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Abstract
Off-Policy Evaluation (OPE) aims to estimate the
value of a target policy using offline data collected
from potentially different policies. In real-world
applications, however, logged data often suffers
from missingness. While OPE has been exten-
sively studied in the literature, a theoretical under-
standing of how missing data affects OPE results
remains unclear. In this paper, we investigate
OPE in the presence of monotone missingness
and theoretically demonstrate that the value esti-
mates remain unbiased under ignorable missing-
ness but can be biased under nonignorable (infor-
mative) missingness. To retain the consistency
of value estimation, we propose an inverse proba-
bility weighting value estimator and conduct sta-
tistical inference to quantify the uncertainty of
the estimates. Through a series of numerical ex-
periments, we empirically demonstrate that our
proposed estimator yields a more reliable value
inference under missing data.

1. Introduction
Reinforcement learning (RL) has demonstrated many suc-
cesses in various domains such as game playing (Mnih
et al., 2013; Silver et al., 2016), robotic control (Kober
et al., 2013), bidding (Jin et al., 2018; Xu et al., 2023), and
ridesharing (Xu et al., 2018). These successes often rely on
simulators to generate large amounts of interaction data for
training. However, in real-world applications, direct access
to the environment is usually limited, making it difficult to
deploy and evaluate new policies in practice, especially in
safety-critical fields like healthcare and autonomous driving.

Off-Policy Evaluation (OPE) is a critical step in offline
RL to estimate the value of a target policy using offline
data that may have been collected under different policies
(Prasad et al., 2017; Raghu et al., 2017b; Wang et al., 2018).
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In recent years, there has been growing interest in high-
confidence off-policy evaluation (HCOPE), which not only
estimates the policy’s value but also provides statistical infer-
ence to quantify the confidence in these estimates (Thomas
et al., 2015; Luckett et al., 2019; Shi et al., 2021b). However,
one overlooked aspect in this literature is that offline data is
often incomplete due to different types of missingness. For
example, the reward and next-state may be absent following
some actions, resulting in incomplete transition tuples.

Missing data mechanisms are generally categorized as ignor-
able or nonignorable (informative) missingness. Ignorable
missingness assumes that the pattern of missing data can be
fully explained by observed variables. In contrast, nonignor-
able missingness occurs when the missing data depends on
the outcome or reward of interest, making it a more complex
and challenging issue to address. Both types of missingness
frequently arise in real-world RL applications, including
online advertising (Tewari & Murphy, 2017), healthcare
(Smith et al., 2023; Yu et al.), robotics (Wang et al., 2019),
and more. Failing to account for the underlying missingness
pattern, particularly nonignorable missingness (as discussed
in later sections), can lead to biased evaluations of policy
performance and, consequently, flawed decision-making.

For example, in movie recommendation systems like Movie-
lens (Harper & Konstan, 2015), platforms aim to determine
the best strategy for recommending personalized movie gen-
res using historical user rating data. However, it is well
known that users are more likely to rate movies they prefer,
leading to nonignorable missingness. Imagine we want to
assess user preferences for two genres, comedy and horror.
If users only rate movies they enjoy and avoid providing rat-
ings for those they dislike, the dataset might consist solely of
high ratings (e.g., 5-star ratings) while lower ratings remain
completely unobserved. Without accounting for this nonig-
norable missingness, the resulting recommendation strategy
might mistakenly treat comedy and horror as equally pre-
ferred genres and recommend them at random to all users,
which is totally ineffective in evaluating user preferences.

A similar challenge arises in survival analysis. Healthcare
data often suffers from missingness caused by factors like
early discharge (nonignorable when health status is the out-
come) or missed follow-ups (ignorable, as it occurs ran-
domly and is unrelated to health status). For example, in
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the sepsis dataset (Komorowski et al., 2018), nonignorable
missingness is evident in the shorter trajectories of deceased
patients, who typically exhibit higher SOFA scores (Sepsis-
related Organ Failure Assessment) (Vincent et al., 1996),
indicating more severe conditions. As shown in Figure 1,
the average SOFA score for deceased patients is higher than
that of surviving patients. Ignoring this mortality-driven
missingness pattern can result in underestimating the ef-
fect of treatments on SOFA scores, potentially leading to
misguided decisions about treatment effectiveness.
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Figure 1. The average SOFA scores for patients remaining in the
dataset (blue) and patients who died during ICU stay (red). The
shadow represents the 25% to 75% quantile.

In the RL literature, missingness is sometimes addressed
by manually defining it as a special event within the reward
framework. For example, in the Gridworld environment,
“missingness” might be represented by the agent hitting a
wall. In such cases, RL algorithms typically assign a large
negative value (e.g., −10 or −100) to discourage the agent
from taking actions that lead to these boundary states. How-
ever, the choice of penalty severity can significantly affect
the evaluation of the value function. Other naive approaches
might treat “missingness” as an additional constraint, trans-
forming the problem into a constrained RL task (Chu et al.,
2023). This leads to challenges such as balancing the orig-
inal reward with the penalty for missingness. Moreover,
these simplified solutions do not truly treat “missingness”
as a distinct issue, which risks diluting the focus of the
problem:

“What is the expected value function under the target policy,
assuming the trajectories were not subject to missingness?”

Building on the extensive literature on missingness in sur-
vival analysis (Goldberg & Kosorok, 2012; Dong et al.,
2020; Zhao & Ma, 2022; Miao et al., 2024), we aim to
propose a systematic framework for off-policy evaluation

in the presence of missing data. Unlike the simplifications
described above, we treat missingness as a distinct node in
the causal diagram, which can be causally influenced by
both historical information and the rewards. This allows us
to explicitly model its impact on policy evaluation. Specifi-
cally, we theoretically demonstrate that the original value
estimator remains valid under ignorable missingness but be-
comes biased when the missing mechanism is nonignorable.
To mitigate the bias, we propose a novel Inverse Probability
Weighting (IPW) value estimator that is shown to be con-
sistent under nonignorable missingness. Furthermore, we
conducted statistical inference on the proposed value estima-
tor and provide the associated confidence interval to quantify
the uncertainty in value estimation. The effectiveness of the
proposed estimator is empirically demonstrated through a
simulation study and a real application to MIMIC-III data.

We highlight our contributions as follows:

• Under MAR, we are the first to provide theoretical
justification for traditional OPE estimators that do not
explicitly account for missingness. Specifically, we
identify the key conditions required to ensure the con-
sistency and validity of these estimators.

• Under MNAR, we show that traditional OPE methods
lead to biased estimates. To address this, we propose a
novel value estimator to ensure the consistency, with a
flexible framework that supports both parametric and
semi-parametric estimation.

• We are also the first to thoroughly study the asymptotic
properties of OPE under MNAR, providing uncertainty
quantification to the value estimate. The effectiveness
of our approach has been validated through extensive
simulations and real-world data applications.

2. Related Work
Off-Policy Evaluation. OPE has been extensively studied
in the literature. Existing approaches can be categorized
into three classes. The first category is the Direct Method
(DM), where the value is estimated by learning the transi-
tion model or fitting the Q-function via model-free function
approximation (Bradtke & Barto, 1996; Lagoudakis & Parr,
2003; Le et al., 2019). The second category is the Impor-
tance Sampling-based (IS) method (Precup, 2000; Liu et al.,
2018; Nachum et al., 2019), which re-weights the observed
rewards to correct the mismatch of data distributions be-
tween the target policy and the behavior policy. The third
category is the Doubly Robust (DR) method (Jiang & Li,
2016; Tang et al., 2019; Kallus & Uehara, 2022), which
combines these two methods for more robust and efficient
value evaluation. For a comparison of the empirical perfor-
mance of various OPE approaches, we refer the readers to

2



Off-Policy Evaluation Under Nonignorable Missing Data

Voloshin et al. (2019). However, the performance of those
OPE methods under missing data is seldom explored.

