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ABSTRACT
Many contrastive learning based models have achieved advanced
performance in image-text matching tasks. The key of these models
lies in analyzing the correlation between image-text pairs, which
involves cross-modal interaction of embeddings in corresponding
dimensions. However, the embeddings of different modalities are
from different models or modules, and there is a significant modal-
ity gap. Directly interacting such embeddings lacks rationality and
may capture inaccurate correlation. Therefore, we propose a novel
method called DIAS to bridge the modality gap from two aspects: (1)
We align the information representation of embeddings from differ-
ent modalities in corresponding dimension to ensure the correlation
calculation is based on interactions of similar information. (2) The
spatial constraints of inter- and intra-modalities unmatched pairs
are introduced to ensure the effectiveness of semantic alignment of
the model. Besides, a sparse correlation algorithm is proposed to
select strong correlated spatial relationships, enabling the model
to learn more significant features and avoid being misled by weak
correlation. Extensive experiments demonstrate the superiority of
DIAS, achieving 4.3%-10.2% rSum improvements on Flickr30k and
MSCOCO benchmarks.

CCS CONCEPTS
• Information systems→ Information retrieval.

KEYWORDS
Image-text Matching, Information Aligning, Spatial Constraint,
Sparse Algorithm

1 INTRODUCTION
Image-text matching is a fundamental task in computer vision
(CV) and natural language processing (NLP), providing support for
applications such as image captioning [12, 38], text retrieval [15],
and text-to-image generation [8, 18]. This task aims to discover
semantic correlations between images and text, and bridge the
semantic gap between these two heterogeneous modalities. The
key challenge lies in adjusting embeddings by utilizing matched
and unmatched relationships between images and texts to achieve
high-quality semantic alignment.
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The matching process typically requires matching with embed-
dings constructed from images and texts. The existing methods
can be roughly divided into two categories: global and local [5, 20].
Global-based matching extracts and interacts with global embed-
dings from the whole images and texts to calculate correlations
[2, 24]. Local-basedmatching adopts a fine-grained approach, which
extracts local embeddings from image regions and text words usu-
ally obtains better performance [1, 23, 41]. They all aim at aligning
semantics by computing and adjusting the correlation between
embeddings of different modality, which involves interaction of
corresponding dimensions. For example, cosine similarity [28] cal-
culates the correlation between two embeddings in each dimension.
However, the embeddings generally come from different models or
modules, resulting in significant differences in information repre-
sentation of each dimension. For instance, the image embeddings
represent color information in a certain dimension, while the text
embeddings may represent the information of a word in the corre-
sponding dimension. Note that the corresponding dimension may
not necessarily be in the same column of embeddings. This is known
as the modality gap problem. The cross-modal interaction of such
embeddings lacks rationality and potentially lead to inaccurate
correlation calculation.

To enhance the rationality and effectiveness of cross-modal inter-
action, we propose a novel image-text matching method based on
Dimensional Information Alignment and Sparse Spatial Constraint
(DIAS), aiming to bridge the gap between image and text modalities
from two perspectives:

(1) To ensure the rationality of correlation calculation, we en-
hance the correlation of the embeddings from different modalities
in corresponding dimension. In subsequent processes, the inter-
action involves the relevant information of embeddings in their
corresponding dimensions. Emphasizing only the correlation of
dimensions may lead to feature redundancy, where each dimension
provides similar information and lacks discriminative features. Fea-
ture redundancy can cause overfitting, reducing the generalization
ability of models. Therefore, we enhance the independence of non-
corresponding dimensions by reducing the correlation of them, to
ensure the amount of information contained in embeddings.

(2) Most existing methods primarily focus on constraining the
relationships between matched image-text pairs, with weaker em-
phasis on unmatched pairs. This can lead to suboptimal perfor-
mance in semantic alignment. More importantly, the relationship
of matched pairs is cross modal constraints, and their effectiveness
is significantly affected by the modality gap. We augment existing
constraints by introducing spatial inter- and intra-modalities con-
straints for unmatched pairs. The inter-modality constraint refers to
promoting semantic consistency by requiring distance consistency
between inter-modality unmatched pairs. As shown in Fig. 1(a), the
distance between image 𝑖 and text 𝑗 is constrained to be consistent
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with the distance between image 𝑗 and text 𝑖 . The intra-modality
constraint refers to emphasizing spatial structure consistency by re-
quiring distance consistency between unmatched pairs within each
modality. As shown in Fig. 1(b), the distance between image 𝑖 and
image 𝑗 is constrained to be consistent with the distance between
text 𝑖 and text 𝑗 . However, these two types of constraints assume
the spatial relationships between images and texts exhibit symme-
try, which is not always valid. Strictly following these constraints
may lead to the model learning inaccurate features. Therefore, we
propose a sparse correlation algorithm to select strong correlation
to sparsify spatial constraints, reducing the need for symmetry.

