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ABSTRACT

Sleep stage classification has important clinical significance for the diagnosis of
sleep-related diseases. To pursue more accurate sleep stage classification, multi-
channel sleep signals are widely used due to the rich spatial-temporal information
contained. However, it leads to a great increment in the size and computational
costs which constrain the application of multi-channel sleep stage classification
models. Knowledge distillation is an effective way to compress models. But ex-
isting knowledge distillation methods cannot fully extract and transfer the spatial-
temporal knowledge in the multi-channel sleep signals. To solve the problem,
we propose a spatial-temporal mutual distillation for multi-channel sleep stage
classification. It extracts the spatial-temporal knowledge to help the lightweight
student model learn the spatial relationship of human body and the transition rules
between multiple sleep epochs. Moreover, the mutual distillation framework im-
prove the teacher by the student model, thus further improve the student model.
The results on the ISRUC-III and MASS-SS3 datasets show that our proposed
method compresses the sleep models effectively with minimal performance loss
and achieves the state-of-the-art performance compared to the baseline methods.

1 INTRODUCTION

Sleep stage classification plays a crucial role in diagnosing sleep disorders. Sensors are attached
to the human body to acquire a set of signals, which is called polysomnography (PSG), including
electroencephalography (EEG), electrooculography (EOG), electromyography (EMG). PSG signals
are sliced into 30-second segments and then assigned with a sleep stage by human experts following
American Academy of Sleep Medicine (AASM) rules (Berry et al., 2012). In AASM rules, five
sleep stages are identified: Wake (W), Rapid Eye Movements (REM), Non REM1 (N1), Non REM2
(N2), and Non REM3 (N3) also known as slow wave sleep or even deep sleep. Recently, neural
networks are introduced to sleep stage classification to reduce the cost of time and human labor in
manual ways.

For accurate sleep stage classification, temporal knowledge is widely used in automatic sleep stage
classification. During sleep, the human brain undergoes a series of changes among different sleep
stages. For example, the N1 stage often serves as a transition stage between the W stage and other
stages. These transition rules are referred as temporal knowledge which are strong references to
identify these stages. To capture temporal knowledge, models such as SeqSleepNet (Phan et al.,
2019) employ bidirectional Long Short-Term Memory modules.

To meet the higher demands in clinical scenarios, rather than classify with single channel sleep
signals, the classification can be greatly improved by utilizing multi-channel sleep signals. Multi-
channel sleep signals contain the spatial knowledge which refers to the relationship of the human
body. EEG signals, for instance, reflect the structural and functional correlation within the human
brain. Models such as those introduced by Andreotti et al. (2018) and Pei et al. (2022) focus on
automatically learning the spatial knowledge within multi-channel signals.

However, in the pursuit of automatic sleep stage classification, the size and computational complex-
ity of deep neural networks rapidly increase. This impedes their application in resource-constrained
environments, such as clinical care settings or embedded systems. Knowledge distillation is a useful
approach to compress neural networks. The compression is realized by transferring the knowledge
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from a complex model (teacher model) to a simpler model (student model). However, current knowl-
edge distillation approaches cannot directly be applied to sleep models because of two challenges.

On the one hand, existing knowledge distillation approaches cannot fully extract the spatial-
temporal knowledge within the multi-channel sleep signals. For example, Liang et al. (2023) intro-
duce multi-level knowledge distillation with a teacher assistant module. Zhang et al. (2022) extract
the epoch-wise and sequence-wise knowledge for the distillation. These works only focus on the
temporal knowledge but neglect the spatial knowledge. Common knowledge distillation methods
like Fitnets (Romero et al., 2014) and Hinton’s knowledge distillation (Hinton et al., 2015) can-
not closely bound up with the characteristic of sleep signals, which hinders the extraction of sleep
spatial-temporal knowledge.

Temporal Knowledge Spatial Knowledge

···

Figure 1: Temporal knowledge represents the transition rules between sleep epochs within a sleep
signal sequence. Spatial knowledge means the spatial relationship of multi-channel signals.

On the other hand, current knowledge distillation frameworks cannot fully transfer the knowledge
to the student model. For example, Hinton et al. (2015); Romero et al. (2014); Zhao et al. (2022);
Park et al. (2019) train the teacher model in advance and then distill knowledge to the student model
by a fully-trained teacher model which is static in the student training process. They neglect the
response of student model to improve the teacher during the student’s training procedure, which can
in the end improve the student. It constrains the transfer of the spatial-temporal knowledge and the
performance of the student model.

