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ABSTRACT

In many classification tasks, the set of classes can be organized according to a
meaningful hierarchy. This structure can be used to assess the severity of confusing
each pair of classes, and summarized under the form of a cost matrix which also
defines a finite metric. We propose to integrate this metric in the supervision of
a prototypical network in order to model the hierarchical class structure. Our
method relies on jointly learning a feature-extracting network and a set of class
representations, or prototypes, which incorporate the error metric into their relative
arrangement in the embedding space. We show that this simultaneous training
allows for consistent improvement of the severity of the network’s errors with regard
to the class hierarchy when compared to traditional methods and other prototype-
based strategies. Furthermore, when the induced metric contains insight on the
data structure, our approach improves the overall precision as well. Experiments
on four different public datasets—from agricultural time series classification to
depth image semantic segmentation—validate our approach.

1 INTRODUCTION

Most classification models focus on maximizing the prediction accuracy, regardless of the semantic
nature of errors. This can lead to high performing models, but puzzling errors such as confusing a
tiger and a sofa. This casts doubt on what a model actually actually understands from the required
task and data distribution. Neural networks in particular have been criticized for their tendency to
produce improbable yet confident errors, notably when attacked (Akhtar & Mian, 2018).

The classes of most classification problems can be organized according to a hierarchical structure.
Such tree-shaped taxonomy of concepts can be generated by domain experts, or automatically from
class names with the WordNet graph (Miller et al., 1990) or word embeddings (Mikolov et al., 2013).
A step towards more reliable and interpretable algorithms would be to explicitly model the difference
of gravity between errors, as defined by a hierarchical nomenclature.

For a classification task over a set K of K classes, the hierarchy of errors can be encapsulated by a
cost matrix D ∈ RK×K

+ , defined such that the cost of predicting class k when the true class is l is
D[k, l] ≥ 0, and D[k, k] = 0 for all k = 1 · · ·K. Among many other options (Kosmopoulos et al.,
2015), one can define D[k, l] as the length of the shortest path between the nodes corresponding to
classes k and l.

As pointed out by Bertinetto et al. (2020), the first step towards algorithms aware of hierarchical
structures would be to generalize the use of cost-based metrics. For example, early iterations of the
ImageNet challenge (Russakovsky et al., 2015; Deng et al., 2010) proposed to weight errors according
to hierarchy-based costs. For a dataset indexed by N , the Average Hierarchical Cost (AHC) between
class predictions y ∈ KN and the true labels z ∈ KN is defined as:

AHC(y, z) =
1

|N |
∑
n∈N

D[yn, zn] . (1)

Along with evaluation metrics, loss functions should also take the cost matrix into account. While
it is common to focus on retrieving certain classes through weighting schemes, preventing specific
class confusions is less straightforward. The cross entropy with one-hot target vectors for example
singles out the prediction with respect to the correct class, but treats all other classes equally. Beyond
reducing the AHC, another advantage of incorporating the class hierarchy into the learning phase
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(c) Guided prototypes,
distortion= 0.40,

ER= 11.9%, AHC = 0.52

Figure 1: Mean class representation , prototypes , and 2-dimensional embeddings learnt on
perturbed MNIST by a 3-layer convolutional net with three different classification modules: (a)
cross-entropy, (b) learnt prototypes, and (c) learnt prototypes guided by a tree-shaped taxonomy
(constructed according to the authors’ perceived visual similarity between digits). The guided
prototypes (c) embed more faithfully the class hierarchy: classes with low error cost are closer1. This
is associated with a decrease in the Average Hierarchical Cost (AHC), as well as Error Rate (ER),
indicating that our taxonomy may contain useful information for learning better visual features.

is that D may contain information about the structure of the data as well. Though it is not always
the case, co-hyponyms (i.e. siblings) in a class hierarchy tend to share some structural properties.
Encouraging such classes to have similar representations could lead to more efficient learning, e.g. by
pooling common feature detectors. Such priors on the class structure may be especially crucial when
dealing with a large taxonomy, as noted by Deng et al. (2010).

