 ± 0.10	2.12 ± 0.03	2.44 ± 0.10
	Train Accuracy (%)	90.16 ± 0.51	92.38 ± 0.28	91.36 ± 0.22
	Test Accuracy (%)	84.26 ± 0.41	84.92 ± 0.17	86.22 ± 0.29

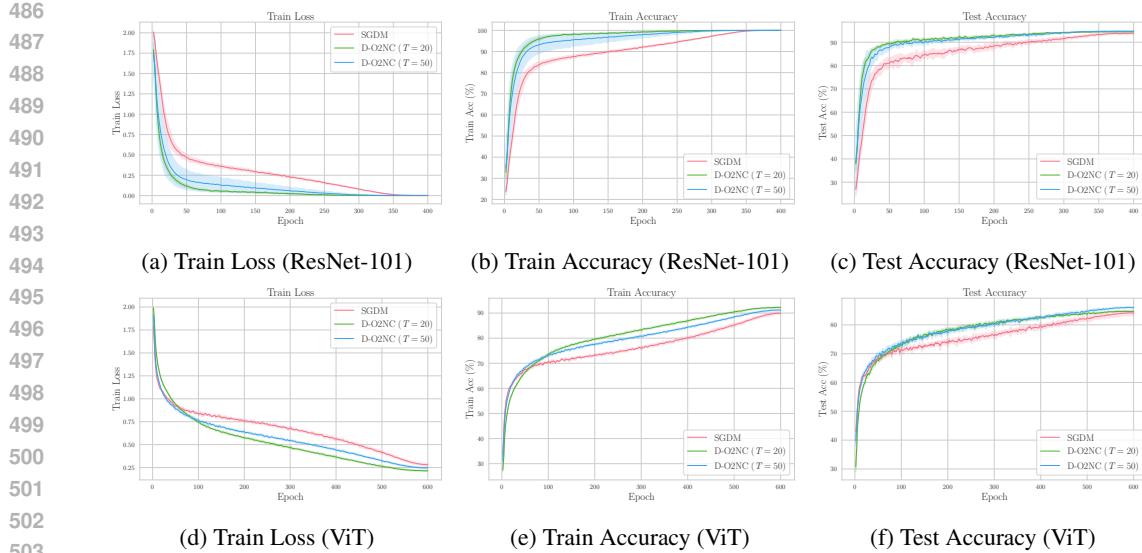


Figure 1: Experimental results on CIFAR-10 with ResNet-101 (top) and ViT (bottom) networks.

vations demonstrate that the momentum-resetting mechanism in our method might not only help to improve convergence but also yield superior generalization performance.

To validate the hyperparameter sensitivity of our method, we have conducted additional experiments across diverse configurations of the restarting frequency, learning rate, and momentum coefficient (see Appendix E.1 for detailed results). In Appendix E.2, we further present a set of experiments on robust phase retrieval, a classic weakly convex task, to consolidate the empirical support for our method’s effectiveness. The results show that D-O2NC consistently outperforms SGDM under the same configuration of hyperparameters.

Beyond our empirical study, it is noteworthy that the momentum-resetting technique has recently demonstrated experimental effectiveness in training large language models (LLMs) and deep reinforcement learning (deep RL) tasks (Huang et al., 2025; Asadi et al., 2023). Our convergence results on D-O2NC with restarted OGD thus provide a solid theoretical foundation for explaining the empirical success of the momentum-resetting technique.

5 CONCLUSION

In this paper, we made progress towards resolving a critical issue on the link of O2NC (online-to-non-convex conversion) to SGDM: under auxiliary random interpolation or scaling, O2NC mirrors SGDM but randomization causes deviations from standard SGDM. To this end, for a broad class of weakly convex functions, we presented D-O2NC as a derandomized version of O2NC that maintains optimal oracle complexity $\mathcal{O}(\delta^{-1}\epsilon^{-3})$ while recovering SGDM in a deterministic way. Our method allows the weak-convexity parameter to scale as large as $\mathcal{O}(\delta^{-1}\epsilon^{-1})$ without dominating the optimal rate, meaning that stronger stationarity yields tolerating higher non-convexity. Furthermore, a periodically restarted variant of D-O2NC is developed, enabling more progressive updates when far from stationary. Corresponding to a momentum-restarted SGDM method, this variant has been empirically shown to be effective for training ResNet and ViT models on benchmark datasets. An interesting future work is to extend our periodically restarted O2NC technique to the analysis and improvement of other popular ML optimizers including Adam and schedule-free SGD.

540
541

DECLARATION OF LARGE LANGUAGE MODELS (LLMs) USAGE

542

We acknowledge the use of Doubao 1.6 (ByteDance, 2025) as an auxiliary LLM tool solely for polishing this manuscript, including refining English grammar and improving the readability of non-core descriptive content. All outputs from Doubao were thoroughly reviewed, revised, and validated by the authors to ensure accuracy, consistency with the research context, and alignment with academic standard. Doubao did not participate in idea formalization, theoretical derivation, result analysis, or drafting of core sections (Abstract, Introduction, Method, Experiment). All authors bear full responsibility for the manuscript's content integrity and scientific validity.

543

544

545

546

547

548

549

550

REFERENCES

551

Kwang Jun Ahn, Gagik Magakyan, and Ashok Cutkosky. General framework for online-to-nonconvex conversion: Schedule-free sgd is also effective for nonconvex optimization. In *International Conference on Machine Learning (ICML)*, 2025.

552

553

554

Kwangjun Ahn and Ashok Cutkosky. Adam with model exponential moving average is effective for nonconvex optimization. *arXiv preprint arXiv:2405.18199*, 2024.

555

556

557

Kavosh Asadi, Rasool Fakoor, and Shoham Sabach. Resetting the optimizer in deep rl: An empirical study. In *Advances in Neural Information Processing Systems (NeurIPS)*, volume 36, 2023.

558

559

560

561

Hilal Asi and John C. Duchi. Stochastic (approximate) proximal point methods: Convergence, optimality, and adaptivity. *SIAM J. Optim.*, 29(3):2257–2290, 2019.

562

563

564

Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for convex optimization. *Operations Research Letters*, 31(3):167–175, 2003.

565

566

Michel Benaïm, Josef Hofbauer, and Sylvain Sorin. Stochastic approximations and differential inclusions. *SIAM Journal on Control and Optimization*, 44(1):328–348, 2005.

567

568

569

Axel Böhm and Stephen J Wright. Variable smoothing for weakly convex composite functions. *Journal of optimization theory and applications*, 188:628–649, 2021.

570

571

Jérôme Bolte and Edouard Pauwels. Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning. *Mathematical Programming*, 188(1):19–51, 2021.

572

573

574

Sébastien Bubeck. Convex optimization: Algorithms and complexity. *Found. Trends Mach. Learn.*, 8(3-4):231–357, 2015.

575

576

577

Nicolo Cesa-Bianchi, Alessandro Conconi, and Claudio Gentile. On the generalization ability of on-line learning algorithms. *IEEE Transactions on Information Theory*, 50(9):2050–2057, 2004. ISSN 0018-9448. doi: 10.1109/TIT.2004.833339.

578

579

580

Frank H Clarke. Generalized gradients and applications. *Transactions of the American Mathematical Society*, 205:247–262, 1975.

581

Frank H Clarke. *Optimization and nonsmooth analysis*. SIAM, 1990.

582

583

584

585

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learning by exponential linear units (elus). In *International Conference on Learning Representations (ICLR)*, 2016.

586

587

588

Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex sgd. In *Advances in Neural Information Processing Systems 32 (NeurIPS 2019)*, pp. 15236–15245, 2019.

589

590

591

592

Ashok Cutkosky, Harsh Mehta, and Francesco Orabona. Optimal stochastic non-smooth non-convex optimization through online-to-non-convex conversion. In *International Conference on Machine Learning (ICML)*, pp. 6643–6670. PMLR, 2023.

593

Damek Davis and Dmitriy Drusvyatskiy. Stochastic model-based minimization of weakly convex functions. *SIAM J. Optim.*, 29(1):207–239, 2019.

594 Damek Davis and Benjamin Grimmer. Proximally guided stochastic subgradient method for nons-
 595 mooth, nonconvex problems. *SIAM Journal on Optimization*, 29(3):1908–1930, 2019.
 596

597 Damek Davis, Dmitriy Drusvyatskiy, Sham Kakade, and Jason D Lee. Stochastic subgradient
 598 method converges on tame functions. *Foundations of computational mathematics*, 20(1):119–
 599 154, 2020.

600 Damek Davis, Dmitriy Drusvyatskiy, Yin Tat Lee, Swati Padmanabhan, and Guanghao Ye. A gra-
 601 dient sampling method with complexity guarantees for lipschitz functions in high and low dimen-
 602 sions. *Advances in neural information processing systems*, 35:6692–6703, 2022.

603 Aaron Defazio, Xingyu Yang, Ahmed Khaled, Konstantin Mishchenko, Harsh Mehta, and Ashok
 604 Cutkosky. The road less scheduled. *Advances in Neural Information Processing Systems*, 37:
 605 9974–10007, 2024.

606 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 607 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 608 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
 609 scale. In *Proceedings of the 9th International Conference on Learning Representations (ICLR)*,
 610 Virtual Event, Austria, 2021.

611 D Drusvyatskiy and C Paquette. Efficiency of minimizing compositions of convex functions
 612 and smooth maps. *Mathematical Programming*, 178(1-2):503–558, 2019. doi: 10.1007/
 613 s10107-018-1311-3.

614 John C. Duchi and Feng Ruan. Stochastic methods for composite and weakly convex optimization
 615 problems. *SIAM J. Optim.*, 28(4):3229–3259, 2018.

616 Yu M Ermol’ev and VI Norkin. Stochastic generalized gradient method for nonconvex nonsmooth
 617 stochastic optimization. *Cybernetics and Systems Analysis*, 34(2):196–215, 1998.

618 Allen A Goldstein. Optimization of lipschitz continuous functions. *Mathematical Programming*, 13
 619 (1):14–22, 1977.

