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ABSTRACT

Low-bit post-training quantization (PTQ) is a practical route to deploy reasoning-
capable LLMs under tight memory and latency budgets, yet it can markedly impair
mathematical reasoning (drops up to 69.81% in our harder settings). We address
two deployment-critical questions with process-level precision: Where along a
step-structured solution does degradation first arise? How to mitigate it while
staying in the low-bit regime? Across most widely used on computationally
constrained scenarios PTQ methods (AWQ, GPTQ, SmoothQuant), open-source
model families (Qwen, LLaMA; 0.5-7B), and math reasoning related benchmarks
(GSMB8K, MATH, AIME), we perform format-aligned chain-of-thought with step-
aligned attribution and uncover two robust regularities: (i) PTQ disproportionately
elevates method and execution errors relative to high-level conceptual mistakes; and
(i) failures emerge early, with the first vulnerable step flipping and cascading to
the final answer. These regularities suggest a general intervention principle: restore
local token-level margins exactly at the earliest failure frontier. We instantiate this
principle as a lightweight measure—locate—restore loop that operates directly
on the quantized model: detect the first faulty step, construct our "'Silver Bullet"
datasets, and apply small-scale supervised/preference tuning. In our settings, as
few as 332 curated examples and 3-5 minutes of compute on a single GPU recover
4-bit weight math reasoning toward the full-precision baseline while preserving
PTQ efficiency. Our framework is quantizer- and architecture-agnostic within the
evaluated regimes, and turns low-bit degradation from a global accuracy problem
into a local, reproducible process intervention.

1 INTRODUCTION

Transformer-based large language models (LLMs) such as LLaMA (Grattafiori et al.l [2024),
GPT (Achiam et al.,2023), and Qwen (Yang et al., 2024) have demonstrated strong performance on
complex reasoning tasks, including mathematical competitions (Maxwell-Jial 2025)), code genera-
tion (Chen et al.,|2021)), and logical inference (Pan et al.,[2023). Yet attaining reliable accuracy on
such tasks typically requires large parameter counts. The resulting inference latency and memory
footprint make deploying full-precision, ultra-large models impractical in many resource-constrained
scenarios. To balance resource use and accuracy, model compression has been extensively studied,
including quantization (Yang et al.,|2019; [Rokh et al., [2023)), knowledge distillation (Hinton et al.,
20155 |Gou et al.l 2021), and pruning (Han et al., 2015). Among these, post-training quantization
(PTQ) (Banner et al.,[2019) lowers precision to reduce memory and improve throughput, especially
on edge hardware. However, recent evidence indicates that low-bit operation (e.g., INT4) can substan-
tially degrade mathematical reasoning (Feng et al., [2024; [Liu et al., 2025)). This raises two practical
questions for deployment: Where does degradation emerge in the reasoning process, and How can it
be mitigated while remaining in the low-bit regime?

We study these questions through a systematic exploration of PTQ on widely used open-source
model families and benchmarks. Concretely, we evaluate AWQ, GPTQ, and SmoothQuant on
Qwen2.5 and LLaMA-3 across GSM8K (Cobbe et al.| 2021), MATH (Hendrycks et al., |2021)), and
AIME (Maxwell-Jial 2025)). Using format-aligned chain-of-thought and step-aligned attribution, we
characterize quantization-induced failures across model scales and task difficulty. Two patterns are
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Figure 1: Pipeline of our study for investigating and restoring mathematical reasoning capabilities in
quantized language models. We begin by identifying performance degradation caused by quantization,
then apply format alignment training and a structured error assessment pipeline involving expert
model judgments. Through this process, we analyze reasoning failures in step-by-step outputs.
Targeted "Silver Bullet" datasets are constructed based on consensus error types, and used in DPO
training to recover reasoning performance while maintaining the efficiency of low-bit models.

consistent: (i) PTQ predominantly increases method and execution errors (e.g., algorithm choice, rule
application, carry/borrow, division/rounding), rather than high-level conceptual mistakes; and (ii)
errors tend to emerge early, with the first vulnerable step flipping and cascading to the final answer.
This diagnosis turns degradation into a targeted objective: restore token-level margins where collapse
happens first.

Guided by this view, as shown on Figure[I] we adopt a lightweight measure—locate—restore loop
that operates directly on the quantized model. We first locate the initial erroneous step, then apply
small-scale supervised/preference tuning on a compact "Silver Bullet" set designed to target the
observed weaknesses. In our experiments, fine-tuning on as few as 332 curated examples for 3-5
minutes on a single GPU is sufficient to recover the mathematical reasoning accuracy of W4A16
models toward their full-precision baselines, while preserving PTQ’s memory and latency benefits.

We frame the study in the regime most relevant to practice: PTQ rather than quantization-aware
training, so as to preserve the efficiency budget and expose unmodified low-bit failure modes. To
cover current practice, we include AWQ, GPTQ, and SmoothQuant, which together span weight-only
and weight—activation designs. Experiments use Qwen and LLaMA models at 0.5-7B—scales
commonly deployed under constraints scenario and edge devices. Although our evidence is drawn
from these choices, both the step-aligned measurement and the proposed measure—locate—restore
loop intervention are architecture- and quantizer-agnostic by construction. Specifically, our primary
contributions are as follows:

* We build a step-aligned measurement suite and hierarchical error taxonomy that expose a
robust PTQ-induced shift toward method and execution errors, with earlier first-step flips,
consistent across the most popular models, bit-widths, and benchmarks.

* We develop an automated chain-of-thought error—analysis pipeline (judge ensemble and
light human audit) that attains 97.2% labeling accuracy on 9,908 failure cases, enabling
fine-grained, reproducible attribution by error type and first faulty step.

* We introduce a compact measure—locate—restore loop that tunes the quantized model
with targeted "Silver Bullet" pairs, recovering W4A 16 mathematical reasoning to near full
precision with just 332 curated examples and 3-5 minutes on a single GPU—without access
to pretraining data.
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2 RELATED WORKS
2.1 QUANTIZATION METHODS

Quantization is a computational efficiency optimization technique that maps high-precision tensors
X € R™" into low-bit discrete representations. This work focuses on hardware-efficient uniform
quantization, a linear mapping paradigm particularly suited for deployment on embedded systems
with fixed-point arithmetic units. The method achieves significant reductions in model storage
requirements and inference energy consumption while maintaining computational tractability.

For b-bit quantization, the mathematical formulation is expressed as:

. X
X =Q(X;b) = s-Tlgy <S> (1)
where the quantization step size s = w dynamically adapts to the input distribution,
effectively compressing the continuous floating-point space into an integer set (b) = {0,1,...,2° —

1}. The projection function II(+) discretizes normalized values through nearest-neighbor rounding,
with the rounding error being a primary source of quantization-induced precision loss. Notably, the
step size s governs the resolution of quantization intervals—larger dynamic ranges may sacrifice
fine-grained details, necessitating calibration strategies for optimal parameter selection in practical
implementations.

The engineering trade-offs of quantization manifest in multiple dimensions:

 Bit-width Flexibility: While aggressive 4-bit quantization reduces model size to 1/8 of its
original footprint, it risks substantial accuracy degradation. Conversely, 8-bit quantization
typically achieves near-full-precision performance in most scenarios.

* Dynamic vs. Static Modes: Dynamic quantization computes step sizes at runtime to adapt
to input variations, whereas static quantization pre-calibrates parameters offline to minimize
inference overhead.

* Weight-only vs. Weight-activation: Weight-only quantization restricts low-bit representa-
tion to model parameters, preserving activation precision for tasks sensitive to numerical
stability. In contrast, weight-activation quantization jointly compresses both weights and
intermediate activations, achieving higher memory efficiency at the cost of error accumula-
tion.

Our methodology encompasses two complementary quantization approaches: (1) Post-training
weight-only compression via AWQ (Lin et al.,|2024)) and GPTQ (Frantar et al., 2022)), achieving 4-bit
precision preservation through adaptive rounding strategies; (2) The SmoothQuant (Xiao et al.| [2023)
framework for joint weight-activation quantization, maintaining 8-bit numerical stability via learned
scale migration. This dual-strategy design addresses distinct precision requirements: aggressive
weight compression for memory efficiency versus moderate activation quantization for computational
robustness. Comprehensive implementation protocols, including gradient-aware quantization grid
adaptation and layer-wise sensitivity analysis, are detailed in Appendix [A]

2.2 REASONING ABILITY OPTIMIZATION IN LARGE LANGUAGE MODELS

LLMs increasingly demonstrate strong general-purpose reasoning skills, spanning commonsense
inference to domain-specific problem solving. Early evidence from Minerva (Lewkowycz et al.,[2022)
shows that scaling models and tailoring data can unlock advanced mathematical competence—one
instance of the broader trend that rich intermediate computations boost reasoning fidelity. Prompt-
engineering techniques such as Chain-of-Thought (Wei et al.,2022) and its code-generating variant
Program-of-Thought (Chowdhery et al., 2023)) further improve multi-step reasoning by encouraging
models to decompose tasks into interpretable sub-steps.

