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Abstract

Given the exceptional performance of propri-001
etary large language models (LLMs) like GPT-002
4, recent research has increasingly focused on003
boosting the capabilities of smaller models004
through knowledge distillation (KD) from these005
powerful yet black-box teachers. While lever-006
aging the high-quality outputs of these teachers007
is advantageous, the inaccessibility of their in-008
ternal states often limits effective knowledge009
transfer. To overcome this limitation, we in-010
troduce Proxy-KD, a novel method that uses a011
proxy model to facilitate the efficient transfer012
of knowledge from black-box LLMs to smaller013
models. Our experiments show that Proxy-KD014
not only enhances the performance of KD from015
black-box teacher models but also surpasses016
traditional white-box KD techniques. This ap-017
proach presents a compelling new avenue for018
distilling knowledge from advanced LLMs.019

1 Introduction020

Recently, proprietary large language models021

(LLMs) like GPT-3.5 (OpenAI, 2022) and GPT-022

4 (OpenAI, 2023) have demonstrated significant023

superiority over open-source counterparts such as024

the Llama series (Touvron et al., 2023a,b; MetaAI,025

2024). However, their vast number of parameters026

leads to high inference costs, and they are only ac-027

cessible via API calls, offering limited customiza-028

tion and transparency. To address these challenges,029

recent efforts like Alpaca (Taori et al., 2023), Vi-030

cuna (Chiang et al., 2023), and Orca (Mukherjee031

et al., 2023) have focused on transferring the capa-032

bilities of proprietary LLMs to smaller open-source033

models through knowledge distillation (Chen et al.,034

2023; Hsieh et al., 2023; Ho et al., 2022).035

Knowledge distillation (KD) (Hinton et al.,036

2015) is a technique used to enhance the perfor-037

mance of a smaller student model by learning038

from a larger, more sophisticated teacher model.039

Depending on the level of access to the teacher040
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Figure 1: Comparison of white-box knowledge distilla-
tion (KD) and black-box knowledge distillation (KD).

model’s internals, KD methods can be categorized 041

into two types: KD with black-box teachers and 042

KD with white-box teachers. As illustrated in Fig- 043

ure 1, white-box KD allows the student model to 044

distill more intrinsic knowledge from the teacher by 045

mimicing the teacher model’s output distribution 046

(Gu et al., 2023; Wen et al., 2023), hidden states 047

(Jiao et al., 2020; Sun et al., 2019), and attention 048

scores (Wang et al., 2021). Therefore, this method 049

can only be applied when the teacher model’s pa- 050

rameters are accessible. On the other hand, black- 051

box KD leverages the high-quality outputs from 052

powerful proprietary LLMs to fine-tune the student 053

model (Hsieh et al., 2023; Fu et al., 2023). Both 054

white-box and black-box KD have their respective 055

drawbacks. While white-box KD is hindered by the 056

limited capacity of the teacher model, which often 057

restricts the distillation performance of the student, 058

black-box KD faces challenges with knowledge 059

transfer due to the inaccessibility of the teacher 060

model’s output distribution and internal states. 061

In this paper, we propose Proxy-based Knowl- 062

edge Distillation (Proxy-KD) to better transfer 063

knowledge from black-box teacher models. Proxy- 064

KD introduces a proxy model, typically a white- 065

box LLM, between the student and the black-box 066

teacher. The proxy model first aligns with the capa- 067

bilities of the black-box teacher by leveraging the 068

teacher’s outputs. Moreover, preference optimiza- 069
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tion is performed to further refine and enhance the070