620 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 621 nition. In *Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition
 622 (CVPR)*, pp. 770–778, Las Vegas, NV, 2016.

623 Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). *arXiv preprint
 624 arXiv:1606.08415*, 2016.

625 Tianjin Huang, Ziquan Zhu, Gaojie Jin, Lu Liu, Zhangyang Wang, and Shiwei Liu. Spam: Spike-
 626 aware adam with momentum reset for stable llm training. In *International Conference on Learn-
 627 ing Representations (ICLR)*, 2025.

628 Michael Jordan, Guy Kornowski, Tianyi Lin, Ohad Shamir, and Manolis Zampetakis. Deterministic
 629 nonsmooth nonconvex optimization. In *Conference on Learning Theory*, pp. 4570–4597. PMLR,
 630 2023.

631 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *Proceedings
 632 of the 3rd International Conference on Learning Representations (ICLR)*, San Diego, CA, 2015.

633 Siyu Kong and Adrian S Lewis. Lipschitz minimization and the goldstein modulus. *Mathematical
 634 Programming*, pp. 1–30, 2025.

635 Guy Kornowski and Ohad Shamir. Oracle complexity in nonsmooth nonconvex optimization. *Jour-
 636 nal of Machine Learning Research*, 23:1–43, 2022.

637 Guy Kornowski and Ohad Shamir. An algorithm with optimal dimension-dependence for zero-order
 638 nonsmooth nonconvex stochastic optimization. *Journal of Machine Learning Research*, 25(122):
 639 1–14, 2024.

640 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. *Tech-
 641 nical Report, University of Toronto*, 2009.

648 Vien V Mai and Mikael Johansson. Convergence of a stochastic gradient method with momentum
 649 for non-smooth non-convex optimization. In *International Conference on Machine Learning*
 650 (*ICML*), 2020.

651

652 Yurii Nesterov et al. *Lectures on convex optimization*, volume 137. Springer, 2018.

653 Evgeni Alekseevich Nurminskii. The quasigradient method for the solving of the nonlinear pro-
 654 gramming problems. *Cybernetics*, 9(1):145–150, 1973.

655

656 Spyridon Pougkakiotis and Dionysios S Kalogerias. A zeroth-order proximal stochastic gradient
 657 method for weakly convex stochastic optimization. *SIAM Journal on Scientific Computing*, 45
 658 (5):2679–2702, 2023. doi: 10.1137/22M1486306.

659

660 R Tyrrell Rockafellar. *Convex analysis*, volume 28. Princeton university press, 1997.

661

662 Jan A Snyman. *Practical mathematical optimization: an introduction to basic optimization theory
 and classical and new gradient-based algorithms*. Springer, 2005.

663

664 Ilya Sutskever, James Martens, George E Dahl, and Geoffrey E Hinton. On the importance of
 665 initialization and momentum in deep learning. In *International Conference on Machine Learning*,
 666 volume 28, pp. 1139–1147. JMLR. org, 2013.

667

668 Lai Tian and Anthony Man-Cho So. No dimension-free deterministic algorithm computes approxi-
 mate stationarities of lipschitzians. *Mathematical Programming*, 208(1):51–74, 2024.

669

670 Wim van Ackooij, Felipe Atenas, and Claudia Sagastizábal. Weak convexity and approximate sub-
 671 differentials. *Journal of Optimization Theory and Applications*, 203(2):1686–1709, 2024.

672

673 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 674 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Infor-
 mation Processing Systems (NIPS)*, pp. 5998–6008, Long Beach, CA, 2017.

675

676 Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in
 convolutional network, 2015.

677

678 Jingzhao Zhang, Hongzhou Lin, Stefanie Jegelka, Suvrit Sra, and Ali Jadbabaie. Complexity of
 679 finding stationary points of nonconvex nonsmooth functions. In *International Conference on
 Machine Learning*, pp. 11173–11182. PMLR, 2020.

680

681 Qinzi Zhang and Ashok Cutkosky. Random scaling and momentum for non-smooth non-convex
 682 optimization. In *Forty-first International Conference on Machine Learning (ICML)*, pp. 58780 –
 683 58799. PMLR, 2024.

684

685 Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
 686 *International Conference on International Conference on Machine Learning*, pp. 928–936, 2003.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A PROOFS IN SECTION 2
703704 A.1 PROOF OF LEMMA 2
705706 We prove the following restated lemma which establishes the equivalence between (μ, ϵ) -regularized
707 stationarity and Goldstein (δ, ϵ) -stationarity.708 **Lemma 2.** *Let $\delta, \epsilon, \mu > 0$ be arbitrary positive values. Consider a Lipschitz function f .*709 (a) *If w is a (δ, ϵ) -stationary point, then it is also a $(\frac{\epsilon}{\delta^2}, 2\epsilon)$ -regularized stationary point.*710 (b) *If w is a (μ, ϵ) -regularized stationary point, then it is also a $(\sqrt{\frac{\epsilon}{\mu}}, \epsilon)$ -stationary point.*711 712 713 *Proof.* Part(a): Let w be a Goldstein (δ, ϵ) -stationary point of f . Consider $\mu = \frac{\epsilon}{\delta^2}$. Then it follows
714 from Definition 2 that
715

716
$$\begin{aligned} \|\partial f(w)\|_{+\mu} &\leq \text{dist}(0, \partial_{\mathbb{B}_\delta(w)} f) + \mu \sup_{v \in \mathbb{B}_\delta(w)} \|v - w\|^2 \\ &= \text{dist}(0, \partial_\delta f(w)) + \mu \sup_{v \in \mathbb{B}_\delta(w)} \|v - w\|^2 \\ &\leq \epsilon + \mu \delta^2 = 2\epsilon, \end{aligned}$$

716 where in the second inequality we have used the definition of Goldstein (δ, ϵ) -stationarity. Then by
717 definition w must be a $(\frac{\epsilon}{\delta^2}, 2\epsilon)$ -regularized stationary point of f .718 719 720 Part(b): Let us now consider the case that w is a (μ, ϵ) -regularized stationary point of f . Let $\delta = \sqrt{\frac{\epsilon}{\mu}}$
721 and $\epsilon > 0$ be arbitrary. Since $\|\partial f(w)\|_{+\mu} \leq \epsilon$, it follows from Definition 2 that there exists some
722 $V^*(\epsilon)$ such that
723

724
$$\epsilon \geq \|\partial f(w)\|_{+\mu} \geq \text{dist}(0, \partial_{V^*(\epsilon)} f) + \mu \sup_{v \in V^*(\epsilon)} \|v - w\|^2 - \epsilon,$$

725 which then directly implies
726

727
$$\text{dist}(0, \partial_{V^*(\epsilon)} f) \leq \epsilon + \epsilon, \quad \sup_{v \in V^*(\epsilon)} \|v - w\| \leq \sqrt{\frac{\epsilon + \epsilon}{\mu}} \leq \sqrt{\frac{\epsilon}{\mu}} + \sqrt{\frac{\epsilon}{\mu}} = \delta + \sqrt{\frac{\epsilon}{\mu}}.$$

728 729 The second inequality in the above implies that $V^*(\epsilon) \subseteq \mathbb{B}_{\delta + \sqrt{\frac{\epsilon}{\mu}}}(w)$ and thus $\partial_{V^*(\epsilon)} f \subseteq \partial_{\delta + \sqrt{\frac{\epsilon}{\mu}}} f$.
730 Then we have

731
$$\text{dist}(0, \partial_{\delta + \sqrt{\frac{\epsilon}{\mu}}} f) \leq \text{dist}(0, \partial_{V^*(\epsilon)} f) \leq \epsilon + \epsilon.$$

732 733 Since ϵ is allowed to be arbitrarily small and recall that $\delta = \sqrt{\frac{\epsilon}{\mu}}$, the above inequality implies that
734 w deems a Goldstein $(\sqrt{\frac{\epsilon}{\mu}}, \epsilon)$ -stationary point. \square 741 A.2 PROOF OF LEMMA 3
742743 Here we prove the following restated lemma on the monotonicity of $\|\partial F(w)\|_{+\mu}$ with respect to μ .744 **Lemma 3.** *Let f be a Lipschitz function. Then for any $w \in \mathbb{R}^d$ and $0 < \mu_1 \leq \mu_2$, it holds that
745 $\|\partial f(w)\|_{+\mu_1} \leq \|\partial f(w)\|_{+\mu_2}$.*746 747 *Proof.* Consider a fixed vector w . Let $\epsilon > 0$ be arbitrary. By definition we know that there exists
748 a subset $V_2^*(\epsilon) \subseteq \mathbb{R}^d$ such that $\|\partial F(w)\|_{+\mu_2} \geq \text{dist}(0, \partial_{V_2^*(\epsilon)} F) + \mu_2 \sup_{v \in V_2^*(\epsilon)} \|v - w\|^2 - \epsilon$.
749 Again, by definition and the condition $\mu_1 \leq \mu_2$ we can see that

750
$$\begin{aligned} \|\partial R(w)\|_{+\mu_1} &\leq \text{dist}(0, \partial_{V_2^*(\epsilon)} R) + \mu_1 \sup_{v \in V_2^*(\epsilon)} \|v - w\|^2 \\ &\leq \text{dist}(0, \partial_{V_2^*(\epsilon)} R) + \mu_2 \sup_{v \in V_2^*(\epsilon)} \|v - w\|^2 \\ &\leq \|\partial R(w)\|_{+\mu_2} + \epsilon. \end{aligned}$$

751 752 753 754 755 By noting that ϵ can be arbitrarily small, we must have $\|\partial F(w)\|_{+\mu_1} \leq \|\partial F(w)\|_{+\mu_2}$. \square

756 **B PROOFS IN SECTION 3**
757758 **B.1 SOME KEY LEMMAS**
759760 The following lemma is key to our analysis of Algorithm 2.
761762 **Lemma 4.** Suppose that Assumption 1 and Assumption 2 hold. Let $\gamma \geq \rho$ and $D > 0$ be arbitrary
763 numbers. Suppose that $\eta \leq \frac{1}{8\gamma}$. Then for any $k \in [K]$, the sequence $\{w_t^{(k)}\}_{t=1}^T$ generated by
764 Algorithm 2 satisfies