In this paper, we introduce a method to integrate the class hierarchy into a classification algorithm.
We propose a new scale-free, distortion-based regularizer for prototypical network (Yang et al., 2018;
Chen et al., 2019). This penalty allows the network to learn prototypes organized such that their
relative distances reflect their distance in a class hierarchy.

The contributions of this paper are as follows:

• We introduce a scale-independent formulation of the distortion between two metric spaces,
and an associated smooth regularizer.
• This formulation allows us to incorporate knowledge of the class hierarchy into a neural

network at no extra cost in trainable parameters and computation.
• We show on four public datasets (CIFAR100 , NYUDv2, S2-Agri, and iNaturalist-19) that

our approach decreases the average cost of the prediction of standard backbones.
• As illustrated in Figure 1, we show that our approach can also lead to a better (unweighted)

precision, which we attribute to useful priors contained in the taxonomy of classes.

2 RELATED WORK

Prototypical Networks: Our approach builds on the growing corpus of work on prototypical
networks. These models are deep learning analogues of nearest centroid classifiers (Tibshirani et al.,
2002) and Learning Vector Quantization networks (Sato & Yamada, 1995; Kohonen, 1995), which
associate to each class a representation, or prototype, and classify observations according to the
nearest prototype. These networks have been successfully used for few-shot learning (Snell et al.,
2017; Dong & Xing, 2018), zero-shot learning (Jetley et al., 2015), and supervized classification
(Guerriero et al., 2018; Yang et al., 2018; Mettes et al., 2019; Chen et al., 2019).

In most approaches, the prototypes are directly defined as the centroid of the learnt representations of
samples of their classes, and updated at each episode (Snell et al., 2017) or iteration (Guerriero et al.,

1For a formal definition of our scale-free distortion, see Section 3.2; computed from the means of class
embeddings for the cross entropy.
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2018). In the work of Mettes et al. (2019) and Jetley et al. (2015), the prototypes are defined prior
to learning the embedding function. In this work, we follow the approach of Yang et al. (2018) and
learn the prototypes simultaneously to the data embedding function.

Hierarchical Priors: The idea of exploiting the latent taxonomic structure of semantic classes in
order to improve the accuracy of a model has been extensively explored (Silla & Freitas, 2011), from
traditional Bayesian modeling (Gelman et al., 2013, Chapter 5) to adaptive deep learning architectures
(Yan et al., 2015; Roy et al., 2020; Salakhutdinov et al., 2012; Ayub & Saini, 2011). However, for
these neural networks, the hierarchy is discovered by the network itself in the goal of improving the
overall accuracy of the model. In our setting, the hierarchy is defined a priori, and serves both to
evaluate the quality of the model and to guide the learning process towards a reduced prediction cost.

Srivastava & Salakhutdinov (2013) propose implementing Gaussian priors on the weight of neurons
according to a fixed hierarchy. Redmon & Farhadi (2017) implement an inference scheme based on a
tree-shaped graphical model derived from a class taxonomy. Closest to our work, Hou et al. (2016)
propose a regularization based on the earth mover distance to penalize errors with high costs.

More recently, Bertinetto et al. (2020) highlighted the relative lack of well-suited methods for dealing
with hierarchical nomenclatures in the deep learning literature. They advocate for a more widespread
use of the AHC for evaluating models, and detail two simple baseline classification modules able to
decrease the AHC of deep models: Soft-Labels and Hierarchical Cross-Entropy. See Section 4.3 for
more details on these schemes.

Hyperbolic Prototypes: Motivated by the quality of their low-dimensional embedding of hierar-
chical data structures (De Sa et al., 2018), hyperbolic spaces are at the center of recent advances
in modeling hierarchical relations (Nickel & Kiela, 2017; Khrulkov et al., 2020). Closer to this
work, (Liu et al., 2020; Long et al., 2020) also propose to embed a class hierarchy into the latent
representation space. However, both approaches embed the class hierarchy before training the data
embedding network. In contrast, we argue that incorporating the hierarchical structure during the
training of the model allows the network and class embeddings to share their respective insights,
leading to a better trade-off between AHC and accuracy. In this paper, we only explore this claim in
Euclidean geometry, as this setting allows for the seamless integration of our method.