To solve the challenges above, we propose a general knowledge distillation framework for multi-
channel sleep stage classification models, which can compress the sleep models effectively with
minimal performance loss. Our main contributions are as follows:

1. We propose a spatial-temporal knowledge module to fully extract spatial-temporal knowl-
edge from multi-channel sleep signals;

2. We design a mutual distillation framework to improve the transfer of spatial-temporal
knowledge.

3. The experiment results indicate that our proposed knowledge distillation framework
achieves state-of-the-art performance with two popular architectures, CNN-RNN and
CNN-GCN, on both ISRUC-III and MASS-SS3 datasets. It effectively reduces the num-
ber of parameters and computational costs of sleep models while preserving its sleep stage
classification performance.

2 RELATED WORKS

2.1 SLEEP STAGE CLASSIFICATION

Sleep stage classification can help diagnose sleep disorders. In earlier studies, researchers employ
machine learning methods to classify sleep stages (Tzimourta et al., 2018; Basha et al., 2021; Sun-
dararajan et al., 2021). However, these methods require a large amount of a priori knowledge, which
means that a significant manual cost is required to extract features. Therefore, many researchers
start to use deep learning methods to extract spatial-temporal knowledge of sleep signals to achieve
automatic sleep stage classification.

For temporal knowledge, researchers classify sleep stages by capturing contextual dependencies
between sleep stages. Based on this, researchers propose a series of sleep stage classification models
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that extract temporal knowledge of sleep signals. For example, DeepSleepNet (Supratak et al., 2017)
uses Bi-LSTM to extract sequential features of sleep signals; A CNN-based model proposed by
Sun et al. (2019) devise a hierarchical neural network to learn temporal features for the sleep stage
classification; SleepEEGNet (Mousavi et al., 2019) employs a bidirectional recurrent neural network
to capture long-term and short-term contextual dependencies. Both MLP and LSTM are applied by
Dong et al. (2017) for the extraction and mining of temporal features.

For spatial knowledge, researchers classify sleep stages with multi-channel sleep signals from sen-
sors in different body parts (Gao & Ji, 2019). For example, Chambon et al. (2018) use convolutional
layers across channels to extract spatial knowledge. Shi et al. (2015) use the joint collaborative
representation to fuse EEG representations and extract spatial knowledge. 2D CNN is applied by
Sokolovsky et al. (2019) to capture the spatial knowledge of EEG and EOG. Jia et al. (2023) im-
prove the classification performance of sleep stage classification models by exploring the correlation
of individual channels. In addition, there are also methods that extract both temporal relationship
and spatial knowledge. For example, MSTGCN (Jia et al., 2021) uses deep graph neural networks to
model spatial knowledge for more accurate sleep stage classification of multi-channel sleep signals.

Although these methods achieve good performance in the field of sleep stage classification, the
size of the models is rapidly growing. This leads to high computational and storage costs for the
models in practical applications, making it difficult to achieve deployment in hardware devices. We
introduce the extraction of spatial-temporal knowledge of sleep signals into knowledge distillation
to achieve lightweight sleep stage classification.

2.2 KNOWLEDGE DISTILLATION

Knowledge distillation is an important approach in model compression. It has two main challenges:
knowledge extraction and knowledge transfer.

For knowledge extraction, researchers extract knowledge from teacher in multiple ways. In the
beginning, Hinton et al. (2015) use the output of the teacher model as a kind of soft label to partic-
ipate in the training of the student model. For more efficient extraction, new knowledge extraction
techniques arise. Fitnets (Romero et al., 2014), for example, use the middle layer features of teacher
models as hints to guide student models for training. Park et al. (2019) focus on the multivariate
relationship between each sample and transfer the relationship matrix as a kind of knowledge to
the student model; Tian et al. (2019) encourage the positive samples to be closer and penalize the
negative samples to make them farther away by the relationship between positive and negative sam-
ples. Minami et al. (2020) construct relationships as graphs for relationship-based graph knowledge
transfer. In conclusion, efficient feature extraction is key to the knowledge distillation.

For knowledge transfer, more efficient distillation frameworks are proposed to better transfer
knowledge. For example, Mirzadeh et al. (2020) introduces a teaching assistant model to help
reduce the gap between teachers and students; Recently, a new type of distillation utilizing mutual
learning to help knowledge transfer. In this circumstance, the knowledge is mutually transferred
between multiple models. For example, Zhang et al. (2018) abandon the traditional teacher-student
architecture and allowed each pair of models in the model set to learn from each other; Ren et al.
(2021) introduce a Master to update teacher and student models alternately.

In sleep stage classification task, it is vital to propose a knowledge distillation approach tightly
combined with the characteristics of sleep signals. The knowledge distillation approach we pro-
posed extracts the spatial-temporal knowledge of sleep signals and transfers sleep spatial-temporal
knowledge in a mutual distillation framework.