alignment between the proxy and teacher models.071

During the knowledge distillation process, the072

proxy model generates a dense distribution that073

closely approximates the black-box teacher’s out-074

put distribution. This enables the student model075

to train effectively as if it were using the black-076

box teacher’s guidance. To further improve the077

student’s learning effect, we propose incorporat-078

ing a sample-level weight into the distillation ob-079

jective. This weight reflects the quality of align-080

ment between the proxy and the teacher model081

for each sample, allowing the student to concen-082

trate on learning well-aligned distributions from the083

proxy. Moreover, the outputs from the black-box084

teacher serve as pseudo-labels for the supervised085

fine-tuning of the student model, akin to traditional086

white-box knowledge distillation. Introducing the087

proxy model also mitigates the model capacity gap088

issue (Cho and Hariharan, 2019), which typically089

occurs when there is a notable disparity in capabili-090

ties between the teacher and the student.091

To validate the effectiveness of our method, we092

conducted comprehensive experiments across a093

range of well-established benchmarks. The re-094

sults show that Proxy-KD consistently outperforms095

both black-box and white-box KD methods. We096

observed that the alignment between the proxy097

model and the black-box teacher is crucial; a poorly098

aligned proxy model significantly diminishes the099

performance of knowledge distillation. We also100

found that larger and more robust proxy models are101

generally more desirable, as they possess stronger102

foundational capabilities and can align more ef-103

fectively with the black-box teacher, enhancing104

the distillation process. Furthermore, we discov-105

ered that directly fine-tuning the proxy model with106

outputs from the black-box teacher is suboptimal107

for the alignment, requiring more effective align-108

ment methods. These findings highlight the impor-109

tance of selecting a well-aligned and capable proxy110

model to fully leverage the benefits of Proxy-KD.111

We summarize our contribution as below:112

• To tackle the challenge of knowledge distil-113

lation for closed-source LLMs, we propose114

Proxy-KD, which introduces an aligned proxy115

between the teacher and student models.116

• We propose a DPO-based alignment strategy117

for the proxy to align with the teacher and118

demonstrate that this alignment is essential119

for Proxy-KD to achieve effective distillation.120

• We propose to include a sample-level weight 121

in the distillation objective. This weight al- 122

lows the student to concentrate on learning 123

well-aligned distributions from the proxy. 124

2 Related Work 125

Existing knowledge distillation methods can be 126

categorized into white-box knowledge distillation 127

and black-box knowledge distillation. 128

2.1 White-Box Knowledge Distillation 129

Traditional knowledge distillation (KD) research 130

predominantly employs white-box teachers and 131

is typically classified into three main branches: 132

feature-based, response-based, and relation-based 133

methods. Feature-based methods seek to replicate 134

the teacher’s intermediate representations, such as 135

attention scores (Jiao et al., 2020), attribution maps 136

(Wu et al., 2023), and hidden representations of 137

tokens (Sun et al., 2019). Response-based methods 138

train the student model by minimizing divergences 139

like Kullback–Leibler (KL) divergence (Hinton 140

et al., 2015; Sanh et al., 2019), reverse KL (Gu 141

et al., 2023; Wen et al., 2023), Jensen–Shannon Di- 142

vergence (JSD) (Fang et al., 2021; Yin et al., 2020), 143

and Total Variation Distance (TVD) (Wen et al., 144

2023) based on the teacher’s output distribution. 145

Relation-based methods train the student model by 146

learning pairwise distances and triple-wise angles 147

among token representations from the teacher (Park 148

et al., 2021), or extracting structural relations from 149

multi-granularity representations (Liu et al., 2022). 150

2.2 Black-Box Knowledge Distillation 151

Given the remarkable performance achieved by 152

proprietary LLMs like GPT-4 (OpenAI, 2023), 153

Claude 3 (Anthropic, 2024), and Gemini (Team 154

et al., 2023), recent studies like Alpaca (Taori et al., 155

2023), Vicuna (Chiang et al., 2023), and Orca 156

(Mukherjee et al., 2023) have focused on trans- 157

ferring diverse capabilities from these black-box 158

teachers into smaller open-source models. For in- 159

stance, Li et al. (2024) and Liu et al. (2023) im- 160

proved the mathematical capability of small mod- 161

els by training on tailored rationale samples gen- 162

erated by GPT-3.5-Turbo and GPT-4. To transfer 163

the code generation capability, Azerbayev et al. 164

(2023) prompted Codex (Chen et al., 2021) to cre- 165

ate natural language-code pairs and fine-tuned a 166

smaller model on these samples. To transfer the 167

tool usage capability, Gou et al. (2023) utilized 168

GPT-4 to generate interactive tool-use trajectories 169

2



Student 
Distribution

Teacher Model

(Black-Box LLM)

Proxy Model

(White-Box LLM)

Prompts

Chosen 
Responses

Rejected 
Responses

Teacher Model

(Black-Box LLM)

Proxy Model

(White-Box LLM)

Student Model

Teacher 
Responses

Proxy 
Distribution

Log-Likelihood of Proxy 

Distribution

Stage 1: Proxy Alignment

Stage 2:  Proxy-KDAligned 

Proxy 

Weight

Prompts

Preference Loss

Student Negative Log-

Likelihood Loss

Sample-Level Weighted 

KL Loss

Proxy Negative Log-

Likelihood Loss

Figure 2: Overview of our proposed Proxy-based Knowledge Distillation (Proxy-KD).