765
$$\mathbb{E} \left[R(w_T^{(k)}) - R(w_0^{(k)}) + \sum_{t=1}^T \frac{\gamma}{8} \|\Delta_t^{(k)}\|^2 \right]$$

766
$$\leq -\mathbb{E} \left[DT \|\bar{g}^{(k)}\| \right] + \eta G^2 T + DG\sqrt{T} + \left(\gamma T + \frac{1}{\eta} \right) D^2 + \frac{\|\Delta_1^{(k)}\|^2}{\eta}.$$

767

768 *Proof.* Let us consider the filtration $\mathcal{F}_t = S\{\Delta_1, \Delta_2, \dots, \Delta_{t+1}\}$ where $S\{\cdot\}$ denotes the sigma field.
769 For any $n \geq 1$, by Assumption 2 we have $g_n := \mathbb{E}[\hat{g}_n | \mathcal{F}_{n-1}] \in \partial R(w_n)$. For any $\gamma \geq \rho$, from the
770 weak convexity assumption in Assumption 1 we can see that the following holds for all $n \geq 1$,
771

772
$$\begin{aligned} R(w_n) - R(w_{n-1}) &\leq \mathbb{E} \left[\langle g_n, \Delta_n \rangle + \frac{\gamma}{2} \|\Delta_n\|^2 \mid \mathcal{F}_{n-1} \right] \\ &= \mathbb{E} \left[\langle \hat{g}_n, \Delta_n \rangle + \frac{\gamma}{2} \|\Delta_n\|^2 \mid \mathcal{F}_{n-1} \right]. \end{aligned}$$

773

774 It follows from the law of total expectation that
775

776
$$\mathbb{E} [R(w_n) - R(w_{n-1})] \leq \mathbb{E} \left[\langle \hat{g}_n, \Delta_n \rangle + \frac{\gamma}{2} \|\Delta_n\|^2 \right].$$

777

778 Consider a fixed $k \in [K]$. Recall that $w_t^{(k)} = w_{(k-1)T+t}$, $t \in [T]$ and similarly we use the notations
779 $\Delta_t^{(k)}, \hat{g}_t^{(k)}, g_t^{(k)}$. Then the above inequality implies that for any $t \in [T]$:

780
$$\mathbb{E} \left[R(w_t^{(k)}) - R(w_{t-1}^{(k)}) \right] \leq \mathbb{E} \left[\langle \hat{g}_t^{(k)}, \Delta_t^{(k)} \rangle + \frac{\gamma}{2} \|\Delta_t^{(k)}\|^2 \right].$$

781

782 By summing the above bound over $t = 1, \dots, T$ we obtain
783

784
$$\begin{aligned} &\mathbb{E} \left[R(w_T^{(k)}) - R(w_0^{(k)}) \right] \\ &= \mathbb{E} \left[\sum_{t=1}^T \left(R(w_t^{(k)}) - R(w_{t-1}^{(k)}) \right) \right] \leq \mathbb{E} \left[\sum_{t=1}^T \left(\langle \hat{g}_t^{(k)}, \Delta_t^{(k)} \rangle + \frac{\gamma}{2} \|\Delta_t^{(k)}\|^2 \right) \right]. \end{aligned} \tag{2}$$

785

786 We next upper bound the RHS in the above inequality using the OGD regret bound in Lemma 6.
787 To this end, it can be noted that the sequence $\{\Delta_t^{(k)}\}_{t=1}^T$ generated by Algorithm 2 is the output of
788 OGD, starting from $\Delta_1^{(k)}$ with step-size η , on the following quadratic losses $\{f_t^{(k)}\}_{t \in [T]}$ over the
789 constraint $\mathbb{B}_D(0)$ (for Option-I) (or over the entire space \mathbb{R}^d for Option-II):
790

791
$$f_t^{(k)}(\cdot) = \langle \hat{g}_t^{(k)}, \cdot \rangle + \frac{\gamma}{2} \|\cdot\|^2.$$

792

793 For arbitrary $D > 0$, let us consider the following comparator:
794

795
$$\bar{\Delta}^{(k)} := -D \frac{\sum_{t=1}^T g_t^{(k)}}{\left\| \sum_{t=1}^T g_t^{(k)} \right\|}.$$

796

810 Denote $\bar{g}^{(k)} := \frac{1}{T} \sum_{t=1}^T g_t^{(k)}$ and $\bar{\hat{g}}^{(k)} := \frac{1}{T} \sum_{t=1}^T \hat{g}_t^{(k)}$. Since $\eta \leq \frac{1}{8\gamma}$, we can apply Lemma 6 to
811 get
812

$$\begin{aligned}
 & \mathbb{E} \left[\left(\sum_{t=1}^T \langle \hat{g}_t^{(k)}, \Delta_t^{(k)} \rangle + \frac{\gamma}{2} \|\Delta_t^{(k)}\|^2 \right) \right] \\
 & \stackrel{\text{Lemma 6}}{\leq} \mathbb{E} \left[\sum_{t=1}^T \left(\langle \hat{g}_t^{(k)}, \bar{\Delta}^{(k)} \rangle + \frac{\gamma}{2} \|\bar{\Delta}^{(k)}\|^2 \right) + \sum_{t=1}^T \left(\eta \|\hat{g}_t^{(k)}\|^2 + \frac{\gamma}{2} \|\bar{\Delta}^{(k)}\|^2 - \frac{\gamma}{8} \|\Delta_t^{(k)}\|^2 \right) \right. \\
 & \quad \left. + \frac{1}{\eta} \left(\|\Delta_1^{(k)}\|^2 + \|\bar{\Delta}^{(k)}\|^2 \right) \right] \\
 & = \mathbb{E} \left[\left\langle \sum_{t=1}^T (\hat{g}_t^{(k)} - g_t^{(k)}), \bar{\Delta}^{(k)} \right\rangle + \left\langle \sum_{t=1}^T g_t^{(k)}, \bar{\Delta}^{(k)} \right\rangle \right. \\
 & \quad \left. + \sum_{t=1}^T \left(\eta \|\hat{g}_t^{(k)}\|^2 + \gamma \|\bar{\Delta}^{(k)}\|^2 - \frac{\gamma}{8} \|\Delta_t^{(k)}\|^2 \right) + \frac{1}{\eta} \left(\|\Delta_1^{(k)}\|^2 + \|\bar{\Delta}^{(k)}\|^2 \right) \right] \\
 & \stackrel{\zeta_1}{\leq} \mathbb{E} \left[DT \|\bar{g}^{(k)} - \bar{g}^{(k)}\| - DT \|\bar{g}^{(k)}\| + \sum_{t=1}^T \left(\eta \|\hat{g}_t^{(k)}\|^2 + \gamma D^2 - \frac{\gamma}{8} \|\Delta_t^{(k)}\|^2 \right) + \frac{D^2}{\eta} + \frac{\|\Delta_1^{(k)}\|^2}{\eta} \right] \\
 & \stackrel{\zeta_2}{\leq} -\mathbb{E} \left[DT \|\bar{g}^{(k)}\| + \sum_{t=1}^T \frac{\gamma}{8} \|\Delta_t^{(k)}\|^2 \right] + \eta T G^2 + D G \sqrt{T} + \left(\gamma T + \frac{1}{\eta} \right) D^2 + \frac{\|\Delta_1^{(k)}\|^2}{\eta},
 \end{aligned}$$

833 where in “ ζ_1 ” we have used Cauchy–Schwarz inequality and used the fact $\|\Delta_1^{(k)}\| \leq D$,
834 and in “ ζ_2 ” we have used $\|\hat{g}_t^{(k)}\| \leq G$ implied by Assumption 1 and $\mathbb{E} [\|\bar{g}^{(k)} - \bar{g}^{(k)}\|] \leq$
835 $\sqrt{\mathbb{E} [\|\bar{g}^{(k)} - \bar{g}^{(k)}\|^2]} = \frac{1}{T} \sqrt{\sum_{t=1}^T \mathbb{E} \|g_t^{(k)} - \hat{g}_t^{(k)}\|^2} \leq \frac{1}{T} \sqrt{\sum_{t=1}^T \mathbb{E} \|\hat{g}_t^{(k)}\|^2} \leq \frac{G}{\sqrt{T}}$. By substituting
836 the previous inequality into equation 2 and rearranging the terms we obtain the desired bound.
837 The proof is completed. \square
838

840
841 The following simple lemma is also useful in our analysis. A proof is provided for the sake of
842 completeness.