High-Confidence OPE. In addition to obtaining point es-
timates of value, many applications would benefit from
quantifying the uncertainty in Off-Policy Evaluation (OPE)
estimates. This type of OPE method is referred to as High-
Confidence Off-Policy Evaluation (HCOPE) (Thomas et al.,
2015). Dai et al. (2020) estimated the value confidence
interval (CI) using the empirical likelihood approach under
the assumption of i.i.d. transitions, which is often violated
in practice (Shi et al., 2021a). Recently, Luckett et al. (2019)
and Shi et al. (2021b) advanced the asymptotic theory un-
der Markov Decision Processes (MDPs), with the former
focusing on policy learning and the latter on value inference.
Despite the extensive literature on OPE, HCOPE remains
theoretically more challenging and, as a result, has been less
explored in the literature.

Missing Data. For ignorable missingness, the IPW tech-
nique has been studied in finite-horizon decision-making
(Goldberg & Kosorok, 2012; Dong et al., 2020). However,
these methods depend on backward recursion, making them
susceptible to model misspecification as the horizon length
increases. To the best of our knowledge, there is a lack
of theoretical support that guarantees the performance of
classical OPE approaches in infinite horizon with ignor-
able missingness, such as under the widely studied MDP
framework (Puterman, 1994).

For nonignorable missingness, the problem becomes more
challenging to solve. In the absence of auxiliary variables,
it has been proved that identifying the observed likelihood
is impossible, even within a parametric framework (Wang
et al., 2014). Existing research has made some progress in
identifying and estimating dropout patterns using auxiliary
variables, such as shadow variables (Zhao & Ma, 2022;
Miao et al., 2024) or instrumental variables (Chen et al.,
2009; Wang et al., 2014; Shao & Wang, 2016; Sun et al.,
2018; Tchetgen Tchetgen & Wirth, 2017). However, these
approaches are limited to single-stage decision-making and
do not provide the necessary insights for value estimation
in sequential decision-making, which is crucial in many
real-world applications, as outlined in the introduction.

Among these works, Wang et al. (2014); Tchetgen Tchet-
gen & Wirth (2017) focus on parametric estimation, while
Kim & Yu (2011); Shao & Wang (2016); Sun et al. (2018)
emphasize semi-parametric estimation, which offers greater
flexibility in specific contexts. Notably, Miao et al. (2024)
advances the field by providing a non-parametric identifi-
cation framework that integrates and generalizes the find-
ings of Wang et al. (2014); Shao & Wang (2016); Miao
et al. (2016). This comprehensive framework serves as an
excellent foundation for addressing the general problem of
MNAR in more complex multi-stage settings such as MDPs.

3. Preliminaries
Assume the data follows an MDP defined by a tuple
(S,A, p, r, γ), where S is the state space, A is the action
space, p : S ×A → S is the Markov transition kernel that
characterizes the environment dynamics, r : S × A → R
is the reward function where larger positive rewards are
preferable, and γ ∈ (0, 1) is a discount factor that trades off
long-term rewards for immediate rewards. In this work, we
assume the state space S is continuous with d-dimensional
state variables, and the action space A = {1, . . . ,m}
is discrete with m distinct actions. Consider a trajec-
tory {(St, At, Rt+1)}t≥0 generated from the MDP model,
where (St, At, Rt+1) denotes the triplet of state, action, and
immediate reward. Here, we denote the reward as Rt+1 in-
stead ofRt to emphasize that the rewardRt+1 and next state
St+1 are jointly determined. The following assumptions are
commonly imposed in infinite-horizon RL problems.
Assumption 3.1 (Time-homogeneous Markov Assumption).
The transition probability satisfies P (St+1|St = s,At =
a, {Sj , Aj , Rj+1}0≤j<t) = p(St+1|St = s,At = a) =
p(S1|S0 = s,A0 = a), where p is the transition function.
Assumption 3.2 (Conditional Mean Independence Assump-
tion). E(Rt+1|St = s,At = a, {Sj , Aj , Rj+1}0≤j<t) =
E(Rt+1|St = s,At = a) := r(s, a), where r is the reward
function.

Assumptions 3.1-3.2 guarantee the existence of an optimal
stationary policy (Puterman, 1994). A stationary policy
π is a mapping from the state space S to a probability
mass function over the action space A. For discounted
infinite-horizon MDPs, the state value function of policy
π is defined as V π(s) = Eπ{

∑∞
t=0 γ

tRt+1|S0 = s},
where Eπ denotes the expectation with respect to the tra-
jectory distribution following policy π. The policy value
is defined as V πG = Es∼GV

π(s) =
∫
s∈S V

π(s)G(ds),
where G is some reference state distribution over which
the policy is evaluated, a common choice is the initial
state distribution. This integrated value V πG quantifies the
overall performance of a policy and hence is a key con-
cept in policy evaluation. Similarly, the state-action value
function (better known as the Q-function) is defined as
Qπ(s, a) = Eπ{

∑∞
t=0 γ

tRt+1|S0 = s,A0 = a}. Under
Assumption 3.1 and 3.2, Qπ satisfies the Bellman equation

E
{
Rt+1 + γV π(St+1)−Qπ(St, At) | St, At

}
= 0, (1)

where V π(St+1) =
∑
a′∈AQ

π(St+1, a
′)π(a′|St+1). This

equation plays a critical role in estimating the Q-function in
many RL algorithms.

4. Off-Policy Evaluation with Missing Data
In this section, we systematically study OPE under miss-
ing data. Specifically, we focus on monotone missingness,
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which is a common pattern in longitudinal data analysis
(Birmingham et al., 2003; Zhou & Kim, 2012; Linero &
Daniels, 2015). Monotone missingness assumes that if an
observation is missing at a given time point in a trajectory,
it will remain missing at all subsequent time points. This
pattern is often seen in multi-stage missing data settings, par-
ticularly when subjects drop out before completing the entire
follow-up period. Before proceeding, we introduce some
necessary definitions. Let D = {τi}1≤i≤n denote the ob-
served data consisting of n independent and identically dis-
tributed trajectories. For complete data, each trajectory can
be expressed as τi = {(Si,t, Ai,t, Ri,t+1, Si,t+1)}0≤t<T ,
where T is the termination time. Throughout this paper, we
assume that the immediate rewards are uniformly bounded.

For incomplete data, define η = (η0, η1, η2, . . . , ηT )
⊤ as

a vector of binary response indicators. ηi,t is a sample of
ηt that represents the response status of subject i at time
t: ηi,t = 1 if subject i is still in the study at time t and
we observe (Ri,t, Si,t, Ai,t), otherwise ηi,t = 0. Assume
the baseline covariates and initial treatment assignment are
always observable, i.e., ηi,0 = 1. We consider a general
setting where the reward Rt+1 depends on (St, At, St+1).
If St+1 is unobserved, then Rt+1 is missing as well. There-
fore, an observed trajectory can be represented as τi =
{(ηi,tSi,t, ηi,tAi,t, ηi,t+1Ri,t+1, ηi,t+1Si,t+1)}0≤t<T . Un-
der monotone missingness, ηi is a decreasing sequence: if
ηi,t = 0, then ηi,s = 0 for all s > t. To describe the lengths
of observed trajectories, we also define the dropout time
C: C = t if the subject dropped out right after action At,
which corresponds to (ηt, ηt+1) = (1, 0). If the trajectory
is fully observed, C is set to T .

Given the offline data D, our goal is to estimate and con-
duct statistical inference on the value function under target
policy π. Although this work focuses on monotone missing-
ness where dropout occurs after the action is observed, the
proposed framework and theoretical results are applicable
to more general dropout patterns. A discussion on these
broader scenarios, including dropout before action occurs
and intermittent missingness, is provided in Appendix F.1.