3 PRELIMINARY

Definition 1 In the task of sleep stage classification with multi-channel sleep signals, we define
the input signals X as follows:

X =

x11 · · · x1L

...
. . .

...
xC1 · · · xCL

 , xij ∈ Rn (1)
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where, L denotes the length of a sequence. C denotes the number of channels. n represents the
length of a sleep epoch.

Definition 2 Consider a multi-channel sleep stage classification model f , which can be represented
as the composition f = f1⊙f2, where f1 represents the encoder part of the model and f2 represents
the classifier.

Definition 3 The multi-channel features can be obtained by applying X to f1:

H = f1(X) =

h11 · · · h1L

...
. . .

...
hC1 · · · hCL

 , hij ∈ Rm (2)

where, m represents the feature length of an epoch.

Definition 4 The classification results can be obtained by inputting the feature matrix H into the
classifier f2:

Ŷ = f2(H) = {ŷ1, · · · , ŷL} (3)
ŷi = {p1, · · · , pk}, pi ∈ (0, 1) (4)

where, ŷi represents the probability distribution of each class with a length of k and pi is the proba-
bility of the i-th class. k corresponds to the number of classes, which is 5 under the AASM standard.

4 SPATIAL-TEMPORAL MUTUAL DISTILLATION

As shown in Figure 2, Spatial-Temporal Mutual Distillation consists of the spatial knowledge mod-
ule, the temporal knowledge module and a mutual distillation framework to compress sleep stage
classification models. Specifically, multi-channel features of sleep signals are extracted by the en-
coder at the beginning. To model the spatial knowledge, a sleep graph is constructed from the
multi-channel features to transfer the knowledge from the teacher to the student. As for temporal
knowledge, it is modeled by measuring the temporal relationship vector within the sleep signal se-
quence, thus guiding the student model to learn the temporal knowledge contained in the teacher
model. In addition, a mutual distillation framework is designed to further improve the distillation
with mutual knowledge transfer.
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Figure 2: Here is the overall process of Spatial-Temporal Mutual Distillation. Initially, the multi-
channel sleep signals are encoded by both the teacher and student encoder, extracting corresponding
multi-channel features. Subsequently, the temporal knowledge module and the spatial knowledge
module extract spatial-temporal knowledge and then mutually transferred under the mutual distilla-
tion framework.
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4.1 SPATIAL KNOWLEDGE MODULE

For the extraction spatial knowledge, we design the spatial knowledge module. It starts with sleep
graph construction to represent spatial knowledge as a graph. Then, we measure the difference
between graphs from the teacher and the student to convey the spatial knowledge.

It is a key question that how to represent the spatial knowledge for better knowledge transfer. Since
the spatial knowledge expresses the spatial relationship of multi-channel sleep signals, we construct
sleep graph G = {V,E} whose edges show the relationship between channels. Sleep graph is
constructed from multi-channel features encoded from the multi-channel sleep signals. Each channel
can be denoted as a node vi, while the edge between vi and vj are denoted as eij . The edge is
measured by a regularized form as follows:

eij =
eRs(vi,vj)∑C
j eRs(vi,vj)

(5)

where Rs is cosine similarity function which measures the relationship of each pair of nodes.

In the process of knowledge distillation, knowledge transfer is conducted by utilizing the distance of
the teacher and student model. For the sleep graph we propose, we measure the spatial relationship
distance of the sleep graphs by bringing the KL divergence to each node. As for node i, the spatial
relationship distance Di is calculated as follows:

Di = KLD(esi∥eti) =
C∑

j=0

esij log
esij
etij

(6)

where esi = {esi1, · · · , esiC} is the spatial relationship vector corresponding to node vsi in the stu-
dent’s sleep graph, and eti = {eti1, . . . , etiC} is the spatial relationship vector corresponding to node
vti of the teacher’s sleep graph. In this calculation, if Di is smaller, it means that the teacher’s node
vti and the student’s node vsi have more similar spatial knowledge. Therefore, by bringing all nodes
into the calculation, the loss function for spatial knowledge can be derived as follows:

Lspatial =
1

C

C∑
i=1

Di (7)

4.2 TEMPORAL KNOWLEDGE MODULE

Sleep signal sequences naturally contain temporal knowledge. It represents contextual dependencies
between epochs. The classification of a certain epoch can be inferred from the relationship with the
back-and-forth epochs. In the existing distillation for sleep models, they directly align the features
of a sequence instead of modeling the relationship of epochs. It is not accurate and has problems
like dimension alignment. To extract the relationship of a sleep signal sequence, we design a tem-
poral knowledge module. We choose to model the relationship between the epochs as contextual
constraints over a sequence, which is more in line with the characteristics of sleep signals.