Orthogonal to prompting, alignment research pursues systematic post-training refinements. Instruc-
tion tuning on diversified task mixtures (FLAN) (Wei et al., [2021) and lightweight data-curation
pipelines (Alpaca) (Taori et al., [ 2023) make models broadly helpful, while Direct Preference Opti-
mization (DPO) (Rafailov et al.,2024) offers sample-efficient preference learning without full RLHF.
Reliability has been pushed along two complementary axes: self-consistency voting for answer
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selection (Wang et al.| 2022) and process-level supervision with stepwise reward models (Lightman
et al.,[2023b), both grounded in verifiable-reasoning theory (Creswell & Shanahan, [2022)).

Building on these insights, we adopt process-supervised fine-tuning that obliges the model to articulate
and justify each intermediate step. This explicit trace makes it possible to localize—and later
ameliorate—reasoning failures introduced by low-bit quantization, providing a principled path toward
efficient yet reliable LLM deployment.

3 METHODOLOGY
3.1 QUANTIZATION-INDUCED DEGRADATION: MEASUREMENT AND ATTRIBUTION

In this section, we investigate how low-bit quantization influences the reasoning performance of LLMs.
Distinct from prior works, we examine each model’s step-by-step solution trajectory and conduct a
fine-grained quantitative—qualitative error analysis to pinpoint the root causes of reasoning failures.
Our study centers on mathematically oriented tasks, which serve as a rigorous and representative
proxy for general reasoning ability.

3.1.1 QUANTIZATION

We conduct a comprehensive investigation into the effects of quantization techniques, encompasses
two complementary quantization approaches: (1) Post-training weight-only compression via AWQ
(Lin et al.| [2024) and GPTQ (Frantar et al., 2022)), achieving 4-bit weight precision preservation
through adaptive rounding strategies and keep the data format of activations in 16-bit; (2) The
SmoothQuant (Xiao et al.| [2023)) framework for joint weight-activation quantization, maintaining
8-bit numerical stability via learned scale migration. Through the systematic application of these
most popular and wild-use quantization techniques, we provide a rigorous and balanced analysis of
the resulting quantized models, offering valuable insights into their performance characteristics and
trade-offs. Detailed algorithmic descriptions and mathematical derivations for all three methods are
provided in Appendix [A]

3.1.2 FORMAT ALIGNMENT TRAINING

To address the challenge of inconsistent instruction following and irregular output formatting in
model-generated solutions, we introduce a format alignment stage. This phase aims to instill in the
model a structured, step-by-step reasoning workflow without altering its underlying mathematical
knowledge. Crucially, the objective here is NOT to teach the model new mathematical facts or
knowledge injection, but rather to ensure strict adherence to a prescribed output format, thereby
enabling reliable qualitative and quantitative analysis of reasoning capability across quantized and
full-precision variants.

We employ LoRA (Hu et al, 2021) and QLoRA (Dettmers et al., 2024) for full-precision model
and quantized model respectively as lightweight adaptation techniques for format alignment. These
methods efficiently align knowledge of step-by-step solution formats into the model’s latent space
without extensive retraining. This fine-tuning enables us to observe how multi-step reasoning is
preserved or altered once the model is quantized, offering deeper insights into any capability loss
induced by compression.

For alignment, we utilize the PRM80OK dataset (Lightman et al.}2023a), which provides 800K step-
level correctness annotations from 75K solutions to 12K problems. These annotations supply granular,
step-by-step reasoning trajectories, equipping models to separate complex problem-solving processes
into well-defined stages. To reinforce this structure, we adopt a consistent system prompt across
training and evaluation, ensuring that the boundaries of logical steps and final answers are clearly
delineated. This consistent, step-by-step alignment is a necessary foundation for our subsequent
qualitative and quantitive analyses of quantization-induced degradation in mathematical reasoning.
More details are presented on Appendix

3.1.3 DETAILED EXAMINATION OF REASONING PROCESS

Qualitative Analysis. To systematically investigate the underlying reasons for degradation in
quantized models, we performed a qualitative error analysis inspired by established categorizations
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Table 1: Comparison of quantization methods applied to the Llama-3 and Qwen2.5 model families.
AWQ and GPTQ employ 4-bit weight and 16-bit activation quantization, whereas SQ (SmoothQuant)
uses 8-bit weight and 8-bit activation quantization.
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Notes: Van. denotes the vanilla full-precision baseline; Inst. is an abbreviation of Instruct.

from previous literature (Brown et al., 2016), (Delastr1 & Lolang, [2023) and (Kurudirek et al., [2023),
which categorize real world student errors in mathematical problem solving. Building on these
frameworks, we conduct a qualitative analysis by classifying model-generated errors into seven
fine-grained error types, organized under four high-level categories. The definitions of these error
types are detailed as follows:

* Conceptual Errors arise when the model fundamentally misunderstands the underlying
principles or context. This includes misgrasping core theories or overlooking domain-
specific constraints (e.g., boundary conditions), leading to distorted problem framing and
invalid solutions.

* Method Errors occur when mathematical methods are misapplied or chosen inappropriately.
Typical cases include executing standard algorithms incorrectly, skipping key procedures, or
misusing formulae in unsuitable contexts.

» Execution Errors stem from mistakes in arithmetic or symbolic manipulation, such as
faulty calculations, erroneous expansions, or mislabeling variables. These slips compromise
intermediate computations and ultimately the final answer.

* Reasoning Errors reflect flaws in logical flow, where inference steps do not follow coher-
ently or essential links are omitted, creating gaps that render the conclusion unsupported.

Quantitative Analysis and Error Assessment Pipeline. To facilitate a rigorous and scalable
evaluation of quantization-induced errors in reasoning tasks, we developed an automated assessment
pipeline powered by state-of-the-art language models. This pipeline systematically processes model
outputs and classifies errors according to our predefined error_types_list taxonomy. By leveraging
a pre-trained transformer as the core evaluator, we reduce subjective bias and ensure consistent,
reproducible error analyses across all experimental conditions. Furthermore, the computational
scoring framework supports high-throughput performance assessment while preserving granularity in
error categorization.

Our quantitative assessment pipeline comprises three primary stages:

1. Expert Model Judgement: For each instance in which a quantized model produces an incorrect
answer, we employ a dedicated "expert model" to analyze the error. The expert model is tasked
with: (a) identifying the first occurrence of an error, (b) specifying the exact step where the error is
introduced, (c) assigning an error category based on a nested classification scheme, and (d) providing
an explanation along with a confidence score for its determination.

2. Majority Voting: To curb hallucinations and improve evaluation reliability, we apply a three-stage
majority-vote protocol to the outputs of five language models—DeepSeek-R1 (Guo et al. [2025)
(primary), GPT-40, GPT-4, Qwen-Max (Yang et al., 2025)), and DeepSeek-V3 (Liu et al., [2024).
Instances of disagreement are flagged for further review, ensuring consistency and minimizing
spurious judgments. Rulel-Unanimous agreement: If all four auxiliary models concur with the
reference judgment from DeepSeek-R1, the answer is accepted. Rule2-Simple majority: If exactly
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three auxiliary models concur with DeepSeek-R1, the answer is likewise accepted. Rule3-Escalation:
Otherwise, the instance is forwarded to two independent human annotators for arbitration.

3. Human Annotation: For cases with conflicting assessments from the majority vote, we introduce
two human annotators to manually review is conducted. The annotator need to follow the anno-
tation document and review the explanations of five expert models then give the final assessment.
Additionally, we also randomly sample 2% of the passed evaluated cases to verify the accuracy and
consistency of the automated judgments. The annotation documents are detailed in Appendix [C}

This pipeline is intentionally designed to be conservative and to avoid spurious "false consensus"
in the automatic labels. Among several strong candidate judges, we select DeepSeek-R1 as the
pivot because its reflective, stepwise chain-of-thought makes it particularly suitable for localizing the
first erroneous step and producing structured explanations; in a small pilot on a random subset of
failures, its error-type predictions also showed the highest agreement with two human annotators. For
each incorrect model output, we then collect judgments from all five expert models and accept an
automatic label only when at least three of the four auxiliary models concur with the pivot, that is, at
least four out of five models agree on both the error type and its location; otherwise the instance is
escalated to human annotators. In addition, we randomly sample two percent of the automatically
accepted cases for manual audit.