Specifically, DIAS first obtains local embeddings of image regions
and text words, and calculates the correlations between them in all
dimensions to construct the correlation matrix. Each value in the
matrix means the correlation of the corresponding region (row) and
word (column). To align the information of embeddings from differ-
ent modalities, we propose a regularizer to increase the correlation
values of corresponding dimensions. Meanwhile, the correlation
values between non-corresponding dimensions are decreased to
suppress feature redundancy. Then, DIAS aggregates and upgrates
the local embeddings, and merges them into global embeddings by
pooling. As correlations of local embeddings have been adjusted in
the previous step, the construction of global embeddings becomes
more reasonable. Subsequently, DIAS obtains the spatial distance
between inter- and intra-modalities unmatched pairs, and further
employs the proposed sparse correlation algorithm to select strong
correlation from them. The proposed algorithm introduces condi-
tional probabilities of instance correlation and adapts them into
a sparse regularization term, enabling the model to automatically
learn how to identify strong correlation for each instance. Finally,
the selected spatial relationships are used as constraints, combined
with the constraints between matched pairs to achieve semantic
alignment.

Our contributions are summarized as follows:
(1) We propose a dimension information alignment method for

embeddings of different modalities, aiming to enhance the rational-
ity of cross-modal interaction and suppress feature redundancy.

(2) We introduce novel inter- and intra-modality constraints to
ensure the effectiveness of semantic alignment.

(3) A sparse correlation algorithm is proposed to select strong
correlated spatial relationships, reducing the need for symmetry of
embeddings.

2 RELATEDWORK
Based on the implementation of cross-modal interactions, the image-
text matching methods can be broadly categorized into global-based
matching and local-based matching method.

Global-based matching. The typical global methods involve
obtaining global embeddings of images and texts, projecting them
into a shared embedding space by two branches and aligning image-
text semantic. A line of works focus on how to accurately de-
scribe correlations between global embeddings. Some studies [3, 6]
focus on improving correlation algorithms. For example, Jiang
[9] introduces the concept of geometric consistency to enhanc-
ing the constraint on image-text pairs. Additionally, some studies
[10, 11, 13, 17, 32] propose complexmodels to construct more robust
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Figure 1: Illustration of distance consistency.

global embeddings. Especially in recent years, pre-trained networks
[16, 25] with extensive resources enrich the information contained
in global embeddings. However, these methods still follow the ex-
isting paradigm, assuming embeddings from different modalities
interact with the same information during correlation computation.
In contrast, we focus on aligning the information representation of
embeddings to enhance the rationality of correlation computation.

Local-based matching. Learning semantic alignment between
local embeddings from image regions and text words is popular and
offers better interpretability compared to global methods. Karpathy
[10] makes the first attempt to infer matching between regions and
words by aggregating similarities across all regions and words to
obtain the correlation between image and text. A line of works
focuses on constructing thoughtful aggregation rules to find the
important region-word pairs. Chen [1] proposes recurrent cross-
attention to iteratively refine and elaborate shared semantics across
different levels. Zhang [39] introduces negative-aware attention on
unmatched pairs to enhance matching accuracy. Pan [22] considers
that effective image-text semantic matching can be achieved solely
by relying on the maximum region-word correlation and provides
theoretical derivation. Another line of works focuses on exploiting
more information. Wang [31] introduces scene graph during match-
ing to enrich relationships between local embeddings. Addition-
ally, the models combining consensus knowledge [30] and external
pre-training knowledge [24, 33] have been employed to enhance
the cross-modal alingment. However, they still rarely consider the
differences of information representation in different dimensions
caused by modality gap. As mentioned earlier, we bridge the modal-
ity gap by aligning information representation of embeddings.

3 METHODOLOGY
Considering effectiveness and interpretability, DIAS adopts the
local-based matching method. In this section, we introduce the
framework of local-based matching method (Sec. 3.1) and the de-
tails of DIAS. As shown in Fig.2, DIAS first perfroms dimension
information alignment to adjust the information representation of
the embeddings in different dimensions (Sec. 3.2). Then inter- and
alities spatial constraints are introduced to suppress the influence
of the modality gap (Sec. 3.3), and the sparse conrrelation algorithm
is used to select the strong correlated spatial relationships (Sec. 3.4).

3.1 The Framework of Local-based Matching
Formally, given an image V, we use Faster-RCNN [26] to extract
the salient regions and obtain the local image embeddings V =

{v𝑖 |𝑖 ∈ [1, 𝑛𝑣], v𝑖 ∈ R𝑑 } by the pre-trained ResNet-101 [7]. v𝑖 is the
2
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Figure 2: Overview of DIAS, which mainly contains two
steps: local embedding interaction and global embedding in-
teraction. Firstly, DIAS extracts features from image regions
and text words to construct local embeddings, and perfroms
dimension information alignment to adjust the information
representation of the embeddings in different dimensions
(L𝑑𝑖𝑚). Then, we aggregates local embeddings to construct
global embeddings. Inter- and intra-modalities spatial con-
straints are obtained from distance relationship between
global embeddings, to suppress the influence of the modal-
ity gap, and the sparse conrrelation algorithm is used to se-
lect the strong correlated spatial relationships (L𝑖𝑛𝑡𝑒𝑟 and
L𝑖𝑛𝑡𝑟𝑎). Finally, the image-text relevance is inferred via a
contrastive learning loss function (L𝑙𝑜𝑐 ).

local embeddings of 𝑖-th region. 𝑛𝑣 denotes the number of regions.
Similarly, given text T, we employ Bidirectional Gated Recurrent
Units (BiGRU) [27] or BERT [4] to extract local text embeddings
T = {t𝑗 | 𝑗 ∈ [1, 𝑛𝑡 ], t𝑗 ∈ R𝑑 }. t𝑗 is the local embeddings of 𝑗-th
words. 𝑛𝑡 denotes the number of words.