4.1. Missing Data Mechanisms

There are two major types of missing data mechanisms:
ignorable and nonignorable missingness. Ignorable miss-
ingness refers to the case where the missingness can be
fully explained by the observed information, which is also
referred to as Missing-At-Random (MAR). An example of
MAR would be dropout in a clinical trial due to recorded
side effects and lack of efficacy, or other known baseline
characteristics. The term “randomness” in MAR implies
that once one has conditioned on all the available data, any
remaining missingness is completely random (Graham et al.,
2009). On the other hand, if the missingness depends on

unobserved components, the missing data mechanism is
referred to as nonignorable, or Missing-Not-At-Random
(MNAR). Dropout in a clinical trial due to the unobserved
current health status or other latent variables is an exam-
ple of an MNAR. Formal definitions of the two missing
mechanisms are given as follows.

Definition 4.1 (Ignorable Missingness, MAR). The
missingness can be fully accounted for by the ob-
served information, i.e., ηt+1 ⊥⊥ (Rt+1, St+1) |
(St, At, {(Sj , Aj , Rj+1)}0≤j<t, ηt), for t = 0, . . . , T − 1.

Definition 4.2 (Nonignorable Missingness, MNAR). The
missingness depends on the next state regardless of
whether it is observed or not, i.e., ηt+1 ⊥̸⊥ (Rt+1, St+1) |
(St, At, {(Sj , Aj , Rj+1)}0≤j<t, ηt), for t = 0, . . . , T − 1.

Remark 4.3. In the special case where St+1 and Rt+1 are
fully determined by St and At, nonignorable missingness
reduces to ignorable missingness. However, in practice,
we cannot evaluate whether the missing data mechanism is
ignorable or nonignorable solely based on the observed data.
Instead, this distinction need to be justified using contextual
information and subject-matter knowledge.

We define the dropout propensity λ(·), i.e. the prob-
ability of the subject dropping out right after time
t, as a function of all historical data observed until
time t (Diggle & Kenward, 1994). That is, P (C =
t | {(Sj , Aj , Rj+1, Sj+1)}0≤j<t+1, C ≥ t) = P (ηt+1 =
0 | {(Sj , Aj , Rj+1, Sj+1)}0≤j<t+1, ηt = 1). Similar to
the Markov assumptions in MDPs imposed on Rt and St+1

(see Assumptions 3.1-3.2), we assume that ηt+1 exhibits a
similar dependency on existing data, as stated below.

Assumption 4.4. The dropout propensity satisfies
P (ηt+1 = 0 | {Sj , Aj , Rj+1}0≤j≤t, St+1, ηt = 1) =
P (ηt+1 = 0 | St, At, Rt+1, St+1, ηt = 1), denoted by
λ(St, At, Rt+1, St+1).

This assumption states that whether a subject will drop
out or not right after receiving At depends on the history
only through the current data tuple (St, At, Rt+1, St+1). In
practical applications, if the missing probability (or Rt+1

and St+1 as specified in Assumption 3.1-3.2) is suspected
to depend on multiple past steps, this assumption can still
be satisfied by directly incorporating such information into
the current state variable (Shi et al., 2020).

4.2. Value Estimation and Inference Under Missingness

Given incomplete data, the response indicator ηt must be
accounted for. One common approach is to estimate using
Equation (1) with only the observed data where ηi,t = 1.
However, we will demonstrate later in this section that this
straightforward solution does not always yield an unbiased
estimate under general missing data mechanisms, such as
MNAR. In this section, we investigate the scenarios intro-
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duced in Section 4.1, propose consistent estimators for these
cases, and conduct a comprehensive statistical analysis.

Suppose that the base algorithm approximates
the Q-function Qπ with linear sieves (Shi et al.,
2021b), Qπ(s, a) ≈ Φ⊤

L (s)βπ,a, where ΦL(·) ={
ϕL,1(·), · · · ,ϕL,L(·)

}⊤
denotes a vector of L sieve

basis functions. One can use splines (De Boor, 1976)
or wavelet basis (Huang et al., 1998), and the number
of basis functions L is allowed to grow with the sample
size to reduce the approximation error1. For ease of
notation, we first define βπ = (βπ,1, . . . ,βπ,m)⊤ ∈ RmL,
ξ(s, a) = {Φ⊤

L (s)1(a = 1), · · · ,Φ⊤
L (s)1(a = m)}⊤, and

Uπ(s) = {Φ⊤
L (s)π(1|s), · · · ,Φ⊤

L (s)π(m|s)}⊤. Then,
after some calculations, the Q-function can be expressed
as Qπ(s, a) = ξ(s, a)⊤βπ, and the value function is
V π(s) = Ea∼π(·|s) [Qπ (s, a)] = Uπ(s)

⊤βπ .

When there is no missingness, one can follow the standard
Bellman equation in (1), substitute the definitions above, and
derive the following estimating equation: E {M t(βπ)} =
0, where M t(βπ) = ξt

{
Rt+1 + γV π(St+1) −

Qπ(St, At)
}

= ξt
{
Rt+1 − (ξt − γUπ,t+1)

⊤βπ
}

. The
problem of value function estimation thus reduces to a lin-
ear regression. The true parameter β∗

π can be estimated
by solving the estimating equations EnT {M t(βπ)} = 0,
where EnT (·) denotes the empirical average over nT transi-
tion pairs of (Si,t, Ai,t, Ri,t+1, Si,t+1).

However, when dealing with MNAR, adjustments are neces-
sary to obtain unbiased estimates. We define the propensity
score as the probability of observing the data at time t, de-
noted by 1−λt(·). To ensure consistency in value estimates,
an Inverse Probability Weighting (IPW) term, ηt+1

1−λt+1(·) , is
incorporated into the estimating equation. Specifically, we
consider the following estimating equation:

EnT

{
ηt+1

1− λt+1(ψ)
M t(βπ)

}
= 0, (2)

where λt+1(ψ) := λ (St, At, Rt+1, St+1;ψ) is the dropout
propensity model parameterized by ψ ∈ Rq. As we focus
here on presenting the general framework, the estimation of
ψ, denoted by ψ̂nT , will be detailed in Section 4.3. Based
on Equation (2), an IPW estimator for βπ is obtained as

β̂π,IPW ={
1

nT

n∑
i=1

T−1∑
t=0

ηi,t+1

1− λi,t+1(ψ̂nT )
ξi,t

(
ξi,t − γUπ,i,t+1

)⊤
︸ ︷︷ ︸

Σ̂π,IPW

}−1

(
1

nT

n∑
i=1

T−1∑
t=0

ηi,t+1

1− λi,t+1(ψ̂nT )
ξi,tRi,t+1

)
.

(3)

1For a brief introduction to the definitions of B-splines and
wavelet bases, please refer to Appendix C.

The estimated Q-function and value function are given by
Q̂πIPW(s, a) = ξ⊤(s, a)β̂π,IPW, V̂ πIPW(s) = U⊤

π (s)β̂π,IPW.
Given a reference distribution G on state space S,
the integrated value can be estimated as V̂ πIPW(G) =∫
s∈S V̂

π
IPW(s)G(ds) = {

∫
s∈S Uπ(s)G(ds)}⊤β̂π,IPW. In

practice, the integration
∫
s∈S Uπ(s)G(ds) can be approx-

imated with sample average of Uπ(s) using the reference
distribution G.

Notice that if we disregard the weighting term {1 −
λi,t+1(ψ̂nT )} in the denominator, the estimating equation
simplifies to EnT {ηi,t+1M t(βπ)} = 0, which represents
a straightforward adaptation of the classical estimator that
only incorporates observed examples into parameter esti-
mation. For simplicity of reference in later sections, we
refer to this approach as the Complete Case (CC) estimator.
Following the same estimation logic as IPW, we derive

β̂π,CC =

{
1

nT

n∑
i=1

T−1∑
t=0

ηi,t+1ξi,t
(
ξi,t − γUπ,i,t+1

)⊤
︸ ︷︷ ︸

Σ̂π,CC

}−1

(
1

nT

n∑
i=1

T−1∑
t=0

ηi,t+1ξi,tRi,t+1

)
.