843 **Lemma 5.** *Let w_1, w_2, \dots, w_n be a set of vectors and $\bar{w} = \frac{1}{n} \sum_{i=1}^n w_i$. Then the following holds for
844 all $i \in [n]$:*

$$\|w_i - \bar{w}\|^2 \leq \frac{1}{n} \sum_{i'=1}^n \|w_i - w_{i'}\|^2 \leq n \sum_{j=1}^n \|\Delta_j\|^2,$$

845 where $\Delta_j := w_j - w_{j-1}$ and w_0 can be chosen arbitrary for determining Δ_1 .
846

847
848 *Proof.* Fix some $i \in [n]$. It can be shown that

$$\begin{aligned}
 \|w_i - \bar{w}\|^2 &= \left\| w_i - \frac{1}{n} \sum_{i'=1}^n w_{i'} \right\|^2 \leq \frac{1}{n} \sum_{i'=1}^n \|w_i - w_{i'}\|^2 \\
 &= \frac{1}{n} \sum_{i'=1}^n \left\| \sum_{j=i \wedge i'+1}^{i \vee i'} (w_{j-1} - w_j) \right\|^2 \\
 &\leq \frac{1}{n} \sum_{i'=1}^n \left(\sum_{j=i \wedge i'+1}^{i \vee i'} \|\Delta_j\| \right)^2 \leq \left(\sum_{j=2}^n \|\Delta_j\| \right)^2 \leq n \sum_{j=1}^n \|\Delta_j\|^2.
 \end{aligned}$$

849 The proof is completed. \square
850

864 B.2 PROOF OF THEOREM 1
865

866 **Theorem 1.** Suppose that Assumption 1 and Assumption 2 hold. Let $\gamma \geq \rho$ be an arbitrary scalar.
867 Suppose that $\eta \leq \frac{1}{8\gamma}$. Let K and T be positive integers and D be an arbitrary positive number.
868 Then for any $\delta \geq TD$, the sequence $\{\bar{w}^{(k)}\}_{k=1}^K$ generated by Algorithm 2 with Option-I satisfies

$$870 \mathbb{E} \left[\frac{1}{K} \sum_{k=1}^K \text{dist}(0, \partial_\delta R(\bar{w}^{(k)})) \right] \leq \frac{\eta G^2}{D} + \left(\gamma T + \frac{2}{\eta} \right) \frac{D}{T} + \frac{G}{\sqrt{T}} + \frac{\Delta R_0}{DKT}. \\ 871 \\ 872$$

873 *Proof.* Under the given conditions, for any $k \in [K]$, we can invoke Lemma 4 to Algorithm 2 (with
874 Option-I) to get

$$875 \mathbb{E} \left[R(w_T^{(k)}) - R(w_0^{(k)}) + \sum_{t=1}^T \frac{\gamma}{8} \|\Delta_t^{(k)}\|^2 \right] \\ 876 \\ 877 \leq -\mathbb{E} \left[DT \|\bar{g}^{(k)}\| \right] + \eta G^2 T + DG\sqrt{T} + \left(\gamma T + \frac{1}{\eta} \right) D^2 + \frac{\|\Delta_1^{(k)}\|^2}{\eta} \\ 878 \\ 879 \leq -\mathbb{E} \left[DT \|\bar{g}^{(k)}\| \right] + \eta G^2 T + DG\sqrt{T} + \left(\gamma T + \frac{2}{\eta} \right) D^2, \\ 880 \\ 881 \\ 882$$

883 where in the last step we have used the fact $\|\Delta_1^{(k)}\| \leq D$ due to the explicit constraint imposed in
884 Option-I. Note that by definition we have $w_T^{(k)} = w_0^{(k+1)}$. By omitting the non-negative summation
885 term in the LHS of the above inequality we get

$$886 \mathbb{E} \left[R(w_0^{(k+1)}) - R(w_0^{(k)}) \right] \leq -\mathbb{E} \left[DT \|\bar{g}^{(k)}\| \right] + \eta G^2 T + DG\sqrt{T} + \left(\gamma T + \frac{2}{\eta} \right) D^2. \\ 887 \\ 888$$

889 Rearranging the terms on both sides of the above inequality yields

$$890 \mathbb{E} \left[DT \|\bar{g}^{(k)}\| \right] \leq \eta G^2 T + DG\sqrt{T} + \left(\gamma T + \frac{2}{\eta} \right) D^2 + \mathbb{E} \left[R(w_0^{(k)}) - R(w_0^{(k+1)}) \right]. \\ 891 \\ 892$$

893 By summing the above inequality of over $k \in [K]$ we get

$$894 \mathbb{E} \left[DT \sum_{k=1}^K \|\bar{g}^{(k)}\| \right] \leq \eta G^2 KT + DGK\sqrt{T} + \left(\gamma T + \frac{2}{\eta} \right) KD^2 + \mathbb{E} \left[\sum_{k=1}^K \left(R(w_0^{(k)}) - R(w_0^{(k+1)}) \right) \right] \\ 895 \\ 896 = \eta G^2 KT + DGK\sqrt{T} + \left(\gamma T + \frac{2}{\eta} \right) KD^2 + \mathbb{E} \left[R(w_0^{(1)}) - R(w_0^{(K+1)}) \right] \\ 897 \\ 898 \leq \eta G^2 KT + DGK\sqrt{T} + \left(\gamma T + \frac{2}{\eta} \right) KD^2 + R(w_0) - R^*. \\ 899 \\ 900 \\ 901$$

Dividing the factor DKT on both sides of the above inequality yields

$$902 \mathbb{E} \left[\frac{1}{K} \sum_{k=1}^K \|\bar{g}^{(k)}\| \right] \leq \frac{\eta G^2}{D} + \left(\gamma T + \frac{2}{\eta} \right) \frac{D}{T} + \frac{G}{\sqrt{T}} + \frac{\Delta R_0}{DKT}. \quad (3) \\ 903 \\ 904$$

905 Since $\|\Delta_t^{(k)}\| \leq D$ almost surely for all $t \in [T]$, by applying Lemma 5 we obtain that,
906

$$907 \left\| w_t^{(k)} - \bar{w}^{(k)} \right\| \leq \sqrt{T \sum_{t=1}^T \|\Delta_t^{(k)}\|^2} \leq TD \leq \delta, \quad \forall t \in [T], \\ 908 \\ 909$$

910 which implies

$$911 \text{dist} \left(0, \partial_\delta R(\bar{w}^{(k)}) \right) \leq \left\| \frac{1}{T} \sum_{t=1}^T g_t^{(k)} \right\| = \|\bar{g}^{(k)}\|. \\ 912 \\ 913$$

914 Combining the above with equation 3 yields

$$915 \mathbb{E} \left[\frac{1}{K} \sum_{k=1}^K \text{dist} \left(0, \partial_\delta R(\bar{w}^{(k)}) \right) \right] \leq \frac{\eta G^2}{D} + \left(\gamma T + \frac{2}{\eta} \right) \frac{D}{T} + \frac{G}{\sqrt{T}} + \frac{\Delta R_0}{DKT}. \\ 916 \\ 917$$

918 The proof is completed. \square

918 B.3 PROOF OF COROLLARY 1
919920 **Corollary 1.** Suppose that Assumption 1 and Assumption 2 hold. Let $\delta, \epsilon > 0$ be the desired
921 Goldstein stationarity parameters and N be the total budget of iterates. Set

922
$$T = \lceil (\delta N)^{2/3} \rceil, K = \left\lfloor \frac{N}{T} \right\rfloor, \gamma = \frac{N^{1/3}}{\delta^{2/3}}, \eta = \frac{1}{8N}, D = \frac{\delta^{1/3}}{N^{2/3}}.$$

923 Suppose that N is sufficiently large such that
924

925
$$N \geq \frac{(G^2 + G + 17 + \Delta R_0)^3}{\delta \epsilon^3} + \rho^3 \delta^2 + \frac{1}{\delta}.$$

926 Then the output \bar{w}_T by Algorithm 2 with Option-I satisfies
927

928
$$\mathbb{E} [\text{dist}(0, \partial_\delta R(\bar{w}_T))] \leq \epsilon.$$

929 *Proof.* The given choice of the hyperparameters ensures that $TD \leq \delta$. Under the condition on N
930 we can verify that
931

932
$$\gamma \geq \rho, \quad \gamma \eta = \frac{1}{8(\delta N)^{2/3}} \leq \frac{1}{8}.$$

933 Then all the conditions of Theorem 1 are fulfilled in our setting, and the theorem can be applied to
934 obtain
935

936
$$\begin{aligned} & \mathbb{E} \left[\frac{1}{K} \sum_{k=1}^K \text{dist} \left(0, \partial_\delta R(\bar{w}^{(k)}) \right) \right] \\ & \leq \frac{\eta G^2}{D} + \left(\gamma T + \frac{2}{\eta} \right) \frac{D}{T} + \frac{G}{\sqrt{T}} + \frac{\Delta R_0}{DKT} \\ & \leq \left(\frac{G^2}{8} + 1 + 16 + G + \Delta R_0 \right) \frac{1}{(\delta N)^{1/3}} \\ & \leq (G^2 + G + 17 + \Delta R_0) \frac{1}{(\delta N)^{1/3}} \leq \epsilon, \end{aligned}$$

937 where the last inequality is due to the condition on N . The desired bound follows by noting that
938 $\bar{w}_T \sim \text{Unif}(\{\bar{w}^{(k)} : k \in [K]\})$. The proof is completed. \square
939940 B.4 PROOF OF THEOREM 2
941942 **Theorem 2.** Suppose that Assumption 1 and Assumption 2 hold. Let $\gamma \geq \rho$ be an arbitrary scalar.
943 Suppose that $\eta \leq \frac{1}{8\gamma}$. Let K and T be positive integers and D be an arbitrary positive number.
944 Then for any $\mu \leq \frac{\gamma}{8DT^2}$, the sequence $\{\bar{w}^{(k)}\}_{k=1}^K$ generated by Algorithm 2 with Option-II satisfies
945

946
$$\mathbb{E} \left[\frac{1}{K} \sum_{k=1}^K \left\| \partial R(\bar{w}^{(k)}) \right\|_{+\mu} \right] \leq \frac{\eta G^2}{D} + \left(\gamma T + \frac{1}{\eta} \right) \frac{D}{T} + \frac{G}{\sqrt{T}} + \frac{\Delta R_0}{DKT}.$$

947 *Proof.* Under the given conditions, for any $k \in [K]$, we can invoke Lemma 4 to Algorithm 2 (with
948 Option-II) to get
949

950
$$\begin{aligned} & \mathbb{E} \left[R(w_T^{(k)}) - R(w_0^{(k)}) + \sum_{t=1}^T \frac{\gamma}{8} \|\Delta_t^{(k)}\|^2 \right] \\ & \leq -\mathbb{E} \left[DT \|\bar{g}^{(k)}\| \right] + \eta G^2 T + DG\sqrt{T} + \left(\gamma T + \frac{1}{\eta} \right) D^2 + \frac{\|\Delta_1^{(k)}\|^2}{\eta} \\ & \leq -\mathbb{E} \left[DT \|\bar{g}^{(k)}\| \right] + \eta G^2 T + DG\sqrt{T} + \left(\gamma T + \frac{1}{\eta} \right) D^2, \end{aligned}$$