Under this protocol, our automated error-assessment pipeline matches the final human judgment on
97.2% of 9,908 failure cases, with the remaining discrepancies concentrated in borderline situations,
for example when the canonical answer is "\\frac{11} {2} " but the quantized model outputs the
numerically equivalent "5.5" and some expert models still flag an error due to subtle reasoning or
formatting differences. These observations suggest that our judge framework achieves high precision
at the cost of slightly lower recall, which is appropriate for the downstream analyses in this paper;
further implementation details and annotation guidelines are provided in Appendix [C]

3.2 RESTORING REASONING ABILITIES IN QUANTIZED MODELS

3.2.1 DATA EXTRACTION

Building on the analysis in Section[3.1.3] we construct our evaluation subset by filtering and catego-
rizing problem instances according to model error types. First, to eliminate any risk of data leakage,
we remove all overlapping examples between the MATH and MATH-500 test sets by matching on
their unique_id fields. Next, for each quantized model, we identify those problems that the full-
precision counterpart answers correctly but on which the quantized variant fails, based on the models’
majority-vote outputs. We then collect the corresponding problem prompts and model-generated
responses for these failure cases. Finally, leveraging the labels produced by our error-assessment
pipeline, we assign each case to its consensus error category for downstream analysis.

3.2.2 SILVER BULLET DATASETS BUILDING

During the execution of our error-assessment pipeline, we identify and record the exact reasoning
step at which each quantized model initially commits an error. Our qualitative analysis indicates that
many reasoning failures originate from incorrect intermediate computations or boundary adjustments,
on which all subsequent solution steps heavily depend. Leveraging this observation, we construct
a targeted counterexample dataset by truncating the incorrect reasoning traces precisely at the
identified erroneous steps. Subsequently, we prompt powerful baseline models (Llama-3.2-70B
and Qwen2.5-Max) to resume and complete these truncated solutions until the correct answers are
derived. Consequently, we designate the original quantized models’ erroneous partial solutions as
negative samples, while adopting the accurately completed solutions generated by the larger models as
positive samples. This approach yields our "Silver Bullet" datasets, specifically designed to facilitate
downstream error correction and model fine-tuning.

3.2.3 CAPABILITY RESTORING TRAINING

To reclaim the reasoning capability lost after low-bit quantization, we fine-tune each quantized model
using Direct Preference Optimization (DPO) (Rafailov et al.,|2024). Given a prompt x and a pair
of responses (yT,y~) where y™ is the correct answer and i~ is the quantized model’s incorrect
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Figure 2: Error assessment results for full-precision and quantized models. For the full-precision
model, we aggregate all problems it answered incorrectly; for each quantized model, we count only
those problems that the full-precision model solved correctly but the quantized model failed, enabling
comparison of quantization-induced changes across error dimensions.

answer, y T is prefered to y~, DPO maximizes the log-likelihood gap between the two while softly
constraining the new policy 7y toward the frozen reference policy 7¢. The objective is

£0p0(0) = Byt 4y~ log o Bllog ma(y ™ | ) — log ma(y ™ | 2)

- (log 7rref(yJr |z) — log Tres (Y~ |x))} ﬂ 2)

where o is the sigmoid function and [ is an inverse-temperature hyper-parameter (we set 8 = 1).
Because the reference gap is constant with respect to , maximizing Lppo is equivalent to minimizing
KL(ﬂ'e I wref) subject to pairwise preference constraints, thus yielding a stable, RL-free preference-
alignment procedure with solid theoretical footing.

We realize the adaptation using LoRA and 4-bit QLoRA. Across all experiments, we set the LoORA
rank to 32 for every injected adapter matrix and optimize with a cosine learning-rate schedule (base
learning rate 1 x 10~%, warm-up ratio 0.1) under a global batch size of 8. Training minimizes the
sigmoid preference loss implied by Lppo.

4 EXPERIMENTS
4.1 EVALUATING QUANTIZATION EFFECTS

In this phase of our study, we selected three benchmark datasets of varying difficulty levels to evaluate
the degradation introduced by quantization across different reasoning complexities.

* GSMSK is a high-quality dataset of grade-school level math word problems released by
OpenAl, containing 8,500 problems that typically require 2 to 8 steps of reasoning.

* MATH is a more challenging dataset composed of 12,500 competition-level high school
math problems, covering seven mathematical domains including algebra, geometry, number
theory, and probability and statistics, generally requires 15 or more steps of logical reasoning.

* AIME (American Invitational Mathematics Examination) is a high-difficulty International
Mathematical Olympiad(IMO) competition designed for advanced middle and high school
students with 90 problems (we combine problems from 2022-2025 for a widely evaluation).

We maintaining consistency in both the global batch size and the prompt with those used during
alignment and evaluation. This setup ensures a fair comparison across all models. According to the
Table [l we find these two trends:

Smaller-scale models suffer more severe losses in complex reasoning ability after quantiza-
tion: Across all quantization methods, smaller-scale models consistently demonstrate increased
vulnerability to quantization. Specifically, the Qwen2.5-0.5B-Instruct model experiences accuracy
drops exceeding 60% post-quantization, whereas the larger Qwen2.5-7B-Instruct model incurs only a
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Figure 3: Relative capability restoration with our method. Radar values are normalized to each
model’s Vanilla-FP16 accuracy on the same benchmark (radius 1.0). Solid = After Restoration,
dashed = Before Restoration (AWQ, GPTQ).

modest degradation of approximately 2-3%. This trend is also corroborated within the Llama3 model
series. To rule out potential biases arising from larger models more readily fitting the calibration
datasets, we further validated our findings using calibration datasets of varying sizes, consistently
obtaining similar results. This evidence suggests that smaller models are more adversely affected by
quantization-induced shifts in feature distributions, thereby experiencing more severe performance
declines in complex mathematical reasoning tasks.

Performance degradation becomes more pronounced as the task complexity increases: We
evaluated model accuracy across three mathematical reasoning benchmarks of varying difficulty
levels. Our results indicate a clear trend wherein performance degradation exacerbates as task
complexity rises. Among these, AIME represents the most challenging benchmark, with even full-
precision models constrained by their scale unable to solve all problems effectively. The MATH
dataset, characterized by evenly distributed difficulty tiers, poses intermediate-level complexity,
while GSM8K is comparatively less challenging. Notably, quantized models exhibited relatively
minor accuracy losses on the simpler GSM8K benchmark, with an average performance decline
of only 7.16%. In contrast, the MATH dataset incurred a more pronounced average degradation of
15.18%. The most severe impact was observed on the highly challenging AIME benchmark, where
quantization frequently led to complete failure in problem-solving capability.

We also evaluate the quantization-induced degradation on both thinking-mode models and larger-
scale models for mathematical reasoning tasks, the detailed results are reported in Appendix [ET]
Together with the corresponding evaluations under the same quantization settings on general-purpose
benchmarks, the detailed results are reported in Appendix [E.2]

4.2 ERROR TAXONOMY AND ITS SHIFT UNDER QUANTIZATION

Error profile of full-precision models. Using the assessment pipeline in Section[3.1.3] we examined
every problem that the full-precision models answered incorrectly. Conceptual Errors were the most
frequent (59.6%), while Method, Execution, and Reasoning Errors appeared at comparable rates of
12.5%, 13.0%, and 13.1%, respectively.

Impact of quantization. We next analyzed the subset of problems that full-precision models
answered correctly but failed under quantized models. Across all three quantization methods, we
observed a noticeable increase in the proportion of Method Errors and Execution Errors, suggesting
that quantization predominantly impairs the model’s ability to perform procedural operations and
arithmetic execution (Feng et al., [2024). Supporting this observation, our case study reveals that
quantized models exhibit greater difficulty in handling tasks involving basic arithmetic operations
and numerical computation.

Why Reasoning Errors seem to vanish. The apparent reduction in Reasoning Errors after quantiza-
tion arises from a statistical masking effect induced by our standardized evaluation protocol. Each
trajectory is assigned a single error type according to the first erroneous step. In contrast, reasoning
type failures in our taxonomy usually occur later in the solution when global logical consistency
or boundary conditions are evaluated. Quantization increases the likelihood of earlier and simpler
mistakes such as Conceptual or Execution Errors, and these early failures "hide" subsequent reasoning
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Table 2: Ablation results on GSM8K, MATHS500, and MMLU under AWQ/GPTQ (W4A16). Row
labels denote training subsets: ALL-S = all error cases with step-aligned supervision from the first
error; CE/ME/EE-S = only conceptual/method/execution errors with step alignment; Rand-NS =
size-matched random sampling without step alignment; ALL-NS = all error cases without step
alignment. Numbers are accuracy (%).

