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Abstract

Replacing modules in pretrained models—especially swapping quadratic self-
attention for efficient attention alternatives—poses a hard optimization problem:
cold-start reinitialization destabilizes frozen backbones. We isolate this core sta-
bility challenge in a controlled study. Deterministic Continuous Replacement
(DCR) blends teacher and student outputs with a deterministic, annealed weight
a(t). Theoretically, DCR eliminates gate-induced gradient variance inherent to
stochastic replacement (Sec. [3.2). Empirically, DCR attains faster convergence and
stronger alignment than stochastic gating and distillation baselines on controlled
attention replacement, establishing a foundation for heterogeneous operator swaps.

1 Introduction

As training costs rise, model adaptation has become critical. Two trends converge: compression
pipelines replace blocks with smaller surrogates [Han et al.l 2015| [Sanh et al.,[2019], and efficient
attention variants [Wang et al.,|2020, [Choromanski et al., 2020, Beltagy et al., 2020|] promise O(n)
or O(nlogn) complexity. However, replacing modules with cold-start operators inside frozen
backbones destabilizes optimization: downstream blocks receive out-of-distribution features, leading
to optimization instability, ineffective gradient updates, and slow recovery. Existing approaches
face fundamental tradeoffs. Knowledge distillation methods [Hinton et al. 2015, [Romero et al.|
2014] require expensive teacher forward passes and enforce rigid feature matching, while stochastic
replacement strategies like BERT-of-Theseus [Xu et al.,2020|] introduce gradient variance and uneven
recovery. We isolate the core replacement stability problem: integrating a randomly initialized
module into a frozen backbone—the optimization challenge common to all replacement scenarios.
By studying this in a controlled setting (replacing attention with re-initialized attention), we eliminate
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representational mismatch as a confound, allowing us to attribute differences solely to stability
mechanisms and rigorously measure gradient dynamics.

Our contributions.

* DCR method (Sec.[3)): deterministic blending that eliminates gate-induced gradient variance
and naturally enables near-zero-cost feature alignment since both teacher and student outputs
are computed for the blend.

* Variance reduction theory (Sec.|3.2): formal analysis isolating and eliminating the gate-
induced variance term inherent to stochastic replacement (Props. 1-2), with bounds on
curvature bias and loss-path smoothness.

* Controlled validation (Sec.[d): faster convergence and stronger alignment than stochastic
gating and distillation baselines in a controlled self-replacement setting that isolates stability
from representational mismatch.

While experiments focus on controlled self-replacement on smaller models (CIFAR-100, ViT-Small)
to enable rigorous ablation, the method and theory are explicitly constructed for heterogeneous opera-
tor swaps (e.g., Linformer, Performer, sparse/Fourier attention), which is the immediate follow-on
work. We present this study in workshop format because isolating and formalizing the replacement-
stability gap is a prerequisite for scalable deployment in production settings, where understanding
failure modes and convergence guarantees is critical. DCR’s efficiency advantage over distillation
is amplified in compute-saturated regimes—large language model or diffusion transformer replace-
ment—where GPU utilization is high and the full teacher model forward pass required by distillation
directly increases wall-clock cost relative to DCR’s branch-local teacher evaluation.

2 Related Work

Knowledge Distillation and Model Compression. Knowledge distillation [Hinton et al.l[2015]] and
feature-based variants [Romero et al.,[2014, [Touvron et al.,[2021] require a full separate teacher model
forward pass per training step and impose rigid alignment constraints. In contrast, DCR computes
teacher outputs only at the replaced modules, avoiding full-model duplication. Compression methods
[Han et al., 2015} [Sanh et al., 2019} Jiao et al., 2019] assume parameter compatibility, which breaks
down for heterogeneous operators.

Stochastic Module Replacement. BERT-of-Theseus [Xu et al.,2020] randomly selects between
teacher and student modules via a Bernoulli gate z(t) ~ Bernoulli(p(¢)), enabling gradual knowl-
edge transfer without explicit feature matching. However, this introduces gradient variance in the
student-only gradient:
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producing high variance when p(t) is mid-range. We replace this stochastic gate with a deterministic
blend. For controlled ablation, we introduce Theseus-Gumbel, using soft Gumbel-Softmax gates
re(t) € (0, 1) with temperature 7:

re(t) = GumbelSoftmax(p(t), 1),

Tyep1 = Ty + Tz(t)Sg(he) + (1 - Tg(t))Tg(hg).