972 where in the last inequality we have used the fact $\|\Delta_1^{(k)}\| = 0$ according to the periodic restarting
 973 step in Option-II of Algorithm 2. Note that by definition we have $w_T^{(k)} = w_0^{(k+1)}$. Then the above
 974 implies that
 975

$$\begin{aligned} & \mathbb{E} \left[R(w_0^{(k+1)}) - R(w_0^{(k)}) + \underbrace{\frac{\gamma}{8} \sum_{t=1}^T \|\Delta_t^{(k)}\|^2}_A \right] \\ & \leq -\mathbb{E} \left[DT \|\bar{g}^{(k)}\| \right] + \eta G^2 T + DG\sqrt{T} + \left(\gamma T + \frac{1}{\eta} \right) D^2. \end{aligned}$$

981 By applying Lemma 5 we can lower bound the term $A^{(k)}$ on the LHS of the above inequality as
 982

$$A \geq \frac{\gamma}{8T} \max_{t \in [T]} \|w_t^{(k)} - \bar{w}^{(k)}\|^2.$$

983 It follows that
 984

$$\begin{aligned} & \mathbb{E} \left[R(w_0^{(k+1)}) - R(w_0^{(k)}) + \frac{\gamma}{8T} \max_{t \in [T]} \|w_t^{(k)} - \bar{w}^{(k)}\|^2 \right] \\ & \leq -\mathbb{E} \left[DT \|\bar{g}^{(k)}\| \right] + \eta G^2 T + DG\sqrt{T} + \left(\frac{\gamma T}{2} + \frac{1}{\eta} \right) D^2. \end{aligned}$$

992 Rearranging the terms on both sides of the above inequality yields
 993

$$\begin{aligned} & \mathbb{E} \left[DT \|\bar{g}^{(k)}\| + \frac{\gamma}{8T} \max_{t \in [T]} \|w_t^{(k)} - \bar{w}^{(k)}\|^2 \right] \\ & \leq \eta G^2 T + DG\sqrt{T} + \left(\frac{\gamma T}{2} + \frac{1}{\eta} \right) D^2 + \mathbb{E} \left[R(w_0^{(k)}) - R(w_0^{(k+1)}) \right]. \end{aligned}$$

998 By summing the above inequality of over $k \in [K]$ we get
 999

$$\begin{aligned} & \mathbb{E} \left[DT \sum_{k=1}^K \|\bar{g}^{(k)}\| + \frac{\gamma}{8T} \sum_{k=1}^K \max_{t \in [T]} \|w_t^{(k)} - \bar{w}^{(k)}\|^2 \right] \\ & \leq \eta G^2 KT + DGK\sqrt{T} + \left(\gamma T + \frac{1}{\eta} \right) KD^2 + \mathbb{E} \left[\sum_{k=1}^K \left(R(w_0^{(k)}) - R(w_0^{(k+1)}) \right) \right] \\ & = \eta G^2 KT + DGK\sqrt{T} + \left(\gamma T + \frac{1}{\eta} \right) KD^2 + \mathbb{E} \left[R(w_0^{(1)}) - R(w_0^{(K+1)}) \right] \\ & \leq \eta G^2 KT + DGK\sqrt{T} + \left(\gamma T + \frac{1}{\eta} \right) KD^2 + R(w_0) - R^*. \end{aligned}$$

1010 Finally, dividing the factor DKT on both sides of the above inequality yields
 1011

$$\mathbb{E} \left[\frac{1}{K} \sum_{k=1}^K \left(\|\bar{g}^{(k)}\| + \frac{\gamma}{8DT^2} \max_{t \in [T]} \|w_t^{(k)} - \bar{w}^{(k)}\|^2 \right) \right] \leq \frac{\eta G^2}{D} + \left(\gamma T + \frac{1}{\eta} \right) \frac{D}{T} + \frac{G}{\sqrt{T}} + \frac{\Delta R_0}{DKT}.$$

1015 Since $\mu \leq \mu' = \frac{\gamma}{8DT^2}$, in view of Lemma 3 we get
 1016

$$\|\partial R(\bar{w}^{(k)})\|_{+\mu} \leq \|\partial R(\bar{w}^{(k)})\|_{+\mu'} \leq \|\bar{g}^{(k)}\| + \frac{\gamma}{8DT^2} \max_{t \in [T]} \|w_t^{(k)} - \bar{w}^{(k)}\|^2.$$

1019 Combining the preceding two inequalities leads to the desired result. The proof is completed. \square
 1020

1021 B.5 PROOF OF COROLLARY 2

1022 **Corollary 2.** Suppose that Assumption 1 and Assumption 2 hold. Let $\mu, \epsilon > 0$ be the desired
 1023 regularized-stationarity parameters and N be the total budget of iterates. Set
 1024

$$T = \left\lceil N^{4/7} \mu^{-2/7} \right\rceil, K = \left\lfloor \frac{N}{T} \right\rfloor, \gamma = N^{3/7} \mu^{2/7}, \eta = \frac{1}{8N}.$$

1026 Suppose that

$$1027 \quad 1028 \quad 1029 \quad N \geq \frac{(4G^2 + 1 + 32\Delta R_0)^{7/2}\mu^{1/2}}{\epsilon^{7/2}} + \frac{\rho^{7/3}}{\mu^{2/3}} + \mu^{1/2}.$$

1030 Then the output \bar{w}_T by Algorithm 2 with Option-II satisfies

$$1031 \quad 1032 \quad 1033 \quad \mathbb{E} \left[\|\partial R(\bar{w}_T)\|_{+\mu} \right] \leq \epsilon.$$

1034 *Proof.* Under the conditions on N we can verify that

$$1036 \quad 1037 \quad 1038 \quad \gamma \geq \rho, \quad \eta\gamma = \frac{\mu^{2/7}}{8N^{4/7}} \leq \frac{1}{8}.$$

1039 Let us now consider the number $D = \frac{1}{32}\mu^{-1/7}N^{-5/7}$. Again the condition on N implies that

$$1040 \quad 1041 \quad T' := N^{4/7}\mu^{-2/7} \geq 1.$$

1042 With the given choice of T, γ, D , it can be readily shown that

$$1044 \quad 1045 \quad \frac{\gamma}{8DT^2} = \frac{\gamma}{8D[T']^2} \geq \frac{\gamma}{8D(T' + 1)^2} \geq \frac{\gamma}{32DT'^2} = \mu.$$

1046 In view of the above arguments, the conditions of Theorem 2 are fulfilled in our setting, and thus we
1047 can apply it to obtain that

$$1049 \quad 1050 \quad 1051 \quad \mathbb{E} \left[\frac{1}{K} \sum_{k=1}^K \left\| \partial R(\bar{w}^{(k)}) \right\|_{+\mu} \right] \leq \frac{\eta G^2}{D} + \left(\gamma T + \frac{1}{\eta} \right) \frac{D}{T} + \frac{G}{\sqrt{T}} + \frac{\Delta R_0}{DKT} \\ 1052 \quad 1053 \quad 1054 \quad \leq \left(4G^2 + \frac{1}{32} + \frac{1}{4} + 32\Delta R_0 \right) \frac{\mu^{1/7}}{N^{2/7}} \\ 1055 \quad 1056 \quad \leq (4G^2 + 1 + 32\Delta R_0) \frac{\mu^{1/7}}{N^{2/7}} \leq \epsilon,$$

1057 where in the last step we have used the condition on N . The desired bound follows by noting that
1058 $\bar{w}_T \sim \text{Unif}(\{\bar{w}^{(k)} : k \in [K]\})$. This proves the desired bound. \square

1060 C ANALYSIS OF ONLINE GRADIENT DESCENT FOR QUADRATIC LOSSES

1062 Consider the quadratic loss functions of the form $f_t(x) = \langle u_t, x \rangle + \frac{\gamma}{2}\|x\|^2, t \geq 1$ over a convex
1063 constraint \mathcal{C} . We will analyze the following standard online gradient descent (OGD) method starting
1064 from an initial iterate x_1 with step-sizes $\eta > 0$:

$$1066 \quad x_{t+1} := \Pi_{\mathcal{C}} [x_t - \eta \nabla f_t(x_t)] = \Pi_{\mathcal{C}} [(1 - \eta\gamma)x_t - \eta u_t], \quad (4)$$

1067 where $\Pi_{\mathcal{C}}$ denotes the Euclidian projection operator associated with \mathcal{C} . Let $\text{Regret}_T(\bar{x})$ be the regret
1068 of algorithm w.r.t. some comparator $\bar{x} \in \mathcal{C}$ after T iterations, as defined below:

$$1070 \quad 1071 \quad 1072 \quad \text{Regret}_T(\bar{x}) := \sum_{t=1}^T f_t(x_t) - \sum_{t=1}^T f_t(\bar{x}).$$

1073 Based on standard analysis, we can show the following result on the regret bound of the above OGD
1074 algorithm.

1075 **Lemma 6.** Suppose that $\eta\gamma \leq \frac{1}{8}$. Then the OGD procedure 4 applied on $\{f_t\}_{t=1}^T$ over a convex
1076 constraint \mathcal{C} guarantees that for all $T \geq 1$ and \bar{x} :

$$1078 \quad 1079 \quad \text{Regret}_T(\bar{x}) \leq \sum_{t=1}^T \left(\eta \|u_t\|^2 + \frac{\gamma}{2} \|\bar{x}\|^2 - \frac{\gamma}{8} \|x_t\|^2 \right) + \frac{1}{\eta} (\|x_1\|^2 + \|\bar{x}\|^2).$$

1080 *Proof.* First, it can be verified that
 1081

$$\begin{aligned} \|x_{t+1} - \bar{x}\|^2 &= \|\Pi_C(x_t - \eta \nabla f_t(x_t)) - \bar{x}\|^2 \\ &\leq \|x_t - \eta \nabla f_t(x_t) - \bar{x}\|^2 \\ &= \|x_t - \bar{x}\|^2 + \eta^2 \|\nabla f_t(x_t)\|^2 - 2\eta \langle \nabla f_t(x_t), x_t - \bar{x} \rangle, \end{aligned}$$