The estimated value function and integrated value can
be similarly obtained by V̂ πCC(s) = U⊤

π (s)β̂π,CC, and
V̂ πCC(G) = {

∫
s∈S Uπ(s)G(ds)}⊤β̂π,CC.

When there are no missing data, both the IPW and CC esti-
mators reduce to the base algorithm, and the value estimator
is shown to be asymptotically normal as either n → ∞ or
T → ∞ under regularity conditions (see Theorem 1 of Shi
et al. (2021b)). However, when dealing with incomplete
data, the solution to EnT {ηt+1M t (βπ)} = 0 may differ
from the solution to EnT {M t (βπ)} = 0. The following
theorem outlines when the complete-case value estimator
remains valid and when it may not.
Theorem 4.5. Suppose Assumption A.1 holds. V̂ πCC(G) is a
consistent estimator if the missing mechanism is ignorable
(MAR). However, if the missing mechanism is nonignorable
(MNAR), V̂ πCC(G) can be biased.

Assumption A.1 establishes the necessary conditions that
ensure the consistency and asymptotic distribution of value
estimation when there is no missing data. To the best of our
knowledge, this is the first result establishing the validity
of OPE methods in the presence of missing data. As per
Theorem 4.5, the complete-case value estimator remains
valid if the missing data mechanism is ignorable. However,
for nonignorable missingness, further adjustments based on
IPW are required to retrieve consistency, as we will show in
Theorem 4.6 and 4.7.
Theorem 4.6 (Bidirectional Consistency). Assume condi-
tions A.1 and A.2 hold. V̂ πIPW(G) is a consistent estimator
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for value, i.e., V̂ πIPW(G)
p→ V π(G) as either n → ∞ or

T → ∞.

Theorem 4.7 (Bidirectional Asymptotics). Assume condi-
tions A.1-A.2 hold. As either n→ ∞ or T → ∞, we have

√
nT σ̂−1

π,IPW(G){V̂ πIPW(G)− V π(G)} d→ N (0, 1),

where σ̂2
π,IPW(G) is given by (34) in Appendix G.3.

The proofs for Theorems 4.5-4.7 can be found in Appendix
G.1-G.3. Different from the asymptotic result presented in
Shi et al. (2021b), we now take into account the response
indicator ηt and the uncertainty associated with dropout
propensity estimation. Intuitively, observations with higher
dropout propensities are assigned higher weights to adjust
the data distribution so as to retain the consistency of value
function. As such, a two-sided Confidence Interval (CI) for
V π(G) with significance level α can be constructed as[

V̂ π
IPW(G)− zα/2 ·

σ̂π,IPW(G)
√
nT

, V̂ π
IPW(G) + zα/2 ·

σ̂π,IPW(G)
√
nT

]
,

where zα/2 is the (1 − α/2)-quantile of the standard nor-
mal distribution. The complete algorithm is outlined in
Algorithm 1 of Appendix E.1.

4.3. Dropout Propensity Estimation

Unlike a classical classification problem, modeling λ(ψ)
under nonignorable missingness is a challenging task and
imposes an extra layer of complexity to the problem. It has
been proved that if no extra information is provided, it is
impossible to identify the observed likelihood, even when
both the dropout propensity λ(St, At, Rt+1, St+1) and the
conditional density function f(Rt+1, St+1|St, At) are com-
pletely parametric (Wang et al., 2014). As introduced in
Section 2, the problem of MNAR has been extensively ex-
plored through an auxiliary variable called shadow variable
(Wang et al., 2014; Shao & Wang, 2016; Miao et al., 2016;
Zhao & Ma, 2022; Miao et al., 2024), as defined below.

Definition 4.8. (Shadow Variable) A variable Zt is called a
shadow variable if
(a) Zt ⊥⊥ ηt+1 | (St, At, Rt+1, St+1), and
(b) Zt⊥̸⊥ (Rt+1, St+1) | (ηt+1 = 1, St, At).

Typically, shadow variable Zt excludes the conditional de-
pendency on missingness given (St, At, Rt+1, St+1) (part
(a)), while ensuring that it can partially explain the unob-
served outcome (Rt+1, St+1) for the observed data (part
(b)), serving as a “nonresponse instrument”. This additional
information about the outcome (Rt+1, St+1) is crucial for
ensuring the identifiability of the observed data likelihood
(see Miao et al. (2024) for non-parametric identification),
and therefore plays a key role in estimating the value func-
tion. A detailed discussion on the practicality of shadow
variables in real applications, along with a guide on how to
identify a shadow variable, is provided in Appendix B.3.

To estimate the parameter ψ of the dropout propensity
model λ(St, At, Rt+1, St+1;ψ), we solve the following es-
timating equation:

E[m(Zt, St, At, Rt+1, St+1;ψ)] = 0, (4)

where m(ψ) =
{

ηt+1

1−λ(ψ) − 1
}

· h(St, At, Zt), and
h(St, At, Zt) is a vector function of dimension q (same
as ψ) that can be flexibly determined by the users. A dis-
cussion on the selection of the h-function is provided in Ap-
pendix E.2.3. For flexible estimation options, we adapt both
parametric and semi-parametric estimation for the dropout
propensity λ(·) in Equation (4), with details provided in
Appendix B. As such, after obtaining an estimate of ψ̂nT by
Equation (4), the value estimate can be obtained from Equa-
tion (3). Thus, the value estimation and inference process is
complete.

4.4. Extension to Other Off-Policy Evaluation Methods

For valid inference, a potential limitation of our work is
that the state dimension cannot be too high due to ba-
sis approximation. However, it is worth noting that the
idea of using IPW to correct the bias caused by MNAR
can be naturally integrated with other OPE methods, such
as Fitted Q Evaluation (FQE) (Le et al., 2019). In
this case, the Q-function can be approximated with any
function class F and iteratively estimated by minimizing
ℓ(Q) = (1/nT )

∑n
i=1

∑T
t=0{Q(Si,t, Ai,t) − (Ri,t+1 +

γ
∑
a∈A π(a|Si,t+1)Qk−1(Si,t+1, a))}2, where Qk−1 is

the estimated Q-function obtained from the last iteration. To
handle nonignorable missingness, we can incorporate the
inverse weighting term into the loss function as follows

ℓ̃(Q) =
1

nT

n∑
i=1

T−1∑
t=0

ηi,t+1

1− λi,t+1(ψ̂nT )

{
Q(Si,t, Ai,t)−(

Ri,t+1 + γ
∑
a∈A

π(a|Si,t+1)Qk−1(Si,t+1, a)

)}2

.

Other potential extensions beyond direct methods, such as
the extension to a Marginalized Importance Sampling (MIS)-
based method with theoretical guarantees, are provided in
Appendix F.2.

5. Simulation
In this section, we demonstrate the performance of our pro-
posed IPW estimator and the theoretical properties estab-
lished in Section 4.2. To the best of our knowledge, no other
method has ever considered OPE under nonignorable miss-
ingness, so we mainly focus on the comparison between the
IPW and CC estimator. All supplementary code is available
at our Github repository.

In our simulation environment, which is based on the setups
used in Luckett et al. (2019) and Shi et al. (2021b), the state
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variable is a 2-dimensional vector St = (S
(1)
t , S

(2)
t )⊤, and

the action At is binary, taking values in {0, 1}. We eval-
uate the value function under target policy π(a = 1|s) =
1{s(1) + s(2) > 0}, a deterministic policy characterized
by a discontinuous function with respect to the state. For
each target policy, the true policy values are estimated with
100, 000 Monte Carlo approximations.