This allows gradients to flow but retains gate-induced variance (GUM, GUM+DFG baselines in
experiments).

Table [l summarizes the key differences between DCR and prior module replacement approaches
across three critical dimensions: gradient variance, computational overhead, and feature matching
requirements.

Replacement Stability Gap. Prior methods assume parameter continuity; under cold-start reini-
tialization, downstream layers receive out-of-distribution features. DCR targets this gap with a
deterministic, low-variance path stable under reinitialization.



Table 1: Comparison of module replacement methods. DCR achieves low gradient variance and
minimal branch-local overhead in our non-compute-saturated experimental regime, addressing
the stability bottleneck that limits both distillation and stochastic replacement.

Method Gradient Variance Extra Compute Needs Feature Matching
Knowledge Distillation Low High (full teacher model forward) Yes (rigid)
Theseus (Stochastic) High (gate-induced) Low (gate overhead only) No

DCR (Ours) Low (deterministic) Low (branch-local teacher only at replaced layers)  No (optional via DFG)

3 Methodology

3.1 Problem Formulation

Given pretrained network F' with L modules, we replace subset Z C {1,...,L}. For¢ € Z, let T,
(frozen teacher) and Sy(-; 8;) (trainable student) share input/output shapes. Denote normalized input
he = LN(xy) and frozen tail G,. DCR blends on the residual branch:

zepr(t) = wo(t) + [a(®) Te(he(t)) + (1 —a(t)) Se(he(t); 60)], (0
with global gate «(t) € [0, 1]: «(0) = 1 (teacher-only) — «(T') = 0 (student takeover).

3.2 Theoretical Properties (Stability)

Analysis scope. We analyze gate-induced variance and path geometry under frozen GG, and sched-
uled gates, holding the student’s input distribution fixed at each step. This provides local, conditional
intuition—not full training-dynamics guarantees or global convergence proofs—validated empirically
in Sec. 4. Standard assumptions: teacher runs in eval () mode, gates independent of minibatch,
differentiable functions.

Lower gate-induced gradient variance. To our knowledge, this is the first formulation that
analytically isolates and eliminates the gate-induced variance term central to stochastic replacement.
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Proposition 1 (Variance decomposition for Theseus). If a hard gate z ~ Bernoulli(p) selects
student vs. teacher (independent of the data), then
Vo, L = za, E[Ve,L] = pEla],
Var[Vo,L] = pVar[a] + p(1 - p)|[E[a]|* < pVarla] + p(1 — p) Eal|*.
This decomposition reveals the gate-induced variance component that DCR eliminates. (Proof in

Appendix )
Proposition 2 (Deterministic gate removes gate-induced variance). Let Y,, := (1 — )Ty + o Sy
and define a(y) :== Jg,(y) " g—‘gf, so that the DCR gradient is

Vo, Lpcr = aa(Ya),

whereas under Theseus (hard gate z ~ Bernoulli(p)) the student gradient is Vg, LTy, = z a(S¢). Let
X denote the minibatch. Then the gate-induced component of gradient variance,

E[Var(Vy,L | X)],
is zero for DCR and equals p(1 — p) E||a(Sy; X)||? for Theseus. Hence,
E[Va(Vo, Lti | X)] — E[Var(Vg,Locr | X)] = p(1 —p) Ella(Se;; X)|* > 0.
This is the core theoretical justification for DCR: strictly lower gradient variance than stochastic
gating. (Proof in Appendix[A.2.2])
Remark (Soft gates / Theseus-Gumbel). Let » € (0, 1) be a random soft gate with E[r] = p,
Var(r) > 0 (e.g., Gumbel-Softmax, temperature 7). Then
Var[ra] = E[r?|Var[a] + Var(r) ||[E[a]||* = p? Var[a] + Var(r)E|al?,
———
extra, gate-induced

S0 any stochastic gate incurs an additional nonnegative term that DCR does not.