Local-based matching first conduct local embedding interaction
to update local embeddings based on the correlation between re-
gions and words. The updating of v𝑖 can be described as follows:

v̂𝑖 =

∑𝑛𝑡
𝑗=1 𝑠𝑖, 𝑗 t𝑗∑𝑛𝑡
𝑗=1 𝑠𝑖, 𝑗

, 𝑖 ∈ [1, 𝑛𝑣]

𝑠𝑖, 𝑗 = 𝜎𝑙 (v𝑖 , t𝑗 )
(1)

Here v̂𝑖 represents the new local embedding. 𝜎𝑙 (·) is the corre-
lation function for local embeddings. 𝑠𝑖, 𝑗 is the correlation value
between v𝑖 and t𝑗 . Then, local embeddings are transformed into
global embeddings by pooling, formally as:

V̂ = 𝑝𝑜𝑜𝑙 ({v̂𝑖 |𝑖 ∈ [1, 𝑛𝑣]}) (2)

Here V̂ is the global embedding of image V. 𝑝𝑜𝑜𝑙 (·) means the
pooling operation. Through the similar process, we can obtain the
local embedding of word t̂𝑗 and global embedding of text T̂.

The correlation between image and text is obtained based on
global embedding interaction. The triplet loss is the most commonly
used method for achieving semantic alignment, and the objective
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Figure 3: Illustration of dimension information alignment.
We extract the dimension vector of each dimention, and con-
struct the correlation matrix by calculating the correlation
between dimension vectors from different modalities. The
proposed regularizer is used on the correlation matrix to
align information repersentaion of each dimension.

function can be expressed as:

L𝑙𝑜𝑐 = [𝛼 − 𝜎𝑔 (V̂, T̂) + 𝜎𝑔 (V̂, T̂
−)]+ + [𝛼 − 𝜎𝑔 (V̂, T̂) + 𝜎𝑔 (V̂

−
, T̂)]+

(3)
Here 𝛼 means a margin parameter, [·]+ =𝑚𝑎𝑥 (·, 0). 𝜎𝑔 is the corre-
lation function for instances. (V̂, T̂) is a positive image-text pair, and
(V̂, T̂−) and (V̂−

, T̂) are negative image-text pair in the batch. We
use the distance-weighted sampling [35] for hard negative mining.

3.2 Dimension Information Alignment
The correlation calculation likes Eq.1 involves the cross-modal
interaction in corresponding dimensions of embeddings. As men-
tioned earlier, due to the different sources, there are significantly
differences in information representation of v𝑖 and t𝑗 in different
dimensions. The interaction of them can result in calculation biases
and lack of rationality. Thus, we propose a dimension information
alignment method to align the information representation before
the interaction by a regularizer. It can improves the correlation of v𝑖
and t𝑗 in corresponding dimensions. Meanwhile, to suppress feature
redundancy that may occur during the alignment, the regularizer
also reduces the correlation values between non-corresponding
dimensions. Below is a detailed introduction to this process.

Assuming there are 𝑁 image-text pairs. As shown in Fig. 3,
we first extract dimension vectors of all local embeddings, and
integrate them into m𝑉 = {m𝑉

𝑖
|𝑖 ∈ [1, 𝑑],m𝑉

𝑖
∈ R𝑁𝑉 } and

3
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m𝑇 = {m𝑇
𝑗
| 𝑗 ∈ [1, 𝑑],m𝑇

𝑖
∈ R𝑁𝑇 }, respectively. Here m𝑉

𝑖
con-

tains the information distribution of all local image embeddings in
𝑖-th dimension, and m𝑇

𝑗
contains the information distribution of

all local text embeddings in 𝑗-th dimension. The number of regions
in different images and the number of words in different texts vary.
So, we use 𝑁𝑉 and 𝑁𝑇 to represent the total number of regions and
words, respectively. Then, we compute the correlation betweenm𝑉

𝑖

andm𝑇
𝑗
, formally as:

𝑐𝑖, 𝑗 = 𝜎𝑐 (m𝑉
𝑖 ,m

𝑇
𝑗 ), 𝑖, 𝑗 ∈ [1, 𝑑] (4)

Here 𝑐𝑖, 𝑗 is the correlation value of m𝑉
𝑖
and m𝑇

𝑗
. 𝜎𝑐 denotes the

correlation algorithm for dimension vectors. The correlation matrix
C = {𝑐𝑖, 𝑗 |𝑖, 𝑗 ∈ [1, 𝑑]} can be obtained via Eq.4.