Llama-3.2-3B-Inst ‘ Qwen2.5-3B-Inst. Avg.
AWQ(W4A16) GPTQ(W4A16) AWQ(W4A16) GPTQ(W4A16)
MATH MATH MATH MATH
GSMSK 500 MMLU GSMSK 500 MMLU | GSMSK 500 MMLU GSMSK 500 MMLU

ALL-S 74.3 36.8 60.57 73.01 33 59.9 68.84 38.4 64.8 75.21 40.6 63.63 57.42
CE-S 73.19 354 60.42 73.31 31.6 59.98 70.28 35.6 65 75.28 34.6 63.61 56.52
ME-S 73.62 32 60.45 72.4 30.4 59.86 69.6 34.8 65.01 76.27 32.6 63.81 55.90
EE-S 73.39 31.2 60.47 72.63 31.2 59.95 69.29 34.8 64.95 76.12 34 63.84 55.98
Rand-NS  73.84 30.9 60.51 72.71 31.2 59.97 70.05 325 64.92 74.13 34.4 63.71 55.73
ALL-NS  70.74 27.8 60.25 69.45 15 59.94 66.79 29.4 65.01 71.04 22.4 64.1 51.83

flaws from the statistics. Our case study confirms that many trajectories labeled as other error types
still contain additional reasoning problems at later steps, although these later issues are not recorded
because they occur after the first mistake. This masking effect therefore reflects how quantization
reshapes the distribution of observed first errors under a reproducible and unambiguous protocol,
not an actual disappearance of deeper reasoning mistakes. Absolute accuracies and examples are
provided in Appendix

4.3 CAPABILITY RESTORATION

To prevent data leakage during evaluation, we report results on MATH-500 (Lightman et al.| 2023b)),
a 500-problem set that is disjoint from PRM800K yet mirrors the original MATH benchmark in topic
coverage and difficulty. Performance on MATH-500 thus reflects genuine reasoning recovery rather
than memorization. We also measure accuracy on GSM8K and MMLU (Hendrycks et al., 2020) to
assess how well the restored model generalises to other reasoning-intensive tasks. The results are
visually presented in Figure 3] with additional details provided in Appendix[F

4.4 ABLATION STUDY

To isolate the contributions of each component in our quantization recovery pipeline, we perform a
series of ablation studies. Unless otherwise noted, all runs fix the training budget, optimizer, prompts,
and decoding policy. We compare four variants of our training pairs (the failure subset refers to
instances the quantized model answers incorrectly under baseline evaluation):

* ALL-STEP: all error cases from the failure subset; step-aligned supervision resumes at the first-
error step (i.e., the first step where the model deviates from the gold solution) and continues
step-wise along the gold trajectory to the final answer.

 CE/ME/EE-STEP: identical to ALL ERRORS-STEP but restricted to a single error type
(Conceptual-Error | Method-Error | Execution-Error), with supervision resuming from the first-
error step.

* RANDOM-NONSTEP: size-matched random sampling from the math corpus, independent of
whether the quantized model fails; positives are the gold solutions, and no first-error resuming is
applied.

* ALL-NONSTEP: all error cases from the failure subset, but without resuming from the first-error
step; positives are the full gold solutions.

4.5 DISCUSSION

Synthesizing the results from Sections [4.3]and f.4]together with the trends in Figure [2]and Table 2}
we draw three main conclusions:

(i) Targeted recovery with our 'Silver Bullet' datasets. Fine-tuning on the compact failure-
targeted split substantially restores performance on MATH500 while also boosting GSMS8K, and
does so without hurting broad-domain reasoning as measured by MMLU. This intervention uses only
a few hundred preference pairs and a few minutes of training on a single GPU, yet closes much of the
gap between quantized and full-precision models. This confirms that the "Silver Bullet" provides
sample-efficient capability recovery rather than simple memorization.
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(ii) Quantization disproportionately erodes procedural and executional skills. Our error taxon-
omy shows that weight—activation quantization mainly increases method and execution errors—such
as carrying out multi-step arithmetic or handling boundary conditions—rather than high-level con-
ceptual reasoning. Because these mistakes often occur early, they propagate to invalidate otherwise
correct derivations, explaining the steep drop on math-centric tasks.

(iii) Step-wise positives outperform naive alternatives. Ablation results in Table[2]is run under a
strictly matched data and compute budget: each setting uses the same number of stepwise preference
pairs and identical training hyperparameters, and only the selection of problems and traces is varied.
Under this controlled setup, training on our error-targeted stepwise ALL split consistently outperforms
both size-matched random supervision (RANDOM) and the non-stepwise variant (NON-STEP) that
adopts full-precision derivations without restarting from the first erroneous step. On average, ALL
improves accuracy by about 1.7 points over RANDOM and by about 5.6 points over NON-STEP,
with the largest gap of 6.2 points on MATHS500 for the most quantization-sensitive configuration
(Qwen2.5-3B with GPTQ). These results indicate that locating the earliest quantization-induced
failure and regenerating the remaining steps from that point provides a much stronger learning signal
than unconditioned math supervision or full-solution positives, especially in the low-data regime we
consider.

5 CONCLUSION

In this study, we present a systematic study of quantization-induced degradation in the mathemat-
ical reasoning abilities of large language models, revealing that low-bit post-training quantization
especially harms smaller models’ procedural and execution skills. To address this, we propose a
lightweight recovery pipeline that combines step-aligned error analysis with targeted fine-tuning on
compact, automatically constructed "Silver Bullet" datasets. Experiments show that, with minimal
data and compute, quantized models can recover reasoning performance to match their full-precision
counterparts while preserving efficiency and general capabilities. Our approach offers a practical
and extensible solution for deploying quantized LLLMs in resource-constrained settings, and opens
avenues for robust reasoning restoration in broader domains.
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A APPENDIX A

Al AWQ

AWQ (Activation—Aware Weight Quantization) compensates for the long-tailed distribution of
activations before the weight tensor is discretised. Let A € RB*? be the mini-batch activations and
W € R¥*™ the corresponding weights. A positive scale vector v € Ri is chosen such that

Y = (A ® '7_1) (’7 ® Q(W))T, Vi = (mean |A k| (’) (mean \Wk;|_ﬂ),

where (o, 8) € [0, 1] control the balance between activation and weight magnitudes and @)(-) denotes
an asymmetric 4-bit quantiser. Because the rescaling is folded back into W, the forward pass is
identical to the unscaled INT4 kernel and incurs no extra latency.

A2 GPTQ

GPTQ formulates post-training quantisation as a blockwise least-squares problem over a small
calibration set C = {A ()}

|
W = arg anin S WA - WAL 12,
i=1

where Q is the set of weight tensors representable by the target bit-width. The optimisation pro-
ceeds greedily over 128-channel blocks. After quantising one block, GPTQ updates the remaining
full-precision weights with a rank-r approximation of the corresponding Hessian inverse, cheaply
computed from second-order activation statistics. This strategy yields near-optimal INT4 weights
with negligible calibration cost.

A.3 SMOOTHQUANT

SmoothQuant jointly scales activations and weights so that both can be represented with the same
uniform INTS8 format. For each output channel, a learned scale o, > 0 migrates range from
activations to weights:

Y=(Aoo " )(QWoos)

The scales {0y} are obtained by minimising the worst-case per-channel quantisation error across the
calibration set, typically using a few thousand tokensﬂ Once trained, the scales are fused into W and
the model runs on standard INTS8 kernels without auxiliary tensors or runtime re-scaling.

Implementation Notes.All three methods adopt per-channel affine quantisation. AWQ and GPTQ
target 4-bit weights and retain FP16 activations, whereas SmoothQuant yields a fully INT8 model. We
keep the original hyper-parameters recommended by the respective authors to ensure reproducibility
across codebases.

"'We use 2 048 tokens, following|Xiao et al.[(2023).
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B PROMPT

System Prompt

Your task is to solving mathematical problems by following these rules:

1. Follow the given instructions strictly and ensure the output aligns with the expected
format.

2. Break down the reasoning process into clear, logical steps using numbered lists (e.g.,
1., 2., 3.) to sequentially present each step. Each reasoning step should be isolated and
clearly described to enhance readability and logical flow.

