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ABSTRACT

Online-to-non-convex conversion (O2NC) is an online updates learning frame-
work for producing Goldstein (δ, ϵ)-stationary points of non-smooth non-convex
functions with optimal oracle complexity O(δ−1ϵ−3). Subject to auxiliary ran-
dom interpolation or scaling, O2NC recapitulates the stochastic gradient descent
with momentum (SGDM) algorithm popularly used for training neural networks.
Randomization, however, introduces deviations from practical SGDM. So a natu-
ral question arises: Can we derandomize O2NC to achieve the same optimal guar-
antees while resembling SGDM? On the negative side, the general answer is no
due to the impossibility results of Jordan et al. (2023), showing that no dimension-
free rate can be achieved by deterministic algorithms. On the positive side, as the
primary contribution of the present work, we show that O2NC can be naturally
derandomized for weakly convex functions. Remarkably, our deterministic algo-
rithm converges at an optimal rate as long as the weak convexity parameter is no
larger than O(δ−1ϵ−1). In other words, the stronger stationarity is expected, the
higher non-convexity can be tolerated by our optimizer. Additionally, we develop
a periodically restarted variant of our method to allow for more progressive update
when the iterates are far from stationary. The resulting algorithm, which corre-
sponds to a momentum-restarted version of SGDM, has been empirically shown
to be effective and efficient for training ResNet and ViT networks.

1 INTRODUCTION

Classic machine learning optimization methods often rely crucially on convexity and/or smoothness
assumptions to guarantee the convergence to optima (Nesterov et al., 2018; Bubeck, 2015; Snyman,
2005). However, many modern large-scale machine learning models, such as residual neural net-
works and transformers (He et al., 2016; Vaswani et al., 2017), involve non-convex and non-smooth
objective functions. These models achieve state-of-the-art performance precisely thanks to their ca-
pability to learn highly complex, nonlinear hidden representations in data. With such widespread
use, efficient non-convex non-smooth optimization algorithms are of fundamental interest.

Specifically, this paper is concerned with stochastic gradient algorithms for solving the following
expected risk minimization problem ubiquitous in statistical learning:

min
w∈Rd

R(w) := EZ∼D[ℓ(w;Z)], (1)

where ℓ : Rd × Z 7→ R+ is a non-negative loss function whose value ℓ(w; z) measures the loss
evaluated at z ∈ Z with parameter w ∈ Rd and D represents a distribution over the measurable
set Z . We consider the setting where the loss ℓ is Lipschitz continuous with respect to its first ar-
gument, yet potentially neither convex nor smooth. In contrast to the smooth counterpart, finding
an ϵ-stationary point (or even a neighborhood around it) of a non-smooth objective in 1 is gener-
ally intractable (Zhang et al., 2020; Kornowski & Shamir, 2022). This intractability motivates the
employment of Goldstein (δ, ϵ)-stationarity (see Definition 1) as a notion of approximate conver-
gence for non-convex non-smooth functions (Zhang et al., 2020). The study of efficient algorithms
with finite-time complexity guarantees for finding (δ, ϵ)-stationary points has since received ever
emerging interests in non-smooth, non-convex optimization (Zhang et al., 2020; Davis et al., 2022;
Cutkosky et al., 2023; Jordan et al., 2023; Tian & So, 2024; Kong & Lewis, 2025).
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Pioneered by Cutkosky et al. (2023), the online-to-non-convex conversion (O2NC) method identifies
(δ, ϵ)-stationary points of 1 using O(δ−1ϵ−3) calls to a stochastic gradient oracle, which achieves
the optimal first-order complexity. As outlined in Algorithm 1, O2NC essentially converts an online
convex learner ( in light red ) to a stochastic gradient optimizer ( in light blue ). To be more precise,
it recursively updates the increments ∆n := wn −wn−1 between two adjacent iterates via invoking
an online convex optimization (OCO) algorithm A to minimize the regret

∑N
n=1⟨ĝn,∆n − ∆⟩,

where the stochastic subgradient ĝn is evaluated at a random intermediate state vn = wn−1 + sn∆n

with a uniform sn ∈ [0, 1]. The optimal oracle complexity can be implied by any instantiations of
A with optimal regret bound, such as online gradient descent (OGD) (Zinkevich, 2003).

In addition to theoretical optimality, another attractiveness of the O2NC framework lies in its poten-
tial power for recovering stochastic momentum-based optimizers commonly used in training neural
networks. Indeed, subject to the random interpolation on the iterates, O2NC equipped with projected
OGD turns out to be a clipped variant of SGD with momentum (SGDM) Cutkosky et al. (2023). Al-
ternatively, Zhang & Cutkosky (2024) proposed the Exponentiated O2NC (E-O2NC) framework
with exponential random scaling on the updates, which almost exactly recovers the standard SGDM
when applied with unconstrained online mirror descent (OMD) (Beck & Teboulle, 2003).

Algorithm 1: Online-to-non-convex Conversion (O2NC) (Cutkosky et al., 2023)
Input : OCO algorithm A, K,T ∈ N, initial point w0 and increment ∆1. Set N = K × T .
for n = 1, ..., N do

/* Stochastic gradient optimizer */
Update wn = wn−1 +∆n;
Compute random interpolation vn = wn−1 + sn∆n, where sn ∼ Unif([0, 1]);
Randomly sample zn ∼ D and obtain ĝn ∈ ∂ℓ(vn; zn);

/* Online learning of increment */
Send the linear loss ⟨ĝn,∆⟩ to A and receive the next increment ∆n+1 from A

end
Set w(k)

t = w(k−1)T+t, ∀k ∈ [K], t ∈ [T ], and w̄(k) = 1
T

∑T
t=1 w

(k)
t .

Output: w̄T ∼ Unif({w̄(k) : k ∈ [K]}).

Despite the promise of O2NC in justifying the effectiveness/efficiency of SGDM-style optimizers,
the recovered algorithmic resemblance will inheritably be subject to some auxiliary randomization
operations, say uniform interpolation on iterates or exponential scaling on increments. However,
these randomization components are seldom, if not never, employed in the practical implementations
of SGDM. Such a fundamental gap motivates us to address the following question:

Can the O2NC technique be derandomized to still achieve optimal dimension-free guarantees
and close resemblance to SGDM in the non-smooth and non-convex setting?

The general answer to the above question is unfortunately negative as it has been shown by Jordan
et al. (2023, Theorem 1) that in the worst case no dimension-free rate can be achieved by determin-
istic algorithms. Fortunately, on the positive side, we will show in this paper that for a broad class
of the so-called weakly convex functions, it is indeed possible to develop deterministic variants of
O2NC for identifying Goldstein-style stationary solutions with optimal rates.

1.1 OVERVIEW OF OUR RESULTS

Our main contribution is a derandomized O2NC framework (Algorithm 2) for solving the stochastic
optimization problem 1 with a ρ-weakly convex risk function, i.e., R(·) + ρ

2∥ · ∥2 is convex. In-
spired by the original O2NC, the main development here is using the definition of weak convexity
to naturally convert the optimization of iterates wn to the online learning of increments ∆n over
quadratic losses ⟨ĝn, ·⟩+ γ

2 ∥ · ∥
2 for some γ ≥ ρ. Differently, instead of evaluating the gradients at

a random intermediate point vn lying between the two iterates wn and wn−1, our algorithm exactly
evaluates the gradients at each iterate wn = wn−1 + ∆n, and thus is deterministic (of course, up
to the stochastic estimation of gradients). Concretely, we propose two optional online learners for
updating the increments ∆n, which are summarized below:
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Derandomized O2NC with clipped OGD (Section 3.2). The first option is a naive projected OGD
algorithm under a suitable ball constraint. The resulting algorithm can be interpreted as a clipped
version of SGDM but without needing additional random interpolations. Our convergence analy-
sis result (Corollary 1) shows that the proposed deterministic method identifies a (δ, ϵ)-stationary
point with O

(
δ−1ϵ−3 + ρ3δ2 + δ−1

)
calls to stochastic gradient oracle, which is dominated by the

optimal rate δ−1ϵ−3. Strikingly, the weak-convexity parameter ρ does not appear in such a domi-
nant component, and it is allowed to scale as large as O(δ−1ϵ−1) in its involved component before
matching the optimal rate. This phenomenon indicates that the smaller (δ, ϵ) are demanded, the
higher non-convexity can be tolerated by our optimizer for achieving optimal complexity.

Derandomized O2NC with periodically restarted OGD (Section 3.3). Like in the original O2NC,
our first option of OGD under explicit ball constraint is expected to be over conservative for incre-
ments update, and it is also impractical from the perspective of SGDM implementation. To address
this issue, as the second option, we further introduce a novel periodically restarted OGD proce-
dure which is characterized by resetting the increments to zero after a period of iteration. The
resulting method is almost identical to the standard SGDM algorithm, with the only difference that
the momentum update is now enforced to start over again periodically. Under a novel notion of
(µ, ϵ)-regularized stationarity (see Definition 2), which is equivalent to the Goldstein stationarity,
we establish in Corollary 2 that the proposed deterministic and unconstrained O2NC algorithm con-
verges with a composite rate O

(
µ1/2ϵ−7/2 + ρ7/3µ−2/3 + µ1/2

)
, in which ρ = O(µ1/2ϵ−3/2) is

allowable without dominating the optimal component of µ1/2ϵ−7/2. We have also carried out a set of
numerical experiments on benchmark tasks to confirm that the proposed momentum-restarted ver-
sion of SGDM is comparable or superior to the standard SGDM for training deep residual networks
and vision transformers (Section 4).

1.2 RELATED WORK

Our contribution is situated within a broad landscape of non-smooth and non-convex optimization.
Below we provide an incomplete review on some prior works most closely related to ours.