Finite Metric Embeddings: Our objective of computing class representations with pairwise dis-
tances determined by a cost matrix has links with finding an isometric embedding of the cost
matrix—seen as a finite metric. This problem has been extensively studied (Indyk et al., 2017;
Bourgain, 1985) and is at the center of the growing interest for hyperbolic geometry (De Sa et al.,
2018). However, our goal is simply to influence the learning of prototypes with a metric rather than
necessarily seeking the best possible isometry.

3 METHOD

We consider a generic dataset N of N elements x ∈ XN with ground truth classes z ∈ KN . The
classes K are organized along a tree-shape hierarchical structure, allowing us to define a cost matrix
D by considering the shortest path between nodes. The matrix thus defined is symmetric, with a zero
diagonal and strictly positive elsewhere, and also respects the triangle inequality: D[k, l] +D[l,m] ≥
D[k,m] for all k, l,m in K. In other words, D defines a finite metric. We denote by Ω the embedding
space which, when equipped with the distance function d : Ω× Ω 7→ R+, forms a metric space as
well.

3.1 PROTOTYPICAL NETWORKS

A prototypical network is characterized by an embedding function f : X 7→ Ω, typically a neural
network, and a set π ∈ ΩK of K prototypes. π must be chosen such that any sample xn of a given
class k has a representation f(xn) which is close to πk and far from other prototypes.
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Following the methodology of Snell et al. (2017), a prototypical network (f, π) associates to an
observation xn the following posterior distribution over its class zn:

p(zn = k|xn) =
exp (−d (f(xn), πk))∑
l∈K exp (−d (f(xn), πl))

,∀k ∈ K . (2)

We can then define an associated loss with the normalized negative log-likelihood of the true classes:

Ldata(f, π) =
1

N

∑
n∈N

(
d(f(xn), πzn) + log

(∑
l∈K

exp (−d(f(xn), πl))

))
. (3)

This loss is such that the representation f(xn) is attracted towards the prototype of the class zn, while
it is repelled by the other prototypes. Conversely, prototype πk is drawn towards the representations
f(xn) of samples n of class k and away from the representations of other classes.

Following the insights of Yang et al. (2018), the embedding function f and the prototypes π are
learned simultaneously. This differs with many works on prototypical networks which learn prototypes
separately or define them as centroids of representations. We take advantage of this joint training
to learn prototypes which take into account both the distribution of the data and the relationships
between classes, as described in the next section.

3.2 METRIC-GUIDED PENALIZATION

We propose to incorporate the cost matrix D into a regularization term in order to encourage the
prototypes to organize in the embedding space Ω in a manner that is consistent with the finite metric
defined by D. Since sample representations are attracted to their respective prototypes in (3), this
regularization also affects the embedding network.

Scale-Free Distortion As described in De Sa et al. (2018), the distortion of a mapping k 7→ πk
between the finite metric space (K, D) and the continuous metric space (Ω, d) can be defined as:

disto(π,D) =
1

K(K − 1)

∑
k,l∈K2, k 6=l

|d(πk, πl)−D[k, l]|
D[k, l]

. (4)

We argue that prototypes arrangements π with low distortion incur lower hierarchical costs. Let us
first consider a misclassified sample xn of true class k. Since xn is misclassified, its representation
f(xn) is closer to another prototype than to the true prototype πk. However, we can assume that
f(xn) is still closer to πk than to most prototypes, as the loss Ldata would starkly penalize f otherwise.
Since low distortion prototypes group together prototypes of classes with small mutual error cost, the
erroneous class predicted will likely be of low hierarchical cost with respect to k.