Curvature bias. Stochastic mixing through nonlinearities introduces a curvature-dependent bias:
the expected output after a nonlinearity differs from the nonlinearity applied to the expected blend.
DCR’s deterministic path avoids this entirely (Proposition 3, Appendix [A.2.3).

Summary. Props. 1-2 show DCR removes gate-induced variance. Proposition 3 (Appendix [A.2.3)
shows DCR avoids curvature bias from stochastic mixing through nonlinearities. Proposition 4
(Appendix bounds the loss path via Lipschitz continuity. Under the stated assumptions
(independent gate scheduling, fixed frozen tail, local smoothness), deterministic blending yields
a better-conditioned optimization path. These results are local and conditional, not full training-
dynamics guarantees. Empirical validation in Sec. ] Algorithm [I] (Appendix) details the full
procedure.

3.3 Deep Feature Guidance (DFG)

While DCR ensures a smooth replacement, the student can benefit from direct interface alignment.
Since DCR already evaluates both Ty (hy) and Sy(h,) for the blend at replaced layers, the auxiliary
loss adds near-zero marginal cost—no additional forward passes are required. This contrasts with
standard knowledge distillation, which requires a full teacher model pass. We add an auxiliary loss
on the residual outputs at the replaced sites:

ﬁDFG = Z HS@(h@) - Tg(hg)H; hg = LN(mz). (2)
el

Let § = Fi(x) denote the model output under the current global gate «(t). The overall objective is
£tota1 = Etask(ﬁa ?J*) + A EDFG; A > 0 (3)

Since DCR already computes both Ty(h,) and S¢(hy) for blending, DFG adds negligible cost (A > 0
controls strength). In our non-compute-saturated regime, DCR’s overhead scales with the number
of replaced modules |Z|, whereas knowledge distillation incurs a full teacher forward regardless of
|Z|. We anneal A following the same aggr20 schedule as «; full schedule in Appendix For
Theseus-Gumbel+DFG, we evaluate the teacher branch locally even when the gate selects the student.

4 Controlled Evaluation of Replacement Stability

4.1 Experimental Setup

Datasets and Models. We evaluate DCR on ImageNet-pretrained ViT Small models [Dosovitskiy
et al., |2020], serving as the teacher backbone finetuned on CIFAR100 [Krizhevsky et al., [2009].
Student modules replace attention blocks and are randomly re-initialized (Kaiming initialization [He
et al.,[2015[). All DCR blending is applied post-softmax and prior to residual addition.

Replacement Schedules. DCR (aggr20): « transitions 1.0 — 0.0 over first 20% of training.
Theseus variants use inverse probability p. DFG anneals with aggr20 schedule.

4.2 Results

Alignment Dynamics. DCR and DCR+DFG achieve consistently higher interface cosine similarity
than stochastic baselines (Figure[I)), with largest gains in mid and late blocks. Crucially, deterministic
blending ensures downstream blocks receive in-distribution features from the start, enabling later
layers to learn earlier without wasted gradients—avoiding the plateauing seen in GUM and BERN
where gate-induced starvation delays deep-layer convergence.

Accuracy Recovery and DFG Effect. DCR variants reach target accuracy sooner in both epoch and
wall-clock views (Figure , despite similar final accuracies (=78-80%). Adding DFG accelerates
takeover without full teacher passes, with strongest gains in deeper blocks—confirming near-zero-cost
feature guidance compounds with deterministic blending.
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Figure 1: Interface cosine similarity (cosine similarity of residual outputs) between teacher and
student outputs at different layers (Block 0, 7, 11) across training epochs.
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Figure 2: Validation accuracy during module replacement on CIFAR-100 (ViT-Small/16). Left:
epochs. Right: wall-clock time.

5 Research Positioning and Scope

Our controlled design prioritizes internal validity: single model family (ViT-Small), dataset (CI-
FAR100), single seed, I/O-bound regime, pre-norm residual Transformers, and self-replacement
(attention — re-initialized attention) to isolate stability from representational mismatch. Intentional
scoping choices include: (i) global gate «/(t) rather than per-layer or progressive schedules, (ii)
comparison to Theseus variants and student-only baselines without function-preserving initializa-
tion (Net2Net) or stronger alignment methods (CKA, Gram matching, learned adapters), (iii) no
exhaustive hyperparameter tuning. Architectures with batch normalization, extensive simultaneous
replacements across many layers, or other normalization schemes may exhibit different stability
dynamics. These constraints enable causal attribution of variance reduction effects—rarely possible
when varying architecture, operators, and compute simultaneously—and establish methodological
clarity as a prerequisite for scaling to heterogeneous operators. Results should be interpreted as
feasibility evidence rather than definitive benchmarking. Extensions to compute-saturated regimes,
heterogeneous operators, and diverse architectures are natural next steps.