Non-smooth optimization. The groundwork for non-smooth optimization date back to the early
developments of Clarke (1975); Goldstein (1977). There is a rich history of research on asymptotic
analysis for non-smooth optimization problems (Benaı̈m et al., 2005; Davis et al., 2020; Bolte &
Pauwels, 2021). Despite these advances, non-asymptotic guarantees have long been left mysteri-
ous for generic non-smooth problems. Recently, Zhang et al. (2020) revolutionized the study on
subgradient algorithms with finite-time complexity for finding Goldstein stationary points, which
has since attracted much attention (Davis et al., 2022; Kornowski & Shamir, 2022; Cutkosky et al.,
2023; Jordan et al., 2023; Kornowski & Shamir, 2024). Particularly, inspired by the idea of online-
to-batch conversion Cesa-Bianchi et al. (2004), Cutkosky et al. (2023) introduced the O2NC frame-
work which for the first time established the optimal rate for stochastic non-smooth non-convex
optimization. By instantiating different online learners within this framework, it is possible to re-
cover several popular optimizers: SGDM corresponds to choosing online mirror descent (Zhang &
Cutkosky, 2024), the Adam optimizer (Kingma & Ba, 2015) corresponds to a variant of follow-
the-regularized leader (Ahn & Cutkosky, 2024), and very recently Ahn et al. (2025) showed that a
generalized O2NC framework captures the schedule-free SGD (Defazio et al., 2024).

Stochastic weakly convex optimization. The class of weakly convex functions, first introduced in
English by Nurminskii (1973), is broad in the sense that it encompasses all composition forms h ◦ c
of convex functions and smooth maps. For this class of problem, a vast body of asymptotic con-
vergence results have been established for stochastic optimization algorithms (Ermol’ev & Norkin,
1998; Duchi & Ruan, 2018). The finite-time non-asymptotic rates, however, remained largely open
until recently a series of breakthrough results were achieved by Davis & Grimmer (2019); Davis
& Drusvyatskiy (2019); Mai & Johansson (2020), showing that various SGD/SGDM algorithms
can achieve the O(ϵ−4) optimal rate for producing an ϵ-stationary point of the Moreau envelope
of objectives. In terms of the variational analysis, several different notions of approximate subdif-
ferentials were analyzed and compared for weakly convex functions (van Ackooij et al., 2024). In
practice, weakly convex optimization has found rich applications in deep learning, signal processing
and control theory (see, e.g., Duchi & Ruan, 2018; Davis & Drusvyatskiy, 2019; Drusvyatskiy &
Paquette, 2019; Pougkakiotis & Kalogerias, 2023, and the references therein).
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2 PRELIMINARIES

Let us begin by formally introducing some notation, key assumptions, and preliminary results on
non-convex and non-smooth optimization.

2.1 NOTATION AND ASSUMPTIONS

Notation. Throughout this paper, we denote ∥ · ∥ as the Euclidean norm, and ⟨·, ·⟩ as the Euclidean
inner product. For a vector set V ⊆ Rd, we denote dist(0, V ) := infv∈V ∥v∥ and conv{V } the
convex hull of V . For any positive integer N , we abbreviate [N ] = {1, ..., N}. The symbol Bδ(w)

denotes the closed ball of radius δ centered on w, and clipD(w) := wmin
{
1, D

∥w∥

}
denotes

the Euclidean projection operator associated with the constraint of BD(0). For a pair of functions
f, f ′ ≥ 0, we use f = O(f ′) to denote f ≤ cf ′ for some universal constant c > 0.

We say that a function f : Rd 7→ R is G-Lipschitz continuous if |f(w)− f(w′)| ≤ G∥w − w′∥ for
all w,w′ ∈ Rd. The Clarke subdifferential (Clarke, 1990) of a non-smooth function f at w ∈ Rd

is denoted by ∂f(w). Recall that f is said to be ρ-weakly convex if the quadratically regularized
function f(·) + ρ

2∥ · ∥
2 is convex, or equivalently

f(w) ≥ f(w′) + ⟨g′, w − w′⟩ − ρ

2
∥w − w′∥2, ∀w,w′ ∈ Rd, g′ ∈ ∂f(w′).

The Moreau envelope (Rockafellar, 1997) of a ρ-weakly convex function f with parameter λ ∈
(0, ρ−1) is defined by fλ(w) := infu∈Rd

{
f(u) + 1

2λ∥u− w∥2
}

, and the associated proximal map-
ping operator is written by proxλf (w) := argminu∈Rd

{
f(u) + 1

2λ∥u− w∥2
}

. The following
standard result (see, e.g., Böhm & Wright, 2021) summarizes the continuously differential property
of the Moreau envelope functions.
Lemma 1. Let f be a ρ-weakly convex and λ ∈ (0, ρ−1) be a scalar. Then the Moreau envelope
fλ is continuously differentiable with gradient ∇fλ(w) =

1
λ

(
w − proxλf (w)

)
∈ ∂f(proxλf (w)),

which is L-Lipschitz continuous with parameter L = max
{
λ−1, ρ

1−ρλ

}
.

Assumptions. We next impose some basic assumptions on the loss and risk functions in problem 1
for stochastic gradient-based optimization.
Assumption 1. For any z ∈ Z , the loss function ℓ(·; z) is G-Lipschitz with respect to its first
argument. Moreover, the expected risk function R is ρ weakly-convex.
Assumption 2 (Stochastic oracle). For each w ∈ Rd, it holds that ℓ′(w) = EZ∼D[ℓ

′(w;Z)] ∈
∂R(w), where ℓ′(w; z) ∈ ∂ℓ(w; z) for any z ∈ Z .

Also, we assume that R∗ = minw∈Rd R(w) > −∞ and abbreviate ∆R0 := R(w0)−R∗.

2.2 REGULARIZED GOLDSTEIN STATIONARITY CRITERION

For generic non-smooth non-convex functions, the Goldstein (δ, ϵ)-stationarity (Goldstein, 1977) is
a standard criterion for convergence analysis, as defined below.
Definition 1 ((δ, ϵ)-Stationarity). The Goldstein δ-subdifferential of a Lipschitz function f at a point
w ∈ Rd is the convex hull of all Clarke subgradients at points in a δ-ball around w, i.e.,

∂δf(w) := conv
{
∪v∈Bδ(w)∂f(v)

}
.

A point w is called a (δ, ϵ)-stationary point if dist (0, ∂δf(w)) ≤ ϵ.

Despite that the finite-time guarantees on the (δ, ϵ)-stationarity have been well studied in the
original O2NC (Cutkosky et al., 2023), the corresponding analysis essentially needs the online
increments update to be explicitly constrained inside a tiny ball of radius δϵ2 which could be
over conservative. Inspired by Zhang & Cutkosky (2024), we next introduce a novel regularized
version of (δ, ϵ)-stationarity which obviates the need for such explicit constraints, and thus al-
lows for potentially more aggressive update of increments. Given a subset V ⊆ Rd, we denote
∂V F := conv {∪v∈V ∂F (v)}. Let us define

∥∂f(w)∥+µ := inf
V⊆Rd

{
dist(0, ∂V f) + µ sup

v∈V
∥v − w∥2

}
.

4
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Definition 2 ((µ, ϵ)-Regularized Stationarity). A point w is said to be a (µ, ϵ)-regularized stationary
point of a Lipschitz function f if ∥∂f(w)∥+µ ≤ ϵ.

Remark 1. Intuitively, the (µ, ϵ)-stationarity simultaneously controls the scale of a convex hull of
subgradients at points in an underlying subset V and the proximity of V to w. Compared to the
relaxed Goldstein stationarity introduced by Zhang & Cutkosky (2024, Definition 2.2), our version
uses supreme norm penalty instead of its on-average counterpart, which yields exact equivalence to
the original (δ, ϵ)-stationarity, as summarized in the lemma below (see Appendix A.1 for its proof).

Lemma 2. Let δ, ϵ, µ > 0 be arbitrary positive values. Consider a Lipschitz function f .

(a) If w is a (δ, ϵ)-stationary point, then it is also a
(

ϵ
δ2 , 2ϵ

)
-regularized stationary point.

(b) If w is a (µ, ϵ)-regularized stationary point, then it is also a
(√

ϵ
µ , ϵ
)

-stationary point.

We further state the following lemma which shows the monotonicity of ∥∂f(w)∥+µ with respect to
the regularization strength µ. See Appendix A.2 for its proof.

Lemma 3. Let f be a Lipschitz function. Then for any w ∈ Rd and 0 < µ1 ≤ µ2, it holds that
∥∂f(w)∥+µ1

≤ ∥∂f(w)∥+µ2
.

3 DERANDOMIZED O2NC FOR WEAKLY CONVEX OPTIMIZATION

Building on the O2NC framework, we develop in this section a derandomized stochastic subgradient
method for producing Goldstein-style stationary points of weakly convex functions. The overview of
algorithm is presented in Section 3.1. There are two optional subroutines for updating the increments
in the online learning module of our algorithm: projected OGD and periodically restarted OGD,
which are described and analyzed in details respectively in Section 3.2 and Section 3.3.

3.1 ALGORITHM

The pseudo-code of our Derandomized O2NC (D-O2NC) algorithm is outlined in Algorithm 2. In
contrast to the original O2NC (Algorithm 1), the stochastic optimizer module ( in light blue ) of our
algorithm simply eliminates the random interpolation step vn = wn−1 + sn∆n, and directly evalu-
ates the subgradients at each iterate wn = wn−1+∆n. In the online learning module ( in light red ),
we propose two optional variants of OGD for updating the increments ∆n, both of which are de-
signed for regret minimization over quadratic losses ⟨ĝn, ·⟩+ γ

2 ∥ · ∥
2, as described below:

• Option-I (Clipped OGD): The online learner A is instantiated by a standard projected OGD
iteration ∆n+1 = clipD [(1− ηγ)∆n − ηĝn] with learning rate η over a D-ball constraint.

• Option-II (Periodically restarted OGD): We adopt an unconstrained OGD iteration ∆n+1 =
(1 − ηγ)∆n − ηĝn, but reset ∆n+1 = 0 whenever mod (n + 1, T ) ≡ 1. That is, the OGD
update of ∆n is enforced to restart from scratch after every T steps of iteration.

Inspired by the original O2NC, the motivation behind online minimizing a series of quadratic losses
in our algorithm is that for a ρ-weakly convex objective and any γ ≥ ρ, we will have R(wn) −
R(wn−1) ≤ E

[
⟨ĝn,∆n⟩+ γ

2 ∥∆n∥2
]
. This suggests that the increments ∆n might be chosen in a

sequential manner to make the regret
∑N

n=1⟨ĝn,∆n⟩ + γ
2 ∥∆n∥2 as low as possible, such that the

function value gap R(wN ) − R(w0) can be well upper bounded. See Appendix C for more details
on the guarantees of OGD for producing optimal regret over quadratic loss functions.