Then, we use a regularizer to improve the correlation of cor-
responding dimensions and reduce the correlation between non-
corresponding dimensions. For ease of understanding, we assume
the corresponding dimensions are at the same column of embed-
dings. It means the corresponding dimension of m𝑉

𝑖
is m𝑇

𝑖
and 𝑐𝑖,𝑖

is the correlation value of them. The regularizer can be expressed
as:

L𝑑𝑖𝑚 = −
𝑑∑
𝑖=1

𝑐𝑖,𝑖 +
𝑑∑
𝑖=1

𝑑∑
𝑗=1, 𝑗≠𝑖

𝑐𝑖, 𝑗 (5)

The first term of Eq.5 mainly aligns the corresponding dimension,
and the second term misaligns the non-corresponding dimensions.
The setting of this function is relatively intuitive, but it fails to
account for the magnitude difference in rows or columns of 𝑆 ,
potentially leading to computational bias. Therefore, we improve it
to the following formula:

L𝑑𝑖𝑚 =

𝑑∑
𝑖=1

−(
𝑐𝑖,𝑖∑𝑑
𝑗=1 𝑐𝑖, 𝑗

+
𝑐𝑖,𝑖∑𝑑
𝑗=1 𝑐 𝑗,𝑖

) (6)

As shown in Eq.6, the regularizer increases the proportion of 𝑐𝑖,𝑖
to corresponding rows and columns in 𝐶 , avoiding the impact of
inconsistent orders of magnitude.

After aligning the dimension information, the process of aggre-
gating and upgrating the local embeddings in Eq.1 generates more
reasonable correlations. Moreover, the information representation
of V̂ and T̂ in the corresponding dimensions obtained by Eq.2 is
also more similar.

3.3 Spatial Constraint
After obtaining the global embeddings V̂ and T̂, we calculate their
correlation and use the loss function (Eq.3) to achieve semantic
alignment. For each instance, the number of unmatched instances
far exceeds the number of matched instances. Existing methods
often impose stronger constraints on matched pairs and weaker
constraints on unmatched pairs. For example, Eq.3 requires the
correlation of matched pairs is greater than that of all unmatched
pairs, while unmatched pairs only need to satisfy a threshold 𝛼
smaller than that of matched pairs. To ensure the effectiveness of
semantic alignment, we propose two spatial constraint regularizers
to enhance the constraint on unmatched pairs, including inter- and
intra-modalities constraints.

On the one hand, we aim to maintain semantic consistency by
pursuing spatial distance consistency of inter-modality unmatched

Figure 4: The histogram statistics of spatial distance be-
tween instances within and across modalities. We randomly
selected some images and texts to calculating their distance,
and observe the distribution pattern. It can be observed
that the inter- and intra-modalities distance distribution ap-
proaches a normal distribution. These embeddings used for
computation are from the state-of-the-art method [37].

pairs. Concretely, we compute the distance of all global embeddings
between different modalities:

𝑥𝑖, 𝑗 = 𝜎𝑥 (V̂𝑖 , T̂𝑗 ), 𝑖, 𝑗 ∈ [1, 𝑁 ] (7)

Here V̂𝑖 is the global embedding of 𝑖-th image, and T̂𝑗 is the global
embedding of 𝑗-th text. 𝑁 is the number of image-text pairs, and
assuming the matched pair of V̂𝑖 is T̂𝑖 . 𝜎𝑥 is the distance function.
𝑥𝑖, 𝑗 is the spatial distance between V̂𝑖 and T̂𝑗 . We combine 𝑥𝑖, 𝑗 to
construct spatial matrix X = {𝑥𝑖, 𝑗 |𝑖, 𝑗 ∈ [1, 𝑁 ]}. The regularizer for
inter-modality unmatched pairs is as follwing:

L𝑖𝑛𝑡𝑒𝑟 = | |L𝑥 | |22 = | |X − X⊤ | |22 =
𝑁∑
𝑖=1

𝑁∑
𝑗=1

(𝑥𝑖, 𝑗 − 𝑥 𝑗,𝑖 )2

=

𝑁∑
𝑖=1

𝑁∑
𝑗=1

(𝜎𝑥 (V̂𝑖 , T̂𝑗 ) − 𝜎𝑥 (V̂𝑗 , T̂𝑖 ))2
(8)

Here L𝑥 = |X − X⊤ | is the inter-modality spatical matrix to be
optimized. It can be observed that this regularizer imposes strong
distance constraint only on unmatched pairs, which partially com-
pensates for the shortcomings of Eq.3. The regularizer can effec-
tively reduce the model’s sensitivity and enhance its robustness
and generalization when handling diverse modality data. But it still
handles inter-modality embeddings, which are limited by modality
gap.

So, on the other hand, we aim to maintain structure consistency
of different modalities by pursuing spatial distance consistency of
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Figure 5: Illustrasion for sparse correlation algorithm. We obtain the spatial matrix L𝑥 , and the model learns a soft-threshold
based on the conditional probability to select strong correlation for each instance.

intra-modality unmatched pairs. We compute the distance of all
global embeddings in each modality:

𝑦𝑖, 𝑗 = 𝜎𝑦 (V̂𝑖 , V̂𝑗 ), 𝑖, 𝑗 ∈ [1, 𝑁 ]
𝑧𝑖, 𝑗 = 𝜎𝑧 (T̂𝑖 , T̂𝑗 )

(9)

Here 𝑦𝑖, 𝑗 means the spatial distance between V̂𝑖 and V̂𝑗 . 𝑧𝑖, 𝑗 means
the spatial distance between T̂𝑖 and T̂𝑗 . 𝜎𝑦 and 𝜎𝑧 are the distance
functions of images and texts, respectively. We combine 𝑦𝑖, 𝑗 to
construct Y = {𝑦𝑖, 𝑗 |𝑖, 𝑗 ∈ [1, 𝑁 ]} and combine 𝑧𝑖, 𝑗 to construct Z =