6 Conclusion

We introduced Deterministic Continuous Replacement (DCR), which eliminates gate-induced gra-
dient variance in cold-start module replacement. In controlled experiments, DCR+DFG outperforms
stochastic gating and distillation baselines, establishing a foundation for heterogeneous operator
swaps. For frozen-backbone replacement under our assumptions, DCR provides a stable, efficient
alternative to stochastic methods. Next steps include: heterogeneous operators (efficient attention
variants), larger models, compute-saturated regimes, and per-layer adaptive a schedules conditioned
on interface similarity for deep architectures.
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A Technical Appendices and Supplementary Material

A.1 Detailed Experimental Setup

Training Procedure. Experiments are conducted on NVIDIA A100 GPUs with mixed-precision
(BF16) on CIFAR100 dataset. Training follows two stages: (i) Head warmup: only the classification
head is trained for 6 epochs with 2 epoch warmup and Ir 1 x 1072, cosine annealing to 1 x 10~°
full weights unfrozen and further finetune at 1 x 10~ for 6 further epochs, label smoothing 0.1,
and mixed precision; (ii) Full model training: all layers unfrozen, base Ir 5 x 10~* with cosine
annealing over 50 epochs, weight decay 0.05, gradient clipping 1.0, batch size 128, AdamW optimizer
[Loshchilov and Hutter, 2017 (eps 1 x 1078, betas [0.9, 0.999]), and label smoothing 0.1.

Replacement Schedules. For DCR (aggr20), « transitions from 1.0 to 0.0 over the first 20% of
training: Phase 1 (0—-10%) o = 1.0 — 0.3; Phase 2 (10-20%) o« = 0.3 — 0.0; Phase 3 (20—
100%) o = 0.0. Stochastic Theseus variants follow the inverse probability p: Phase 1 (0-10%)
p = 0.1 — 0.7; Phase 2 (10-20%) p = 0.7 — 1.0; Phase 3 (20-100%) p = 1.0. Constant 0.7 and
0.5 schedules for Theseus, as well as linear 0.1-1.0 over 50% of steps was attempted for Theseus as
suggested by their paper and extrapolated to our training setup, but aggr20 was found to outperform
for our experiments. DFG showed best results with matched schedule to aggr20.

Additional Details. Key settings and terms used in experiments:

* Gumbel: Theseus-Gumbel stochastic replacement with temperature 7 = 1.0.
* KL Distillation: Teacher-student soft-target guidance with fixed temperature 4.

* DFG (Deep Feature Guidance): Auxiliary L2 loss on student-teacher intermediate outputs,
controlled by weight A.

* Student Initialization: Reinitialized attention modules using Kaiming initialization.

* Hyperparameter Search: Optimal settings determined via preliminary student-only cross-
entropy training.

A.2 Theoretical Results and Proofs

This section contains the full statements and proofs of all theoretical propositions referenced in the
main text.

A.2.1 Proposition 1: Variance Decomposition for Theseus

Proposition 1 (Variance decomposition for Theseus). If a hard gate z ~ Bernoulli(p) selects
student vs. teacher (independent of the data), then

Ve, L = za, E[Vy,L] = pElal,
Var[Vo,L] = pVar[a] + p(1 - p)|[E[a]|* < pVarla] +p(1 - p)Eall*,
where a := Jg{g—‘gf € Rdim(%),
Proof. By independence, E[za] = E[z]|E[a] = p E[a]. For the variance, by the law of total variance,
Var[za] = E[Var(za | z)] + Var(E[za | 2])
= E[2?] Var[a] + Var(z E[a])
= pVarla] + p(1 - p) | E[a][|*.
Use ||E[a]||* < E||a||? for the inequality. O