Assume S
(2)
t is a shadow variable such that it is cor-

related with (Rt+1, St+1) but uncorrelated with dropout
propensity. We consider the MNAR dropout model
λ1(St, At, Rt+1, St+1) = {1 + exp(2.2 + 0.15S

(1)
t −

0.3Rt+1)}−1 and the MAR model λ2(Rt, St, At) = {1 +
exp(2.2 + 0.15S

(1)
t − 0.3Rt)}−1. The difference between

the two models is that λ1 relies on the next state St+1

through reward Rt+1 while λ2 does not. In this setting,
higher reward leads to higher dropout propensity, so the
distribution of the observed data is biased towards the low-
reward region. More details about data generation are pro-
vided in Appendix E.2.

Table 1. Results of value estimates and 95% confidence intervals
under policy π. The average bias, MSE values, and ECP are
reported for each estimator (with standard error in parenthesis).
IPW (P) refers to the IPW estimator with parametric estimation,
while IPW (SP) refers to the semi-parametric version.

n Dropout Method Bias MSE ECP

500

no dropout CC 0.013 ( 0.602 ) 1.592 0.968
MAR CC -0.028 ( 0.807 ) 2.198 0.972
MAR IPW -0.025 ( 0.806 ) 2.207 0.980

MNAR CC -0.598 ( 0.823 ) 2.658 0.904
MNAR IPW (P) -0.016 ( 0.851 ) 2.315 0.976
MNAR IPW (SP) 0.015 ( 0.861 ) 2.340 0.960

1000

no dropout CC -0.04 ( 0.443 ) 1.235 0.968
MAR CC -0.029 ( 0.58 ) 1.538 0.944
MAR IPW -0.03 ( 0.582 ) 1.545 0.956

MNAR CC -0.614 ( 0.587 ) 2.013 0.820
MNAR IPW (P) -0.023 ( 0.602 ) 1.591 0.940
MNAR IPW (SP) 0.003 ( 0.608 ) 1.596 0.932

Four different combinations of n and T are considered in
our experiment, which are (500, 10), (1000, 10), (500, 25),
(1000, 25). For each setting, we run 250 experiments. In
each experiment, we generate a new dataset, estimate the
value, and compute its confidence interval. The Empirical
Coverage Probability (ECP) is then calculated as the pro-
portion of intervals, out of 250, that contain the true value
of the target policy. We present the results for T = 10 in
the main paper, the complete set of results are provided in
Appendix D.

According to Table 1, the CC estimator remains consistent
under MAR, which in line with our theoretical findings.
The associated confidence intervals also achieve satisfactory
coverage, indicating that no further adjustment is necessary
in this scenario. However, when it comes to MNAR, the
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Figure 2. Empirical coverage probability with respect to different
values of α under (n, T ) = (1000, 10) and target policy π.

CC estimator exhibits high bias, resulting in poor coverage
probability of the associated confidence intervals. This
under-coverage issue gets worse as the sample size grows.
In contrast, the proposed IPW estimator (the last two lines,
with a ‘P’ or ‘SP’ in parentheses to distinguish between
the parametric or semi-parametric model used to estimate
the dropout propensity λ(·), as detailed in Appendix B)
effectively reduces bias and yields more accurate confidence
intervals compared to CC, in line with our theoretical results.

Figure 2 visualizes the ECP of the estimated confidence in-
tervals at different values of α. As can be seen, our proposed
IPW estimator (under both parametric and semi-parametric
dropout function estimations) achieves a coverage proba-
bility that closely matches the true value of (1 − α). In
contrast, the CC estimator exhibits significantly lower cover-
age. These results further support the findings in Theorems
4.5 to 4.7.

6. Real Data
We now demonstrate the accuracy and stability of our value
estimates by comparing them with existing baselines using
a real-world sepsis dataset from the Medical Information
Mart for Intensive Care (MIMIC-III v1.4) database (John-
son et al., 2016). The dataset is processed according to
the cohort and inclusion/exclusion criteria outlined by Ko-
morowski et al. (2018). Note that the construction of states,
actions, rewards, and the dropout model is based on our
limited medical research and is solely for data demonstra-
tion purposes. Further validation by domain experts may be
necessary for healthcare applications.

Sepsis is a life-threatening condition that arises when the
body’s response to infection causes damage to its tissues
and organs (Singer et al., 2016). For each patient, we have
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information on relevant physiological features, including de-
mographics, lab values, vital, and treatment administration
information. In order to capture the early phase of sepsis
management, data is included from the diagnosis of sepsis
and until 48 hours following the onset of sepsis. Intravenous
fluids (IV) and vasopressors (VASO) are two commonly
administered interventions to correct hypotension caused by
infection. Our goal is to evaluate different IV and VASO
management policies using this offline dataset.

After close examination of the dataset, we find that around
72% patients did not have complete treatment trajectories
during the observational time window either due to early
discharge from ICU or mortality. Here we only focus on
missingness due to early discharge because mortality within
48 hours of sepsis onset only takes up a very small pro-
portion in our data. Application of offline RL or OPE to
MIMIC-III dataset has been studied in several works (Raghu
et al., 2017b; 2018; Peng et al., 2018; Li et al., 2020; Son-
abend et al., 2020). To the best of our knowledge, none of
these works consider the monotone missingness issue.

We construct a 14-dimensional state feature vector aggre-
gated over a time resolution of 4 hours (see details in Ap-
pendix E.3). The action space is discretized into three bins:
no intravenous fluids and no vasopressors, intravenous fluids
only, and vasopressors. We adopt a reward function similar
to Raghu et al. (2017a). Specifically,

r(St, At,St+1) = C0 · 1(SSOFA
t+1 = SSOFA

t &SSOFA
t+1 > 0)

+ C1 · (SSOFA
t+1 − SSOFA

t )

+ C2 · tanh(SLactate
t+1 − SLactate

t ) + C3,

where C0 = −5, C1 = −2.5, C2 = −10, C3 = 10. A
higher reward indicates that the patient is in better health.
The decision of discharge from ICU is often made based
on the current status of the patients, so it is reasonable to
assume the missing mechanism is nonignorable, that is, the
missingness cannot to be fully accounted for by the observed
information in the data.

To handle nonignorable missingness, we incorporate
dropout information into value estimation. Glasgow Coma
Scale (GCS) measures a person’s level of consciousness,
which is shown to be an important factor for early discharge
prediction (Knight, 2003; Kramer & Zimmerman, 2010;
McWilliams et al., 2019), so we include the GCS score SGCS

t

in our dropout model. Besides, we also add the Fraction of
inspired oxygen (FiO2), Heart Rate (HR), and Respiratory
Rate (RR) at the previous time window into the dropout
model. Previous GCS score SGCS

t−1 is used as a shadow vari-
able 2. The target policies to be evaluated include a fitted
behavior policy and optimal policies trained from Deep

2The rationale for selecting the previous GCS score as a shadow
variable is detailed in Appendix B.3.

Q-Network (Mnih et al., 2015), Dueling Double Deep Q-
Network (Wang et al., 2016) and Batch-Constrained Deep
Q-Learning (BCQ) (Fujimoto et al., 2019). Note that these
methods are only used for learning the target policy, while
the entire estimation and inference process relies entirely on
either the CC or IPW method, as discussed earlier in Section
4. In our implementation, the dataset is split into two parts,
with the first part used for learning the optimal policy and
the second part for policy evaluation.

Table 2. Results of value estimates and confidence intervals using
the original sepsis dataset. In the V̂ π column, the number within
the parenthesis stands for the standard error. For clarity in compar-
ing CC and IPW, IPW refers specifically to IPW (SP) in the table.