3. After completing all reasoning steps, provide the final answer.

4. Please reason step by step, and put your final answer within \boxed{}. The final
answer must be formatted as (\boxed{your\_final\_answer}). For example:
Answer: \boxed{42}.

5. Maintain consistent formatting across training and evaluation phases to ensure the model
outputs meet evaluation requirements seamlessly.

Problem Statement (from PRM-800K Dataset Training Subsets)

The product of the proper positive integer factors of n can be written as n(*+?)/¢_where z is the
number of positive divisors n has, c is a positive integer, and the greatest common factor of the
three integers a, b, and c is 1. What is @ + b + ¢? [Gold Answer: 1]

Response Sample(from PRM-800K Dataset Training Subsets)

1. I notice that the problem involves the product of the proper positive integer factors of n, which
means all the factors of n except n itself.

2. I also notice that the problem involves the number of positive divisors of n, which I'll call x.
3. I wonder if there is a way to relate the product of the proper factors of n to n and z.

4. 1 recall that the product of all the factors of n is n*/2, since each factor can be paired with its
complement, and their product is n.

5. Therefore, the product of the proper factors of n is /2 /n, which is n(*=2)/2,

6. This means that the product of the proper factors of 7 can be written as n(4**+%)/¢ where a = 1,
b=—2,and c = 2.

7. The greatest common factor of a, b, and c is 1, as required.

8. The answerisa +b+c=1+4 (—2) + 2 = 1. Answer: \boxed {1} [Answer: 1]

Evaluation Prompt

Role = " HUMAN" ,
Prompt = "Your task is to solving mathematical problems by following these rules:

1. Follow the given instructions strictly and ensure the output aligns with the expected
format.

2. Break down the reasoning process into clear, logical steps using numbered lists (e.g.,
1., 2., 3.) to sequentially present each step. Each reasoning step should be isolated and
clearly described to enhance readability and logical flow.

3. After completing all reasoning steps, provide the final answer.

4. Please reason step by step, and put your final answer within \\boxed{}. The fi-
nal answer must be formatted as \ \boxed{your_final_answer}. For example:
Answer: \\boxed{42}.

5. Maintain consistent formatting across training and evaluation phases to ensure the model
outputs meet evaluation requirements seamlessly.

Problem: problem"
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Assessment System Prompt

You are a helpful assistant that identifies and classifies errors in mathematical reasoning
steps.
You will be given:

* Problem Statement: A math problem statement.

e Answers: The right answer and answer from full-precision model and quantized model.
Which model’s answer is correct.

* Full-Precision Reasoning: The reasoning steps and final answer from a full-precision
model.

* Quantized-Model Reasoning:The reasoning steps and final answer from a quantized model.
e Error Type Definition: The definition and explanation of error types.
Your task:
1. Ground Truth Verification: Compare both models’ answers against the provided correct
answer.

2. Error Detection Protocol (Quantized Model):
If the quantized model is incorrect:
1. Trace error origin using this hierarchy:
e Conceptual  Errors: conceptual_misunderstanding,
contextual_oversight
* Reasoning Errors: logical_reasoning_error
e Method Errors: procedural_error, formula_rule_error

¢ Execution Errors: computational_error,
symbolic_manipulation_error

2. Identify first point of divergence from correct reasoning.
3. Classity using the most specific applicable type.
4. Provide step-specific evidence.

3. Conflict Resolution:

1. If multiple types apply, choose the earliest in the hierarchy.
2. If ambiguity persists, use procedural_error as default.

Return your analysis in the following JSON format strictly:
{

"quantized_error_analysis": {
"primary_error_type": ["..."],
"error_step" : 1,
"explanation" : "Short evidence from reasoning steps",
"confidence_score" : 0.7 // between 0.7 and 1.0

C HUMAN ANNOTATION GUIDEBOOK

PURPOSE

This guideline specifies the manual verification protocol applied to disagreement cases that survive
the automated evaluation pipeline—namely the expert-LLM judges and the five-model majority vote.
Annotators produce the final ground-truth verdict (error type, error step, explanation, confidence) for
every instance in which

(a) the majority vote conflicts with the baseline judge DeepSeek-R1, or

(b) a “passed” case is randomly drawn for audit (= 2% of all cases).
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MATERIALS PROVIDED

* problem. txt: problem statement.
* answers. json: correct answer, full-precision answer, quantized answer.
* fp_trace.txt,gt_trace.txt: step-by-step reasoning traces.

* judge_outputs/: five JSON files—DeepSeek-R1 (baseline), DeepSeek-V3, GPT-
40, GPT-4, Qwen-Max—each containing primary_error_type, error_step,
explanation, confidence_score.

* vote_summary. json: ensemble result, per-model confidences, disagreement flag.

ERROR-TYPE TAXONOMY

1. Conceptual Errors: conceptual_misunderstanding,
contextual_oversight

2. Reasoning Errors: 1ogical_reasoning_error
3. Method Errors: procedural_error, formula_rule_error

4. Execution Errors: computational_error, symbolic_manipulation_error

Earliest-precedence rule: when multiple labels apply, choose the first that appears in the above list.

ANNOTATION PROCEDURE

1. Answer verification. Confirm which model(s) yield the correct final answer. If both are
wrong, mark the case dual_failure.

2. Locate first divergence. Read fp_trace and gt_trace in parallel and find the earliest
step where the quantized trace deviates from valid reasoning.

3. Review automated evidence. Inspect the five judge outputs and majority-vote result.
4. Decision.

4.1. Adopt the ensemble consensus if at least three judges agree unless compelling counter-
evidence exists.
4.2. Otherwise, perform an independent assessment using the taxonomy in Sec. C.3.

5. Label assignment. Record primary_error_type, error_step (l-indexed),
explanation (< 40 words, quote the critical step), confidence_score (Sec. C.5).

6. Quality flag. Set needs_second_opinion = true if residual uncertainty remains.

CONFIDENCE-SCORE HEURISTIC

* 0.90 - 1.00: clear evidence; > 4 judges concur.
* 0.80 - 0.89: moderate certainty; majority concurs; minor ambiguity.
* 0.70 - 0.79: plausible but alternate interpretations exist; split vote (3—2 or worse).

OUTPUT SCHEMA

Annotators create human_verdict . json using

{
"quantized_error_analysis": {
"primary_error_type": "procedural_error",
"error_step": 4,
"explanation": "Applied quadratic formula with sign error at step 4.",
"confidence_score": 0.83
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DIMENSION DEFINITION

* Conceptual Errors occur when the model exhibits a fundamental misunderstanding of
the underlying principles or relevant context of the problem. This can manifest either
as a conceptual misunderstanding, where the core ideas or foundational theories are not
correctly grasped, resulting in an erroneous approach or framing of the problem; or as
contextual oversight, in which crucial situational constraints or domain-specific factors (such
as physical boundaries or geometric limitations) are overlooked, significantly distorting the
solution process and its outcome.

* Method Errors refer to inaccuracies stemming from the improper selection or application of
mathematical methods or established procedural approaches. Specifically, procedural errors
happen when prescribed sequences or standard algorithms are incorrectly executed or entirely
skipped, causing incomplete or invalid solutions. Formula rule errors are another subtype,
characterized by the misuse or misapplication of relevant mathematical theorems, formulae,
or rules—such as applying a formula in an inappropriate context—which fundamentally
undermines the validity of the resulting calculations or conclusions.

» Execution Errors arise during the process of mathematical computation and symbolic ma-
nipulation. They encompass computational errors involving incorrect arithmetic or algebraic
operations, such as flawed summations, erroneous expansions, or factorization mistakes,
thus jeopardizing the accuracy of final answers. Additionally, symbolic manipulation errors
include improper handling or representation of symbolic expressions, variables, or trans-
formations. This could involve mislabeling variables or misinterpreting symbolic forms,
leading to an incorrect representation and subsequent solution of the problem.

» Reasoning Errors involve flaws in the logical flow of problem-solving. Specifically, logical
reasoning errors occur when there is a breakdown in the reasoning process itself, such that
inference steps either do not logically follow one another or omit essential connections. This
causes a logical gap or disconnect between the initial premises and the eventual conclusion,
rendering the derived solution fundamentally flawed or unsupported.

DECISION AIDS

* Conceptual misunderstanding: misstates theorem before algebra begins.

» Contextual oversight: ignores domain restrictions or boundary conditions.
* Logical reasoning error: unsupported logical jump.

* Procedural error: applies an inappropriate solution method.

» Formula rule error: violates algebraic/derivative rule.

* Computational error: arithmetic slip.

* Symbolic manipulation error: incorrect simplification of an expression.