{𝑧𝑖, 𝑗 |𝑖, 𝑗 ∈ [1, 𝑁 ]}. The regularizer for intra-modality unmatched
pairs is as follwing:

L𝑖𝑛𝑡𝑟𝑎 = | |L𝑦𝑧 | |22 = | |Y − Z| |22 =
𝑁∑
𝑖=1

𝑁∑
𝑗=1

(𝑦𝑖, 𝑗 − 𝑧𝑖, 𝑗 )2

=

𝑁∑
𝑖=1

𝑁∑
𝑗=1

(𝜎𝑦 (V̂𝑖 , V̂𝑗 ) − 𝜎𝑧 (T̂𝑖 , T̂𝑗 ))2
(10)

Here L𝑦𝑧 = |Y − Z⊤ | is the inter-modality spatical matrix to be
optimized. It can be observed that this regularizer constrains embed-
dings of different modalities to have the same spatial relationships,
enhancing their consistency of spatial structure. Furthermore, it
only processes embeddings within modalities and is not affected by
modality gap. Even if the modality gap is not completely eliminated,
this regularizer can still encourage our model to learn effective fea-
tures.

3.4 Sparse Correlation Algorithm
The spatial constraints assume the spatial relationships between im-
ages and texts exhibit symmetry, but this assumption is not always
valid. These inaccurate relationships can affect the performance of
the model. Fig. 4 shows the distribution of spatial distance between
instances within and across modalities. It can be observed that the
relationships between instances are mostly weakly correlated, and
these relationships have little effect on characterizing the spatial po-
sition of instances. Considering the effectiveness and efficiency, we
propose a sparse correlation algorithm. This algorithm concentrates

spatial constraints on strong correlation relationships to capture
more significant and important features. More importantly, this
algorithm can reduce the need for embedding symmetry, making it
more flexible.

The key issue is how to determine which instances exhibit strong
correlations. The correlation distribution of different instances
varies greatly, making it unsuitable to set a unified hard-threshold
to distinguish strong and weak correlations. Therefore, we propose
a sparse correlation algorithm to adaptively distinguish strong and
weak correlations based on the situation of the instance itself. This
algorithm builds conditional probabilities of correlation and uses
them to obtain the soft-threshold, as shown in Fig. 5. Taking matrix
L𝑥 as example, we set its 𝑖-th row vector as l𝑉𝑖 = {𝑙𝑉

𝑖,𝑗
| 𝑗 ∈ [1, 𝑁 ]},

and 𝑙𝑉
𝑖,𝑗

= |𝑥𝑖, 𝑗 − 𝑥 𝑗,𝑖 |. 𝑙𝑉𝑖 indicates the correlation between image
V𝑖 and all texts. Similar, we set the 𝑗-th column vecter of L𝑥 as
l𝑇𝑗 = {𝑙𝑇

𝑗,𝑖
|𝑖 ∈ [1, 𝑁 ]}, and 𝑙𝑇

𝑗,𝑖
= |𝑥 𝑗,𝑖 − 𝑥𝑖, 𝑗 |. To explicitly quan-

tification, we represent the conditional probability of each image
as:

𝑝 (𝑙𝑉𝑖 |𝑙𝑇𝑗 ) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (−|𝑥𝑖, 𝑗 − 𝑥 𝑗,𝑖 |), 𝑗 ∈ [1, 𝑁 ] (11)

Here 𝑝 (𝑙𝑉
𝑖
|𝑙𝑇
𝑗
) ∈ [0, 1] represents the dependency degree of V̂𝑖 on

T̂𝑗 . A larger value of 𝑝 (𝑙𝑉
𝑖
|𝑙𝑇
𝑗
) indicates a stronger dependency. We

expect the model to discover strong correlations for each image and
text based on the latent semantics of 𝐿𝑥 , to avoid interference from
other weakly correlated instances and to be as concise as possible.
Specifically, we observed that the histogram of the conditional prob-
ability {𝑝 (𝑙𝑉

𝑖
|𝑙𝑇
𝑗
)}𝑑

𝑗=1 approximates a normal distribution, as shown
in Fig. 4. Therefore, based on the statistical features of conditional
probabilities, we can enable the model to learn a soft-threshold for
distinguishing strong and weak correlations for each instance:

𝜅𝑉𝑖 = 𝜇𝑖 + 𝛽𝑖 · 𝜃𝑖 (12)

Here 𝜅𝑉
𝑖
is the soft-threshold of l𝑉𝑖 . 𝜇𝑖 and 𝜃𝑖 are the mean and stan-

dard deviation of the sampling probability values from {𝑝 (𝑙𝑉
𝑖
|𝑙𝑇
𝑗
)}𝑑

𝑗=1,
respectively. 𝛽𝑖 is a learnable parameter to adjust the sparse degree.
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Table 1: Comparisons with state-of-the-art methods on Flickr30k and MSCOCO 1K test-sets. BUTD represents using Faster-
RCNN [2] to extract local image embeddings. BiGRU and BERT represent using BiGRU [27] or BERT [4] to extract local text
embeddings. * denotes the ensemble results of two models. The bests are in bold.