as training samples for the target model. Other170

approaches, such as Hsieh et al. (2023); Ho et al.171

(2022); Chen et al. (2023), utilize rationales gen-172

erated by black-box teachers as training data to173

transfer their general reasoning capabilities.174

White-box knowledge distillation (KD) effi-175

ciently distills knowledge by leveraging the internal176

states of the teacher model. However, white-box177

teachers typically possess a more limited capac-178

ity compared to their black-box counterparts. In179

contrast, black-box KD capitalizes on the superior180

performance of the teacher models but is restricted181

to fine-tuning on teacher-generated samples. This182

approach captures input-output patterns without183

accessing the deeper, intrinsic knowledge of the184

teacher model. To bridge these gaps, we propose185

Proxy-KD, a straightforward method that combines186

the strengths of both white-box and black-box KD187

while mitigating their respective limitations.188

2.3 Connection with Teacher Assistant189

The proposed Proxy-KD method draws inspiration190

from TAKD (Mirzadeh et al., 2020), as both meth-191

ods use an intermediate network to aid knowledge192

distillation, but they differ in three significant ways.193

Firstly, the motivation behind each approach is dis-194

tinct: TAKD focuses on mitigating the capacity gap195

between the teacher and student in white-box set-196

tings, whereas Proxy-KD addresses the challenges197

posed by black-box teacher models and seeks to198

incorporate the benefits found in white-box sce-199

narios. Secondly, the methodologies diverge, with200

Proxy-KD introducing a crucial proxy alignment201

phase that includes preference optimization to bet-202

ter align the proxy model with the black-box LLM. 203

This step is essential for reducing discrepancies 204

between the proxy and teacher models, thereby im- 205

proving the effectiveness of the distillation process. 206

Lastly, they operate in different domains: TAKD is 207

applied in the field of computer vision, while Proxy- 208

KD is specifically designed for natural language 209

processing, targeting the distillation of proprietary 210

large language models (LLMs). 211

Some related works (Zhou and Ai, 2024; Lee 212

et al., 2024) also explore the idea of introducing 213

an intermediate-sized teacher. Zhou and Ai (2024) 214

focuses on using a teacher assistant primarily for 215

filtering data generated by both the teacher and 216

student models, and subsequently utilizing the fil- 217

tered high-quality data for distillation. Lee et al. 218

(2024) introduces an intermediate-sized teacher 219

trained through fine-tuning, leveraging its soft la- 220

bels to guide student learning during distillation. 221

However, both of these methods overlook the im- 222

portance of aligning the teacher assistant with the 223

black-box teacher. Using an unaligned teacher as- 224

sistant for black-box KD can harm student model 225

performance (see experiments). Proxy-KD tackles 226

this challenge by introducing an online preference 227

alignment and sample-level weighting in the dis- 228

tillation objective. This focus on alignment is a 229

novel contribution that has not been considered in 230

previous related works. 231

3 Method 232

In this section, we introduce Proxy-based Knowl- 233

edge Distillation (Proxy-KD), a simple yet efficient 234
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approach for knowledge distillation from black-box235