QUALITY CONTROL & ETHICS

* Two Annotators work independently; no discussion of live cases.
* Evaluate reasoning quality, not model identity; avoid bias.
* Flag any toxic or sensitive content present in traces.

* Project leads re-annotate 2 % of “agree” cases and all needs_second_opinion cases;
overall agreement < 95% triggers targeted review.

Note.—DeepSeek-R1 is designated the baseline judge owing to its highest pilot agreement with
human experts.
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D CASE STUDY

D.1 EXAMPLE OF EXECUTION ERRORS

In Case #93, the task was to find the value of ¢ for which the circle defined by z? — 10z + y? +
6y + ¢ = 0 has a radius of 1. The correct approach involves completing the square, resulting in
(xr —5)%+ (y+3)? = —c+ 34, and solving —c+ 34 = 1 to find ¢ = 33 . However, the GPTQModel
made a computational error by incorrectly rearranging the equation as 34 — ¢ = 1 leading to the wrong
answer ¢ = 35. This error stemmed from mishandling the sign of ¢ during algebraic manipulation,
highlighting the importance of careful sign management in equation solving. The case #93 shows the
Execution Errors.

Problem #93

For what value of ¢ will the circle with equation 22 — 10x + y? + 6y + ¢ = 0 have a radius
of length 1?

[Gold Answer: 33]

Response of LLaMA-3.1-8B-Intruct-BF16 (Vanilla)

1. To find the radius of a circle, I need to complete the square for both x and y terms in
the equation.

2. I can rewrite the equation as (22 — 10x) + (y? + 6y) = —c.
3. To complete the square for 22 — 10z, I add (10/2)? = 25 to both sides.
4. To complete the square for 3> + 6y, I add (6/2)? = 9 to both sides.
5. This gives (2% — 10z 4+ 25) + (y> + 6y + 9) = —c + 25+ 9.
6. I factor the left side as (z — 5)2 + (y + 3)2.
7. The right side simplifies to —c + 34.
8. Therefore the equation becomes (z — 5)? + (y + 3)% = —c + 34.
9. The radius of the circle is the square root of the right-hand side.
10. Setting the radius to 1 gives —c + 34 = 12 = 1.
11. Solving for c yields ¢ = 34 — 1 = 33. [Answer: 33]

Response of LLaMA-3.1-8B-Intruct-W4A1l6 (GPTQ Model)

1. To find the radius, I first complete the square for the x and y terms and rewrite the
equation in the form (z — h)? + (y — k)? = r?, where (h, k) is the centre and r is
the radius.

2. I begin with the x terms, adding and subtracting the same value to form a perfect
square.

3. Because the coefficient of x is —10, I add and subtract (—10 / 2)2 = 25 to obtain
2% — 10z + 25 — 25.

4. Factoring gives (z — 5)? and the equation becomes (z — 5)? — 25+ 4% + 6y +c = 0.

5. I repeat the process for the y terms, adding and subtracting (—6 / 2)2 = 9 to get
y? +6y+9—9.

6. Factoring yields (y+3)? and the equation is now (z—5)? =25+ (y+3)2—9+c = 0.

7. Combining constants, I have (z — 5)? + (y + 3)? — 34 + ¢ = 0.

8. Setting r? = 1 requires —34 + ¢ = 1; solving gives ¢ = 35.

9. Hence ¢ = 35. [Answer: 35]
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D.2 EXAMPLE OF REASONING ERRORS

In Problem #128, the GPTQModel made a logical reasoning error when calculating the minimum
number of miles Suzanne could walk in February. While the model correctly identified that February
has 28 or 29 days, it missed the 27th day when calculating her walking schedule every third day,
leading to an incorrect conclusion of 8 walking days and 32 miles. In reality, the correct number of
walking days is 9 (3, 6, 9, 12, 15, 18, 21, 24, 27), resulting in a total of 9 x 4 = 36 miles. This error
highlights the model’s logical reasoning gap in iterating through sequential intervals accurately. The
case #128 shows the Reasoning Errors.

Problem #128

Suzanne walks four miles every third day. What is the fewest number of miles she can
walk in February?

Gold Answer: 36

Response of LLaMA-3.1-8B-Intruct-BF16 (Vanilla)

1. To find the fewest number of miles Suzanne can walk in February, I need to figure
out how many days she walks four miles in that month.

2. February has 28 or 29 days, depending on whether it is a leap year or not.
3. I do not know if this is a leap year, so I will assume it has 28 days.

4. If Suzanne walks four miles every third day, she walks on the 3rd, 6th, 9th, 12th,
15th, 18th, 21st, 24th, and 27th of February.

5. That is nine days, so she walks a total of 9 x 4 = 36 miles in February.

6. This is the fewest number of miles she can walk; if she skipped any of those days
she would have to walk on a different day, increasing her total.

7. Therefore, the answer is 36 miles. [Answer: 36]

Response of LLaMA~-3.1-8B-Intruct-W4A1l6 (GPTQ Model)

1. To find the fewest number of miles Suzanne can walk in February, [ must determine
how many days she walks during that month.

2. February has 28 days, but some years have 29 days.
3. I will assume February has 28 days, since that is the most common case.

4. If Suzanne walks every third day, she will walk on days 3, 6,9, 12, 15, 18, 21, and
24.

5. That is a total of 8 days, and she will walk 4 miles on each of those days.

6. Thus, the fewest number of miles she can walk in February is 8 x 4 = 32 miles.
[Answer: 32]
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D.3 EXAMPLE OF NO ERROR

Despite the care taken in designing our extraction scripts, a small number of predictions remain hard
to classify, leading to a residual "No Errors" category. A strong judge model can usually flag these
edge cases; for instance, in case #3812, Deepseek-R1 correctly returns No Errors after a meticulous
comparison. We subsequently review such instances and update the final labels accordingly.

Most ambiguities stem from multiple notations for the same numeric value—particularly decimals
versus fractions and natural versus programming syntax—e.g., 1/2, 0.5, \frac{1} {2}, 5E—01,
and 5 x 1071,

Problem #3812

What is the probability that when a fair 6-sided die is rolled, a prime number faces up?

Gold Answer: 3

Response of LLaMA-3.1-8B-Intruct-W4A1l6 (GPTQ Model)

1. To find the probability of rolling a prime number on a fair 6-sided die, I need to
know how many prime numbers appear on such a die and how many faces there are
in total.

2. A prime number is a positive integer divisible only by 1 and itself. The prime
numbers on a 6-sided die are 2, 3, and 5.

3. There are 3 prime numbers on a 6-sided die, so the probability of rolling a prime
number is 3 out of 6, or 1/2.

4. Converting this fraction to a decimal, I divide 1 by 2 to obtain 0.5.
5. Alternatively, multiplying 1 by 100 and dividing by 2 gives 50%.

6. Therefore, the probability of rolling a prime number on a fair 6-sided die is 0.5 or
50%. [Answer: 0.5]

Judgement of Deepseek—R1 (Primary Expert Model)

The quantized model’s answer (0.5) is numerically equivalent to the correct answer (1/2). All
reasoning steps are logically valid and mathematically correct, with no conceptual, procedural,
or computational errors detected. [No_Error: []]

D.4 EXAMPLE OF CONFLICTING JUDGMENTS

Case #342 illustrates our conflict-resolution protocol when the judge models disagree on an error
label. We perform a five-way cross-model validation using Deepseek-R1, Deepseek-V3, ChatGPT,
GPT-40, and Qwen-Max. Each model independently assigns an error category to the quantized trace,
and the final label is set by majority vote.

If the vote is inconclusive (e.g., a 2-2-1 split), a human annotator re-examines the example. The
annotator consults (i) each model’s confidence score, (ii) the accompanying explanations, and (iii)
the step-by-step reasoning provided by Deepseek-R1, together with the raw model outputs. This
double-check ensures that every ambiguous case receives a consistent, well-justified error type.

Problem #342

What integer x satisfies ; < £ < 1?
Gold Answer: 2
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Response of LLaMA~-3.1-8B-Intruct-W4A1l6 (GPTQ Model)

1. To solve this inequality, I need to isolate x on one side.

2. I can start by multiplying both sides by 4, since 4 is a common denominator for the
fractions.

3. This givesme 1 < 2 < 4.

4. Now I can multiply both sides by 7, since 7 is a common denominator for the
fractions.

5. This gives me 7 < 4z < 2.
6. To make the inequality easier to read, I can divide both sides by 4.
7. This gives me % <z < %
8. I can simplify the fractions by writing them as mixed numbers or decimals.
9. This gives me 1.75 < z < 7.
10. Since x is an integer, I need to find the integers that satisfy this inequality.
11. The smallest integer greater than 1.75 is 2.
12. The largest integer less than 7 is 6.