3.2 RESULTS FOR D-O2NC UNDER CLIPPED OGD

Recall that in Option-I, the increments are updated with ∆n+1 = clipD [(1− ηγ)∆n − ηĝn]
which is a projected OGD iteration over the quadratic loss functions ⟨ĝn,∆⟩ + γ

2 ∥∆∥2 under a D-
ball constraint. It is interesting to show a connection of this update to the SGDM method popularly
used in training deep learning models (Sutskever et al., 2013; Cutkosky & Orabona, 2019).
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Algorithm 2: Derandomized O2NC
Input : γ, η > 0, D > 0 (optional), K,T ∈ N, initial w0 and ∆1 = 0. Set N = K × T .
for n = 1, ..., N do

/* Stochastic gradient optimizer */
Update wn = wn−1 +∆n;
Randomly sample zn ∼ D and compute ĝn ∈ ∂ℓ(wn; zn);

/* Online learning of increments */
(Option-I) Update ∆n+1 = clipD [(1− ηγ)∆n − ηĝn];/* Clipped OGD */
(Option-II) /* Periodically restarted OGD */
if mod(n+ 1, T ) ̸≡ 1 then

Update ∆n+1 = (1− ηγ)∆n − ηĝn;
end
else

Set ∆n+1 = 0;
end

end
Set w(k)

t = w(k−1)T+t, ∀k ∈ [K], t ∈ [T ], and w̄(k) = 1
T

∑T
t=1 w

(k)
t .

Output: w̄T ∼ Unif({w̄(k) : k ∈ [K]}).

Recover SGDM. Let mn = −γ∆n and β = ηγ, we can reexpress the update with Option-I as
wn = wn−1 − γ−1mn;

mn+1 = clipD [(1− β)mn + βĝn] .

The above procedure can be viewed as a clipped variant of SGDM where mn is the search direction
(which is restricted inside a D-ball), ĝn is the stochastic subgradient, γ is the learning rate, and
β is the momentum parameter. Compared to the clipped SGDM formula implied by the original
O2NC (Cutkosky et al., 2023), ours above does not introduce any random perturbation on iterates.

Complexity guarantees. The following theorem is our main result on the convergence of Algo-
rithm 2 for finding (δ, ϵ)-stationary points. See Appendix B.2 for a proof of this result.
Theorem 1. Suppose that Assumption 1 and Assumption 2 hold. Let γ ≥ ρ be an arbitrary scalar.
Suppose that η ≤ 1

8γ . Let K and T be positive integers and D be an arbitrary positive number.
Then for any δ ≥ TD, the sequence {w̄(k)}Kk=1 generated by Algorithm 2 with Option-I satisfies

E

[
1

K

K∑
k=1

dist(0, ∂δR(w̄(k)))

]
≤ ηG2

D
+

(
γT +

2

η

)
D

T
+

G√
T

+
∆R0

DKT
.

As a direct consequence, the following corollary shows the complexity of Algorithm 2 (with Option-
I) for producing Goldstein (δ, ϵ)-stationary point. See Appendix B.3 for its proof.
Corollary 1. Suppose that Assumption 1 and Assumption 2 hold. Let δ, ϵ > 0 be the desired
Goldstein stationarity parameters and N be the total budget of iterates. Set

T =
⌈
(δN)2/3

⌉
,K =

⌊
N

T

⌋
, γ =

N1/3

δ2/3
, η =

1

8N
, D =

δ1/3

N2/3
.

Suppose that N is sufficiently large such that

N ≥ (G2 +G+ 17 +∆R0)
3

δϵ3
+ ρ3δ2 +

1

δ
.

Then the output w̄T by Algorithm 2 with Option-I satisfies
E [dist (0, ∂δR(w̄T ))] ≤ ϵ.

Remark 2. The O(δ−1ϵ−3) rate, which dominates the composite complexity bound of Corollary 1,
is known to be optimal for all ϵ ≤ O(δ) even if the objective is smooth (Cutkosky et al., 2023), not to
mention weakly convex. It is interesting to note that the weak-convexity parameter ρ does not appear
in this dominant rate, but rather in a suboptimal component ρ3δ2 which allows it to scale as large as
O(δ−1ϵ−1) without dominating the optimal rate. In other words, the higher convergence precision
is required, the larger weak-convexity can be tolerated by our algorithm to preserve optimality.
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3.3 RESULTS FOR D-O2NC UNDER PERIODICALLY RESTARTED OGD

While Algorithm 2 with Option-I can achieve optimal dimension-free iteration complexity, the
clipped OGD iteration enforces the increments ∆n to stay inside a sufficiently small ball, which
could be too conservative. To deal with this issue, we further propose a novel periodically restarted
OGD procedure as the Option-II in our algorithm for implementing the OCO module. More pre-
cisely, at each time step n ≥ 1, we update ∆n+1 = (1 − ηγ)∆n − ηĝn, and reset ∆n+1 = 0
whenever mod(n+1, T ) ≡ 1. Such an unconstrained OGD procedure allows for more progressive
update especially when the iterates are far from stationary.
Remark 3. In regard with OCO module design, our Algorithm 2 with Option-II shares some spirits
with E-O2NC (Zhang & Cutkosky, 2024) where the OCO module is instantiated by an unconstrained
OMD. While bearing some similarity, our algorithm has two clear differences from theirs: 1) ours
is deterministic without requiring any random scaling on the increments; 2) our algorithm neither
needs to exponentially weight the subgradients in constructing losses, nor uses exponential aggrega-
tion of iterates for generating output, and thus is perhaps more relevant to practical implementation.
Remark 4. It is noteworthy that the proposed periodically restarted OGD can be immediately ex-
tended to the original O2NC for generic non-smooth, non-convex optimization. This is true because
under the so-called well-behavedness assumption (Cutkosky et al., 2023), similar quadratic losses
of the form ⟨ĝn, ·⟩+ γ

2 ∥ · ∥
2 can also be constructed in O2NC (or E-O2NC) with arbitrary γ > 0.

Recover SGDM. As an interesting consequence of using periodically restarted OGD, we can ex-
plicitly write the update of Algorithm 2 with Option-II as

wn = wn−1 − γ−1mn;

mn+1 = ((1− β)mn + βĝn)1{ mod (n+1,T )̸=1},

where mn = −γ∆n, β = ηγ, and 1{·} represents the indication function. The above update formula
is almost identical to the standard SGDM, with the only difference that the update of search direction
mn is now enforced to start over again after every T rounds of iteration. Similar resemblance
to SGDM was also revealed for the E-O2NC method (Zhang & Cutkosky, 2024), though under
somewhat more refined algorithmic designs as commented in Remark 3.

Complexity guarantees. The following is our main result on the convergence rate of Algorithm 2
with periodically restarted OGD (Option-II). A proof of this result is provided in Appendix B.4.
Theorem 2. Suppose that Assumption 1 and Assumption 2 hold. Let γ ≥ ρ be an arbitrary scalar.
Suppose that η ≤ 1

8γ . Let K and T be positive integers and D be an arbitrary positive number.
Then for any µ ≤ γ

8DT 2 , the sequence {w̄(k)}Kk=1 generated by Algorithm 2 with Option-II satisfies

E

[
1

K

K∑
k=1

∥∥∥∂R(w̄(k))
∥∥∥
+µ

]
≤ ηG2

D
+

(
γT +

1

η

)
D

T
+

G√
T

+
∆R0

DKT
.

Remark 5. Unlike in Theorem 1 where D is a hyper-parameter in Option-I, the scalar D in Theo-
rem 2 does not actually show up in Option-II: it is introduced for analysis purpose only.

Based on Theorem 2, we can further establish the following result on the complexity of Algorithm 2
(with Option-II) for producing (µ, ϵ)-regularized stationary points. See Appendix B.5 for its proof.
Corollary 2. Suppose that Assumption 1 and Assumption 2 hold. Let µ, ϵ > 0 be the desired
regularized-stationarity parameters and N be the total budget of iterates. Set

T =
⌈
N4/7µ−2/7

⌉
,K =

⌊
N

T

⌋
, γ = N3/7µ2/7, η =

1

8N
.

Suppose that

N ≥ (4G2 + 1 + 32∆R0)
7/2µ1/2

ϵ7/2
+

ρ7/3

µ2/3
+ µ1/2.

Then the output w̄T by Algorithm 2 with Option-II satisfies

E
[
∥∂R(w̄T )∥+µ

]
≤ ϵ.

Remark 6. In view of Lemma 2, by setting µ = δ−2ϵ, the bound in Corollary 2 implies an
O
(
δ−1ϵ−3 + ρ7/3δ4/3ϵ−2/3 + δ−1ϵ1/2

)
complexity for producing (δ, ϵ)-stationary points, which

is dominated by the optimal term δ−1ϵ−3. Similar to the discussion in Remark 2, the weak-convexity
parameter is allowed to scale as ρ = O(µ1/2ϵ−3/2) without dominating the optimal component.
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3.4 COMPARISON WITH PRIOR RESULTS

In Table 1, we summarize the complexity bounds and some important properties of D-O2NC with
comparison to several other subgradient-based methods for weakly convex optimization, including
SGD (Davis & Drusvyatskiy, 2019), SGDM (Mai & Johansson, 2020) and Interpolated Normalized
Gradient Descent (INGD) (Davis et al., 2022). A few comments are in order.

• Comparison with INGD. Our D-O2NC is deterministic up to the use of stochastic oracles,
with dimension-free and optimal complexity in terms of (δ, ϵ)-stationarity. In contrast, INGD is
randomized in design and hard to be extended to the stochastic setting; and its corresponding
complexity bound is dimension-dependent, but with sharper dependence on ρ and (δ, ϵ).