However, achieving low-distortion also imposes a specific scale on the distances between prototypes
in the embedding space. This scale may conflict with the second term of Ldata which encourages
distances between embeddings and unrelated prototypes to be as large as possible. Therefore,
lower distortion may also cause lower precision. To remove this imposed scaling, we introduce a
scale-independent formulation of the distortion:

distoscale-free(π,D) = min
s∈R+

disto(s · π,D) , (5)

where s · π are the scaled prototypes, whose coordinates in Ω are multiplied by a scalar factor s. As
shown in the appendix, distoscale-free can be efficiently computed algorithmically.

Distortion-Based Penalization We propose to incorporate the error qualification D into the proto-
types’ relative arrangement by encouraging a low scale-free distortion between π and D. To this end,
we define the following smooth surrogate of distoscale-free:

Ldisto(π) =
1

K(K − 1)
min
s∈R+

∑
k,l∈K2, k 6=l

(
sd(πk, πl)−D[k, l]

D[k, l]

)2

. (6)

Ldisto can be computed in closed form as a function of π and can thus be directly used as regularizer.
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3.3 END-TO-END TRAINING

We combine Ldata and Ldisto in a single loss L. Ldata allows to jointly learn the embedding function f
and the class prototypes π, while Ldisto enforces a metric-consistent prototype arrangement:

L(f, π) = Ldata(f, π) + λLdisto(π) , (7)

with λ ∈ R+ an hyper-parameter setting the strength of the regularization.

3.4 CHOOSING A METRIC SPACE

Prototypical networks operating on Ω = Rm typically use the squared Euclidean norm in the distance
function, motivated by its quality as a Bregman divergence (Snell et al., 2017). However, we observe
that defining d with the Euclidean norm yields significantly better results. The non-differentiability
can be handled by composing with a Huber-like (Huber et al., 1973; Charbonnier et al., 1997) function
d = H(‖·‖), with H defined as:

H(x) = δ(
√
‖x‖2/δ2 + 1− 1) , (8)

and δ ∈ R+ a (small) hyper-parameter. The resulting metric d is asymptotically equivalent to the
Euclidean norm for large distances, and behaves like the smooth squared Euclidean norm for small
distances. In Section 4.5, we investigate the effect of this change.

4 EXPERIMENTS

4.1 DATASETS AND BACKBONES

We evaluate our approach with different tasks on public datasets with fine-grained class hierarchies:
image classification on CIFAR100 (Krizhevsky et al., 2009) and iNaturalist-19 (Van Horn et al.,
2018), RGB-D image segmentation on NYUDv2 (Nathan Silberman & Fergus, 2012), and image
sequence classification on S2-Agri (Sainte Fare Garnot et al., 2020). We define the cost matrix
of these class sets as the length of the shortest path between nodes in the tree-shape taxonomies,
represented in the Appendix. As shown in Table 1, these datasets cover different settings in terms of
data characteristics, as well as tree structures.

Illustrative Example on MNIST: In Figure 1 and Figure ?? of the Appendix, we illustrate the
difference in performance and embedding organization for different approaches. We use a small
3-layer convolutional net trained on MNIST with random rotations (up to 40 degrees) and affine
transformations (up to 1.3 scaling). For plotting convenience, we set the feature’s dimension to 2.

Image Classification on CIFAR100: CIFAR100 is composed of 50 000 training images and 10 000
test images of size 32 × 32, evenly distributed across 100 classes. We use a super-class system
inspired by Krizhevsky et al. (2009) and form a 5-level hierarchical nomenclature of size: 2, 4, 8, 20,
and 100 classes. We use as backbone the established ResNet-18 (He et al., 2016) for this dataset.

Semantic Segmentation on NYUDv2: NYUDv2 is an RGB-D image segmentation dataset com-
posed of 1 449 pairs of RGB images of indoor scenes and their corresponding depth maps. We use
the standard split of 795 training and 654 testing pairs. We combine the 4 and 40 class nomenclatures
of Gupta et al. (2013) and the 13 class system defined by Handa et al. (2016) to construct a 3-level
hierarchy. We use FuseNet (Hazirbas et al., 2016) as backbone for this dataset.