1085 which implies
 1086

$$\langle \nabla f_t(x_t), x_t - \bar{x} \rangle = \frac{\|x_t - \bar{x}\|^2 - \|x_{t+1} - \bar{x}\|^2}{2\eta} + \frac{\eta \|\nabla f_t(x_t)\|^2}{2}.$$

1089 Then based on the strong convexity of f_t we can show that
 1090

$$\begin{aligned} \text{Regret}_T(x) &= \sum_{t=1}^T f_t(x_t) - \sum_{t=1}^T f_t(\bar{x}) \\ &\leq \sum_{t=1}^T \langle \nabla f_t(x_t), x_t - \bar{x} \rangle - \frac{\gamma}{2} \|x_t - \bar{x}\|^2 \\ &\leq \sum_{t=1}^T \left(\frac{\|x_t - \bar{x}\|^2 - \|x_{t+1} - \bar{x}\|^2}{2\eta} - \frac{\gamma}{2} \|x_t - \bar{x}\|^2 \right) + \sum_{t=1}^T \frac{\eta \|\nabla f_t(x_t)\|^2}{2} \\ &= - \sum_{t=1}^T \frac{\gamma}{2} \|x_t - \bar{x}\|^2 + \frac{1}{2\eta} \|x_1 - \bar{x}\|^2 - \frac{1}{2\eta} \|x_{T+1} - \bar{x}\|^2 + \sum_{t=1}^T \frac{\eta \|u_t + \gamma x_t\|^2}{2} \\ &\leq - \sum_{t=1}^T \frac{\gamma}{2} \|x_t - \bar{x}\|^2 + \frac{1}{\eta} (\|x_1\|^2 + \|\bar{x}\|^2) + \sum_{t=1}^T \eta (\|u_t\|^2 + \gamma^2 \|x_t\|^2) \\ &\stackrel{\zeta_1}{\leq} - \sum_{t=1}^T \frac{\gamma}{2} \left(\frac{\|x_t\|^2}{2} - \|\bar{x}\|^2 \right) + \frac{1}{\eta} (\|x_1\|^2 + \|\bar{x}\|^2) + \sum_{t=1}^T \eta (\|u_t\|^2 + \gamma^2 \|x_t\|^2) \\ &= \sum_{t=1}^T \left(\eta \|u_t\|^2 + \frac{\gamma}{2} \|\bar{x}\|^2 - \gamma \left(\frac{1}{4} - \eta\gamma \right) \|x_t\|^2 \right) + \frac{1}{\eta} (\|x_1\|^2 + \|\bar{x}\|^2) \\ &\leq \sum_{t=1}^T \left(\eta \|u_t\|^2 + \frac{\gamma}{2} \|\bar{x}\|^2 - \frac{\gamma}{8} \|x_t\|^2 \right) + \frac{1}{\eta} (\|x_1\|^2 + \|\bar{x}\|^2), \end{aligned}$$

1113 where in “ ζ_1 ” we have used the fact $\|a - b\|^2 \geq \frac{\|a\|^2}{2} - \|b\|^2$, and in the last inequality we have used
 1114 the condition $\eta\gamma \leq \frac{1}{8}$. This proves the desired bound. \square
 1115

1116 **Remark 9.** The main message conveyed by Lemma 6 is that it is beneficial to control the scales of
 1117 the competitor \bar{x} and the initial x_1 to make the regret small, even the domain of interest is allowed
 1118 to be unbounded. This result inspires us to explicitly control the scale of the initial iterate.
 1119

1120 D FROM GOLDSTEIN TO CLARKE STATIONARITY 1121

1122 As a side contribution of our work, we have established in the following theorem a set of results
 1123 on the connection between the Goldstein stationarity of a weakly convex function and the Clarke
 1124 stationarity of its Moreau envelope, which are believed to be of independent interests.
 1125

1126 **Theorem 3.** Let f be a G -Lipschitz and ρ -weakly convex function.
 1127

1128 (a) If w is a (δ, ϵ) -stationary point of f , then it holds that
 1129

$$\|\nabla f_{1/(3\rho)}(w)\| \leq 3 \sqrt{\frac{\epsilon^2}{2} + 4G\rho\delta + 2\rho^2\delta^2}.$$

1131 (b) If w is a (μ, ϵ) -regularized stationary point of f , then it holds that
 1132

$$\|\nabla f_{1/(3\rho)}(w)\| \leq 3 \sqrt{\frac{\epsilon^2}{2} + 4G\rho \sqrt{\frac{\epsilon}{\mu}} + 2\rho^2 \frac{\epsilon}{\mu}}.$$

1134 *Proof.* Part (a): Let w be a (δ, ϵ) -stationary point of f . Then by definition there exists a subset
 1135 $V \subseteq \mathbb{B}_\delta(w)$ and $\{\alpha_v\}_{v \in V}$ such that $\alpha_v \geq 0$, $\sum_{v \in V} \alpha_v = 1$ and
 1136

$$1137 \quad \left\| \sum_{v \in V} \alpha_v g_v \right\| \leq \epsilon, \quad (5)$$

1140 where $g_v \in \partial f(v)$. For any w' , let us consider a subgradient $g' \in \partial f(w')$. Since f is ρ -weakly
 1141 convex, we can show that

$$\begin{aligned} 1142 \quad f(w') &= \sum_{v \in V} \alpha_v f(w') \\ 1143 \quad &\geq \sum_{v \in V} \alpha_v \left(f(v) + \langle g_v, w' - v \rangle - \frac{\rho}{2} \|w' - v\|^2 \right) \\ 1144 \quad &= f(w) + \left\langle \sum_{v \in V} \alpha_v g_v, w' - w \right\rangle + \sum_{v \in V} \alpha_v \left(f(v) - f(w) + \langle g_v, w - v \rangle - \frac{\rho}{2} \|w' - w + w - v\|^2 \right) \\ 1145 \quad &\stackrel{\zeta_1}{\geq} f(w) + \left\langle \sum_{v \in V} \alpha_v g_v, w' - w \right\rangle - \rho \|w' - w\|^2 + \sum_{v \in V} \alpha_v (f(v) - f(w) + \langle g_v, w - v \rangle - \rho \|w - v\|^2) \\ 1146 \quad &\stackrel{\zeta_2}{\geq} f(w) - \frac{1}{4\rho} \left\| \sum_{v \in V} \alpha_v g_v \right\|^2 - 2\rho \|w' - w\|^2 - \sum_{v \in V} \alpha_v (2G\|v - w\| + \rho \|w - v\|^2) \\ 1147 \quad &\stackrel{\zeta_3}{\geq} f(w) - 2\rho \|w' - w\|^2 - \frac{\epsilon^2}{4\rho} - 2G\delta - \rho\delta^2 \\ 1148 \quad &\geq f(w') + \langle g', w - w' \rangle - \frac{\rho}{2} \|w - w'\|^2 - 2\rho \|w' - w\|^2 - \frac{\epsilon^2}{4\rho} - 2G\delta - \rho\delta^2 \\ 1149 \quad &= f(w') + \langle g', w - w' \rangle - \frac{5\rho}{2} \|w - w'\|^2 - \frac{\epsilon^2}{4\rho} - 2G\delta - \rho\delta^2, \end{aligned}$$

1150 where we have used in “ ζ_1 ” the Cauchy–Schwarz inequality, in “ ζ_2 ” the Cauchy–Schwarz inequality
 1151 and the G -Lipschitzness of R , in “ ζ_3 ” $V \subseteq \mathbb{B}_\delta(w)$ and equation 5, and in the last inequality the ρ -
 1152 weak-convexity of f . Now let us consider $\hat{w} = \text{prox}_{f/\bar{\rho}}(w)$ for some $\bar{\rho} > \frac{5\rho}{2}$, which by Lemma 1
 1153 satisfies that

$$1154 \quad \nabla f_{1/\bar{\rho}}(w) = \bar{\rho}(w - \hat{w}) \in \partial f(\hat{w}).$$

1155 Subsisting $w' = \hat{w}$ into the preceding inequality and rearranging the terms yields

$$1156 \quad \|w - \hat{w}\|^2 \leq \left(\bar{\rho} - \frac{5\rho}{2} \right)^{-1} \left(\frac{\epsilon^2}{4\rho} + 2G\delta + \rho\delta^2 \right).$$

1157 It follows from the above inequality that

$$1158 \quad \|\nabla f_{1/\bar{\rho}}(w)\| = \|\bar{\rho}(w - \hat{w})\| \leq \bar{\rho} \left(\bar{\rho} - \frac{5\rho}{2} \right)^{-1/2} \left(\frac{\epsilon^2}{4\rho} + 2G\delta + \rho\delta^2 \right)^{1/2}.$$

1159 Finally, setting $\bar{\rho} = 3\rho$ in the above and applying some slight algebraic manipulation yields the
 1160 desired bound in Part (a). The bound in Part (b) follows directly from Part(a) and Lemma 2. The
 1161 proof is completed. \square

1162 **Remark 10.** *Theorem 3 essentially shows that the (δ, ϵ) -stationarity of a weakly convex function
 1163 implies the $(\epsilon + \sqrt{\delta})$ -stationarity of its Moreau envelope, and correspondingly the (μ, ϵ) -regularized
 1164 stationary implies the $(\epsilon + \sqrt{\epsilon/\mu})$ -stationarity.*

1165 **Remark 11.** *Conversely, for a ρ -weakly convex function f , the translate from the Clarke stationarity
 1166 of its Moreau envelop to the Goldstein stationarity of the original objective is relatively straightfor-
 1167 ward. Indeed, suppose that w is an ϵ -stationary point of the Moreau envelope $f_{1/(2\rho)}$ such that
 1168 $\|\nabla f_{1/(2\rho)}(w)\| \leq \epsilon$. Consider $\hat{w} := \text{prox}_{f/(2\rho)}(w)$. Then according to Lemma 1 we must have*

$$1169 \quad \nabla f_{1/(2\rho)}(w) \in \partial f(\hat{w}), \quad \|w - \hat{w}\| \leq \frac{\|\nabla f_{1/(2\rho)}(w)\|}{2\rho} \leq \frac{\epsilon}{2\rho},$$