• Comparison with SGD and SGDM. The listed optimal complexity of O(ϵ−4) for SGD and
SGDM are about the ϵ-stationarity of Moreau envelope, i.e., ∥∇R1/ρ̄∥ ≤ ϵ with ρ̄ = O(ρ).
While our optimal bounds are not directly comparable to this complexity due to the distinct
criteria adopted, we still have some observations worth highlighting: 1) Lemma 1 suggests
that ϵ-stationarity of the Moreau envelope implies (ϵ/(2ρ), ϵ)-stationarity of the original ob-
jective (see Remark 9 in Appendix D for details), and thus the bounds of SGD/SGDM imply
O(δ−1ϵ−3) complexity for finding(δ, ϵ)-stationary points when δ ≥ ϵ/(2ρ), but not otherwise;
2) As we demonstrate in Theorem 3 (Appendix D) that a (δ, ϵ)-stationary point implies an(
ϵ+

√
δ
)

-stationary point of the Moreau envelope, which however yields the suboptimal com-

plexity O(ϵ−5) for achieving ϵ-stationarity (Corollary 3); 3) For second-order smooth func-
tions, based on the result of Cutkosky et al. (2023, Proposition 15) it can be readily shown
that D-O2NC recovers the optimal O(ϵ−3.5) complexity for finding ϵ-stationary point, which
however cannot be automatically implied by the tabulated results of SGD/SGDM. Last but not
least, the weak-convexity parameter ρ is allowed to be as large as δ−1ϵ−1 in our bound without
dominating the optimal rate, which is not applicable to those bounds of SGD and SGDM.

Method (δ, ϵ)-stationarity ϵ-stationarity
(Moreau envelope) DET SO

SGD
(Davis & Drusvyatskiy, 2019) – O

(
ρ
ϵ4

)
✓ ✓

SGDM
(Mai & Johansson, 2020) – O

(
ρ2

ϵ4

)
✓ ✓

INGD
(Davis et al., 2022) O

(
d log(ρ)

δϵ

)
– ✗ ✗

D-O2NC with Option-I (ours) O
(

1
δϵ3 + ρ3δ2 + 1

δ

)
– ✓ ✓

D-O2NC with Option-II (ours) O
(

1
δϵ3 + ρ7/3δ4/3

ϵ3/2
+ 1

δ

)
– ✓ ✓

Table 1: Comparison of subgradient-based weakly convex optimization algorithms in terms of com-
plexity bounds, determinism (DET), and applicability with stochastic oracle (SO). The involved
quantities: (δ, ϵ): convergence precisions; ρ: weak-convexity parameter; d: dimension of model.

4 EXPERIMENTS

In this section, we carry out a preliminary experimental study to evaluate the effectiveness of our D-
O2NC method when specified with the periodically restarted OGD optimizer (Option-II) for training
deep neural networks. Since our algorithm corresponds to a momentum-restarted version of SGDM,
we choose to use standard SGDM as a baseline algorithm for comparison. Some additional experi-
mental results and analysis are provided in the Appendix section E.

4.1 EXPERIMENT SETUP

Dataset and backbone. Our experiments are conducted on the CIFAR-10 image classification
benchmark dataset Krizhevsky & Hinton (2009) popularly used for evaluating deep learning mod-
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(a) Train Loss (ResNet-101) (b) Train Accuracy (ResNet-101) (c) Test Accuracy (ResNet-101)

(d) Train Loss (ViT) (e) Train Accuracy (ViT) (f) Test Accuracy (ViT)

Figure 1: Experimental results on CIFAR-10 with ResNet-101 (top) and ViT (bottom) networks.

els and algorithms. It consists of 60,000 color images across 10 classes, with 50,000 allocated
for training and 10,000 for testing. We employ ResNet-101 (He et al., 2016) and Vision Trans-
former (ViT) (Dosovitskiy et al., 2021) as two backbone networks for representation learning, using
GELU Hendrycks & Gimpel (2016) as activation functions in both cases.

Implementation details and performance metrics. In the considered algorithms, the model pa-
rameters are optimized over 400 epochs with a minibatch size of 256 for ResNet-101, and 600
epochs with the same batch size for ViT, where a patch size of 4 is employed. The initial learning
rate is 0.01, decayed via cosine annealing to facilitate smoother convergence. The optimizer em-
ploys a momentum of 0.99, along with a weight decay of 5×10−4. Our periodically restarted O2NC
method is implemented and compared under various restarting frequency T ∈ {20, 50} × 256. For
each experiment, we conducted three independent runs using distinct random seeds and recorded
the empirical loss and accuracy during training, as well as the prediction accuracy during testing.

4.2 RESULTS

Figure 1 shows the convergence curves of the considered algorithms. From this group of results we
can see that D-O2NC converges considerably sharper than SGDM on both models, and averagely the
former outperforms the latter in test accuracy by 1.29 percentage points on ResNet-101, and 1.78 on
ViT. These observations demonstrate that the momentum-resetting mechanism in our method might
not only help to improve convergence but also yield superior generalization performance.

5 CONCLUSION

In this paper, we made progress towards resolving a critical issue on the link of O2NC (online-to-
non-convex conversion) to SGDM: under auxiliary random interpolation or scaling, O2NC mirrors
SGDM but randomization causes deviations from standard SGDM. To this end, for a broad class of
weakly convex functions, we presented D-O2NC as a derandomized version of O2NC that main-
tains optimal oracle complexity O(δ−1ϵ−3) while recovering SGDM in a deterministic way. Our
method allows the weak-convexity parameter to scale as large as O(δ−1ϵ−1) without dominating the
optimal rate, meaning that stronger stationarity yields tolerating higher non-convexity. Furthermore,
a periodically restarted variant of D-O2NC is developed, enabling more progressive updates when
far from stationary. Corresponding to a momentum-restarted SGDM method, this variant has been
empirically shown to be effective for training ResNet and ViT models on benchmark datasets. An
interesting future work is to extend our periodically restarted O2NC technique to the analysis and
improvement of other popular ML optimizers including Adam and schedule-free SGD.
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Sébastien Bubeck. Convex optimization: Algorithms and complexity. Found. Trends Mach. Learn.,
8(3-4):231–357, 2015.

Nicolo Cesa-Bianchi, Alessandro Conconi, and Claudio Gentile. On the generalization ability of
on-line learning algorithms. IEEE Transactions on Information Theory, 50(9):2050–2057, 2004.
ISSN 0018-9448. doi: 10.1109/TIT.2004.833339.

Frank H Clarke. Generalized gradients and applications. Transactions of the American Mathemati-
cal Society, 205:247–262, 1975.

Frank H Clarke. Optimization and nonsmooth analysis. SIAM, 1990.

Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex sgd.
In Advances in Neural Information Processing Systems 32 (NeurIPS 2019), pp. 15236–15245,
2019.

Ashok Cutkosky, Harsh Mehta, and Francesco Orabona. Optimal stochastic non-smooth non-convex
optimization through online-to-non-convex conversion. In International Conference on Machine
Learning (ICML), pp. 6643–6670. PMLR, 2023.

Damek Davis and Dmitriy Drusvyatskiy. Stochastic model-based minimization of weakly convex
functions. SIAM J. Optim., 29(1):207–239, 2019.

Damek Davis and Benjamin Grimmer. Proximally guided stochastic subgradient method for nons-
mooth, nonconvex problems. SIAM Journal on Optimization, 29(3):1908–1930, 2019.

Damek Davis, Dmitriy Drusvyatskiy, Sham Kakade, and Jason D Lee. Stochastic subgradient
method converges on tame functions. Foundations of computational mathematics, 20(1):119–
154, 2020.

Damek Davis, Dmitriy Drusvyatskiy, Yin Tat Lee, Swati Padmanabhan, and Guanghao Ye. A gra-
dient sampling method with complexity guarantees for lipschitz functions in high and low dimen-
sions. Advances in neural information processing systems, 35:6692–6703, 2022.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aaron Defazio, Xingyu Yang, Ahmed Khaled, Konstantin Mishchenko, Harsh Mehta, and Ashok
Cutkosky. The road less scheduled. Advances in Neural Information Processing Systems, 37:
9974–10007, 2024.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In Proceedings of the 9th International Conference on Learning Representations (ICLR),
Virtual Event, Austria, 2021.

D Drusvyatskiy and C Paquette. Efficiency of minimizing compositions of convex functions
and smooth maps. Mathematical Programming, 178(1-2):503–558, 2019. doi: 10.1007/
s10107-018-1311-3.

John C. Duchi and Feng Ruan. Stochastic methods for composite and weakly convex optimization
problems. SIAM J. Optim., 28(4):3229–3259, 2018.

Yu M Ermol’ev and VI Norkin. Stochastic generalized gradient method for nonconvex nonsmooth
stochastic optimization. Cybernetics and Systems Analysis, 34(2):196–215, 1998.

Allen A Goldstein. Optimization of lipschitz continuous functions. Mathematical Programming, 13
(1):14–22, 1977.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, Las Vegas, NV, 2016.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Michael Jordan, Guy Kornowski, Tianyi Lin, Ohad Shamir, and Manolis Zampetakis. Deterministic
nonsmooth nonconvex optimization. In Conference on Learning Theory, pp. 4570–4597. PMLR,
2023.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings
of the 3rd International Conference on Learning Representations (ICLR), San Diego, CA, 2015.

Siyu Kong and Adrian S Lewis. Lipschitz minimization and the goldstein modulus. Mathematical
Programming, pp. 1–30, 2025.

Guy Kornowski and Ohad Shamir. Oracle complexity in nonsmooth nonconvex optimization. Jour-
nal of Machine Learning Research, 23:1–43, 2022.

Guy Kornowski and Ohad Shamir. An algorithm with optimal dimension-dependence for zero-order
nonsmooth nonconvex stochastic optimization. Journal of Machine Learning Research, 25(122):
1–14, 2024.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical Report, University of Toronto, 2009.

Vien V Mai and Mikael Johansson. Convergence of a stochastic gradient method with momentum
for non-smooth non-convex optimization. In International Conference on Machine Learning
(ICML), 2020.

Yurii Nesterov et al. Lectures on convex optimization, volume 137. Springer, 2018.

Evgeni Alekseevich Nurminskii. The quasigradient method for the solving of the nonlinear pro-
gramming problems. Cybernetics, 9(1):145–150, 1973.

Spyridon Pougkakiotis and Dionysios S Kalogerias. A zeroth-order proximal stochastic gradient
method for weakly convex stochastic optimization. SIAM Journal on Scientific Computing, 45
(5):2679–2702, 2023. doi: 10.1137/22M1486306.

R Tyrrell Rockafellar. Convex analysis, volume 28. Princeton university press, 1997.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jan A Snyman. Practical mathematical optimization: an introduction to basic optimization theory
and classical and new gradient-based algorithms. Springer, 2005.