Image Sequence Classification on S2-Agri: S2-Agri comprises 189 971 sequences of multi-
spectral satellite images of agricultural parcels. We define a 4-level hierarchy of size 4, 12, 19,
and 44 classes to organize the crop types. This class hierarchy is critical to monitoring agencies, as
it is related to the level of subsidy allocated to farmers. We use the PSE+TAE architecture (Sainte
Fare Garnot et al., 2020) as the backbone, and follow their 5-fold cross-validation scheme for training.

Fine-Grained Image Classification on iNaturalist-19 (iNat-19) iNat-19 (Van Horn et al., 2018)
is a fine-grained image classification dataset comprised of 265 213 images of living organisms. The
images are labeled by experts and users of the iNaturalist app, using a fine-grained taxonomy. iNat-19
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contains 1 010 different classes, organized into a hierarchy of 7 levels with respective width 3, 4, 9,
34, 57, 72, and 1 010. We use ResNet-18 pre-trained on ImageNet as backbone. We sample 75% of
available images for training, while the rest is evenly split into a validation and test set.

Table 1: Data composition and nomenclature of the four studied datasets. IR stands for the Imbalance
Ratio (largest over smallest class count), nodes and leaves denote respectively the total number of
classes and leaf-classes in the tree-shape hierarchy, ABF stands for the Average Branching Factor,
and 〈D〉 stands for the average pairwise distance.

Dataset Data Hierarchical Tree
Volume (Gb) IR Depth Nodes (leaves) ABF 〈D〉

NYUDv2 2.8 93 3 57 (40) 5.0 4.3
S2-Agri 28.2 617 4 83 (45) 5.8 6.5
CIFAR100 0.2 1 5 134 (100) 3.8 7.0
iNat-19 82.0 31 7 1189 (1010) 6.6 11.0

4.2 HYPER-PARAMETERIZATION

The embedding space Ω is chosen as R512 for iNat-19 and R64 for all other datasets. We define d as
the Euclidean norm (see 4.5 for a discussion on this choice). We evaluate our approach (Guided-proto)
with λ = 1 in (7) for all datasets. We use the same training schedules and learning rates as the
backbone networks in their respective papers. In particular, the class imbalance of S2-Agri is handled
with a focal loss (Lin et al., 2017).

4.3 COMPETING METHODS

In the paper where they are introduced, all backbone networks presented in Section 4.1 use a linear
mapping between the samples embedding and the class scores, as well as the cross-entropy loss.
The resulting performance of these networks serves as baseline to estimate the gains in Average
Hierarchical Cost (AHC) and Error Rate (ER) provided by our approach and other competing methods
we re-implemented.

• Hierarchical Cross-Entropy (HXE) Bertinetto et al. (2020) model the class structure with a
hierarchical loss composed of the sum of the cross-entropies at each level of the class hierarchy.
As suggested, a parameter α taken as 0.1 defines exponentially decaying weights for higher levels.
• Soft Labels (Soft-labels) Bertinetto et al. (2020) propose as second baseline in which the the one-

hot target vectors are replaced by soft target vectors in the cross-entropy loss. These target vectors
are defined as the softmin of the costs between all labels and the true label, with a temperature
1/β chosen as 0.1, as recommended in Bertinetto et al. (2020).
• Earth Mover Distance regularization (XE+EMD): Hou et al. (2016) propose to account for the

relationships between classes with a regularization based on the squared earth mover distance. We
use D as the ground distance matrix between the probabilistic prediction p and the true class y:

LEMD(p, y) =
1

N

∑
n∈N

K∑
k=1

p(zn = k|xn)2(D[k, y]− µ) .