LLMs. As illustrated in Figure 2, Proxy-KD intro-236

duces a larger white-box LLM as the proxy aim-237

ing to capture the black-box teacher’s knowledge.238

The process unfolds in two main stages: (1) proxy239

model alignment and (2) student knowledge distil-240

lation. First, the proxy model is aligned with the241

teacher through supervised fine-tuning and prefer-242

ence optimization. Once aligned, the student model243

learns from both the explicit outputs (hard labels)244

of the black-box teacher and output distributions245

(soft labels) provided by the aligned proxy.246

3.1 Problem Statement247

To facilitate the transfer of knowledge from a black-248

box teacher LLM πt to a smaller, open-source stu-249

dent LLM πs, we introduce a proxy model πp. The250

training dataset D consists of input-output pairs251

(x, y), where x represents the input prompt and252

y is the output sequence generated by the teacher253

model πt. This dataset is strategically divided into254

three parts: 10% (Dw) for the warm-up phase, 45%255

(Dp) for aligning the proxy model with the teacher,256

and the remaining 45% (Ds) for the knowledge257

distillation training of the student model.258

The process begins with a warm-up phase where259

the proxy model πp is trained on Dw. This phase260

helps πp develop a basic capability to generate261

responses to input prompts. Following this, the262

proxy model undergoes alignment with the teacher263

model πt using the next dataset, Dp. This align-264

ment is achieved through two methods: hard-label265

knowledge distillation (KD) and preference learn-266

ing. These methods enable πp to approximate the267

behavior and outputs of the teacher model. Once268

aligned, πp acts as an intermediary, facilitating the269

transfer of knowledge to the student πs on Ds.270

3.2 Preliminary271

Hard-Label Knowledge Distillation. In this ap-272

proach, the student model is trained using the out-273

puts generated by the teacher model by minimizing274

the negative log-likelihood (NLL) function:275

LNLL = E(x,y)∼D [− log πs(y|x)] , (1)276

where πs(y|x) is the probability of πs generating277

y given x. This approach is essentially a form278

of supervised fine-tuning and typically employed279

when the teacher is a black-box model.280

Soft-Label Knowledge Distillation. In this ap-281

proach, the student is trained to imitate the token-282

level probabilities of the teacher, by minimizing 283

the Kullback-Leibler (KL) divergence: 284

LKL = E(x,y)∼D [DKL(πt(y|x)||πs(y|x))] . (2) 285

This knowledge distillation approach is typically 286

employed when the teacher is a white-box model. 287

While the KL divergence objective provides 288

richer supervision signals by using the token-level 289

output distributions of the teacher model, it can- 290

not be applied to black-box teachers due to the 291

inaccessibility of these distributions. Consequently, 292

current methods (Chiang et al., 2023; Mukherjee 293

et al., 2023) rely on supervised fine-tuning using 294

the outputs generated by black-box models to trans- 295

fer their knowledge. Proxy-KD addresses this lim- 296

itation by using a proxy model to incorporate the 297

KL objective. The proxy mimics the black-box 298

teacher, allowing access to its output distributions 299

and enabling a more effective knowledge transfer. 300

3.3 Proxy Model Alignment 301

The proxy model πp is typically a larger white- 302

box LLM than the student model πs. For effective 303

knowledge transfer, it’s crucial to first align the 304

output distribution of the proxy model with that 305

of the black-box teacher model πt. This align- 306

ment ensures that the proxy accurately captures 307

the teacher’s behavior. 308

The proxy model πp first undergoes supervised 309

fine-tuning on a warm-up dataset Dw. Following 310

this, the proxy is further trained on the Dp dataset 311

by minimizing the NLL loss: 312

LProxy-NLL = E(x,y)∼Dp
[− log πp(y|x)] . (3) 313

To enhance the alignment of the proxy model 314

with the teacher, we further introduce a preference 315

learning-based alignment objective, with the hy- 316

pothesis that the teacher model’s responses are 317

of higher quality compared to those from the un- 318

aligned proxy model. The objective is to iteratively 319

adjust the proxy model so that it increasingly fa- 320

vors responses similar to those of the teacher while 321

reducing its preference for its own initial outputs. 322

To implement this, we employ the Direct Prefer- 323

ence Optimization (DPO) algorithm (Rafailov et al., 324

2024), which refines the proxy model by systemati- 325

cally preferring the teacher’s responses. 326

Specifically, for a given input x, we iteratively 327

sample a response y from the teacher and ŷ from 328

the proxy. These responses form a preference pair 329
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(x, y, ŷ). To train the proxy model to prefer y over330

ŷ, we define the following preference loss function:331

L(i)
DPO(x, y, ŷ) =

log σ

[
β log

π
(i)
p (y|x)

π
(i−1)
p (y|x)

− β log
π
(i)
p (ŷ|x)

π
(i−1)
p (ŷ|x)

]
,

(4)332

where π
(i−1)
p is the proxy model from the previous333

training iteration. The overall preference loss over334

all the preference samples is defined as:335

L(i)
Pref = E(x,y)∼Dp,ŷ∼π

(i)
p (x)

L(i)
DPO(x, y, ŷ). (5)336

At each iteration i, the proxy model is updated337

based on the combined objective that includes both338

the NLL loss and the preference loss:339

L(i)
Proxy = L(i)

Proxy-NLL + L(i)
Pref. (6)340

This iterative process continues for a fixed num-341

ber of iterations k or until the proxy model con-342

verges. Through this method, the proxy model πp343

is aligned to emulate the distribution of the black-344

box teacher πt, becoming an effective intermediary345

for transferring knowledge to the student model.346

3.4 Knowledge Distillation347

To transfer knowledge from the black-box teacher348

to the student model πs, we define the first training349

objective using teacher-generated sequences and350

the hard-label knowledge distillation objective:351

LStudent-NLL = E(x,y)∼Ds
[− log πs(y|x)] . (7)352

Based on the proxy model aligned with the black-353

box teacher, which delivers accessible output distri-354

butions, we define another training objective for the355

student through soft-label knowledge distillation:356

LStudent-KL = E(x,y)∼Ds
[DKL(πp(y|x)||πs(y|x))] .

(8)357

In this process, the proxy model functions as358

an intermediary for the black-box teacher, facil-359

itating the transfer of knowledge to the student360

model. However, as illustrated in Figure 5 in Ap-361

pendix, discrepancies between the teacher’s and362

the proxy’s output distributions persist even after363

aligning the proxy model, potentially degrading364

the effectiveness of knowledge distillation. To ad-365

dress these discrepancies, we propose a weighted366

approach to the soft-label knowledge distillation367

objective. By introducing weights, we dynami-368

cally adjust the influence of each sample based369

on the alignment quality between the proxy and 370

the black-box teacher. This approach ensures that 371

the student model prioritizes samples where the 372

proxy’s distribution closely matches the teacher’s 373

distribution and reduces focus on samples where it 374

does not. The weights are calculated based on the 375

log-likelihood of the teacher’s output generated by 376

the proxy, normalized by the mean and variance of 377

these log-likelihoods: 378

w(x, y) = σ

[
log πp(y|x)− µ

γ

]
,

µ = E(x,y)∼Ds
[log πp(y|x)],

γ2 = Var(x,y)∼Ds
[log πp(y|x)],

(9) 379

where w(x, y) is a weight reflecting the quality of 380

the proxy’s prediction for the sample (x, y), Var(·) 381

is the variance operation, γ is the standard devia- 382

tion, σ is the sigmoid function. Based on Equation 383

(8), we derive the sample-level weighted version of 384

LStudent-KL as follow: 385

LWeight-KL =

E(x,y)∼Ds
[w(x, y)DKL(πp(y|x)||πs(y|x))] .