Policy Method V̂ π CI

Behavior CC 2.356 (0.334) (1.702,3.010)
IPW 2.377 (0.338) (1.716,3.039)

DQN CC 4.459 (0.505) (3.470,5.448)
IPW 4.542 (0.506) (3.551,5.534)

Dueling DQN CC 4.823 (0.557) (3.731,5.915)
IPW 4.925 (0.557) (3.833,6.016)

BCQ CC 5.002 (0.609) (3.808,6.195)
IPW 5.115 (0.608) (3.924,6.306)

Table 2 presents the value estimation results. Since the
dropout model λ is often unknown in real applications, we
adapt the semi-parametric estimation, i.e. IPW (SP) (see
Appendix B) in this section and omit the ‘SP’ when there
is no confusion. In most cases, the IPW estimator yields
higher value estimates than the CC estimator. This matches
our intuition, as patients who had an early discharge were
believed to be in better condition than those who did not.

However, for this real-world dataset, the true dropout mech-
anism is unknown and is hard to verify. To better illustrate
the effectiveness of the proposed IPW adjustment, we also
build a synthetic dataset consists of 4,490 complete trajec-
tories from the whole sepsis dataset and design a custom
dropout hazard model as

λ(·) =
[
1 + exp

{
4.5− 0.8 · 1(SFiO2

t ≤ 0.6)

−0.8 · 1(60 ≤ SHR
t ≤ 100)− 0.6 · 1(10 ≤ SRR

t ≤ 30)

−1.5 · 1(SGCS
t+1 ≥ 14)

}]−1
,

which is used as the ground truth. Then we apply this
dropout model to the complete data and generate a synthetic
dataset with nonignorable missingness. The OPE results are
summarized in Table 3, we also include the CC estimates
calculated from the complete data as a baseline. Table 3
shows that the CC estimator tends to underestimate the
value, while our proposed IPW estimator can effectively
reduce the bias with respect to the baseline. This pseudo-
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Table 3. Results of value estimates and confidence intervals using
the synthetic sepsis dataset. In the V̂ π column, the number within
the parenthesis stands for the standard error.

Policy Dropout Method V̂ π CI

Behavior
no dropout CC 1.075 (0.299) (0.487,1.662)

MNAR CC 0.504 (0.467) (-0.412,1.420)
MNAR IPW 0.988 (0.501) (0.005,1.971)

DQN
no dropout CC 2.160 (0.448) (1.282,3.039)

MNAR CC 1.437 (0.727) (0.011,2.863)
MNAR IPW 2.227 (0.742) (0.772,3.682)

Dueling DQN
no dropout CC 2.368 (0.472) (1.442,3.293)

MNAR CC 1.672 (0.750) (0.202,3.142)
MNAR IPW 2.450 (0.758) (0.962,3.938)

BCQ
no dropout CC 2.085 (0.470) (1.163,3.008)

MNAR CC 1.403 (0.779) (-0.124,2.931)
MNAR IPW 2.147 (0.795) (0.589,3.706)

real data further illustrates the effectiveness of our approach
in correcting bias introduced by MNAR.

7. Summary
In this work, we comprehensively studied the problem of
missingness in off-policy evaluation, providing theoretical
guarantees with statistical inference on the value estimates.
One limitation of our method results from the difficulty of
justifying the missingness mechanism, which often require
context and subject-matter knowledge. In fact, handling
nonignorable missingness still remains an active research
area in the field of missing data methodology, and we leave
the integration of these evolving advancements for future
exploration. Additionally, we believe that extending this
work to learning optimal policies from offline data with
nonignorable missingness presents an intriguing direction
for future research.

Acknowledgments
This research was conducted with the support of NSF Grant
DMS-2113637. The authors gratefully acknowledge this
funding, which made it possible to carry out the simulation
studies and real data analysis.

Impact Statement
To the best of our knowledge, this paper is the first to address
the missing data problem, particularly missing not at ran-
dom (MNAR), within the context of off-policy evaluation.
Our approach has broad applicability to real-world domains
such as healthcare, robotics, recommendation systems, and
beyond. We believe that this work, along with the poten-
tial extensions discussed in Section 4.4 and Appendices,
will inspire future research aimed at improving evaluation
methods and decision-making in various machine learning
applications.

References
Birmingham, J., Rotnitzky, A., and Fitzmaurice, G. M.

Pattern–mixture and selection models for analysing longi-
tudinal data with monotone missing patterns. Journal of
the Royal Statistical Society Series B: Statistical Method-
ology, 65(1):275–297, 2003.

Bradley, R. C. Basic properties of strong mixing conditions.
a survey and some open questions. Probability Surveys,
2:107–144, 2005.

Bradtke, S. J. and Barto, A. G. Linear least-squares algo-
rithms for temporal difference learning. Machine Learn-
ing, 22(1):33–57, 1996.

Chen, H., Geng, Z., and Zhou, X.-H. Identifiability and
estimation of causal effects in randomized trials with non-
compliance and completely nonignorable missing data.
Biometrics, 65(3):675–682, 2009.

Chu, J., Yang, S., and Lu, W. Multiply robust off-policy
evaluation and learning under truncation by death. In
International Conference on Machine Learning, pp. 6195–
6227. PMLR, 2023.

Dai, B., Nachum, O., Chow, Y., Li, L., Szepesvári, C., and
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A. Assumptions
In this section, we provide the assumptions for the theoretical results. The following assumption is introduced by Shi et al.
(2021b) to ensure consistency and asymptotic distribution of value estimation when there is no missing data.

Assumption A.1. The following conditions hold.

(a) The transition kernel p(·|s, a) is absolutely continuous with respect to the Lebesgue measure, then there exists some
transition density function q̃ such that p (ds′|s, a) = q̃ (s′|s, a) ds′. Let Λ(p, c) denotes the class of p-smooth functions
as follows

Λ(p, c) =

h : sup
∥α∥1≤⌊p⌋

sup
s∈S

|Dαh(s)| ≤ c, sup
∥α∥1=⌊p⌋

sup
s,s′∈S
s ̸=s′

|Dαh(s)−Dαh(s′)|
∥s− s′∥p−⌊p⌋

2

≤ c

 ,

where Dα denotes the differential operator Dαh(s) = ∂∥α∥1h(s)

∂s
α1
1 ···∂sαd

d

, sj denotes the j-th element of s, ⌊p⌋ denote the

largest integer that is smaller than p. Assume there exist some p, c > 0 such that r(·, a), q̃ (s′|·, a) ∈ Λ(p, c) for any
a ∈ A, s′ ∈ S.

(b) Let BSpl(L, r) denote a tensor-product B-spline basis of degree r and dimension L on [0, 1]d, and let Wav(L, r)
denote a tensor-product Wavelet basis of regularity r and dimension L on [0, 1]d. The sieve ΦL is either BSpl(L, r) or
Wav(L, r) with r > max(p, 1).

(c) Assume the Markov chain has a unique invariant distribution with some density function µ(·) on S, the probability
density function of S0 is denoted as ν0. The density functions µ and ν0 are uniformly bounded away from 0 and ∞ on
S.

(d) Suppose (i) and (ii) hold when T → ∞ and (iii) holds when T is bounded.

(i) λmin

[∫
s∈S

∑
a∈A

{
ξ(s, a)ξ⊤(s, a)− γ2uπ(s, a)u

⊤
π (s, a)

}
b(a|s)µ(s)ds

]
≥ c̄ for some constant c̄ > 0, where

uπ(s, a) = E {Uπ (S1) |S0 = s,A0 = a} and λmin(K) denotes the minimum eigenvalue of a matrix K.
(ii) The Markov chain {St}t≥0 is geometrically ergodic, i.e, there exists some function M(·) on S and some constant

ρ < 1 such that
∫
s∈S M(s)µ(s)ds < +∞ and ∥ptS(· | s)− µ(·)∥TV ≤ M(s)ρt for any t ≥ 0, where ∥ · ∥TV

denotes the total variation norm, ptS(B|s) = P (St ∈ B|S0 = s) is the t-step transition kernel.