This regularizer is added along the cross-entropy with a weight of 0.5 and an offset µ of 3.
• Hierarchical Inference (YOLO): Redmon & Farhadi (2017) propose to model the hierarchical

structure between classes into a tree-shaped graphical model. First, the conditional probability
that a sample belongs to a class given its parent class is obtained with a softmax restricted to the
class’ co-hyponyms (i.e. siblings). Then, the posterior probability of a leaf class is given by the
product of the conditional probability of its ancestors. The loss is defined as the cross-entropy of
the resulting probability of the leaf-classes.

• Hyperspherical Prototypes (Hyperspherical-proto): The method proposed by Mettes et al. (2019)
is closer to ours, as it relies on embedding class prototypes. They advocate to first position
prototypes on the hypersphere using a rank-based loss (see Section 4.5) combined with a prototype-
separating term. They then use the squared cosine distance between the image embeddings and
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Figure 2: Error Rate (ER) in % and Average Hierarchical Cost (AHC) on four datasets for our
proposed method (framed), the Cross-Entropy baseline (in bold), and the competing approaches. The
best performances on each dataset are plotted in green. Our guided prototype approach improves
both the ER and AHC across the four datasets compared to the baseline. The metrics are computed
with the median over 5 runs for CIFAR100, the average over 5 cross-validation folds for S2-Agri,
and a single run for NYUDv2 and iNat-19. The numeric values are given in the Appendix. (? not
evaluated on S2-Agri).

prototypes to train the embedding network. Note that in our re-implementation, we used the
finite metric defined by D instead of Word2Vec (Mikolov et al., 2013) embeddings to position
prototypes. Lastly, we do not evaluate on S2-Agri as the integration of the focal loss is non-trivial.
• Deep Mean Classifiers (Deep-NCM): Guerriero et al. (2018) present another prototype-based

approach. Here, the prototypes are the cumulative mean of the embeddings of the classes’ samples,
updated at each iteration. The embedding network is supervised with Ldata with d defined as the
squared Euclidean norm.
• Prototype Learning(Learnt-proto): Learnt prototypes without regularization, i.e. λ = 0 in (7).

4.4 ANALYSIS

Overall Performance: As displayed in Figure 2, the benefits provided by our approach can be
appreciated on all datasets. Compared to cross-entropy, our metric-guided prototype models improve
the AHC by 3% on NYUDv2 and S2-Agri, and up to 9% and 14% for CIFAR100, and iNat-19
respectively. The hierarchical inference scheme of Redmon & Farhadi (2017) performs on par or
better than our methods for NYUDv2 and S2-Agri, while Soft-labels perform well on CIFAR100
and NYUDv2. Yet, only the metric guided prototype approach brings a consistent reduction of
the hierarchical cost across the four datasets. This suggest that arranging the embedding space
consistently with the cost metric is a robust way of reducing a model’s hierarchical error cost.

While being initially designed to reduce the AHC, our methods also improve the ER by 3 to 4%
across all datasets compared to the cross-entropy baseline. This indicates that cost matrices derived
from the class hierarchy can indeed help neural networks to learn better representations.

Prototype Learning: We observe that learnt prototype approach Learnt-proto consitently outper-
forms the Deep-NCM method. This suggest that defining prototypes as the centroids of their class
representations might actually be disadvantageous. As illustrated on Figure 1c, the positions of the
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Table 2: Influence of the choice of scaling in Ldisto, metric guiding regularizer, and distance function
d on the performance of Guided-proto on the four datasets. For d, we compare the performance of
the Euclidean norm, the pseudo-Huberized Euclidean norm, and the square Euclidean norm.

CIFAR100 NYUDv2 S2-Agri iNat-19
ER AHC ER AHC ER AHC ER AHC

Guided-proto 23.6 1.052 32.5 1.440 18.9 0.685 38.9 1.721
Fixed-scale +0.1 +0.003 0.0 0.000 +0.2 +0.001 +0.9 0.000
Rank-based guiding -0.3 +0.004 +0.2 +0.005 +0.2 +0.006 +0.4 -0.003
Fixed-proto +1.1 +0.031 +0.6 +0.013 +0.5 +0.025 +5.0 +0.427
Pseudo-Huber +0.1 +0.015 -0.3 -0.017 +0.4 +0.016 +0.2 +0.003
Squared Norm +1.0 +0.118 0.0 +0.005 +0.6 +0.022 +2.2 +0.233

embeddings follow a Voronoi partition (Fortune, 1992) with respect to the learnt prototypes rather
than the prototypes being at the centroid of representations. A surprising observation for us is that
Learnt-proto consistently outperforms the cross-entropy, both in terms of AHC and ER.