(10) 386

Therefore, the overall objective for student 387

knowledge distillation can be derived as: 388

LStudent = LStudent-NLL + αLWeight-KL, (11) 389

where α is a hyperparameter utilized to adjust the 390

strength of the weighted KL loss. 391

This knowledge distillation strategy effectively 392

blends the advantages of both black-box and white- 393

box knowledge distillation methods, employing the 394

proxy model to bridge the gap between black-box 395

LLMs and open-source student LLMs. 396

4 Experimental Setup 397

In this section, we introduce the experimental set- 398

tings of models, datasets, and method baselines. 399

4.1 Models and Datasets 400

Teacher/Proxy/Student Models. In Proxy-KD, 401

we choose GPT-4 (OpenAI, 2023) as the teacher, 402

which is a powerful proprietary large language 403

model. We select Llama-2-70b (Touvron et al., 404

2023b) and Llama-2-13b (MetaAI, 2024) as the 405

proxy, respectively. Our student models come 406

from two model types: Llama-1-7B (Touvron et al., 407

2023a) and Llama-2-7B (Touvron et al., 2023b). 408
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Training Corpus. We combine the OpenOrca409

(Lian et al., 2023) and Nectar (Zhu et al., 2023)410

datasets as our training corpus, containing a total411

of 1M output sequences generated by the block-412

box teacher GPT-4. The OpenOrca dataset con-413

sists of instruction-following tasks, where GPT-4414

is prompted to generate responses based on diverse415

input instructions. Nectar is a 7-wise comparison416

dataset, we filter and select those responses derived417

from GPT-4. Following Li et al. (2024), we also in-418

corporate synthetic data generated by GPT-4, based419

on existing benchmark training sets. We split the420

original training corpus D into three parts: 10%421

as Dw with 100K samples, 45% as Dp with 450K422

samples, and 45% as Ds with 450K samples.423

Evaluation Benchmarks. Evaluation bench-424

marks include complex reasoning dataset BBH425

(Suzgun et al., 2022), knowledge-based datasets426

AGIEval (Zhong et al., 2023), ARC-challenge427

(Clark et al., 2018), and MMLU (Zeng, 2023), com-428

monsense reasoning dataset CSQA (Talmor et al.,429

2019), and mathematical reasoning dataset GSM8K430

(Cobbe et al., 2021). All evaluated models apply a431

zero-shot greedy decoding strategy.432

4.2 Training Configurations433

All experiments are conducted on 8×A100 Nvidia434

GPUs with 80GB memory. All proxy and student435

models are trained for only one epoch. We use a436

constant learning rate of 1e-5 and the Adam opti-437

mizer, with a max sequence length of 1024. We438

set hyperparamter α = 100 in Equation (11), and439

k = 16 for the number of proxy alignment itera-440

tions. All models are trained using LoRA (Hu et al.,441

2021) with mixed-precision: frozen parameters in442

bfloat16 and LoRA-trained parameters in float32.443

4.3 Baselines444

We compare Proxy-KD with different white-box445

KD and black-box KD methods.446

White-Box KD. For knowledge distillation with447

white-box teachers, we compare forward KL meth-448

ods (Hinton et al., 2015; Agarwal et al., 2024) and449

reverse KL methods including MiniLLM (Gu et al.,450

2023) and GKD (Agarwal et al., 2023) (with the451

same hyperparameters set in the paper). The chat452

version of Llama-2-70b is utilized as the white-box453

teacher. We also compare with using the aligned454

proxy as white-box teacher to perform distillation.455

Black-Box KD. For knowledge distillation with456

black-box teachers, we compare the vanilla black-457

box KD method , which directly fine-tunes the 458

student on the data generated by the black-box 459

teacher. We also compare Proxy-KD with the 460