(iii) λmin

[∑T−1
t=0 E

{
ξtξ

⊤
t − γ2uπ (St, At)u

⊤
π (St, At)

}]
≥ T c̄ for some constant c̄ > 0.

(e) The number of basis L satisfies L = o{
√
nT/ log(nT )}, L2p/d ≫ nT{1 + ∥

∫
s
ΦL(s)G(ds)∥−2

2 }.

(f) There exists some constant c0 ≥ 1 such that

δπ(s, a) = E

{R1 + γ
∑
a∈A

π(a|S1)Q
π(S1, a)−Qπ(S0, A0)

}2 ∣∣∣∣S0 = s,A0 = a

 ≥ c−1
0

for any s ∈ S, a ∈ A, and P (maxt |Rt| ≤ c0) = 1.

These assumptions together guarantee consistent value estimation under complete data. Assumption A.1(a) basically
assumes the smoothness of the reward function r and the transition density function q̃ with respect to the current state s, this
allows us to establish the smoothness of the Q-function, which is critical when deriving inference for the value function.
Assumption A.1(b) specifies the types of sieve ΦL to approximate the Q-function, which is more of a claim or explanation
rather than a strict assumption. Here we consider two types of basis functions, which are standard choices for such problems
and serve to simplify the analysis while ensuring general applicability.

Assumption A.1(c) is a mild condition on the marginal distribution over states, when ν0 = µ, {St}t≥0 is stationary.
Assumption A.1(d) is imposed to guarantee the invertiblility of Σ̂π. The geometric ergodicity condition in Assumption
A.1(d)(ii) ensures that {St}t≥0 is exponentially β-mixing (see Theorem 3.7 of Bradley (2005)). We remark that the
geometric ergodicity condition is less restrictive than the independence assumption imposed in some existing reinforcement
learning literature (e.g., Dai et al. (2020)). For Assumption A.1(e), the constraint on the number of basis functions L
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controls the smoothness of the basis function, which in turn determines how closely the linear sieve basis function can
approximate the true Q function. In the proof of asymptotic normality, we rely on this condition on L to establish that
sups∈S,a∈A |Q(π; s, a)− Φ⊤

L (s)β
∗
π,a| ≤ O(L−p/d), which guarantees the consistency and asymptotic behavior of β̂ and

the value estimates. Assumption A.1(f) is a mild condition on the randomness of observed the reward Rt+1 around r(St, At)
and the uniform boundedness of the observed reward.

Besides the assumptions on Q-function approximation, we also make the following assumption regarding the dropout
propensity.

Assumption A.2. We assume the following conditions hold.

(a) The dropout propensity model is correctly specified such that λ(St, At, Rt+1, St+1) = λ(St, At, Rt+1, St+1;ψ
∗) for

some ψ∗.

(b) There exist some cλ > 0 such that 1− λ(St, At, Rt+1, St+1) ≥ cλ.

(c) There exits a shadow variable Zt at each stage, such that

Zt ⊥⊥ ηt+1 | (St, At, Rt+1, St+1), and Zt⊥̸⊥ (Rt+1, St+1) | (ηt+1 = 1, St, At)

Assumption A.2(a) ensures that, for either the parametric or semi-parametric model specified in Appendix B, the chosen
model class should include the true model of λ(·). This assumption is essential for guaranteeing the statistical properties of
the parameter estimate for ψ. Assumption A.2(b) is similar to the positivity assumption described by Rosenbaum & Rubin
(1983) in causal inference. It requires that there is always a non-zero probability, cλ, of observing the data, avoiding cases of
pure dropout. Assumption A.2(c), as explained in Section 4.3, ensures there is an auxiliary variable (i.e. a shadow variable)
that helps identify the model, which is necessary in handling nonignorable missingness (Shao & Wang, 2016; Wang et al.,
2014; Zhao & Ma, 2022; Miao et al., 2024).

B. Estimation Details of the Dropout Propensity Model
To solve for βπ , the first step is to fit the dropout propensity model. In this section, we detail two approaches for estimating
the dropout propensity, which can be incorporated into our IPW-based value estimation framework.

For ignorable missingness, the dropout propensity function can be simplified to λ(St, At), since ηt+1 is conditionally
independent of St+1 and Rt+1. In such cases, the propensity can be modeled with any binary classification method.

Unlike ignorable missingness, modeling the nonignorable missingness is much more challenging. The difficulty lies in
that if both the dropout propensity λ(St, At, Rt+1, St+1) and the conditional density function f(Rt+1, St+1|St, At) are
completely unknown, the joint distribution of (ηt+1, Rt+1, St+1) given (St, At) is non-identifiable (Rotnitzky & Robins,
1997). As discussed in Section 4.3 of the main paper, our goal is to solve the following estimating equation:

E[m(Zt, St, At, Rt+1, St+1;ψ)] = 0,

wherem(Zt, St, At, Rt+1, St+1;ψ) =

{
ηt+1

1− λ(St, At, Rt+1, St+1;ψ)
− 1

}
· h(St, At, Zt),

(5)

with h(St, At, Zt) denoting a user-specified vector function of dimension q, same as ψ.

For simplicity, we denote m(Zt, St, At, Rt+1, St+1;ψ) as mt(ψ), and h(St, At, Zt) = ht when there is no confusion.
That is, E[mt(ψ)] = 0. Specifically, we adapt both parametric and semi-parametric approaches from the single-stage
survival analysis literature that address MNAR, which are explained in the following two subsections.

B.1. Parametric Estimation for λ(ψ) under MNAR

If the parametric form of the dropout model λ(·) is known, the simplest approach is to directly substitute this parametric
form into Equation (5) and solve for ψ using the Method of Moments (MoM) or gradient-based algorithms, such as gradient
descent (GD). In our simulation studies, we found that a generalized MoM (GMM) approach, where the weights are
determined by the inverse of the covariance matrix, tends to outperform the classical MoM, especially when ψ is relatively
high-dimensional.
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B.2. Semi-Parametric Estimation for λ(ψ) under MNAR

Inspired by the recent development of the semiparametric framework to model nonignorable missing data (Kim &
Yu, 2011; Shao & Wang, 2016), we consider a semiparametric exponential tilting model for the dropout propensity
as λ(St, At, Rt+1, St+1;ψ) = {1 + exp[g(St, At) + V ⊤

t+1ψ]}−1, where ψ ∈ Rq is an unknown tilting parameter to learn,
Vt+1 ∈ Rq are features mapped from (Rt+1, St+1), g(·) is a non-parametric function of observed variables (St, At). For
succinctness, we suppress the data arguments in λ(St, At, Rt+1, St+1;ψ) and write it as λt+1(ψ).

Based on the definition of the shadow variable (which is the same as instrumental variable originally introduced in Shao
& Wang (2016) 3), Zt can be removed from the modeling process of the dropout propensity function. For clarity, we will
refer to it as the shadow variable throughout the remainder of this work. Denote the non-shadow part of (St, At) as Ut, the
exponential tilting model can be rewritten as

λt+1(ψ) =
{
1 + exp[g(Ut) +ψ

⊤Vt+1]
}−1

. (6)

According to the definition, a shadow variable Zt is a covariate in (St, At) that is related to the outcome (Rt+1, St+1)
but not related to the dropout propensity given other covariates. With the shadow variable, multiple estimating equations
can be constructed to estimate the parameters of interest, g and ψ. If the shadow variable Zt is originally discrete with L̃
levels, the L̃ estimating equations can be constructed as EnT {1(Zt = l)(ηt+1(1− λt+1(ψ))

−1 − 1)} = 0, l ∈ {1, . . . , L̃}.
Here we use the notation L̃ to differentiate it from the notation L, which represents the number of basis functions. In the
case of Zt being a continuous variable, it can first be discretized into L̃ bins. In order to estimate ψ, the non-parametric
component g is first profiled with a kernel estimator. The remaining L̃ − 1 estimating equations are used to solve for ψ
using the Generalized Method of Moments (GMM) (Hansen, 1982). Notice that this semiparametric approach to estimating
λ(·) typically involves a specialized form of the estimating equation (5), where each dimension of h(St, At, Zt) is set
to 1(Zt = l) for l ∈ 1, . . . , L̃. Instead of directly specifying a parametric form for λ(·), which could potentially be
misspecified, we combine a non-parametric function g(·) with a parametric component to solve for ψ and thus allows for
greater flexibility.