Ilya Sutskever, James Martens, George E Dahl, and Geoffrey E Hinton. On the importance of
initialization and momentum in deep learning. In International Conference on Machine Learning,
volume 28, pp. 1139–1147. JMLR. org, 2013.

Lai Tian and Anthony Man-Cho So. No dimension-free deterministic algorithm computes approxi-
mate stationarities of lipschitzians. Mathematical Programming, 208(1):51–74, 2024.

Wim van Ackooij, Felipe Atenas, and Claudia Sagastizábal. Weak convexity and approximate sub-
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A PROOFS IN SECTION 2

A.1 PROOF OF LEMMA 2

We prove the following restated lemma which establishes the equivalence between (µ, ϵ)-regularized
stationarity and Goldstein (δ, ϵ)-stationarity.
Lemma 2. Let δ, ϵ, µ > 0 be arbitrary positive values. Consider a Lipschitz function f .

(a) If w is a (δ, ϵ)-stationary point, then it is also a
(

ϵ
δ2 , 2ϵ

)
-regularized stationary point.

(b) If w is a (µ, ϵ)-regularized stationary point, then it is also a
(√

ϵ
µ , ϵ
)

-stationary point.

Proof. Part(a): Let w be a Goldstein (δ, ϵ)-stationary point of f . Consider µ = ϵ
δ2 . Then it follows

from Definition 2 that
∥∂f(w)∥+µ ≤dist(0, ∂Bδ(w)f) + µ sup

v∈Bδ(w)

∥v − w∥2

=dist(0, ∂δf(w)) + µ sup
v∈Bδ(w)

∥v − w∥2

≤ϵ+ µδ2 = 2ϵ,

where in the second inequality we have used the definition of Goldstein (δ, ϵ)-stationarity. Then by
definition w must be a

(
ϵ
δ2 , 2ϵ

)
-regularized stationary point of f .

Part(b): Let us now consider the case that w is a (µ, ϵ)-regularized stationary point of f . Let δ =
√

ϵ
µ

and ε > 0 be arbitrary. Since ∥∂f(w)∥+µ ≤ ϵ, it follows from Definition 2 that there exists some
V ∗(ε) such that

ϵ ≥ ∥∂f(w)∥+µ ≥ dist(0, ∂V ∗(ε)f) + µ sup
v∈V ∗(ε)

∥v − w∥2 − ε,

which then directly implies

dist(0, ∂V ∗(ε)f) ≤ ϵ+ ε, sup
v∈V ∗(ε)

∥v − w∥ ≤
√

ϵ+ ε

µ
≤
√

ϵ

µ
+

√
ε

µ
= δ +

√
ε

µ
.

The second inequality in the above implies that V ∗(ε) ⊆ Bδ+
√

ε
µ
(w) and thus ∂V ∗(ε)f ⊆ ∂δ+

√
ε
µ
f .

Then we have
dist

(
0, ∂δ+

√
ε
µ
f
)
≤ dist

(
0, ∂V ∗(ε)f

)
≤ ϵ+ ε.

Since ε is allowed to be arbitrarily small and recall that δ =
√

ϵ
µ , the above inequality implies that

w deems a Goldstein
(√

ϵ
µ , ϵ
)

-stationary point.

A.2 PROOF OF LEMMA 3

Here we prove the following restated lemma on the monotonicity of ∥∂F (w)∥+µ with respect to µ.
Lemma 3. Let f be a Lipschitz function. Then for any w ∈ Rd and 0 < µ1 ≤ µ2, it holds that
∥∂f(w)∥+µ1

≤ ∥∂f(w)∥+µ2
.

Proof. Consider a fixed vector w. Let ε > 0 be arbitrary. By definition we know that there exists
a subset V ∗

2 (ε) ⊆ Rd such that ∥∂F (w)∥+µ2
≥ dist(0, ∂V ∗

2 (ε)F ) + µ2 supv∈V ∗
2 (ε) ∥v − w∥2 − ε.

Again, by definition and the condition µ1 ≤ µ2 we can see that

∥∂R(w)∥+µ1
≤dist(0, ∂V ∗

2 (ε)R) + µ1 sup
v∈V ∗

2 (ε)

∥v − w∥2

≤dist(0, ∂V ∗
2 (ε)R) + µ2 sup

v∈V ∗
2 (ε)

∥v − w∥2

≤∥∂R(w)∥+µ2
+ ε.

By noting that ε can be arbitrarily small, we must have ∥∂F (w)∥+µ1 ≤ ∥∂F (w)∥+µ2 .
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B PROOFS IN SECTION 3

B.1 SOME KEY LEMMAS

The following lemma is key to our analysis of Algorithm 2.

Lemma 4. Suppose that Assumption 1 and Assumption 2 hold. Let γ ≥ ρ and D > 0 be arbitrary
numbers. Suppose that η ≤ 1

8γ . Then for any k ∈ [K], the sequence {w(k)
t }Tt=1 generated by

Algorithm 2 satisfies

E

[
R(w

(k)
T )−R(w

(k)
0 ) +

T∑
t=1

γ

8
∥∆(k)

t ∥2
]

≤− E
[
DT

∥∥∥ḡ(k)∥∥∥]+ ηG2T +DG
√
T +

(
γT +

1

η

)
D2 +

∥∆(k)
1 ∥2

η
.

Proof. Let us consider the filtration Ft = S{∆1,∆2, ...,∆t+1} where S{·} denotes the sigma field.
For any n ≥ 1, by Assumption 2 we have gn := E[ĝn | Fn−1] ∈ ∂R(wn). For any γ ≥ ρ, from the
weak convexity assumption in Assumption 1 we can see that the following holds for all n ≥ 1,

R(wn)−R(wn−1) ≤E
[
⟨gn,∆n⟩+

γ

2
∥∆n∥2 | Fn−1

]
=E

[
⟨ĝn,∆n⟩+

γ

2
∥∆n∥2 | Fn−1

]
.

It follows from the law of total expectation that

E [R(wn)−R(wn−1)] ≤ E
[
⟨ĝn,∆n⟩+

γ

2
∥∆n∥2

]
.

Consider a fixed k ∈ [K]. Recall that w(k)
t = w(k−1)T+t, t ∈ [T ] and similarly we use the notations

∆
(k)
t , ĝ

(k)
t , g

(k)
t . Then the above inequality implies that for any t ∈ [T ]:

E
[
R(w

(k)
t )−R(w

(k)
t−1)

]
≤ E

[
⟨ĝ(k)t ,∆

(k)
t ⟩+ γ

2
∥∆(k)

t ∥2
]
.

By summing the above bound over t = 1, ..., T we obtain

E
[
R(w

(k)
T )−R(w

(k)
0 )
]

=E

[
T∑

t=1

(
R(w

(k)
t )−R(w

(k)
t−1)

)]
≤ E

[
T∑

t=1

(
⟨ĝ(k)t ,∆

(k)
t ⟩+ γ

2
∥∆(k)

t ∥2
)]

.
(2)

We next upper bound the RHS in the above inequality using the OGD regret bound in Lemma 6.
To this end, it can be noted that the sequence {∆(k)

t }Tt=1 generated by Algorithm 2 is the output of
OGD, starting from ∆

(k)
1 with step-size η, on the following quadratic losses {f (k)

t }t∈[T ] over the
constraint BD(0) (for Option-I) (or over the entire space Rd for Option-II):

f
(k)
t (·) = ⟨ĝ(k)t , ·⟩+ γ

2
∥ · ∥2.

For arbitrary D > 0, let us consider the following comparator:

∆̄(k) := −D

∑T
t=1 g

(k)
t∥∥∥∑T

t=1 g
(k)
t

∥∥∥ .
14
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Denote ḡ(k) := 1
T

∑T
t=1 g

(k)
t and ¯̂g(k) := 1

T

∑T
t=1 ĝ

(k)
t . Since η ≤ 1

8γ , we can apply Lemma 6 to
get

E

[(
T∑

t=1

⟨ĝ(k)t ,∆
(k)
t ⟩+ γ

2
∥∆(k)

t ∥2
)]

Lemma 6
≤ E

[
T∑

t=1

(〈
ĝ
(k)
t , ∆̄(k)

〉
+

γ

2
∥∆̄(k)∥2

)
+

T∑
t=1

(
η∥ĝ(k)t ∥2 + γ

2
∥∆̄(k)∥2 − γ

8
∥∆(k)

t ∥2
)

+
1

η

(
∥∆(k)

1 ∥2 + ∥∆̄(k)∥2
)]

=E

[〈
T∑

t=1

(ĝ
(k)
t − g

(k)
t ), ∆̄(k)

〉
+

〈
T∑

t=1

g
(k)
t , ∆̄(k)

〉

+

T∑
t=1

(
η∥ĝ(k)t ∥2 + γ∥∆̄(k)∥2 − γ

8
∥∆(k)

t ∥2
)
+

1

η

(
∥∆(k)

1 ∥2 + ∥∆̄(k)∥2
)]

ζ1
≤E

[
DT

∥∥∥¯̂g(k) − ḡ(k)
∥∥∥−DT

∥∥∥ḡ(k)∥∥∥+ T∑
t=1

(
η∥ĝ(k)t ∥2 + γD2 − γ

8
∥∆(k)

t ∥2
)
+

D2

η
+

∥∆(k)
1 ∥2

η

]
ζ2
≤− E

[
DT

∥∥∥ḡ(k)∥∥∥+ T∑
t=1

γ

8
∥∆(k)

t ∥2
]
+ ηTG2 +DG

√
T +

(
γT +

1

η

)
D2 +

∥∆(k)
1 ∥2

η
,

where in “ζ1” we have used Cauchy–Schwarz inequality and used the fact ∥∆(k)
1 ∥ ≤ D,

and in “ζ2” we have used ∥ĝ(k)t ∥ ≤ G implied by Assumption 1 and E
[∥∥¯̂g(k) − ḡ(k))

∥∥] ≤√
E
[∥∥¯̂g(k) − ḡ(k)

∥∥2] = 1
T

√∑T
t=1 E∥g

(k)
t − ĝ

(k)
t ∥2 ≤ 1

T

√∑T
t=1 E∥ĝ

(k)
t ∥2 ≤ G√

T
. By substitut-

ing the previous inequality into equation 2 and rearranging the terms we obtain the desired bound.
The proof is completed.

The following simple lemma is also useful in our analysis. A proof is provided for the sake of
completeness.