Computational Efficiency: Computing distances to prototypes is comparable in terms of com-
putation time to computing a linear mapping. Consequently, both training and inference time are
equivalent when using the cross-entropy or guided-proto-disto, which is 2% faster.

4.5 ABLATION STUDY

Fixed-Scale Distortion: In Table 2, we compare the performance of our scale-free regularizer to an
alternative version of Ldisto in which the scale remains fixed to s = 1. Across datasets, this results in
an increased error rate, which we attribute to prototype distances being fixed by Ldisto.The benefit of
our scale-free regularizer is especially valuable for the complex class structure of iNat-19, improving
the overall classification accuracy by 1 point compared to the fixed-scale version.

Rank-based Regularization: Mettes et al. (2019) use a rank-based loss (Burges et al., 2005)
to encourage prototype mappings whose pairwise distance follows the same order as an external
qualification of errors D. We argue that our formulation of Ldisto provides a stronger supervision
than only considering the order of distances, and allows the prototypes to find a more profitable
arrangement in the embedding space. In Table 2, we observe that replacing our distortion-based loss
by a rank-based one results in a slight decrease of overall performance.

Guided vs. fixed prototypes : Our experiments confirm the benefit of jointly learning the proto-
types and the embedding network instead of learning the prototypes first as Hyperspherical-proto.
We also evaluate the performance of Fixed-proto in Table 2, for which we first fix the prototypes with
Ldisto and then train the network with Ldata. While this approach reduces the AHC compared to the
cross-entropy baseline in some cases, its ER is consistently higher than for guided methods. This
suggests that insights from the data distribution can conversely benefit the positioning of prototypes,
and that they should be learned conjointly.

Choice of distance : In Table 2, we report the performance of the Guided-proto model on the four
datasets when replacing the Euclidean norm alternately with the squared Euclidean norm and an
Huberized Euclidean distance (with δ = 0.1 in (8)). Across our experiments, the squared-norm based
model yields a worse performance. This is a notable result as it is the distance commonly used in
most prototypical networks (Snell et al., 2017; Guerriero et al., 2018). The Huberized norm performs
worse than the Euclidean distance on all dataset, with the exception NYUDv2.

Further Ablation Study: In the Appendix we present an extended ablation study, notably show-
casing the resilience of our approach to a wide-range of hyper-parameters value.
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5 CONCLUSION

We introduced a new regularizer to incorporate the class hierarchy during the training of a prototypical
network. We showed that our methods consistently decreased the average hierarchical cost of three
different backbone networks on different tasks and four datasets. Furthermore, our approach can
reduce the rate of errors as well. In contrast to most recent literature on hierarchical classification,
we showed that this joint training is beneficial compared to the staged strategy of first positioning
the prototypes and then training a feature extracting network. A PyTorch implementation of our
framework as well as an illustrative notebook are available at https://github.com/mgp-a
non/metric-guided-prototype (repository anonymized for review).

This work, along with other recent investigations (Bertinetto et al., 2020), highlights the interest of
modeling hierarchical class structures in modern deep networks. Beyond the decrease in prediction
costs, such hierarchies can lead to an improved overall performance. This calls for further investigation
into the mechanisms by which semantic class structures can benefit the learning of expressive
representations. In further research, we plan to investigate whether or claims hold in hyperbolic
embedding spaces, which are known to be well-suited for embedding hierarchies.
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Piotr Indyk, Jiří Matoušek, and Anastasios Sidiropoulos. Low-distortion embeddings of finite metric
spaces. In Handbook of discrete and computational geometry. Chapman and Hall/CRC, 2017.