Methods
Flickr30K MSCOCO 1K

IMG→TEXT TEXT→IMG rSum IMG→TEXT TEXT→IMG rSumR@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

BUTD+BiGRU
GSMN*(2020)[20] 76.4 94.3 97.3 57.4 82.3 89.0 496.8 78.4 96.4 98.6 63.3 90.1 95.7 522.5
GPO(2021)[2] 76.5 94.2 97.7 56.4 83.4 89.9 498.1 78.5 96.0 98.7 61.7 90.3 95.6 520.8
MV(2022)[17] 79.0 94.9 97.7 59.1 84.6 90.6 505.8 78.7 95.7 98.7 62.7 90.4 95.7 521.9
NAAF*(2022)[39] 81.9 96.1 98.3 61.0 85.3 90.6 513.2 80.5 96.5 98.8 64.1 90.7 96.5 527.2
CHAN(2023)[22] 79.7 94.5 97.3 60.2 85.3 90.7 507.8 79.7 96.7 98.7 63.8 90.4 95.8 525.0
NUIF-d(2024)[37] 81.8 94.7 97.6 59.4 85.6 91.1 509.3 80.6 96.3 98.8 64.7 91.4 96.2 528.0
DIAS(ours) 81.8 96.1 98.6 60.7 84.9 91.3 513.4 81.3 96.8 98.9 64.9 90.4 95.9 528.2
BUTD+BERT
DSRAN(2020)[34] 77.8 95.1 97.6 59.2 86.0 91.9 507.6 78.3 95.7 98.4 64.5 90.8 95.8 523.5
VSRN++*(2022)[14] 79.2 94.6 97.5 60.6 85.6 91.4 508.9 77.9 96.0 98.5 64.1 91.0 96.1 523.6
MV(2022)[17] 82.1 95.8 97.9 63.1 86.7 92.3 517.5 80.4 96.6 99.0 64.9 91.2 96.0 528.1
CHAN(2023)[22] 80.6 96.1 97.8 63.9 87.5 92.6 518.5 81.4 96.9 98.9 66.5 92.1 96.7 532.6
HREM*(2023)[5] 84.0 96.1 98.6 64.4 88.0 93.1 524.2 82.9 96.9 99.0 67.1 92.0 96.6 534.6
DIAS(ours) 83.8 96.6 98.3 64.5 88.0 93.3 524.5 83.4 97.1 99.1 67.6 92.4 96.6 536.2

We combine all soft-thresholds as K𝑉 = {𝜅𝑉
𝑖
|𝑖 ∈ [1, 𝑁 ]}, and

obtain K𝑇 = {𝜅𝑇
𝑗
| 𝑗 ∈ [1, 𝑁 ]} in a similar process. It is important

to note that K𝑉 and K𝑇 are distinct. For example, image V𝑖 may
exhibit a high dependency degree on text T𝑗 , but T𝑗 may not neces-
sarily have a high dependency degree on V𝑖 . To avoid introducing
weakly correlated information, we select spatial relationships that
meet the requirements of both K𝑉 and K𝑇 :

L̂𝑥 = B𝑥L𝑥 (13)

HereB𝑥 = {𝑏𝑥
𝑖,𝑗
|𝑖, 𝑗 ∈ [1, 𝑁 ]} is a binary mask matrix to save strong

correlation relationships, and:

𝑏𝑥𝑖,𝑗 =

{
1, |𝑥𝑖, 𝑗 − 𝑥 𝑗,𝑖 | > 𝑚𝑎𝑥 (𝜅𝑉𝑖 , 𝜅

𝑇
𝑗 )

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(14)

𝑚𝑎𝑥 (·) is the function for calculating the maximum value. Base on
the sparse inter-modality spatical matrix L̂𝑥 , we update Eq.8 as:

L𝑖𝑛𝑡𝑒𝑟 = | |L̂𝑥 | |22 = B𝑥 | |X − X⊤ | |22 =
𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑏𝑥𝑖,𝑗 (𝑥𝑖, 𝑗 − 𝑥 𝑗,𝑖 )
2

=

𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑏𝑥𝑖,𝑗 (𝜎𝑥 (V̂𝑖 , T̂𝑗 ) − 𝜎𝑥 (V̂𝑗 , T̂𝑖 ))2
(15)

By performing similar operations on L𝑦𝑧 , we can obtain the sparse
intra-modality spatical matrix L̂𝑦𝑧 and update Eq.10 as:

L𝑖𝑛𝑡𝑟𝑎 = | |L̂𝑦𝑧 | |22 = B𝑦𝑧 | |Y − Z| |22 =
𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑏
𝑦𝑧

𝑖,𝑗
(𝑦𝑖, 𝑗 − 𝑧𝑖, 𝑗 )2

=

𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑏
𝑦𝑧

𝑖,𝑗
(𝜎𝑦 (V̂𝑖 , V̂𝑗 ) − 𝜎𝑧 (T̂𝑖 , T̂𝑗 ))2

(16)

Here B𝑦𝑧 = {𝑏𝑦𝑧
𝑖,𝑗

|𝑖, 𝑗 ∈ [1, 𝑁 ]}.