Lemma 5. Let w1, w2, ..., wn be a set of vectors and w̄ = 1
n

∑n
i=1 wi. Then the following holds for

all i ∈ [n]:

∥wi − w̄∥2 ≤ 1

n

n∑
i′=1

∥wi − wi′∥2 ≤ n

n∑
j=1

∥∆j∥2,

where ∆j := wj − wj−1 and w0 can be chosen arbitrary for determining ∆1.

Proof. Fix some i ∈ [n]. It can be shown that

∥wi − w̄∥2 =

∥∥∥∥∥wi −
1

n

n∑
i′=1

wi′

∥∥∥∥∥
2

≤ 1

n

n∑
i′=1

∥wi − wi′∥2

=
1

n

n∑
i′=1

∥∥∥∥∥∥
i∨i′∑

j=i∧i′+1

(wj−1 − wj)

∥∥∥∥∥∥
2

≤ 1

n

n∑
i′=1

 i∨i′∑
j=i∧i′+1

∥∆j∥

2

≤

 n∑
j=2

∥∆j∥

2

≤ n

n∑
j=1

∥∆j∥2.

The proof is completed.
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B.2 PROOF OF THEOREM 1

Theorem 1. Suppose that Assumption 1 and Assumption 2 hold. Let γ ≥ ρ be an arbitrary scalar.
Suppose that η ≤ 1

8γ . Let K and T be positive integers and D be an arbitrary positive number.
Then for any δ ≥ TD, the sequence {w̄(k)}Kk=1 generated by Algorithm 2 with Option-I satisfies

E

[
1

K

K∑
k=1

dist(0, ∂δR(w̄(k)))

]
≤ ηG2

D
+

(
γT +

2

η

)
D

T
+

G√
T

+
∆R0

DKT
.

Proof. Under the given conditions, for any k ∈ [K], we can invoke Lemma 4 to Algorithm 2 (with
Option-I) to get

E

[
R(w

(k)
T )−R(w

(k)
0 ) +

T∑
t=1

γ

8
∥∆(k)

t ∥2
]

≤− E
[
DT

∥∥∥ḡ(k)∥∥∥]+ ηG2T +DG
√
T +

(
γT +

1

η

)
D2 +

∥∆(k)
1 ∥2

η

≤− E
[
DT

∥∥∥ḡ(k)∥∥∥]+ ηG2T +DG
√
T +

(
γT +

2

η

)
D2,

where in the last step we have used the fact ∥∆(k)
1 ∥ ≤ D due to the explicit constraint imposed in

Option-I. Note that by definition we have w
(k)
T = w

(k+1)
0 . By omitting the non-negative summation

term in the LHS of the above inequality we get

E
[
R(w

(k+1)
0 )−R(w

(k)
0 )
]
≤ −E

[
DT

∥∥∥ḡ(k)∥∥∥]+ ηG2T +DG
√
T +

(
γT +

2

η

)
D2.

Rearranging the terms on both sides of the above inequality yields

E
[
DT

∥∥∥ḡ(k)∥∥∥] ≤ ηG2T +DG
√
T +

(
γT +

2

η

)
D2 + E

[
R(w

(k)
0 )−R(w

(k+1)
0 )

]
.

By summing the above inequality of over k ∈ [K] we get

E

[
DT

K∑
k=1

∥∥∥ḡ(k)∥∥∥] ≤ηG2KT +DGK
√
T +

(
γT +

2

η

)
KD2 + E

[
K∑

k=1

(
R(w

(k)
0 )−R(w

(k+1)
0 )

)]

=ηG2KT +DGK
√
T +

(
γT +

2

η

)
KD2 + E

[
R(w

(1)
0 )−R(w

(K+1)
0 )

]
≤ηG2KT +DGK

√
T +

(
γT +

2

η

)
KD2 +R(w0)−R∗.

Dividing the factor DKT on both sides of the above inequality yields

E

[
1

K

K∑
k=1

∥∥∥ḡ(k)∥∥∥] ≤ ηG2

D
+

(
γT +

2

η

)
D

T
+

G√
T

+
∆R0

DKT
. (3)

Since ∥∆(k)
t ∥ ≤ D almost surely for all t ∈ [T ], by applying Lemma 5 we obtain that,∥∥∥w(k)

t − w̄(k)
∥∥∥ ≤

√√√√T

T∑
t=1

∥∆(k)
t ∥2 ≤ TD ≤ δ, ∀t ∈ [T ],

which implies

dist
(
0, ∂δR(w̄(k))

)
≤

∥∥∥∥∥ 1T
T∑

t=1

g
(k)
t

∥∥∥∥∥ =
∥∥∥ḡ(k)∥∥∥ .

Combining the above with equation 3 yields

E

[
1

K

K∑
k=1

dist
(
0, ∂δR(w̄(k))

)]
≤ ηG2

D
+

(
γT +

2

η

)
D

T
+

G√
T

+
∆R0

DKT
.

The proof is completed.
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B.3 PROOF OF COROLLARY 1

Corollary 1. Suppose that Assumption 1 and Assumption 2 hold. Let δ, ϵ > 0 be the desired
Goldstein stationarity parameters and N be the total budget of iterates. Set

T =
⌈
(δN)2/3

⌉
,K =

⌊
N

T

⌋
, γ =

N1/3

δ2/3
, η =

1

8N
, D =

δ1/3

N2/3
.

Suppose that N is sufficiently large such that

N ≥ (G2 +G+ 17 +∆R0)
3

δϵ3
+ ρ3δ2 +

1

δ
.

Then the output w̄T by Algorithm 2 with Option-I satisfies

E [dist (0, ∂δR(w̄T ))] ≤ ϵ.

Proof. The given choice of the hyper-parameters ensures that TD ≤ δ. Under the condition on N
we can verify that

γ ≥ ρ, γη =
1

8(δN)2/3
≤ 1

8
.

Then all the conditions of Theorem 1 are fulfilled in our setting, and the theorem can be applied to
obtain

E

[
1

K

K∑
k=1

dist
(
0, ∂δR(w̄(k))

)]

≤ηG2

D
+

(
γT +

2

η

)
D

T
+

G√
T

+
∆R0

DKT

≤
(
G2

8
+ 1 + 16 +G+∆R0

)
1

(δN)1/3

≤
(
G2 +G+ 17 +∆R0

) 1

(δN)1/3
≤ ϵ,

where the last inequality is due to the condition on N . The desired bound follows by noting that
w̄T ∼ Unif({w̄(k) : k ∈ [K]}). The proof is completed.

B.4 PROOF OF THEOREM 2

Theorem 2. Suppose that Assumption 1 and Assumption 2 hold. Let γ ≥ ρ be an arbitrary scalar.
Suppose that η ≤ 1

8γ . Let K and T be positive integers and D be an arbitrary positive number.
Then for any µ ≤ γ

8DT 2 , the sequence {w̄(k)}Kk=1 generated by Algorithm 2 with Option-II satisfies

E

[
1

K

K∑
k=1

∥∥∥∂R(w̄(k))
∥∥∥
+µ

]
≤ ηG2

D
+

(
γT +

1

η

)
D

T
+

G√
T

+
∆R0

DKT
.

Proof. Under the given conditions, for any k ∈ [K], we can invoke Lemma 4 to Algorithm 2 (with
Option-II) to get

E

[
R(w

(k)
T )−R(w

(k)
0 ) +

T∑
t=1

γ

8
∥∆(k)

t ∥2
]

≤− E
[
DT

∥∥∥ḡ(k)∥∥∥]+ ηG2T +DG
√
T +

(
γT +

1

η

)
D2 +

∥∆(k)
1 ∥2

η

≤− E
[
DT

∥∥∥ḡ(k)∥∥∥]+ ηG2T +DG
√
T +

(
γT +

1

η

)
D2,
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where in the last inequality we have used the fact ∥∆(k)
1 ∥ = 0 according to the periodic restarting

step in Option-II of Algorithm 2. Note that by definition we have w
(k)
T = w

(k+1)
0 . Then the above

implies that

E

R(w
(k+1)
0 )−R(w

(k)
0 ) +

γ

8

T∑
t=1

∥∆(k)
t ∥2︸ ︷︷ ︸

A


≤− E

[
DT

∥∥∥ḡ(k)∥∥∥]+ ηG2T +DG
√
T +

(
γT +

1

η

)
D2.

By applying Lemma 5 we can lower bound the term A(k) on the LHS of the above inequality as

A ≥ γ

8T
max
t∈[T ]

∥∥∥w(k)
t − w̄(k)

∥∥∥2 .
It follows that

E
[
R(w

(k+1)
0 )−R(w

(k)
0 ) +

γ

8T
max
t∈[T ]

∥∥∥w(k)
t − w̄(k)

∥∥∥2]
≤− E

[
DT

∥∥∥ḡ(k)∥∥∥]+ ηG2T +DG
√
T +

(
γT

2
+

1

η

)
D2.

Rearranging the terms on both sides of the above inequality yields

E
[
DT

∥∥∥ḡ(k)∥∥∥+ γ

8T
max
t∈[T ]

∥∥∥w(k)
t − w̄(k)

∥∥∥2]
≤ηG2T +DG

√
T +

(
γT

2
+

1

η

)
D2 + E

[
R(w

(k)
0 )−R(w

(k+1)
0 )

]
.

By summing the above inequality of over k ∈ [K] we get

E

[
DT

K∑
k=1

∥∥∥ḡ(k)∥∥∥+ γ

8T

K∑
k=1

max
t∈[T ]

∥∥∥w(k)
t − w̄(k)

∥∥∥2]

≤ηG2KT +DGK
√
T +

(
γT +

1

η

)
KD2 + E

[
K∑

k=1

(
R(w

(k)
0 )−R(w

(k+1)
0 )

)]

=ηG2KT +DGK
√
T +

(
γT +

1

η

)
KD2 + E

[
R(w

(1)
0 )−R(w

(K+1)
0 )

]
≤ηG2KT +DGK

√
T +

(
γT +

1

η

)
KD2 +R(w0)−R∗.

Finally, dividing the factor DKT on both sides of the above inequality yields

E

[
1

K

K∑
k=1

(∥∥∥ḡ(k)∥∥∥+ γ

8DT 2
max
t∈[T ]

∥∥∥w(k)
t − w̄(k)

∥∥∥2)] ≤ ηG2

D
+

(
γT +

1

η

)
D

T
+

G√
T

+
∆R0

DKT
.