1188 which implies that $\text{dist}\left(0, \partial_{\frac{\epsilon}{2\rho}} f(w)\right) \leq \|\nabla f_{1/(2\rho)}(w)\| \leq \epsilon$, and thus w is a (δ, ϵ) -stationary point
 1189 of f with $\delta = \frac{\epsilon}{2\rho}$. **However, a limitation of translating rates via the setting $\delta = \epsilon/(2\rho)$ is that it**
 1190 **excludes the range of relatively large δ (e.g., $\delta = \sqrt{\epsilon}$, a choice critical for sharper rates in second-**
 1191 **order smooth functions), as ρ is typically lower bounded by a constant.**

1193 The following corollary is a direct consequence of Theorem 3 when applied to Algorithm 2 with
 1194 Option-I.

1196 **Corollary 3.** *Suppose that Assumption 1 and Assumption 2 hold. Let $\epsilon > 0$ be the desired station-
 1197 arity precision and N be the total budget of iterates. Set*

$$1198 \quad T = \left\lceil (\epsilon^2 N)^{2/3} \right\rceil, K = \left\lfloor \frac{N}{T} \right\rfloor, \gamma = \frac{N^{1/3}}{\epsilon^{4/3}}, \eta = \frac{1}{8N}, D = \frac{\epsilon^{2/3}}{N^{2/3}}.$$

1201 Suppose that N is sufficiently large such that

$$1202 \quad N \geq \frac{(G^2 + G + 17 + \Delta R_0)^3}{\epsilon^5} + \rho^3 \epsilon^4 + \frac{1}{\epsilon^2}.$$

1204 Then the output \bar{w}_T by Algorithm 2 with Option-I satisfies

$$1206 \quad \mathbb{E} [\|\nabla f_{1/(3\rho)}(\bar{w}_T)\|] \leq \mathcal{O} \left(\sqrt{G\rho\epsilon} + \rho\epsilon^2 \right).$$

1208 *Proof.* Let $\delta = \epsilon^2$ and $\varepsilon(\delta, \bar{w}_T) := \text{dist}(0, \partial_\delta R(\bar{w}_T))$. Under the given conditions, it follows from
 1209 Corollary 1 that

$$1211 \quad \mathbb{E} [\varepsilon(\delta, \bar{w}_T)] = \mathbb{E} [\text{dist}(0, \partial_\delta R(\bar{w}_T))] \leq \epsilon. \quad (6)$$

1212 Conditioned on \bar{w}_T , it is natural that \bar{w}_T is a $(\delta, \varepsilon(\delta, \bar{w}_T))$ -stationary point of R . Therefore from the
 1213 Part (a) of Theorem 3 we have

$$1214 \quad \|\nabla R_{1/(3\rho)}(\bar{w}_T)\| \leq 3\sqrt{\frac{\varepsilon^2(\delta, \bar{w}_T)}{2} + 4G\rho\delta + 2\rho^2\delta^2} \leq \frac{3\sqrt{2}}{2} \varepsilon(\delta, \bar{w}_T) + 6\sqrt{G\rho\delta} + 3\sqrt{2}\rho\delta.$$

1217 Taking expectation on both sides of the above yields

$$1218 \quad \mathbb{E} [\|\nabla R_{1/(3\rho)}(\bar{w}_T)\|] \leq \mathbb{E} \left[\frac{3\sqrt{2}}{2} \varepsilon(\delta, \bar{w}_T) + 6\sqrt{G\rho\delta} + 3\sqrt{2}\rho\delta \right] \\ 1219 \quad \leq \frac{3\sqrt{2}}{2} \epsilon + 6\sqrt{G\rho\epsilon} + 3\sqrt{2}\rho\epsilon^2,$$

1223 where in the last step we have used 6 and $\delta = \epsilon^2$. This proves the desired bound. \square

1225 **Remark 12.** *The $\mathcal{O}(\epsilon^{-5})$ complexity established in Corollary 3 is suboptimal compared to the
 1226 $\mathcal{O}(\epsilon^{-4})$ optimal complexity of SGD (Davis & Grimmer, 2019) and SGDM (Mai & Johansson, 2020)
 1227 for achieving the ϵ -stationarity of the Moreau envelope. Such a slower rate is mainly due to the $\sqrt{\delta}$
 1228 component appeared in the bound of Theorem 3 (Part a), which is open for improvement in future.*

1229 Similarly, we have the following corollary as a direct consequence of Theorem 3 when applied to
 1230 Algorithm 2 with Option-II.

1232 **Corollary 4.** *Suppose that Assumption 1 and Assumption 2 hold. Let $\epsilon > 0$ be the desired station-
 1233 arity precision and N be the total budget of iterates. Set*

$$1234 \quad T = \left\lceil N^{4/7} \epsilon^{6/7} \right\rceil, K = \left\lfloor \frac{N}{T} \right\rfloor, \gamma = N^{3/7} \epsilon^{-6/7}, \eta = \frac{1}{8N}.$$

1237 Suppose that

$$1238 \quad N \geq \frac{(4G^2 + 1 + 32\Delta R_0)^{7/2}}{\epsilon^5} + \rho^{7/3} \epsilon^2 + \frac{1}{\epsilon^{3/2}}.$$

1240 Then the output \bar{w}_T by Algorithm 2 with Option-II satisfies

$$1241 \quad \mathbb{E} [\|\nabla f_{1/(3\rho)}(\bar{w}_T)\|] \leq \mathcal{O} \left(\sqrt{G\rho\epsilon} + \rho\epsilon^2 \right).$$

1242 *Proof.* The proof basically mimics that of Corollary 3 and is restated for the sake of completeness.
 1243 Let $\mu = \epsilon^{-3}$ and $\varepsilon(\mu, \bar{w}_T) := \|\partial R(\bar{w}_T)\|_{+\mu}$. Under the given conditions, it follows from Corol-
 1244 lary 2 that

$$1246 \quad \mathbb{E} [\varepsilon(\mu, \bar{w}_T)] = \mathbb{E} [\|\partial R(\bar{w}_T)\|_{+\mu}] \leq \epsilon. \quad (7)$$

1248 Conditioned on \bar{w}_T , it is natural that \bar{w}_T is a $(\delta, \varepsilon(\delta, \bar{w}_T))$ -stationary point of R . Therefore from the
 1249 Part (b) of Theorem 3 we have

$$1252 \quad \|\nabla R_{1/(3\rho)}(\bar{w}_T)\| \leq 3 \sqrt{\frac{\varepsilon^2(\mu, \bar{w}_T)}{2} + 4G\rho \sqrt{\frac{\epsilon}{\mu}} + 2\rho^2 \frac{\epsilon}{\mu}} \leq \frac{3\sqrt{2}}{2} \varepsilon(\mu, \bar{w}_T) + 6 \sqrt{G\rho \sqrt{\frac{\epsilon}{\mu}}} + 3\sqrt{2}\rho \sqrt{\frac{\epsilon}{\mu}}.$$

1255 Taking expectation on both sides of the above yields

$$1258 \quad \mathbb{E} [\|\nabla R_{1/(3\rho)}(\bar{w}_T)\|] \leq \mathbb{E} \left[\frac{3\sqrt{2}}{2} \varepsilon(\mu, \bar{w}_T) + 6 \sqrt{G\rho \sqrt{\frac{\epsilon}{\mu}}} + 3\sqrt{2}\rho \sqrt{\frac{\epsilon}{\mu}} \right] \\ 1260 \quad \leq \frac{3\sqrt{2}}{2} \epsilon + 6\sqrt{G\rho\epsilon} + 3\sqrt{2}\rho\epsilon^2,$$

1264 where in the last step we have used 7 and $\mu = \epsilon^{-3}$. This proves the desired bound. \square

1268 E SOME ADDITIONAL DETAILS AND RESULTS OF EXPERIMENT

1272 In this appendix section, we present additional experimental results on neural networks (Ap-
 1273 pendix E.1) and robust phase retrieval (Appendix E.2) to further validate the effectiveness and effi-
 1274 ciency of our D-O2NC method when applied with periodically restarted OGD.

1277 E.1 EXPERIMENTS ON NEURAL NETWORKS

1280 **Descriptions of backbones.** We employ the ResNet-101 and ViT models to evaluate our method.
 1281 ResNet-101 stands as a hallmark architecture in the ResNet family, featuring 101 layers formed by
 1282 stacking residual blocks, each composed of 1×1 , 3×3 , and 1×1 convolutional layers. This model is
 1283 commonly adopted as a backbone in downstream computer vision applications, including object
 1284 detection and image segmentation. In our empirical study, the ViT model incorporates 6 Trans-
 1285 former encoder layers, each equipped with 8 multi-head self-attention heads and a 512-dimensional
 1286 multilayer perceptron (MLP); the dropout rate is configured at 0.1, with the input segmented into 4
 1287 patches. Both models were trained from scratch.

1289 **Results under various restarting frequency.** In our experiments on the CIFAR-10 dataset, we
 1290 configured the restarting frequency T to a broad value range of $\{2, 20, 50, 196\}$, and the total number
 1291 of minibatches in one epoch is 196. Consistent with the parameter settings in the main text, we
 1292 adopt a learning rate of 0.01 and a momentum of 0.99. As illustrated in Figure 2, the experimental
 1293 results reveal that in most cases, as T increases, the model’s performance exhibits an initial gradual
 1294 improvement followed by a subsequent decline. Notably, extreme values of T (e.g., $T = 2$) exert a
 1295 detrimental impact on performance. Therefore, selecting an appropriate T is crucial for optimizing
 the final model efficacy.