3.5 Objective Function
We combine the proposed regularization terms with the triplet loss
to obtain the loss function of DIAS:

L = L𝑙𝑜𝑐 + 𝜔𝑑𝑖𝑚L𝑑𝑖𝑚 + 𝜔𝑖𝑛𝑡𝑒𝑟L𝑖𝑛𝑡𝑒𝑟 + 𝜔𝑖𝑛𝑡𝑟𝑎L𝑖𝑛𝑡𝑟𝑎 (17)

Here 𝜔𝑑𝑖𝑚 , 𝜔𝑖𝑛𝑡𝑒𝑟 and 𝜔𝑖𝑛𝑡𝑟𝑎 are hyper-parameters to control the
effectiveness degree of each term. To ensure effective cross-modal
interactions, we use neighbor sampling instead of random sampling
for batches. First, we apply K-means [21, 29] clustering on the
local image embeddings. Then, we randomly select𝑀 clusters and
choose 𝑃 images from each cluster. Finally, we pair each image with
a positive text instance and obtain 𝑁 = 𝑃 × 𝐾 image-text pairs for
each batch.

4 EXPERIMENTS
4.1 Experimental Setup
Datasets and Evaluation Metrics.We evaluate DIAS mainly on
Flickr30k [36] andMSCOCO [19] datasets. Flickr30k contains 29,000
images for training, 1,000 images for validation, and 1,000 images
for testing. MSCOCO contains 123,287 images for training, 5,000
images for validation, and 5,000 images for testing. Each image of
the two datasets is associated with 5 texts. The results on MSCOCO
are reported on averaging over 5-folds of 1,000 test images and on
the entire 5,000 test images. As a common practice in information
retrieval [2], we adopt the Recall at K (R@K) to meansure the per-
formance, and set K=1,5,10. R@K means the percentage of ground
truth in the retrieved top-K lists. rSum reflects the overall matching
performance, which is the sum of R@K in both image-to-text and
text-to-image matching.

Implementation Details.We use the pre-extracted local image
embeddings [2] for images, and the BiGRU [27] or BERT [4] to
extract local text embeddings. All correlation algorithms default
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Table 2: Comparisons with state-of-the-art methods on
MSCOCO 5K test-set. * denotes the ensemble results of two
models. The bests are in bold.

Methods I→T T→I rSumR@1 R@5 R@10 R@1 R@5 R@10

BUTD+BiGRU
GPO 56.6 83.6 91.4 39.3 69.9 81.1 421.9
MV 56.7 84.1 91.4 40.3 70.6 81.6 424.6
NAAF* 58.9 85.2 92.0 42.5 70.9 81.4 430.9
CHAN 60.2 85.9 92.4 41.7 71.5 81.7 433.4
NUIF-d 59.3 85.5 92.0 41.9 71.3 81.8 431.8
DIAS(ours) 59.8 86.0 92.5 42.7 71.8 82.5 435.3
BUTD+BERT
VSRN++* 54.7 82.9 90.9 42.0 72.2 82.7 425.4
MV 59.1 86.3 92.5 42.5 72.8 83.1 436.3
CHAN 59.8 87.2 93.3 44.9 74.5 84.2 443.9
HREM* 64.0 88.5 93.7 45.4 75.1 84.3 450.9
DIAS(ours) 64.4 88.9 94.1 47.2 76.5 85.2 456.3

Figure 6: The effectiveness of sparse correlation algorithm.

to cosine similarity [28]. The experiments are conducted on an
NVIDIA GeForce RTX 4090 GPU.We set 30 training epochs, and the
batch size is 128 for Flickr30k and 256 forMSCOCO. Adam optimizer
is adopted with an initial learning rate of 5𝑒−4 and decaying by 10%
every epochs.

4.2 Comparisons with State-of-the-art Methods
To verify the performance superiority of our proposed DIAS, we
compare it with the state-of-the-art models on two datasets. Ex-
isting methods are divided into two types based on their feature
backbones for fair comparisons. The experimental results are cited
directly from respective papers. Our model reports the single model
performance without the ensemble improving trick.

Quantitative results on Flickr30K and MSCOCO 1K test-sets are
shown in Table 1. DIAS outperforms state-of-the-art methods with
impressive margins for the R@K and rSum, and achieves consistent
superiority on different textual encoders. Furthermore, Table 2
shows the more extensive database of MSCOCO 5K test-set, DIAS
also performs best on nearly all metrics.

4.3 Ablation Study and Discussion
To demonstrate the effectiveness of components in DIAS, we con-
duct ablation studies on both datasets. The baseline w/o DIA means

Table 3: Ablation studies of our model on Flickr30K and
MSCOCO 1K.

Methods
Flickr30K MSCOCO 1K

I→T T→I I→T T→I
R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

BUTD+BiGRU
w/o DIA 79.3 94.9 58.9 84.0 78.9 95.6 63.0 90.2
w/o L𝑥 81.1 95.7 59.5 84.6 80.4 96.2 64.2 90.3
w/o L𝑦𝑧 80.8 95.2 59.5 84.6 80.1 96.2 63.7 90.2
w/o L̂𝑥 81.6 96.0 60.2 84.8 81.2 96.5 64.7 90.3
w/o L̂𝑦𝑧 81.5 95.8 59.9 84.7 80.9 96.4 64.1 90.2
DIAS 81.8 96.1 60.7 84.9 81.3 96.8 64.9 90.4
BUTD+BERT
w/o DIA 80.8 95.5 62.9 85.9 80.7 96.1 65.1 91.1
w/o L𝑥 83.3 96.2 64.4 87.8 82.9 97.0 66.9 92.1
w/o L𝑦𝑧 82.7 95.9 63.7 87.2 82.1 96.8 66.3 91.8
w/o L̂𝑥 83.5 96.2 64.4 87.9 83.0 97.1 67.2 92.2
w/o L̂𝑦𝑧 83.4 96.2 64.0 87.8 82.8 97.0 67.0 92.2
DIAS 83.8 96.6 64.5 88.0 83.4 97.1 67.6 92.4

Table 4: The effect of applying dimension information align-
ment (abbreviated as DIA) to other models.