Specifically, the temporal knowledge module is computed as follows: Given sleep signal sequence
features H with a length of L epochs. We take i-th epoch which contains C channels as ui. To
model the relationship between the features ui and uj of two epochs, it can be expressed as follows:

Rij = Rt(ui, uj) (8)

where Rt(·, ·) denoted a relationship function computed by Euclidean distance. By applying the
relationship to all the epochs in the sequence in pairs, we can get a temporal relationship vector
vec = {Rij |i, j ∈ [1, L]}. After computing the temporal relationship vector for both the teacher
and the student model, we can get the corresponding temporal relationship vector denoted as vect

and vecs. To transfer the temporal knowledge to the student, we calculate the difference of temporal
relationship vectors of the teacher and student using the SmoothL1(·, ·) loss function, which can be
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expressed as follows:

Ltemporal = SmoothL1(vect, vecs) =

{
0.5|vect − vecs|2, |vect − vecs| < 1

|vect − vecs| − 0.5, otherwise
(9)

4.3 MUTUAL DISTILLATION FRAMEWORK

Traditional knowledge distillation employs a static teacher model in the distillation. In the sleep
stage classification task, it constrains the knowledge transfer and limits the student’s performance.
For better knowledge transfer, we design a mutual distillation framework to transfer spatial-temporal
knowledge.

On the training epoch i, the update of both teacher and student model can be expressed as follows:

Lt
c = CE(f t

i (x), y) = −
∑
i

y · log(f t
i (x)) (10)

Ls
c = CE(fs

i (x), y) = −
∑
i

y · log(fs
i (x)) (11)

Lossti = αLt
c + βLspatial + γLtemporal (12)

Losssi = αLs
c + βLspatial + γLtemporal (13)

where α, β and γ are three hyperparameters which stands for the weights to balance the losses. Lt
c

denotes the classification loss of the teacher model while Ls
c denotes the classification loss of the

student model.

5 EXPERIMENTS

5.1 DATASETS

We conduct experiments on two publicly available sleep datasets. These two datasets contain ade-
quate multi-channel signals and are scored by experts according to the AASM manual that can be
used for evaluating sleep model performance.

ISRUC-III is obtained from a sample of 8,549 PSG sleeps over 8 hours from 10 healthy adult
subjects, including one male and nine females. We use 8 subjects as the training set, 1 subject as the
validation set, and 1 subject as the test set.

MASS-SS3 contains 59,056 PSG sleep samples from the sleep data of 62 healthy subjects, including
28 males and 34 females. We also use 50 subjects as the training set, 6 subjects as the validation set,
and 6 subjects as the test set.

5.2 EXPERIMENT SETTINGS

To conduct a fair comparison, we bring the same data and model settings to all knowledge distillation
baselines and our framework. The detail of the baseline methods are shown in the Appendix A.1.

With a sampling rate of 100 Hz for both ISRUC-III and MASS-SS3, The experiments utilize three
channels sets of 6-channel EEG/EOG, 8-channel EEG/EOG, and 6-channel EEG. The results of
8-channel EEG/EOG and 6-channel EEG are presented in Appendix A.3 and A.4.

The spatial-temporal knowledge naturally exists in most of the sleep models, whose most popular
architecture is CNN-RNN and CNN-GCN. Based on the inspiration of classical sleep models such
as CNN-RNN-based TinySleepNet and CNN-GCN-based GraphSleepNet, we design two pairs of
multi-channel teacher-student models for the comparison of knowledge distillation frameworks. In
the CNN-RNN architecture, we delete the units of the dense layer and the LSTM as well as the
number of filters in the CNNs. In the CNN-GCN architecture, we delete units of the Graph Convo-
lution layer and the number of filters in the CNNs. The hyperparameters of the compressed layers
are shown in Table 1. Details about the implementation of models are shown in Appendix A.5.
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Table 1: The hyperparameters of the models related to the compression.

Model Conv Filters LSTM Units Dense Graph Units

CNN-RNN Teacher 128 128 1024 /
CNN-RNN Student 32 32 128 /
CNN-GCN Teacher 128 / 1024 1024
CNN-GCN Student 32 / 128 32

In the implementation of the models, we use RTX 3090 GPU, and TensorFlow 2.9.0 as the deep
learning framework. In this paper, we use Adam as the optimizer for each model with a learning
rate of 0.0001 and a batch size of 8 during training. We choose cosine similarity as Rs and L2
normalization as Rt. We use a weight setting of α:β:γ = 1:5:1, and the loss weights of other baseline
methods are shown in Appendix A.6.

5.3 OVERALL RESULTS

As the experiment results shown in Table 2, the student model demonstrates a remarkable compres-
sion on the number of parameters, size, and FLOPS. It shows that the student model distilled by our
method reduces both the scale and computational costs. However, the accuracy and F1-score still
maintain a performance near the teacher model.