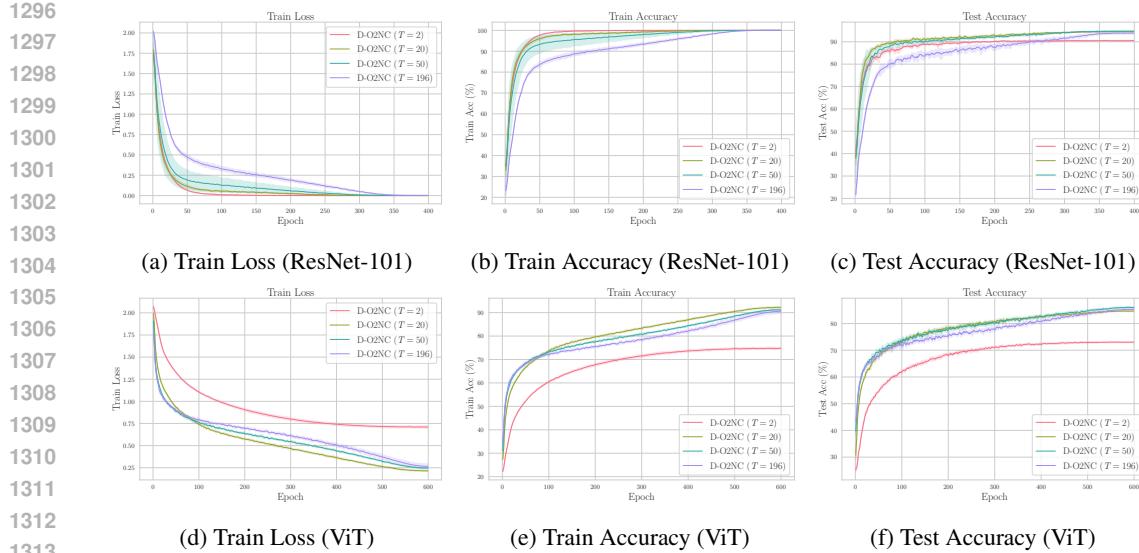


Figure 2: Experimental results on CIFAR-10 with ResNet-101 (top) and ViT (bottom) networks under various values of T .

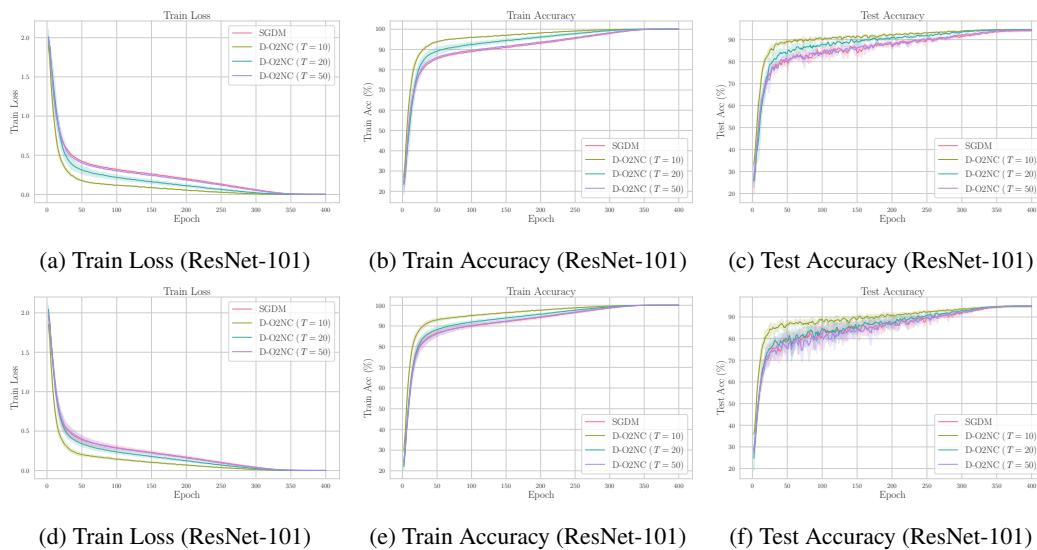
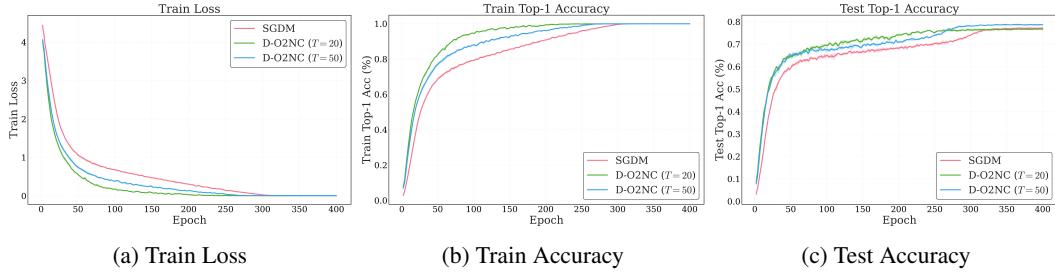
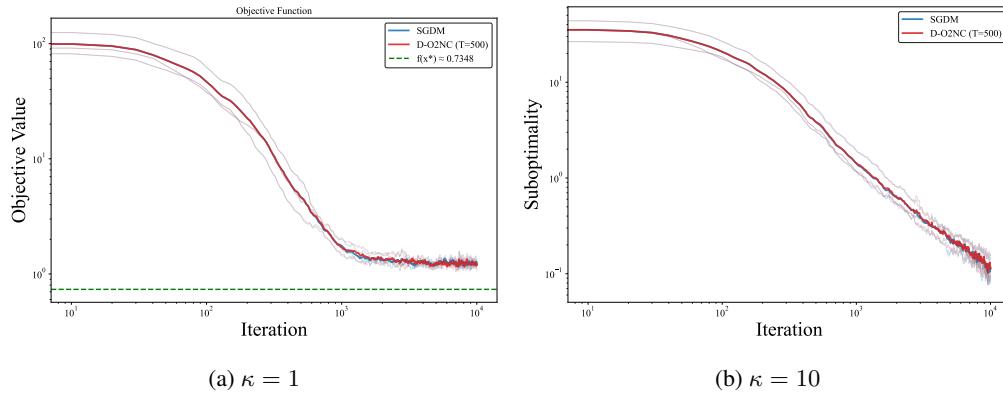


Figure 3: Experimental results of with relaxed momentum and learning rate parameters (The top two rows correspond to momentum coefficient 0.95 and learning rate 0.05, and the bottom row to momentum coefficient 0.9 and learning rate 0.1).

Results under various configurations of momentum coefficient and learning rate. For the experimental results reported in the main text, we have adopted a tight momentum coefficient of value 0.99, along with a learning rate of 0.01. In this section, we additionally report the experimental results obtained using two other configurations of the momentum coefficient and learning rate: (0.95, 0.05) and (0.9, 0.1). The results are presented in Figure 3, from which we can observe that our method consistently demonstrates considerable superiority in both convergence speed and prediction accuracy. Additionally, it is evident that for these two parameter configurations, the superiority of the method decreases as T increases.

Results on CIFAR-100. Finally, in addition to CIFAR-10, we have also conducted the algorithm evaluation on the CIFAR-100 dataset. CIFAR-100 is an advanced counterpart of CIFAR-10, com-

1350
 1351 prising 60,000 32×32 color images. While CIFAR-10 contains 10 coarse categories, CIFAR-100
 1352 extends this to 100 fine-grained classes. For this more fine-grained dataset, we resort ResNet-152
 1353 as the backbone network. The optimizer employs a learning rate of 0.01, a momentum of 0.99, and
 1354 a weight decay of 5×10^{-4} . The experimental results are demonstrated in Figure 4. It can be ob-
 1355 served from this set of results that 1) our D-O2NC method converges faster than the standard SGDM
 1356 in terms of training loss and accuracy; and 2) our D-O2NC method achieves higher test accuracy
 1357 than SGDM, which further demonstrates the superiority of our algorithm for generalization.

1365
 1366 Figure 4: Experimental results on CIFAR-100 with ResNet-152 network.
 13671383
 1384 Figure 5: Experimental results of phase retrieval with various value of κ .
 13851386
 1387

E.2 EXPERIMENTS ON ROBUST PHASE RETRIEVAL

1388
 1389 To further validate the effectiveness of our D-O2NC method for weakly convex problems, we have
 1390 conducted an additional set of experiments on the robust phase retrieval task (Duchi & Ruan, 2018).
 1391 Given a set of m measurement-amplitude pairs $\{x_i, y_i\}_{i=1}^m$, robust phase retrieval is conventionally
 1392 formulated as the following composite loss minimization problem:
 1393

$$1394 \quad \mathcal{L}(w) = \frac{1}{m} \sum_{i=1}^m |(w^\top x_i)^2 - y_i|,$$

1395
 1396 where w denotes the unknown signal to be recovered, x_i represent the measurement vectors, y_i
 1397 are the observed squared amplitude values. The considered loss function quantifies the discrepancy
 1398 between the predicted squared amplitude of inner products and the actual observed data. Clearly, it
 1399 is of the composition form $h \circ c$ where $h(u) = |u|$ is Lipschitz continuous and $c(w) = (w^\top x_i)^2 - y_i$
 1400 is a smooth mapping. Therefore, the loss function is weakly convex.
 1401

1402
 1403 Following the related experimental setup of Mai & Johansson (2020), we generate a measurement
 1404 matrix of size 300×100 using $X = QP$, where P is diagonal matrix with condition number
 1405 $\kappa \in \{1, 10\}$, and Q is a matrix whose entries are *i.i.d.*. The observation noise follows $\mathcal{N}(0, 25)$

1404 and affects 20% of the data points. The considered SGDM and D-O2NC methods employ shared
1405 momentum coefficient of 0.92 and learning rate of 2×10^{-4} , and the total number of iteration is set
1406 as 10,000. Figure 5 plots the sub-optimality gap as a function of the iteration count for two distinct
1407 values of κ . It can be observed from this group of results that, for both values of κ , our method
1408 achieves performance comparable to that of SGDM under the same learning rate and momentum
1409 coefficient.

1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457