13. Therefore, the integers that satisfy the inequality are 2, 3,4, 5, 6. [Answer:
2,3,4,5,6]

Judgement of Deepseek-R1 (Primary Expert Model)

When multiplying 4/3 by 7, the correct result is 28/3 ~ 9.33. In step 5 the quantized model
treats 7 x (4/3) as 28/3 but, in step 7, fails to divide this by 4 correctly, giving an upper
bound of 7 instead of 7/3 = 2.33. [Execution_Errors: computational_error]

Judgement of Deepseek-V3

The quantized model incorrectly multiplies both sides by 4 instead of 7, the proper common
denominator. This leads to a procedural error that propagates through the subsequent steps.
[Method_Errors: procedural_error]

Judgement of ChatGPT

The model simplifies the inequality to % <z < %, overlooking that the upper limit should be
(28) + 4 =%, not T. [Conceptual_Errors: contextual_oversight]

| '
\

Judgement of GPT-40

The quantized model reports the range ;71 <z < % instead of the correct ;71 <z< %, yielding
an incorrect set of integer solutions. [Method_Errors: procedural_error]

r
\

Judgement of Qwen-Max

The model simplifies ;Z <z < % to 1.75 < x < 7. The upper bound 23—8 is approximately
9.33, not 7. [Conceptual_Errors: conceptual_misunderstanding]
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E EXPERIMENT RESULTS

E.1 QUANTIZATION ON LARGER MODELS

To strengthen the generality of our conclusions and bringing potential insights, we have conducted
additional experiments on the Qwen3 series, which natively support a "thinking mode" as the
default configuration. These models already integrate internal CoT-like mechanisms, making them
representative of both standard and "thinking" (CoT) LLMs. We evaluated Qwen3-8B, Qwen3-14B,
and Qwen3-32B under identical quantization settings (bit-width, calibration set, and hyperparameters)
as other qutization methods.

Table 3: Performance of Qwen3 models on MATH under different quantization methods.

Qwen3-8B Qwen3-14B Qwen3-32B
Van. AWQ GPTQ  Van. AWQ GPTQ Van. AWQ GPTQ
MATH 55.88 5396 5358 6352 6228 63.12 6692 6572 6594

Note: Van. denotes the vanilla full-precision baseline.

These results yield several key insights:

e Larger models show greater quantization robustness. Accuracy degradation from full-
precision to quantized versions diminishes significantly as model size increases, consistent
with observations from other studies. We believe because larger models possess a richer
parameter space, which grants stronger robustness to quantization-induced numerical errors
when mapping from high-precision to low-precision data formats.

* Mild regularization effects appear in quantized models. You can find an interesting
result that Qwen3-14B under GPTQ slightly outperforms its vanilla counterpart, suggesting
that moderate compression may enhance generalization, a phenomenon also noted in recent
quantization studies. Notably, this effect has also been frequently cited as one of the
underlying reasons why Quantization-Aware Training (QAT) can sometimes improve the
generalization ability of post-quantized models.

* Scalability of the ''Silver Bullet" principle. The consistently small degradation across
larger models supports our hypothesis that targeted recovery using compact, well-curated
data is even more effective for high-capacity models with stronger learning abilities.

E.2 ADDITIONAL EVALUATION ON GENERAL-REASONING BENCHMARKS

To complement our analysis on mathematical reasoning, we additionally evaluate Qwen2.5-
0.5B/1.5B/3B/7B-Instruct models on several widely used benchmarks that probe general science
question answering, commonsense reasoning, and instruction following:

* ARC Easy and ARC Challenge: a science exam multiple-choice benchmark (grades 3-9)
with two difficulty splits. Most questions provide four options and the Challenge split
requires more complex reasoning 2018).

HellaSwag: a commonsense inference benchmark with 70k multiple-choice questions. Each

item provides a scenario and four possible continuations; the distractors are adversarially
generated to fool models while remaining trivial for humans (Zellers et al.l 2019).

e IFEval: an instruction-following benchmark built from verifiable constraints (for example
“write more than 400 words”) that focuses on controllable instructions and reduces the bias

of LLM-based judges (Zhou et al.,[2023).

* CommonSenseQA: a 12k-question multiple-choice benchmark that requires various forms
of commonsense knowledge, with one correct answer and four distractors per question (Tal]

mor et al} 2019).

For each benchmark we compare the vanilla full-precision model with its AWQ and GPTQ quantized
counterparts, and summarize the average degradation in Table ] Compared with the larger drops
on mathematical reasoning tasks, the performance drops on general commonsense and language-
understanding benchmarks are substantially smaller, both in absolute score reduction and in relative
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Table 4: Average accuracy degradation of Qwen2.5-Instruct models on additional benchmarks
under post-training quantization. Negative values indicate performance drop compared with the
corresponding full-precision models.

Benchmark Type Avg. accuracy drop | Avg. relative drop |
(points) (%)
ARC-c General science QA -3.56 -4.10
ARC-e General science QA -3.59 -4.76
CommonSenseQA Commonsense QA -3.38 -5.06
HellaSwag Commonsense -2.35 -3.95
IFEval Instruction following -2.61 -5.01
GSMSK Grade-school math -6.78 -13.21
MATH Competition math -10.56 -29.84

Table 5: Accuracy (%) of Qwen2.5-Instruct models on general benchmarks before and after quantiza-
tion.

Model Scale Method ARC-c ARC-e CommonSenseQA HellaSwag IFEval
Vanilla  46.44 65.43 59.38 39.43 36.69
0.5B AWQ 51.86 64.90 53.81 37.81 36.81
GPTQ  43.39 50.97 50.37 36.47 32.01
Vanilla ~ 77.97 89.95 76.00 62.19 50.96
1.5B AWQ 72.54 84.13 73.38 58.62 47.60
GPTQ  71.86 86.42 71.42 60.19 46.04
Vanilla  84.75 91.53 78.62 76.62 68.23
3B AWQ 75.59 88.36 76.41 73.28 65.47
GPTQ  78.64 89.77 77.56 73.52 64.87
Vanilla  86.10 92.59 84.19 85.18 77.82
7B AWQ 86.44 93.47 82.47 84.38 76.86
GPTQ 84.75 92.24 83.95 83.75 76.86

Note: Inst. is an abbreviation of Instruct.

percentage. This supports our claim that post-training quantization disproportionately affects mathe-
matical reasoning ability while having only mild impact on general language capabilities.

The detailed per-model results are listed in Table[5] We report accuracy for each Qwen2.5-Instruct
checkpoint and for each quantization method.

E.3 CASE STATISTICS

Table[6] shows detailed statistics of all error types. The total number of cases varies slightly across
models due to differences in error rates and scores.

E.4 SUBJECT-WISE AND DIFFICULTY-WISE DEGRADATION ON MATH

To better understand how quantization-induced degradation relates to problem structure, we leverage
the rich annotations in the MATH dataset, which covers multiple subject domains (such as algebra,
geometry, number theory and combinatorics) and five difficulty levels (Level 1 to Level 5). For each
model scale and quantization method, we compute the distribution of errors across mathematical
subfields and difficulty levels. This analysis connects quantization sensitivity with different types of
reasoning and provides practical guidance for deploying quantized models under varying reasoning
complexities.

From the subject-wise analysis in Table[7] we observe a clear and consistent trend across all model
scales: quantization-induced degradation is not uniformly distributed over mathematical domains.
Subfields that involve multi-step symbolic manipulation, such as Intermediate Algebra, Precalculus
and more advanced algebraic transformations, show noticeably larger performance drops for both
AWQ and GPTQ. In contrast, domains that rely more on direct recall or simpler numerical reasoning
remain comparatively stable. This pattern suggests that low-bit perturbations disproportionately affect
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Table 6: Detailed statistics of all error types. The total number of cases varies slightly across models
due to differences in error rates and scores. For full-precision models, all incorrectly answered
problems are included; for quantized models, only those problems solved correctly by the full-
precision model but failed after quantization are counted.