Table 2: The performance, scale and computational costs of the teacher and student model. #Param
denotes the number of parameters. Size denotes the storage the model occupied. FLOPS (Floating
point Operations Per Second) denotes the computational costs of the model.

Model Accuracy F1-score #Param Size FLOPS

CNN-RNN Teacher 83.47% 80.50% 8.72M 34.9MB 11.34B
CNN-RNN Student 82.42% 80.06% 0.29M 1.2MB 1.15B
CNN-GCN Teacher 85.93% 83.95% 5.49M 22MB 1.61B
CNN-GCN Student 84.26% 81.12% 2.13M 8.6MB 0.034B

Knowledge Extraction. To demonstrate that the efficient extraction of spatial-temporal knowl-
edge, we compare our framework with the baselines without mutual distillation. From the results in
Table 4, it can be concluded that our method achieve better performance than all the baselines with-
out mutual distillation. The reason is that our proposed method utilizing spatial-temporal knowledge
in the multi-channel sleep signals, while the baselines without mutual distillation only consider in-
complete knowledge. For example, Knowledge Distillation and Decoupled Knowledge Distillation
only apply the knowledge from the output. Fitnets and Neuron Selectivity Transfer consider the
intermediate features but ignore the spatial relationship in multi-channel sleep signals. Relational
Knowledge Distillation takes the relationship of contextual epochs into consideration while Distill-
ing Knowledge from GCN models the spatial relationship. Neither of these two approaches takes full
account of the spatial-temporal knowledge. The results verify that the spatial-temporal knowledge
used by our method is the knowledge should be extracted from the multi-channel sleep signals.

Knowledge Transfer. To demonstrate that our knowledge distillation framework can fully trans-
fer the knowledge from the teacher model, we compare with Deep Mutual Learning, a mutual
distillation-based framework. Our knowledge distillation framework outperforms Deep Mutual
Learning which indicates the strong knowledge transfer ability of our knowledge distillation frame-
work.

5.4 VISUALIZATION

Spatial knowledge denotes the functional connectivity of the human body and temporal knowledge
denotes the contextual relationship of a sleep sequence. Some researches have shown that the spatial
and temporal knowledge varies during different sleep stages. In order to analyze the effectiveness of
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Table 3: Comparison with baseline methods on CNN-RNN architecture.

Method ISRUC-III MASS-SS3
Accuracy F1-score Accuracy F1-score

Knowledge Distillation 77.47% 73.82% 81.27% 69.27%
Decoupled Knowledge Distillation 79.26% 75.68% 82.51% 70.61%

Fitnets 78.21% 73.92% 81.09% 67.80%
Neuron Selectivity Transfer 78.42% 74.18% 81.79% 70.04%

Relational Knowledge Distillation 79.26% 76.75% 82.55% 71.30%
Distilling Knowledge from GCN 77.16% 73.75% 82.95% 72.29%

Deep Mutual Learning 80.63% 77.31% 82.20% 70.59%
Ours 82.42% 80.06% 84.22% 73.94%

Table 4: Comparison with baseline methods on CNN-GCN architecture.

Method ISRUC-III MASS-SS3
Accuracy F1-score Accuracy F1-score

Knowledge Distillation 75.07% 72.35% 84.75% 75.60%
Decoupled Knowledge Distillation 82.44% 80.26% 84.79% 80.32%

Fitnets 81.88% 80.76% 84.96% 75.82%
Neuron Selectivity Transfer 83.31% 80.94% 85.51% 76.81%

Relational Knowledge Distillation 76.68% 73.19% 80.5% 64.19%
Distilling Knowledge from GCN 82.65% 79.69% 83.67% 82.48%

Deep Mutual Learning 81.27% 77.84% 83.89% 72.64%
Ours 84.26% 81.22% 85.71% 77.98%

spatial and temporal knowledge module, we visualize the sleep graphs constructed by multi-channel
sleep signals and temporal relationship at different stages. The results are shown in Figure 3 and
Figure 4. It can be summarized from the figures that the sleep graphs and temporal relationship are
similar under each sleep period which indicate that our framework transfer the spatial and temporal
knowledge efficiently.
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Figure 3: Visualization analysis of spatial knowledge transfer.

5.5 ABLATION STUDY

Our method consists of three parts: temporal knowledge module, spatial knowledge module, and
mutual distillation framework. This combination forms the optimal performance of spatial-temporal
mutual distillation. In order to further study the effectiveness of the method, we conduct ablation
experiments to evaluate each specific module and prove the effectiveness of each component of the
method.
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Figure 4: Visualization analysis of temporal knowledge transfer.