TAKD (Mirzadeh et al., 2020) method. 461

For baselines implemented by us, we start from 462

the same student checkpoint as Proxy-KD and use 463

the same input prompts. In white-box KD, output 464

sequences are generated by the white-box teacher, 465

while in black-box KD, output sequences are gen- 466

erated by the black-box teacher. 467

5 Result and Analysis 468

In this section, we present the main results and 469

additional experiments of Proxy-KD. 470

5.1 Overall Results 471

We show the comparison of Proxy-KD against base- 472

lines in Table 1, the proxy models in Proxy-KD 473

are based on Llama-2-70B backbone. Overall, 474

the performance of black-box KD methods out- 475

performs that of white-box KD methods, demon- 476

strating the efficacy of distilling knowledge from 477

powerful black-box models. 478

Proxy-KD outperforms white-box KD and 479

black-box KD methods. Notably, Proxy-KD fur- 480

ther enhances the performance, consistently achiev- 481

ing higher scores across most evaluated bench- 482

marks compared to the white-box KD methods 483

(e.g. MiniLLM and GKD) and the black-box KD 484

methods. Improvement is particularly pronounced 485

in the challenging datasets like ARC, BBH, and 486

GSM8K, where Proxy-KD obtains accuracy of 487

71.09%, 53.40%, and 53.07%, respectively. 488

Proxy-KD outperforms TAKD consistently. 489

TAKD performs even worse than vanilla Black-Box 490

KD. When using Llama-1-7B as the student, vanilla 491

Black-Box KD achieves an average of 49.11%, 492

while TAKD only reaches 46.63%. Similarly, with 493

Llama-2-7B as the student, vanilla Black-Box KD 494

attains 53.66% compared to TAKD’s average of 495

52.82%. This decline in performance is likely 496

due to TAKD’s failure to account for the proxy 497

alignment process, which is essential for effective 498

closed-source KD. Introducing an unaligned proxy 499

not only fails to enhance performance but actually 500

degrades the performance of the student model. 501

Proxy-KD outperforms white-box KD with 502

an aligned proxy as the teacher. Relying solely 503

on an aligned proxy for white-box KD offers lim- 504

ited knowledge to the student, attaining average 505

accuracy of 53.84%, compared to Proxy-KD’s av- 506
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Table 1: Overall results on evaluated benchmarks. We report accuracy (%) for all tasks. Best performances are
shown in bold, while suboptimal ones underlined. All models utilize a zero-shot greedy decoding strategy for
evaluation. Llama-2-70B-Proxy indicates that we use the aligned proxy as the white-box teacher for distillation.

Method Student Teacher AGIEval ARC BBH CSQA GSM8K MMLU Avg

Black-Box Teacher

GPT-4 - - 56.40 93.26 88.0 - 92.0 86.4 -

White-Box KD

Forward KL Llama-1-7B Llama-2-70B-Chat 25.16 62.18 37.27 74.20 37.39 45.43 46.94
Forward KL Llama-2-7B Llama-2-70B-Chat 35.16 66.87 35.68 74.40 44.12 51.42 51.27
Forward KL Llama-2-7B Llama-2-70B-Proxy 35.56 69.34 45.72 74.97 46.34 51.13 53.84
MiniLLM (Gu et al., 2023) Llama-2-7B Llama-2-70B-Chat 35.77 63.25 53.11 75.15 44.64 51.32 53.87
GKD (Agarwal et al., 2023) Llama-2-7B Llama-2-70B-Chat 34.22 62.28 52.58 75.16 42.79 50.64 52.95

Black-Box KD

Vanilla Black-Box KD Llama-1-7B GPT-4 28.01 63.17 41.98 74.43 41.83 45.21 49.11
Vanilla Black-Box KD Llama-2-7B GPT-4 34.71 66.85 46.68 74.43 49.51 49.82 53.66

TAKD (Mirzadeh et al., 2020) Llama-1-7B GPT-4 25.73 63.61 38.87 73.01 39.45 39.12 46.63
TAKD (Mirzadeh et al., 2020) Llama-2-7B GPT-4 35.05 67.18 43.0 76.04 47.54 48.09 52.82
Proxy-KD (ours) Llama-1-7B GPT-4 35.47 67.48 43.74 74.08 44.89 41.88 52.09
Proxy-KD (ours) Llama-2-7B GPT-4 36.59 71.09 53.40 75.18 53.07 51.35 56.78