Flickr30K MSCOCO 1K
I→T T→I I→T T→I

R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

MV 82.1 95.8 63.1 86.7 80.4 96.6 64.9 91.2
+DIA 82.9 96.2 63.8 87.2 81.4 96.8 65.8 91.9
CHAN 80.6 96.1 63.9 87.5 81.4 96.9 66.5 92.1
+DIA 82.0 96.4 64.2 87.8 81.7 96.9 66.9 92.3
HREM 84.0 96.1 64.4 88.0 82.9 96.9 67.1 92.0
+DIA 84.2 96.5 64.6 88.0 83.0 97.2 67.5 92.5

DIAS without dimention information alignment. w/o L𝑥 and w/o
L𝑦𝑧 denote the lack of inter- and intra-modality spatial constraints,
respectively. w/o L̂𝑥 and w/o L̂𝑦𝑧 mean that no sparsity regular-
ization is applied on inter- and intra-modality spatial matrices,
respectively. According to the results shown in Table 3, we have
the following observations:

(1)The effectiveness ofmodel designing.Removing any com-
ponents in DIAS reduced performance, which indicates the pro-
posed dimension information alignment, spatial constraints, and
sparse correlation algorithm are effective for image-text matching
tasks.

(2) Discussion on dimension information alignment. The
performance of w/o DIA is the worst among the baselines, indi-
cating that aligning dimension information is the most crucial
component for DIAS. To further discuss the effectiveness of this
component, we apply it to other models. The results shown in Table
4 demonstrate dimension information alignment can also improve
the performance of other models to a certain extent.

(3)Discussion on spatial constraint. The performance of w/o
L𝑦𝑧 is inferior to w/o L𝑥 , indicating that introducing intra-modality
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Figure 7: Performance comparison on varying.

spatial constraint is more effective for DIAS than inter-modality
constraint. This result provides evidence for the viewpoint that
intra-modality constraint is not affected by modality gap and can
directly assist the model in learning robust features.

(4) Discussion on sparse correlation algorithm. The perfor-
mance of w/o L̂𝑥 and w/o L̂𝑦𝑧 are inferior to the complete DIAS,
suggesting sparse correlation algorithm can assist the model in
learning significant features by selecting strong correlated relation-
ships. To further discuss the effectiveness of this algorithm, we
compared it with the Top-k strategy and L1 sparse strategy. The
Top-k strategy retains the top-k most relevant relationships for
each instance. The L1 sparse strategy constrains the correlation
matrix using the L1-norm. The results as shown in Fig. 6 reveal the
sparse correlation algorithm outperforms these two baselines.

4.4 Robustness Analysis
Parameter sensitivity. We aim to understanding how our model
performs by varying the values of hyper-parameters 𝜔𝑑𝑖𝑚 , 𝜔𝑖𝑛𝑡𝑒𝑟
and 𝜔𝑖𝑛𝑡𝑟𝑎 , as shown in Fig.7. When varying any of these hyper-
parameters, we fix others with default settings. 𝜔𝑑𝑖𝑚 , 𝜔𝑖𝑛𝑡𝑒𝑟 and
𝜔𝑖𝑛𝑡𝑟𝑎 obtain optimal results at 10, 0.05, and 0.1, respectively.

Generalization study. To validate the generalization capability
of DIAS in learning latent semantics, we conduct cross-validation
experiments following [40]. Specifically, we use the model trained
on MSCOCO dataset to evaluate its zero-shot transferability on
Flickr30K test-set. The result shown in Table 5 indicates our pro-
posed DIAS exhibits stronger generalization ability than the base-
line, confirming DIAS is capable of learning cross-modality latent
semantics.

5 CONCLUSION
This paper proposes a novel image-text matching model based on
dimension information alignment and sparse spatial correlation
algorithm (DIAS). We explicitly align information representation
of embeddings in corresponding dimension, to address the issue
of lack of rationality in correlation calculation caused by modality
gap. Additionally, by introducing inter- and intra-modalities spatial
relationships, we enhance the constraints during the cross-modal
interaction. More importantly, we propose a sparse correlation
algorithm to select strong spatial relationships to reduce the re-
quirement for symmetric of embeddings, allowing the model to

Table 5: Generalization ability comparison of models
trained on MSCOCO and validated on Flickr30K test-set.

I→T T→I rSumR@1 R@5 R@10 R@1 R@5 R@10

BUTD+BiGRU
Baseline 53.2 82.1 88.7 42.5 71.1 79.5 417.1
DIAS 69.2 91.2 95.0 54.5 79.4 87.0 476.3
BUTD+BERT
Baseline 60.6 85.4 91.4 46.7 73.7 81.8 439.6
DIAS 73.9 92.2 96.2 57.6 80.8 87.6 488.3

focus on learning more significant structural features. Extensive
experiments and analyses conducted on two datasets show the
superiority and rationality of DIAS.
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