Since µ ≤ µ′ = γ
8DT 2 , in view of Lemma 3 we get∥∥∥∂R(w̄(k))

∥∥∥
+µ

≤
∥∥∥∂R(w̄(k))

∥∥∥
+µ′

≤
∥∥∥ḡ(k)∥∥∥+ γ

8DT 2
max
t∈[T ]

∥∥∥w(k)
t − w̄(k)

∥∥∥2 .
Combining the preceding two inequalities leads to the desired result. The proof is completed.

B.5 PROOF OF COROLLARY 2

Corollary 2. Suppose that Assumption 1 and Assumption 2 hold. Let µ, ϵ > 0 be the desired
regularized-stationarity parameters and N be the total budget of iterates. Set

T =
⌈
N4/7µ−2/7

⌉
,K =

⌊
N

T

⌋
, γ = N3/7µ2/7, η =

1

8N
.
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Suppose that

N ≥ (4G2 + 1 + 32∆R0)
7/2µ1/2

ϵ7/2
+

ρ7/3

µ2/3
+ µ1/2.

Then the output w̄T by Algorithm 2 with Option-II satisfies

E
[
∥∂R(w̄T )∥+µ

]
≤ ϵ.

Proof. Under the conditions on N we can verify that

γ ≥ ρ, ηγ =
µ2/7

8N4/7
≤ 1

8
.

Let us now consider the number D = 1
32µ

−1/7N−5/7. Again the condition on N implies that

T ′ := N4/7µ−2/7 ≥ 1.

With the given choice of T, γ,D, it can be readily shown that

γ

8DT 2
=

γ

8D⌈T ′⌉2
≥ γ

8D(T ′ + 1)2
≥ γ

32DT ′2 = µ.

In view of the above arguments, the conditions of Theorem 2 are fulfilled in our setting, and thus we
can apply it to obtain that

E

[
1

K

K∑
k=1

∥∥∥∂R(w̄(k))
∥∥∥
+µ

]
≤ηG2

D
+

(
γT +

1

η

)
D

T
+

G√
T

+
∆R0

DKT

≤
(
4G2 +

1

32
+

1

4
+ 32∆R0

)
µ1/7

N2/7

≤(4G2 + 1 + 32∆R0)
µ1/7

N2/7
≤ ϵ,

where in the last step we have used the condition on N . The desired bound follows by noting that
w̄T ∼ Unif({w̄(k) : k ∈ [K]}). This proves the desired bound.

C ANALYSIS OF ONLINE GRADIENT DESCENT FOR QUADRATIC LOSSES

Consider the quadratic loss functions of the form ft(x) = ⟨ut, x⟩ + γ
2 ∥x∥

2, t ≥ 1 over a convex
constraint C. We will analyze the following standard online gradient descent (OGD) method starting
from an initial iterate x1 with step-sizes η > 0:

xt+1 := ΠC [xt − η∇ft(xt)] = ΠC [(1− ηγ)xt − ηut] , (4)

where ΠC denotes the Euclidian projection operator associated with C. Let RegretT (x̄) be the regret
of algorithm w.r.t. some comparator x̄ ∈ C after T iterations, as defined below:

RegretT (x̄) :=
T∑

t=1

ft(xt)−
T∑

t=1

ft(x̄).

Based on standard analysis, we can show the following result on the regret bound of the above OGD
algorithm.

Lemma 6. Suppose that ηγ ≤ 1
8 . Then the OGD procedure 4 applied on {ft}Tt=1 over a convex

constraint C guarantees that for all T ≥ 1 and x̄:

RegretT (x̄) ≤
T∑

t=1

(
η∥ut∥2 +

γ

2
∥x̄∥2 − γ

8
∥xt∥2

)
+

1

η

(
∥x1∥2 + ∥x̄∥2

)
.
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Proof. First, it can be verified that

∥xt+1 − x̄∥2 = ∥ΠC (xt − η∇ft(xt))− x̄∥2

≤∥xt − η∇ft(xt)− x̄∥2

=∥xt − x̄∥2 + η2∥∇ft(xt)∥2 − 2η⟨∇ft(xt), xt − x̄⟩,
which implies

⟨∇ft(xt), xt − x̄⟩ = ∥xt − x̄∥2 − ∥xt+1 − x̄∥2

2η
+

η∥∇ft(xt)∥2

2
.

Then based on the strong convexity of ft we can show that

RegretT (x) =
T∑

t=1

ft(xt)−
T∑

t=1

ft(x̄)

≤
T∑

t=1

⟨∇ft(xt), xt − x̄⟩ − γ

2
∥xt − x̄∥2

≤
T∑

t=1

(
∥xt − x̄∥2 − ∥xt+1 − x̄∥2

2η
− γ

2
∥xt − x̄∥2

)
+

T∑
t=1

η∥∇ft(xt)∥2

2

=−
T∑

t=1

γ

2
∥xt − x̄∥2 + 1

2η
∥x1 − x̄∥2 − 1

2η
∥xT+1 − x̄∥2 +

T∑
t=1

η∥ut + γxt∥2

2

≤−
T∑

t=1

γ

2
∥xt − x̄∥2 + 1

η

(
∥x1∥2 + ∥x̄∥2

)
+

T∑
t=1

η(∥ut∥2 + γ2∥xt∥2)

ζ1
≤−

T∑
t=1

γ

2

(
∥xt∥2

2
− ∥x̄∥2

)
+

1

η

(
∥x1∥2 + ∥x̄∥2

)
+

T∑
t=1

η(∥ut∥2 + γ2∥xt∥2)

=

T∑
t=1

(
η∥ut∥2 +

γ

2
∥x̄∥2 − γ

(
1

4
− ηγ

)
∥xt∥2

)
+

1

η

(
∥x1∥2 + ∥x̄∥2

)
≤

T∑
t=1

(
η∥ut∥2 +

γ

2
∥x̄∥2 − γ

8
∥xt∥2

)
+

1

η

(
∥x1∥2 + ∥x̄∥2

)
,

where in “ζ1” we have used the fact ∥a− b∥2 ≥ ∥a∥2

2 −∥b∥2, and in the last inequality we have used
the condition ηγ ≤ 1

8 . This proves the desired bound.

Remark 7. The main message conveysed by Lemma 6 is that it is beneficial to control the scales of
the competitor x̄ and the initial x1 to make the regret small, even the domain of interest is allowed
to be unbounded. This result inspires us to explicitly control the scale of the initial iterate.

D FROM GOLDSTEIN TO CLARKE STATIONARITY

As a side contribution of our work, we have established in the following theorem a set of results
on the connection between the Goldstein stationarity of a weakly convex function and the Clarke
stationarity of its Moreau envelope, which are believed to be of independent interests.
Theorem 3. Let f be a G-Lipschitz and ρ-weakly convex function.

(a) If w is a (δ, ϵ)-stationary point of f , then it holds that∥∥∇f1/(3ρ)(w)
∥∥ ≤ 3

√
ϵ2

2
+ 4Gρδ + 2ρ2δ2.

(b) If w is a (µ, ϵ)-regularized stationary point of f , then it holds that∥∥∇f1/(3ρ)(w)
∥∥ ≤ 3

√
ϵ2

2
+ 4Gρ

√
ϵ

µ
+ 2ρ2

ϵ

µ
.
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Proof. Part (a): Let w be a (δ, ϵ)-stationary point of f . Then by definition there exists a subset
V ⊆ Bδ(w) and {αv}v∈V such that αv ≥ 0,

∑
v∈V αv = 1 and∥∥∥∥∥∑

v∈V

αvgv

∥∥∥∥∥ ≤ ϵ, (5)

where gv ∈ ∂f(v). For any w′, let us consider a subgradient g′ ∈ ∂f(w′). Since f is ρ-weakly
convex, we can show that

f(w′) =
∑
v∈V

αvf(w
′)

≥
∑
v∈V

αv

(
f(v) + ⟨gv, w′ − v⟩ − ρ

2
∥w′ − v∥2

)
=f(w) +

〈∑
v∈V

αvgv, w
′ − w

〉
+
∑
v∈V

αv

(
f(v)− f(w) + ⟨gv, w − v⟩ − ρ

2
∥w′ − w + w − v∥2

)
ζ1
≥f(w) +

〈∑
v∈V

αvgv, w
′ − w

〉
− ρ∥w′ − w∥2 +

∑
v∈V

αv

(
f(v)− f(w) + ⟨gv, w − v⟩ − ρ∥w − v∥2

)
ζ2
≥f(w)− 1

4ρ

∥∥∥∥∥∑
v∈V

αvgv

∥∥∥∥∥
2

− 2ρ∥w′ − w∥2 −
∑
v∈V

αv

(
2G∥v − w∥+ ρ∥w − v∥2

)
ζ3
≥f(w)− 2ρ∥w′ − w∥2 − ϵ2

4ρ
− 2Gδ − ρδ2

≥f(w′) + ⟨g′, w − w′⟩ − ρ

2
∥w − w′∥2 − 2ρ∥w′ − w∥2 − ϵ2

4ρ
− 2Gδ − ρδ2

=f(w′) + ⟨g′, w − w′⟩ − 5ρ

2
∥w − w′∥2 − ϵ2

4ρ
− 2Gδ − ρδ2,

where we have used in “ζ1” the Cauchy–Schwarz inequality, in “ζ2” the Cauchy–Schwarz inequality
and the G-Lipschitzness of R, in “ζ3” V ⊆ Bδ(w) and equation 5, and in the last inequality the ρ-
weak-convexity of f . Now let us consider ŵ = proxf/ρ̄(w) for some ρ̄ > 5ρ

2 , which by Lemma 1
satisfies that

∇f1/ρ̄(w) = ρ̄(w − ŵ) ∈ ∂f(ŵ).

Subsisting w′ = ŵ into the preceding inequality and rearranging the terms yields

∥w − ŵ∥2 ≤
(
ρ̄− 5ρ

2

)−1(
ϵ2

4ρ
+ 2Gδ + ρδ2

)
.

It follows from the above inequality that∥∥∇f1/ρ̄(w)
∥∥ = ∥ρ̄(w − ŵ)∥ ≤ ρ̄

(
ρ̄− 5ρ

2

)−1/2(
ϵ2

4ρ
+ 2Gδ + ρδ2

)1/2

.