erage of 56.78%. This suggests that the capabil-507

ities of closed-source teachers are more benefi-508

cial than those of open-source teachers, even after509

alignment, underscoring the superiority of distill-510

ing from closed-source LLMs.511

We also present the performance changes of stu-512

dent models during the distillation process in Fig-513

ure 6 in Appendix. We show the accuracy curves of514

students on the benchmark test sets for every 40K515

training steps. We compare three methods: vanilla516

black-box KD, Proxy-KD, and white-box KD (for-517

ward KL). The results show that Proxy-KD stands518

out with the most significant enhancements, indicat-519

ing its superior capability to efficiently transfer the520

comprehensive knowledge of black-box teachers521

to student models. The steeper and more consistent522

improvement curves of Proxy-KD across bench-523

marks such as AGIEval, ARC, and particularly524

in complex tasks like BBH and GSM8K, under-525

score its robust and effective approach in leverag-526

ing proxy models for knowledge distillation.527

5.2 Ablation Studies528

In this section, we examine the impact of different529

components within Proxy-KD. Llama-2-7B and530

Llama-2-70B are utilized as the backbones of the531

student and the proxy models, respectively.532

Effect of the Proxy Model. The proxy model533

πp is crucial for the effectiveness of Proxy-KD. Re-534

moving the proxy model forces the distillation pro-535

cess to revert to hard-label knowledge distillation,536

leading to significant performance drops across537

multiple benchmarks: a decrease of 4.24 on ARC,538

6.72 on BBH, and 3.56 on GSM8K, as shown in Ta-539

ble 2. These declines underscore the proxy model’s540

essential role in capturing and transferring the dis- 541

tributional knowledge from the black-box teacher, 542

which is particularly important for tasks involving 543

complex reasoning and mathematical challenges. 544

Without the proxy, the student model fails to benefit 545

from the detailed distributional guidance, resulting 546

in markedly lower performance. 547

Effect of Proxy Model Alignment. The proxy 548

model alignment, facilitated by the loss LProxy, is 549

vital for effective knowledge transfer. Table 2 550

shows that when the proxy is initialized directly 551

from the Llama-2-70B checkpoint without align- 552

ment, the performance drops notably on BBH (- 553

10.40), GSM8K (-5.53), and MMLU (-3.26). This 554

decline illustrates the adverse effect of an unaligned 555

proxy, which fails to approximate the teacher’s 556

distribution and consequently underperforms com- 557

pared to models directly fine-tuned on teacher data. 558

The slight increase on CSQA (+0.86) when skip- 559

ping alignment might be attributed to the simplic- 560

ity of the task, indicating potential overfitting to 561

teacher outputs without proxy guidance. This re- 562

inforces the necessity of the alignment process to 563

ensure the proxy effectively bridges the knowledge 564

transfer from the black-box teacher to the student 565

model across diverse and complex tasks. 566

Effect of Preference Optimization. Table 2 il- 567

lustrates the significant role of preference optimiza- 568

tion in enhancing the performance of both the proxy 569

and student models. When the proxy preference 570

loss LPref is removed, reducing the proxy align- 571

ment loss to LProxy-NLL, we observe notable perfor- 572

mance drops across various benchmarks. Specif- 573

ically, the alignment of the proxy model with the 574

black-box teacher deteriorates, as evidenced by de- 575
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Table 2: Ablation studies of Proxy-KD. We examine the impact of the proxy model πp, proxy model alignment
loss LProxy, proxy preference loss LPref, and weighted KL loss LWeight-KL on the performance of the student model
training, as well as the impact of the proxy preference loss LPref on the performance of the proxy model alignment.

Method AGIEval ARC BBH CSQA GSM8K MMLU
Studnet Model Distillation

LStudent 36.59 71.09 53.40 75.18 53.07 51.35
w/o πp 34.71 (-1.88) 66.85 (-4.24) 46.68 (-6.72) 74.43 (-0.75) 49.51 (-3.56) 49.82 (-1.53)
w/o LProxy 35.05 (-1.54) 67.18 (-3.91) 43.0 (-10.40) 76.04 (+0.86) 47.54 (-5.53) 48.09 (-3.26)
w/o LPref 35.38 (-1.21) 66.11 (-4.98) 52.51 (-0.89) 75.51 (+0.33) 52.49 (-0.58) 48.79 (-2.56)
w/o LWeight-KL 33.99 (-2.60) 71.81 (+0.72) 51.50 (-1.90) 75.11 (-0.07) 52.91 (-0.16) 49.47 (-1.88)

Proxy Model Alignment

LProxy 49.12 87.67 66.04 82.18 78.24 68.62
w/o LPref 48.31 (-0.81) 86.93 (-0.74) 62.16 (-3.88) 80.95 (-1.23) 79.15 (+0.91) 66.38 (-2.24)
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Figure 3: Performance of student models under different
proxy models. We also show the ratio of performance
gap between the proxy models and the student models.

creases in scores on benchmarks like BBH and576

MMLU, which subsequently impacts the student577

model. The overall trend confirms that prefer-578

ence optimization is crucial for refining the proxy579

model’s ability to emulate the teacher effectively.580

Effect of Weighted KL. When LWeight-KL is re-581

placed with the standard KL loss LStudent-KL, we582

also observe declines in performance across most583

benchmarks, indicating that the effectiveness of584

the distillation process diminishes. The results585

shown in Table 2 highlight that focusing on high586

log-likelihood distributions from the proxy, as fa-587

cilitated by the weighted KL loss, significantly en-588

hances the quality of knowledge transfer. The over-589

all declines underscore that this weighting mecha-590

nism significantly improves the quality of knowl-591

edge distillation, enhancing the student’s ability to592

learn from a well-aligned proxy.593

5.3 Impact of Proxy Model’s Capability594

How well the proxy aligned with the teacher can595

directly affect the performance of the student. The596

final alignment effectiveness of the proxy model de-597

pends on two factors: the design of the alignment598

algorithm and the inherent alignment capability 599

of the proxy backbone model itself. In this sec- 600

tion, we investigate the impact of the latter. We 601

hypothesize that the size of the proxy model’s pa- 602

rameters is crucial for its capacity to align with 603

the black-box teacher’s capability, especially when 604

the teacher’s parameter size is significantly larger 605

than the proxy’s. Experiments are conducted with 606

Llama-2-70B and Llama-2-13B as the proxy back- 607

bone models. We show the performance of these 608

aligned proxy models. As depicted in Figure 3, the 609

proxy model based on Llama-2-70B performs bet- 610

ter than the one based on Llama-2-13B, the latter 611

has fewer parameters. We also examine the impact 612

of proxy models with different capacities on stu- 613

dent performance. We observe that the stronger 614

proxy based on Llama-2-70B yields better stu- 615

dent performance than the weaker proxy based on 616

Llama-2-13B. Furthermore, when using a proxy 617

based on a backbone model with a larger capac- 618

ity, the student demonstrates a greater potential for 619

achieving higher performance. 620

6 Conclusion 621

This paper aims to tackle the challenge of knowl- 622

edge distillation for black-box large language mod- 623

els (LLMs), where we can only access the out- 624

puts generated by the teacher model. Given the 625

inaccessibility of the internal states of these black- 626

box models, we introduce Proxy-KD, a novel ap- 627

proach that leverages a proxy model to enhance 628

the distillation process. The proxy model is first 629

aligned with the black-box teacher, closely mim- 630

icking its behavior. Then, the student model is 631

trained using the combined knowledge from both 632

the black-box teacher and the proxy model. Ex- 633

tensive experiments and analyses across a variety 634

of well-established benchmarks demonstrate that 635

Proxy-KD significantly outperforms existing black- 636

box and white-box knowledge distillation methods. 637
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Limitations638