The experiment settings of the ablation study are as follows:

• Variant I: Training without neither spatial-temporal knowledge nor mutual distillation
framework;

• Variant II: Training with only temporal knowledge module, without mutual distillation
framework and spatial knowledge module;

• Variant III: Training with temporal knowledge module and spatial knowledge module,
without mutual distillation framework;

• Variant IV: Training with mutual spatial-temporal knowledge distillation.

Through the results shown in Table 5, it can be observed that the temporal knowledge module has
a positive impact on the knowledge distillation performance because of transferring the temporal
knowledge. Then, the spatial knowledge module also contributes to the performance by extracting
and conveying spatial knowledge of multi-channel sleep signals. In addition, the gain of the mutual
distillation framework indicates mutual knowledge transfer helps further improve the distillation.

Table 5: The results of each variant.

Method ISRUC-III MASS-SS3
Accuracy F1-score Accuracy F1-score

Variant I 77.47% 73.82% 81.27% 69.27%
Variant II 78.10% 75.07% 83.03% 72.29%
Variant III 80.52% 77.40% 83.58% 73.29%

Ours 82.42% 80.06% 84.22% 73.94%

6 CONCLUSION

We propose a novel knowledge distillation approach for the sleep stage classification task with multi-
channel sleep signals. It consists of three parts: spatial knowledge module, temporal knowledge
module, and mutual distillation framework. The spatial knowledge module constructs the sleep
graph and conveys the spatial knowledge extracted from multi-channel sleep signals. Meanwhile,
the temporal knowledge module transfers the relationship between sleep epochs inside a sequence.
To further improve the distillation, the mutual distillation framework is designed to mutually transfer
the spatial-temporal knowledge between the teacher and student. Our experiments indicate that our
method significantly compresses the model while maintaining its performance. It attains state-of-
the-art performance on two public sleep datasets, ISRUC-III and MASS-SS3. Furthermore, each
component of our method is confirmed effective through the ablation study. The proposed method
is a general distillation framework for multi-channel time series classification. In the future, we can
apply the proposed method to other large-scale multi-variate time series models.
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A APPENDIX

A.1 BASELINE METHODS

To evaluate our method, we compare it with multiple baseline knowledge distillation methods on
both sleep datasets:

• Knowledge Distillation (Hinton et al., 2015): Use the teacher’s output probability distri-
bution to guide student’s training process.

• Fitnets (Romero et al., 2014): Extend the idea of the traditional knowledge distillation by
using both the output of the teacher model and the intermediate representation as a hint to
the student.

• Neuron Selectivity Transfer (Huang & Wang, 2017): Match the distributions of the neu-
ron selectivity patterns with maximum mean discrepancy between the teacher and student
networks.

• Deep Mutual Learning (Zhang et al., 2018): The teacher and student collaboratively
learn and teach each other throughout the entire training process.

• Relational Knowledge Distillation (Park et al., 2019): Use distance and angle distillation
loss to penalize the difference in relation structure.

• Distilling Knowledge from GCN (Yang et al., 2020): Transfer topological semantics of
a pre-trained GCN by a local structure preservation module.

• Decoupled Knowledge Distillation (Zhao et al., 2022): Re-express the loss as two parts,
target class, and non-target class, which focus on the classification correctness and proba-
bility distribution separately.

A.2 DESCRIPTION OF DATASETS

We evaluate our paper on MASS-SS3 (O’reilly et al., 2014) and ISRUC-III (Khalighi et al., 2016)
datasets. The details of these datasets can be seen in Table 6.

13



Under review as a conference paper at ICLR 2024

Table 6: The description of datasets on MASS and ISRUC-III.

Dataset Signal Type Label Frequency Rate

MASS

EEG

C3 256Hz
C4 256Hz
Cz 256Hz
F3 256Hz
F4 256Hz
F7 256Hz
F8 256Hz
O1 256Hz
O2 256Hz
P3 256Hz
P4 256Hz
Pz 256Hz
T3 256Hz
T4 256Hz
T5 256Hz
T6 256Hz
Fp1 256Hz
Fp2 256Hz
Fpz 256Hz

EOG / 256Hz
EMG / 256Hz
ECG / 512Hz

ISRUC-III

EOG
LOC-A2 100Hz
ROC-A1 100Hz
F3-A2 200Hz
C3-A2 200Hz

EEG
O1-A2 200Hz
F4-A1 200Hz
C4-A1 200Hz
O2-A1 200Hz

Chin-EMG X1 200Hz
ECG X2 200Hz

Leg1-EMG X3 200Hz
Leg2-EMG X4 200Hz

A.3 EXPERIMENTS ON 6-CHANNEL EEG OF ISRUC-III

For the further evaluation for our method, we conduct experiments on 6-channel EEG of ISRUC-III.
The results are as follows:

Table 7: Comparison with baseline methods on 6-channel EEG of ISRUC-III.