Saumya Jetley, Bernardino Romera-Paredes, Sadeep Jayasumana, and Philip Torr. Prototypical priors:
From improving classification to zero-shot learning. In BMVC, 2015.

Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova, Ivan Oseledets, and Victor Lempitsky.
Hyperbolic image embeddings. In CVPR, 2020.

Teuvo Kohonen. Learning vector quantization. In Self-organizing maps, pp. 175–189. Springer, 1995.

Aris Kosmopoulos, Ioannis Partalas, Eric Gaussier, Georgios Paliouras, and Ion Androutsopoulos.
Evaluation measures for hierarchical classification: a unified view and novel approaches. Data
Mining and Knowledge Discovery, 2015.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
detection. In ICCV, 2017.

Shaoteng Liu, Jingjing Chen, Liangming Pan, Chong-Wah Ngo, Tat-Seng Chua, and Yu-Gang Jiang.
Hyperbolic visual embedding learning for zero-shot recognition. In CVPR, 2020.

Teng Long, Pascal Mettes, Heng Tao Shen, and Cees GM Snoek. Searching for actions on the
hyperbole. In CVPR, 2020.

Pascal Mettes, Elise van der Pol, and Cees Snoek. Hyperspherical prototype networks. In NeurIPS,
2019.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-
tions in vector space. In ICLR Workshop, 2013.

George A Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and Katherine J Miller.
Introduction to wordnet: An on-line lexical database. International Journal of Lexicography, 1990.

Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob Fergus. Indoor segmentation and support
inference from RGBD images. In ECCV, 2012.

Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representations.
In NeurIPS, 2017.

Joseph Redmon and Ali Farhadi. YOLO9000: better, faster, stronger. In CVPR, 2017.

Deboleena Roy, Priyadarshini Panda, and Kaushik Roy. Tree-CNN: a hierarchical deep convolutional
neural network for incremental learning. Neural Networks, 2020.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International Journal of Computer Vision, 2015.

10



Under review as a conference paper at ICLR 2021

Vivien Sainte Fare Garnot, Loic Landrieu, Sebastien Giordano, and Nesrine Chehata. Satellite image
time series classification with pixel-set encoders and temporal self-attention. In CVPR, 2020.

Ruslan Salakhutdinov, Joshua B Tenenbaum, and Antonio Torralba. Learning with hierarchical-deep
models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012.

Atsushi Sato and Keiji Yamada. Generalized learning vector quantization. NeurIPS, 1995.

Carlos N Silla and Alex A Freitas. A survey of hierarchical classification across different application
domains. Data Mining and Knowledge Discovery, 2011.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
NeurIPS, 2017.

Nitish Srivastava and Russ R Salakhutdinov. Discriminative transfer learning with tree-based priors.
In NeurIPS, 2013.

Robert Tibshirani, Trevor Hastie, Balasubramanian Narasimhan, and Gilbert Chu. Diagnosis of
multiple cancer types by shrunken centroids of gene expression. Proceedings of the National
Academy of Sciences, 2002.

Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam,
Pietro Perona, and Serge Belongie. The iNaturalist species classification and detection dataset. In
CVPR, 2018.

Zhicheng Yan, Hao Zhang, Robinson Piramuthu, Vignesh Jagadeesh, Dennis DeCoste, Wei Di, and
Yizhou Yu. HD-CNN: hierarchical deep convolutional neural networks for large scale visual
recognition. In ICCV, 2015.

Hong-Ming Yang, Xu-Yao Zhang, Fei Yin, and Cheng-Lin Liu. Robust classification with convolu-
tional prototype learning. In CVPR, 2018.

11


	Introduction
	Related Work
	Method
	Prototypical Networks
	Metric-Guided Penalization
	End-to-end Training
	Choosing a Metric Space

	Experiments
	Datasets and Backbones
	Hyper-Parameterization
	Competing methods
	Analysis
	Ablation Study

	Conclusion