A.2.2 Proposition 2: Deterministic Gate Removes Gate-Induced Variance

Proposition 2 (Deterministic gate removes gate-induced variance). Let Y,, := (1 — )Ty + o Sy

and define a(y) := Jg,(y) " g—gf, so that the DCR gradient is

Vo, Lpcr = aa(Yy,),



whereas under Theseus (hard gate z ~Bernoulli(p)) the student gradient is Vg, LTy, = 2 a(S¢). Let
X denote the minibatch. Then the gate-induced component of gradient variance,

E[Var(Vy,L| X)],
is zero for DCR and equals p(1 — p) E|la(S¢; X)||? for Theseus. Hence,
E [Var(Vg, Ly ‘ X)| = E[Var(Vy,Lpcr ’ X)] = p(1-p)E|a(Se; X)|> = 0.
Proof. Condition on X. Under Theseus, Vg, LT, = 2z a(S; X) with z L X, so Var(Vg, Lty | X) =

p(1 — p)|la(Se; X)||* and taking expectation over X gives the stated value. Under DCR there is no
gate randomness given X, so Var(Vy,Lpcr | X) = 0. O

A.2.3 Proposition 3: Curvature Bias Bound

Proposition 3 (Curvature bias bound). Let ¢ : RY — R be twice differentiable with
SUDy cseg(Ty,S0) V2% (y)|lop < M (segment between T, and Sy), and set u = (1 — p) Ty + p S,
A = Sy — Ty. For Theseus with Y = 2 .Sy + (1 — 2) T; where z ~ Bernoulli(p), we have

| E[p(Y)] =) | < Fp(1—p) A%

Proof.  Second-order Taylor around p gives ¥(Y) = ¥(p) + Vo(u) " (Y — p) + 2 (Y —

w) TV2i(&y) (Y — p) for some &y on the segment between Y and . Take expectations: the
linear term vanishes (E[Y — u] = 0), and E||Y — u||? = E[(z — p)?]||A]|? = p(1 — p)||Al2. O

Corollary (Deterministic path avoids mixing bias). For DCR, Y, = (1 — «)T; + « Sy is de-
terministic, so E[¢)(Yy)] = ¥(Ya,) = ¥(E[Y,]); no stochastic mixing bias arises. Theseus pays a
curvature-dependent penalty scaling with p(1 — p)||A||%.

A.2.4 Proposition 4: Smooth Loss Path

Proposition 4 (Smooth loss path). Let f(y) := (LoGy)(y). If f is L,-Lipschitz on the segment
between Ty and Sy, then along y(«) = (1 — ) Ty + « Sy,

| F(9(0) ~ F0O)| < LyallSe~Til < LyaD; forany Dy > |15 - Tyl
Proof. y(a)) — y(0) = a(Sy — Ty) and Lipschitz continuity give the bound. O

A.3 DCR Implementation Details

Algorithm 1 DCR training step with global gate «(t) (pre-norm residual).

Require: batch (z,y*); frozen teachers {1y },cz (eval (), no-grad); trainable students {S;}sez;
global gate «(t)
T <X
for / =1to L do
if ¢ ¢ 7 then
Z4+1 +—original block forward
else
hg — LN(I/)
without gradients: t, < T;(hy)
Sp < Sg(hz)
9: ZTpp1 — o+ a(t) te + (1 — aft)) s
10: end if
11: end for
12: ¢ + task head on x4
13: L+ Liask(9,9%)
14: Backprop (student params only); optimizer step; skip computing ¢, once «(t) = 0

PRIL AR
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If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: The dataset we used is open source. Also, we aim to create the open source
code once our full limitations are resolved further.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, detailed explanation of the hyper parameters are mentioned in the appendix
experiment section.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We ran a single seed due to compute limits, so we cannot report statistical
significance. We flag this as a limitation.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: All the essential details are mentioned in the Appendix experiment section.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:
Justification: No such study has been performed in this work.

Guidelines:
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11.

12.

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No such risks have been observed so far. But we are welcome to suggestions.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Yes, clearly cited and acknowledged.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No needed here.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No Human study performed in this work.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:[NA ]|
Justification: No such study performed in this work.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: Except for the grammatically purposes.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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