Method Accuracy F1-score

Knowledge Distillation 84.84% 82.15%
Decoupled Knowledge Distillation 84.9% 82.11%

Fitnets 82.32% 80.67%
Neuron Selectivity Transfer 83.32% 80.91%

Relational Knowledge Distillation 85.26% 82.09%
Distilling Knowledge from GCN 84.35% 81.96%

Deep Mutual Learning 84.18% 81.88%
Ours 86% 82.36%

In these experiments, our framework still achieves the state-of-the-art performance.
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A.4 EXPERIMENTS ON 6-CHANNEL EEG AND 2-CHANNEL EOG OF ISRUC-III

For the further evaluation for our method, we conduct experiments on 6-channel EEG and 2-channel
EOG from ISRUC-III with CNN+GCN architecture. The results are as follows:

Table 8: Comparison with baseline methods on 6-channel EEG and 2-channel EOG of ISRUC-III.

Method Accuracy F1-score

Knowledge Distillation 73.80% 69.81%
Decoupled Knowledge Distillation 77.89% 74.15%

Fitnets 80.53% 78.09%
Neuron Selectivity Transfer 80.17% 77.51%

Relational Knowledge Distillation 71.52% 67.38%
Distilling Knowledge from GCN 82.40% 80.31%

Deep Mutual Learning 82.41% 78.64%
Ours 84.51% 82.38%

In these experiments, our framework still achieves the state-of-the-art performance.

A.5 DETAILS OF THE TEACHER-STUDENT NETWORK

CNN-RNN-based network. We design our network with the hybrid architecture of CNN and RNN.
This kind of model is usually made up of two parts. One of them is the feature encoder. This part
of the network extracts the features from the epochs of each channel by individual encoders. After
the encoding, the multi-channel features are concatenated as the input of the rest of the network.
The rest of the network consists of a BiLSTM and a dense layer. BiLSTM is employed to capture
the contextual features of several continuous epochs during the transition to improve classification
accuracy. We use a dense layer as a classifier to generate the output.

As for this model, we use the strategy that quarters the number of kernels in convolution layers in
each CNN stream and the number of units in the BiLSTM layer simultaneously. The details of the
implementation of the teacher and student are shown in Table 9, 10, 11, and 12.

Table 9: Details of the teacher encoder.

Layer Layer Type #Filters Size Stride Activation Mode

1 Input / / / / /
2 Convolution 1D 128 fs/2 fs/4 relu same
3 Dropout / 0.5 / / /
4 Maxpooling 1D / 8 8 / /
5 Convolution 1D 128 8 1 relu same
6 Convolution 1D 128 8 1 relu same
7 Convolution 1D 128 8 1 relu same
8 Maxpooling 1D / 4 4 / /
9 Dropout / 0.5 / / /

Table 10: Details of the rest of the teacher network.

Layer Layer Type Size Activation

1 Encoder / /
2 Concatenate / /
3 BiLSTM 128 /
4 Dropout 0.5 /
5 Dense 5 softmax
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Table 11: Details of the student encoder.

Layer Layer Type #Filters Size Stride Activation Mode

1 Input / / / / /
2 Convolution 1D 32 fs/2 fs/4 relu same
3 Dropout / 0.5 / / /
4 Maxpooling 1D / 8 8 / /
5 Convolution 1D 32 8 1 relu same
6 Convolution 1D 32 8 1 relu same
7 Convolution 1D 32 8 1 relu same
8 Maxpooling 1D / 4 4 / /
9 Dropout / 0.5 / /

Table 12: Details of the rest of the student network.

Layer Layer Type Size Activation

1 Encoder / /
2 Concatenate / /
3 BiLSTM 32 /
4 Dropout 0.5 /
5 Dense 5 softmax

CNN-GCN-based Network. We design a teacher-student network based on CNN-GCN architec-
ture. It is made up of two parts: feature extractor and GCN. The feature extractor extracts the
features from the epochs of each channel by individual encoders as the input of GCN. GCN learns
the spatial knowledge from the multi-channel sleep signals.

We use the strategy of deleting the number of CNN filters and Graph Convolution units. The feature
extractor structure is the same as the encoder of the CNN-RNN-based network. The details of GCN
are shown in Table 13 and Table 14.

Table 13: Details of the rest of the teacher network.

Layer Layer Type Size Activation

1 Feature Extractor / /
2 Concatenate / /
3 Graph Convolution 1024 /
4 Dropout 0.5 /
5 Dense 5 softmax

Table 14: Details of the rest of the student network.