Method Conceptual Method Reasoning Execution No TTL
Errors Errors Errors Errors Error
Van. 1622 313 a7 380 28 2770
AWQ 286 86 5 136 4 517
Llama-3.1-8B-Inst. GPTQ 310 97 5 128 0 540
SQ 199 58 7 102 3 369
Van. 1760 369 387 387 82 2985
AWQ 317 91 1 107 1 517
Llama-3.2-3B-Inst. GPTQ 326 102 5 123 2 558
SQ 236 65 4 88 3 396
Van. 2521 515 291 291 20 4058
AWQ 287 87 6 108 0 488
Llama-3.2-1B-Inst. GPTQ 315 104 2 85 1 507
SQ 196 85 4 70 0 355
Van 8§72 324 290 303 i 1833
AWQ 262 7 13 103 1 451
Qwen2.5-7B-Inst. GPTQ 267 82 1 116 4 480
SQ 183 53 5 4 9 292
Van 1217 322 299 362 20 2240
AWQ 386 93 7 139 2 627
Qwen2.5-3B-Inst. GPTQ 351 120 7 130 3 611
SQ 225 65 11 84 2 387
Van. 1937 73 445 373 9 3077
AWQ 344 76 8 93 0 521
Qwen2.5-1.5B-Inst. GPTQ 344 82 2 106 1 535
SQ 185 53 2 56 0 296
Van. 2834 406 264 312 104 3920
AWQ 429 89 4 9% 1 619
Qwen2.5-0.5B-Inst. GPTQ 521 59 3 70 1 654
SQ 183 53 5 4 9 292

Notes: Van. denotes the vanilla full-precision baseline; Inst. is an abbreviation of Instruct.

Table 7: Distribution of errors across mathematical domains on MATH under different quantization
settings. All values are percentages. All experiments are conducted on Qwen2.5-Instruct models.

Number Counting Interm.

Model - Method Theory & Prob.  Algebra

Algebra  Geometry Prealgebra Precalculus

Van. 11.59 10.33 20.48 18.65 10.30 16.02 12.63
0.5B AWQ 11.26 9.82 18.77 22.24 9.84 16.68 11.39
GPTQ 11.08 9.80 18.74 22.57 9.65 16.71 11.45
Van. 11.31 10.67 22.98 15.79 10.67 13.73 14.86
1.5B AWQ 11.39 10.26 20.16 19.16 10.62 15.72 12.68
GPTQ 11.57 10.28 21.74 18.99 10.28 13.94 13.56
Van. 10.40 10.35 24.85 12.91 11.94 12.07 17.49
3B AWQ 10.74 10.78 25.05 13.92 11.13 12.29 16.09
GPTQ 11.23 9.98 24.49 14.58 11.20 12.30 16.22
Van. 7.96 10.31 26.28 11.75 12.87 11.91 18.91
7B AWQ 9.58 9.88 25.89 11.87 12.22 11.67 18.90
GPTQ 8.56 10.50 27.13 11.20 12.39 11.60 18.62

Note: Van. denotes the vanilla full-precision baseline.

tasks that require long-range dependency tracking and precise arithmetic transformations, which is
consistent with the step-level error analysis in the main paper.

From the difficulty-level analysis in Table[8] we see a monotonic increase in degradation as problem
difficulty grows. Level 1 and Level 2 questions exhibit only marginal changes after quantization,
whereas degradation becomes much more pronounced for Levels 3 to 5. For Level 5 in particular, the
gap between full-precision and quantized models can exceed 6—10 percentage points even for larger
models.

These findings provide empirical evidence for the following points:
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Table 8: Distribution of errors across difficulty levels on MATH under different quantization settings.
All values are percentages.

Model Level 1 Level 2 Level 3 Level 4 Level 5
Qwen2.5-0.5B-Inst. Van. 5.72 15.41 21.39 26.04 31.44
Qwen2.5-0.5B-Inst. AWQ 7.53 17.29 22.43 24.99 27.75
Qwen2.5-0.5B-Inst. GPTQ 7.17 17.35 22.44 24.99 28.05
Qwen2.5-1.5B-Inst. Van. 4.38 10.42 20.30 25.59 35.71
Qwen2.5-1.5B-Inst. AWQ 4.89 16.57 21.37 25.31 31.48
Qwen2.5-1.5B-Inst. GPTQ 4.41 14.22 21.03 23.82 36.53
Qwen2.5-3B-Inst. Van. 3.39 12.20 19.03 25.73 39.65
Qwen2.5-3B-Inst. AWQ 3.30 12.21 20.12 25.86 38.50
Qwen2.5-3B-Inst. GPTQ 3.16 15.27 19.52 26.50 35.55
Qwen2.5-7B-Inst. Van. 342 12.45 19.07 26.01 39.05
Qwen2.5-7B-Inst. AWQ 3.34 12.02 18.75 25.79 40.10
Qwen2.5-7B-Inst. GPTQ 3.38 12.00 19.31 25.19 40.12

Notes: Van. denotes the vanilla full-precision baseline; Inst. is an abbreviation of Instruct.

* Conceptually demanding and algebraically heavy subfields of MATH are especially vulnera-
ble to precision reduction.

 Higher-difficulty problems, which require deeper chains of reasoning, tend to accumulate
quantization noise and errors more severely.

Overall, this analysis further supports our claim that post-training quantization disproportionately
affects mathematical reasoning compared with general language understanding. We include these
tables and observations in the appendix for completeness.
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F CAPABILITY RESTORATION RESULTS

Table 9: Capability restoration results on GSM8K, MATH500, and MMLU benchmarks across
different model scales using our curated Silver Bullet datasets. Full Precision refers to the full-
precision model after format alignment. BF indicates performance before restoration, while AF
shows performance after applying our restoration pipeline.

Llama-3-Inst. Qwen2.5-Inst.
Quantization Task 1B 3B 8B 0.5B 1.5B 3B 7B
GSMSK 38.44 71.34 76.88 42.99 61.87 76.04 75.51
Full Precision MATHS500 18 324 36.4 16.6 222 39 41.6
MMLU 45.14 61.81 63.62 45.49 59.71 65.1 73.32
AVG 33.86 55.18 60.63 35.03 47.93 60.05 63.48
GSMSK 35.03 70.58 77.1 27.9 53.15 70.36 77.63
AWQ-BF MATHS500 13.8 29.6 33.2 8.2 21 29 42.4
MMLU 43.26 60.08 67 42.65 57.65 63.16 71.77
AVG 30.70 53.42 59.10 26.25 43.93 54.17 63.93
GSMSK 32.15 69.67 76.27 25.02 57.09 68.54 81.12
MATHS500 15.4 26.4 33.6 8.6 21.8 31.2 41.6
GPTQ-BF MMLU 42.07 59.49 66.44 4291 57.86 62.09 71.49
AVG 29.87 51.85 54.94 25.51 45.58 53.94 64.74
GSMSK 40.49 74.3 80.14 26.38 56.86 68.84 76.42
AWQ-AF MATHS500 15.2 36.8 34.6 9.4 26.4 384 45.6
MMLU 43.72 60.57 67.67 43.99 59.43 64.8 73.1
AVG 33.14 57.22 60.80 26.59 47.56 57.35 65.04
GSMSK 37.83 73.01 79.68 25.93 55.65 75.21 76.88
MATHS500 18.2 33 36 8.4 25.2 40.6 46
GPTQ-AF MMLU 42.29 59.9 67.23 44.15 59.43 63.63 72.56
AVG 32.77 55.30 60.97 26.16 46.76 59.81 65.15

As shown in Table [0} after capability restoration using our Silver Bullet dataset, the quantized 4-
bit models not only recover but even surpass the performance of their full-precision counterparts
on the MATH benchmark. Meanwhile, performance on GSM8K remains stable, and accuracy
on MMLU—a diverse benchmark covering various complex reasoning tasks—is also preserved.
These results demonstrate that our Silver Bullet dataset effectively restores mathematical reasoning
capabilities without compromising general-purpose abilities, highlighting both the effectiveness and
generalizability of our approach.

G THE USAGE OF LLM

In this work, Large Language Models (LLMs) were used as auxiliary tools to support our research
process, but not to generate novel scientific content. Specifically, their usage includes:

* Editing and polishing. LLMs were employed for minor grammar checking, improving
clarity, and rephrasing sentences for readability in the manuscript. All scientific ideas,
methodology, and experiments were designed and written by the authors.

* Facilitating annotation. During the construction of our automated error-assessment
pipeline, LLMs were used as expert judges to classify error types in reasoning traces.
Their outputs were combined via majority voting and, when necessary, verified by human
annotators to ensure reliability.

» Experiment assistance. LLMs were queried to simulate baseline reasoning traces for
building our contrastive “Silver Bullet” datasets, which were later curated, filtered, and
validated by the authors. This step complements human effort by accelerating the generation
of positive examples.

We emphasize that all key contributions—including research ideas, methodology design, experimental
execution, and analysis—were conceived and implemented by the authors.
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