The limitations of this work include the training639

time overhead associated with proxy model align-640

ment, particularly when the proxy model has a large641

number of parameters. Additionally, the proposed642

preference optimization requires online sampling643

from the proxy model, further increasing the train-644

ing time overhead. Another limitation is the type645

of experimental backbone models used. Due to646

resource constraints, this work only conducts ex-647

periments with the Llama model series, without648

including other model backbones such as Qwen649

(Bai et al., 2023) or Mistral (Jiang et al., 2023).650
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Table 3: Training time overhead. We show the training
hours per round for different methods. SFT is the su-
pervised fine-tuning method, Distill is the knowledge
distillation method, Pref is the preference optimization
method. For GKD (Agarwal et al., 2023), student model
is based on 7B, teacher model is based on 70B. Each
round contains 40K training samples.

Models #GPUs Hours/Round

Llama-7B-SFT 4 1.0
Llama-7B-Distill 4 2.0
Llama-7B-GKD 8 10.0
Llama-13B-SFT 8 1.8
Llama-13B-Pref 8 9.0
Llama-70B-SFT 8 5.5
Llama-70B-Pref 8 28.0
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Figure 4: The statistics of the cumulative probability
within the Top K exceeding 0.95. The x-axis represents
different values of K, while the y-axis shows the per-
centage of instances meeting this threshold.

A Experimental Analysis900

A.1 Analysis of Training Efficiency901

We show the training time overhead for different902

methods in Table 3. We show the training hours903

per round for supervised fine-tuning, knowledge904

distillation, and preference optimization methods905

across various model sizes. Each round contains906

40K training samples. We note that preference op-907

timization is the main time overhead due to online908

sampling from the proxy model. In Proxy-KD, we909

obtain the proxy model’s output distribution offline910

during student distillation. As Figure 4 shows, most911

probability mass is concentrated on a few tokens.912

To save memory, only the top 10 token indices and913

their logits are retained.914

A.2 Output Token Agreement915

To serve as a stand-in for the teacher model’s output916

distribution, it’s important for the proxy model’s917

output to align with the teacher model’s output dis-918

tribution, which is achieved through proxy model919

alignment. We measure the change in agreement920

Match
37.7%

Mismatch
62.3%

Before Alignment

Match

82.0%

Mismatch

18.0%

After Alignment

Figure 5: The match ratio between the proxy and
teacher’s output tokens before and after alignment. If
the top-1 token given by the proxy equals the token
given by the teacher in a current step, it is considered a
match; otherwise, it is considered a mismatch..

between the top-1 token given by the proxy and the 921

token provided by teacher in current step, before 922

and after alignment. To visualize this alignment, 923

at each step, consider the top-1 token given by the 924

proxy’s output distribution and the token given by 925

the teacher. If the top-1 token given by the proxy 926

matches the token given by the teacher at the cur- 927

rent step, it is considered a match; otherwise, it 928

is considered a mismatch. As shown in Figure 5, 929

We find that after the proxy model alignment, the 930

matched portions show a significant upward trend, 931

indicating a trend towards alignment. 932

A.3 Additional Results 933

We present the performance changes of student 934

models during the distillation in Figure 6 and 7. 935

The student models are based on Llama-2-7B and 936

Llama-1-7B backbone, and the proxy models are 937

based on Llama-2-70B backbone. We test the ac- 938

curacy of students on benchmarks for every 20K 939

training steps. We compare Proxy-KD with vanilla 940

black-box KD method and white-box KD method 941

(Forward KL with Llama-2-70b-chat as white-box 942

teacher) . We observe Proxy-KD consistently out- 943

perform vanilla black-box KD and white-box KD. 944
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Figure 6: Accuracy curves for student during distillation process. The y-axis is the accuracy on the benchmark test
sets, and the x-axis is the number of training steps. We compare Proxy-KD with black-box KD (vanilla black-box
KD) and white-box KD (forward KL) baselines. Notably, Proxy-KD did not show sign of saturation on some
benchmarks, such as AGIEval, ARC, and BBH benchmarks.
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Figure 7: Accuracy curves for student models during knowledge distillation process. The y-axis is the accuracy of
students on the benchmark test sets, and x-axis is the number of training steps. We compare Proxy-KD with vanilla
black-box KD. The students are based on Llama-1-7B, and the proxy is based on Llama-2-70B.
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