Layer Layer Type Size Activation

1 Feature Extractor / /
2 Concatenate / /
3 Graph Convolution 32 /
4 Dropout 0.5 /
5 Dense 5 softmax

A.6 THE HYPERPARAMETERS FOR TRAINING

Here are the hyperparameters we choose for the experiments:
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Table 16: Results under different weights settings.

Weights(α, β, γ) Accuracy F1-score

(1,1,1) 84.25% 81.93%
(1,3,1) 84.69% 81.96%
(1,5,1) 84.26% 81.22%
(1,7,1) 84.07% 81.60%

Table 15: Training parameters for baseline methods.

Method Epoch loss weights
ISRUC-III MASS ISRUC-III MASS

Knowledge Distillation 30 0.1:0.9
Fitnets 25 0.5:0.5

Neuron Selectivity Transfer 25 0.5:0.5
Relational Knowledge Distillation 25 0.5:0.5
Distilling Knowledge from GCN 25 1:5

Decoupled Knowledge Distillation 25 1:1
Deep Mutual Learning 25 0.1:0.9

A.7 SENSITIVITY OF WEIGHTS IN KNOWLEDGE DISTILLATION

The weights of each loss term are important hyperparameters in our knowledge distillation frame-
work. We test several weights under same experiments settings. The results using the CNN-GCN-
based architecture on ISRUC-III dataset are shown in Table 16 which indicate that our framework is
not sensitive to the weights of each loss term.

A.8 DIFFERENT DISTANCE MEASUREMENTS

In the previous experiments, we employ KL Divergence to measure the distance between two sleep
graph. We further test other distance measurement function on the same experiment settings. The
results are shown in Figure 17. All measurement function can perform well under our knowledge
distillation framework and Wasserstein distance reaches the best performance in this experiment.

Table 17: The results of different measurement functions on ISRUC-III.

Measurements Accuracy F1-score

KL Divergence 84.26% 81.22%
MMD 84.50% 82.1%

Wasserstein distance 85.20% 82.82%

A.9 CLINICAL DEMANDS

Although reducing scale and computational costs is important for the application of sleep models,
the absolute performance should still meet clinical demands. For clarification of the student model
distilled by our method meets the clinical demands, we compare its performance with some other
popular sleep models. As shown in Table 18, we can find that our student model’s performance is
close to other sleep stage classification methods. The compression will not lead to the loss of the
value of clinical diagnosis in our method.

A.10 DISCUSSION AND LIMITATION

In this paper, we propose a knowledge distillation framework to compress the compact sleep models
for sleep stage classification. In this framework, the proposed framework conveys spatial knowledge
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Table 18: Performance of other popular sleep models and our student model on ISRUC-III. The
performances are similar which means that, our student model still meets the clinical demands after
compression.

Model Accuracy F1-score

SleepEEGNet 78.07% 69.52%
SleepUtime 78.86% 72.26%

Multi-channel DeepSleepNet 81.89% 80.16%
Student (Ours) 82.42% 80.06%

and temporal knowledge mutually between the teacher to the student. To the best of our knowledge,
this framework can not only be applied in sleep stage classification tasks but also can be broadly ap-
plied in other classification tasks multi-channel signals like emotion recognition and motor imagery
tasks.

We only consider the application of our method in the sleep stage classification task, which would
be one of the limitations of our work. There are many physiological signal processing tasks like
motor imagery and emotion recognition. In the future, we will do further research on knowledge
distillation applied to other physiological signal processing tasks.

A.11 SOCIAL IMPACT

The proposed mutual spatial-temporal knowledge distillation method for multi-channel physiolog-
ical signals has a significant social impact in the diagnosis and treatment of sleep-related diseases.
With the increasing use of multi-channel physiological signals for automatic sleep stage classifi-
cation, the size of the models and computational costs are major constraints. However, our pro-
posed method efficiently compresses the current large-scale sleep stage classification models with
the smallest loss of performance. Based on this, the acceleration and high performance of the sleep
stage classification models will significantly popularize the diagnosis of sleep disorders, thus mak-
ing more patients be able to get diagnosis and treatments for sleep-related diseases. Moreover, we
are able to employ this method on wearable devices so that sleep stage classification will not be
limited in hospitals.

A.12 CONFUSION MATRICES FOR OUR METHOD
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Figure 5: The confusion matrix of the student compressed by the proposed method on the ISRUC-III
and MASS-SS3 datasets.
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A.13 CONFUSION MATRICES FOR ABLATION EXPERIMENTS
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Figure 6: The confusion matrix for the ablation experiments on the ISRUC-III dataset.
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Figure 7: The confusion matrix for the ablation experiments on the MASS-SS3 dataset.
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