Finally, setting ρ̄ = 3ρ in the above and applying some slight algebraic manipulation yields the
desired bound in Part (a). The bound in Part (b) follows directly from Part(a) and Lemma 2. The
proof is completed.

Remark 8. Theorem 3 essentially shows that the (δ, ϵ)-stationarity of a weakly convex function
implies the (ϵ+

√
δ)-stationarity of its Moreau envelope, and correspondingly the (µ, ϵ)-regularized

stationary implies the (ϵ+
√

ϵ/µ)-stationarity.
Remark 9. Conversely, for a ρ-weakly convex function f , the translate from the Clarke stationarity
of its Moreau envelop to the Goldstein stationarity of the original objective is relatively straight-
forward. Indeed, suppose that w is an ϵ-stationary point of the Moreau envelope f1/(2ρ) such that
∥∇f1/(2ρ)(w)∥ ≤ ϵ. Consider ŵ := proxf/(2ρ)(w). Then according to Lemma 1 we must have

∇f1/(2ρ)(w) ∈ ∂f(ŵ), ∥w − ŵ∥ ≤
∥∇f1/(2ρ)(w)∥

2ρ
≤ ϵ

2ρ
,
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which implies that dist
(
0, ∂ ϵ

2ρ
f(w)

)
≤ ∥∇f1/(2ρ)(w)∥ ≤ ϵ, and thus w is a (δ, ϵ)-stationary point

of f for all δ ≥ ϵ
2ρ . However, for arbitrary δ > 0, it seems unrealistic to derive (δ, ϵ)-stationarity

from the ϵ-stationarity of the Moreau envelope.

The following corollary is a direct consequence of Theorem 3 when applied to Algorithm 2 with
Option-I.

Corollary 3. Suppose that Assumption 1 and Assumption 2 hold. Let ϵ > 0 be the desired station-
arity precision and N be the total budget of iterates. Set

T =
⌈
(ϵ2N)2/3

⌉
,K =

⌊
N

T

⌋
, γ =

N1/3

ϵ4/3
, η =

1

8N
, D =

ϵ2/3

N2/3
.

Suppose that N is sufficiently large such that

N ≥ (G2 +G+ 17 +∆R0)
3

ϵ5
+ ρ3ϵ4 +

1

ϵ2
.

Then the output w̄T by Algorithm 2 with Option-I satisfies

E
[∥∥∇f1/(3ρ)(w̄T )

∥∥] ≤ O
(√

Gρϵ+ ρϵ2
)
.

Proof. Let δ = ϵ2 and ε(δ, w̄T ) := dist (0, ∂δR(w̄T )). Under the given conditions, it follows from
Corollary 1 that

E [ε(δ, w̄T )] = E [dist (0, ∂δR(w̄T ))] ≤ ϵ. (6)

Conditioned on w̄T , it is natural that w̄T is a (δ, ε(δ, w̄T ))-stationary point of R. Therefore from the
Part (a) of Theorem 3 we have∥∥∇R1/(3ρ)(w̄T )

∥∥ ≤ 3

√
ε2(δ, w̄T )

2
+ 4Gρδ + 2ρ2δ2 ≤ 3

√
2

2
ε(δ, w̄T ) + 6

√
Gρδ + 3

√
2ρδ.

Taking expectation on both sides of the above yields

E
[∥∥∇R1/(3ρ)(w̄T )

∥∥] ≤E

[
3
√
2

2
ε(δ, w̄T ) + 6

√
Gρδ + 3

√
2ρδ

]

≤3
√
2

2
ϵ+ 6

√
Gρϵ+ 3

√
2ρϵ2,

where in the last step we have used 6 and δ = ϵ2. This proves the desired bound.

Remark 10. The O(ϵ−5) complexity established in Corollary 3 is suboptimal compared to the
O(ϵ−4) optimal complexity of SGD (Davis & Grimmer, 2019) and SGDM (Mai & Johansson, 2020)
for achieving the ϵ-stationarity of the Moreau envelope. Such a slower rate is mainly due to the

√
δ

component appeared in the bound of Theorem 3 (Part a), which is open for improvement in future.

Similarly, we have the following corollary as a direct consequence of Theorem 3 when applied to
Algorithm 2 with Option-II.

Corollary 4. Suppose that Assumption 1 and Assumption 2 hold. Let ϵ > 0 be the desired station-
arity precision and N be the total budget of iterates. Set

T =
⌈
N4/7ϵ6/7

⌉
,K =

⌊
N

T

⌋
, γ = N3/7ϵ−6/7, η =

1

8N
.

Suppose that

N ≥ (4G2 + 1 + 32∆R0)
7/2

ϵ5
+ ρ7/3ϵ2 +

1

ϵ3/2
.

Then the output w̄T by Algorithm 2 with Option-II satisfies

E
[∥∥∇f1/(3ρ)(w̄T )

∥∥] ≤ O
(√

Gρϵ+ ρϵ2
)
.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Proof. The proof basically mimics that of Corollary 3 and is restated for the sake of completeness.
Let µ = ϵ−3 and ε(µ, w̄T ) := ∥∂R(w̄T )∥+µ. Under the given conditions, it follows from Corol-
lary 2 that

E [ε(µ, w̄T )] = E [∥∂R(w̄T )∥+µ] ≤ ϵ. (7)

Conditioned on w̄T , it is natural that w̄T is a (δ, ε(δ, w̄T ))-stationary point of R. Therefore from the
Part (b) of Theorem 3 we have

∥∥∇R1/(3ρ)(w̄T )
∥∥ ≤ 3

√
ε2(µ, w̄T )

2
+ 4Gρ

√
ϵ

µ
+ 2ρ2

ϵ

µ
≤ 3

√
2

2
ε(µ, w̄T )+6

√
Gρ

√
ϵ

µ
+3

√
2ρ

√
ϵ

µ
.

Taking expectation on both sides of the above yields

E
[∥∥∇R1/(3ρ)(w̄T )

∥∥] ≤E

[
3
√
2

2
ε(µ, w̄T ) + 6

√
Gρ

√
ϵ

µ
+ 3

√
2ρ

√
ϵ

µ

]

≤3
√
2

2
ϵ+ 6

√
Gρϵ+ 3

√
2ρϵ2,

where in the last step we have used 7 and µ = ϵ−3. This proves the desired bound.

E SOME ADDITIONAL DETAILS AND RESULTS ON EXPERIMENT

In this section, we present some additional experimental details and results for validating the effec-
tiveness of our D-O2NC method applied with periodically restarted OGD.

E.1 DESCRIPTIONS OF BACKBONES

We employ the ResNet-101 and ViT models to evaluate our method. ResNet-101 stands as a
hallmark architecture in the ResNet family, featuring 101 layers formed by stacking residual blocks,
each composed of 1×1, 3×3, and 1×1 convolutional layers. This model is commonly adopted as
a backbone in downstream computer vision applications, including object detection and image
segmentation. In our empirical study, the ViT model incorporates 6 Transformer encoder layers,
each equipped with 8 multi-head self-attention heads and a 512-dimensional multilayer perceptron
(MLP); the dropout rate is configured at 0.1, with the input segmented into 4 patches. Both models
were trained from scratch.

E.2 THE RESULTS UNDER VARIOUS RESTARTING FREQUENCY

In our experiments on the CIFAR-10 dataset, we configured the restarting frequency T to a broad
value range of {2, 20, 50, 196}×256, where 196 is the total number of minibatches in one epoch. As
illustrated in Figure 2, the experimental results reveal that in most cases, as T increases, the model’s
performance exhibits an initial gradual improvement followed by a subsequent decline. Notably,
extreme values of T (e.g., T = 2 × 256) exert a detrimental impact on performance. Therefore,
selecting an appropriate T is crucial for optimizing the final model efficacy.
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(a) Train Loss (ResNet-101) (b) Train Accuracy (ResNet-101) (c) Test Accuracy (ResNet-101)

(d) Train Loss (ViT) (e) Train Accuracy (ViT) (f) Test Accuracy (ViT)

Figure 2: Experimental results on CIFAR-10 with ResNet-101 (top) and ViT (bottom) networks
under various values of T .

E.3 RESULTS WITH RELAXED MOMENTUM PARAMETER

(a) Train Loss (ResNet-101) (b) Train Accuracy (ResNet-101) (c) Test Accuracy (ResNet-101)

(d) Train Loss (ViT) (e) Train Accuracy (ViT) (f) Test Accuracy (ViT)

Figure 3: Experimental results of ResNet-101 (top) and ViT (bottom) on CIFAR-10 with the mo-
mentum parameter of value 0.9.

For the experimental results reported in the main text, we have adopted a tight momentum param-
eter of value 0.99. In this section, we additionally report the experimental results obtained with a
relaxed momentum parameter of value 0.9. The results are presented in Figure 3. It can be observed
from this group of results that when the momentum parameter is set to be 0.9, the advantage of
our D-O2NC over the baseline SGDM is less significant than that with the momentum parameter
0.99. Nevertheless, our method still maintains a certain degree of advantage on the test set. This
phenomenon may be attributed to the fact that after momentum reset, a larger momentum value fa-
cilitates the rapid replenishment of momentum, thereby leading to a more pronounced effect. The
aforementioned results indicate that an appropriate momentum value also exerts a certain influence
on the final performance of our algorithm.
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E.4 THE RESULTS ON CIFAR-100

Finally, in addition to CIFAR-10, we have also conducted the algorithm evaluation on the CIFAR-
100 dataset. CIFAR-100 is an advanced counterpart of CIFAR-10, comprising 60,000 32×32 color
images. While CIFAR-10 contains 10 coarse categories, CIFAR-100 extends this to 100 fine-grained
classes. For this more fine-grained dataset, we resort ResNet-152 as the backbone network. The
experimental results are demonstrated in Figure 4. It can be observed from this set of results that
1) our D-O2NC method converges slower than the standard SGDM in terms of training loss and
accuracy; and 2) our D-O2NC method achieves higher test accuracy than SGDM, which further
demonstrates the superiority of our algorithm for generalization.

(a) Train Loss (b) Train Accuracy (c) Test Accuracy

Figure 4: Experimental results on CIFAR-100 with ResNet-152 network.
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