B.3. How to Find the Shadow Variable

Identifying a suitable shadow variable remains a challenging issue in the literature on MNAR, even without accounting for
sequential decision-making scenarios like MDPs. As defined in Definition 4.8, a shadow variable is an auxiliary variable
that has a causal relationship with the outcome of interest while remaining conditionally independent of the dropout pattern.
This assumption is often plausible in various empirical settings. For example, in our real-world application, certain baseline
measurements taken before treatment, such as the previous GCS score, can act as shadow variables. This is because
measurements like the previous GCS score typically help explain the patient’s health status at the current stage, but do not
offer additional information about dropout when conditioned on the outcome (the patient’s health status).

A comparable scenario arises in healthcare, as described in Miao et al. (2024). In a study investigating the mental health of
children in Connecticut (Zahner et al., 1992), researchers sought to assess the prevalence of students exhibiting abnormal
psychopathological traits based on teacher evaluations, which were prone to missing data. The likelihood of a teacher
providing an assessment might depend on their evaluation of the student but is unlikely to influence a separate parent report,
provided the teacher’s evaluation and all observed covariates are accounted for. Additionally, the parent report is expected
to strongly correlate with the teacher’s assessment, making the parent’s evaluation a valid shadow variable in this context.
Other illustrative examples of shadow variables can be found in Wang et al. (2014); Zhao & Shao (2015); Zhao & Ma
(2018).

While the above examples provide some insight into understanding and identifying shadow variables in real-world ap-
plications, the practical task of identifying shadow variables can still be challenging. In cases where definitive domain
knowledge is lacking or the conditions for a chosen shadow variable are only partially satisfied, the observed likelihood
becomes non-identifiable, and the resulting estimating equation is likely to fail. In such situations, it is advisable to perform
a sensitivity analysis (Robins et al., 2000) on the selected shadow variable to evaluate how variations in the choice impact
the results.

3To avoid confusion with existing literature on instrumental variables for missing data (Tchetgen Tchetgen & Wirth, 2017; Sun et al.,
2018), we will use the term shadow variable exclusively in the following discussion, avoiding the term instrumental variable, as the
identification framework presented here differs slightly from that in other studies.
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B.4. Dropout Estimation Accuracy

In this section, we briefly evaluate the accuracy of dropout propensity estimation for both parametric and semi-parametric
models. Accurate estimation of dropout propensity is crucial in MNAR settings, as it appears in the denominator of the IPW
estimator and directly influences the estimation accuracy of ψ̂ and the value function.

Figures 3 is generated based on the simulation setting described in Section 5, which provides an overall assessment of the
estimation accuracy of λ(ψ̂). As shown in the MSE distribution plot, both parametric and semi-parametric models perform
adequately well. As expected, the semi-parametric model yields slightly higher MSE than the parametric model due to its
greater flexibility and potential for model misspecification.
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Figure 3. Mean Squared Errors (MSEs) for both parametric and semi-parametric dropout models are close to zero, demonstrating the
effectiveness of the dropout propensity estimation.

C. A Brief Introduction to B-Spline and Wavelet Basis Functions
C.1. B-Spline Basis Function

A B-spline basis function Bi,k(x) is a collection of piecewise polynomial functions defined over a partition of the domain
(called knots), which are used to approximate smooth functions. For a non-decreasing sequence of knots {ti}n+ki=0 , the
B-spline basis of degree k is defined recursively via the Cox–de Boor recursion formula. When degree k = 0,

Bi,0(x) =

{
1 if ti ≤ x < ti+1,

0 otherwise.

When degree k > 0,

Bi,k(x) =
x− ti
ti+k − ti

Bi,k−1(x) +
ti+k+1 − x

ti+k+1 − ti+1
Bi+1,k−1(x),

where terms with zero denominators are treated as zero.

By adjusting the number and placement of knots, B-splines can flexibly combine piecewise polynomial segments to create
smooth functions that approximate complex functional forms.
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C.2. Wavelet Basis Function

Wavelet basis functions are localized in both time (or space) and frequency, making them suitable for representing functions
with local irregularities. A wavelet basis is constructed from a single mother wavelet ψ(x) via dilations and translations:

ψj,k(x) = 2j/2ψ(2jx− k),

where j ∈ Z denotes the scale (frequency) and k ∈ Z the translation (location).

Commonly used wavelets such as Haar and Daubechies form orthonormal bases in L2(R) and are particularly useful in
nonparametric regression, signal processing, and capturing complex functions with discontinuities.

D. More on Simulations
In this section, we present additional simulation results to further support our study. We provide comprehensive results
for two dropout models to evaluate the performance of different value estimators. The MNAR dropout model is defined
as λ1(St, At, Rt+1, St+1) = {1 + exp(ψ1 + ψ2S

(1)
t + ψ3Rt+1)}−1, and the MAR model as λ2(Rt, St, At) = {1 +

exp(ψ1+ψ2S
(1)
t +ψ3Rt)}−1. The true parameter values of ψ = [ψ1, ψ2, ψ3]

T are set to [2, 0.08,−0.15]T in Setting 1 and
[2, 0.15,−0.3]T in Setting 2 (results for Setting 2 are presented in the main paper). The full set of comparisons, covering
four combinations of (n, T ) with values (500, 10), (1000, 10), (500, 25), and (1000, 25), are provided in Tables 4-5.

Table 4. Results of value estimates and 95% confidence intervals for Setting 1 in the 2D-Linear environment. The average bias, MSE
values, and ECP are reported for each estimator (with standard error in parenthesis).

T n DROPOUT METHOD BIAS MSE ECP

10

500

NO DROPOUT CC 0.013 ( 0.602 ) 1.592 0.968
MAR CC 0.009 ( 0.779 ) 2.095 0.964
MAR IPW 0.012 ( 0.781 ) 2.097 0.964

MNAR CC -0.246 ( 0.806 ) 2.205 0.948
MNAR IPW (P) 0.007 ( 0.819 ) 2.158 0.948
MNAR IPW (SP) 0.013 ( 0.837 ) 2.188 0.948

1000

NO DROPOUT CC -0.04 ( 0.443 ) 1.235 0.968
MAR CC -0.05 ( 0.566 ) 1.471 0.952
MAR IPW -0.051 ( 0.566 ) 1.472 0.952

MNAR CC -0.307 ( 0.555 ) 1.588 0.920
MNAR IPW (P) -0.05 ( 0.563 ) 1.487 0.940
MNAR IPW (SP) -0.056 ( 0.558 ) 1.482 0.944

25

500

NO DROPOUT CC -0.027 ( 0.413 ) 1.168 0.944
MAR CC -0.022 ( 0.653 ) 1.748 0.964
MAR IPW -0.02 ( 0.651 ) 1.742 0.976

MNAR CC -0.296 ( 0.702 ) 1.923 0.920
MNAR IPW (P) -0.012 ( 0.712 ) 1.837 0.960
MNAR IPW (SP) -0.045 ( 0.718 ) 1.841 0.936

1000

NO DROPOUT CC -0.033 ( 0.245 ) 0.985 0.976
MAR CC -0.052 ( 0.46 ) 1.291 0.960
MAR IPW -0.052 ( 0.46 ) 1.289 0.964

MNAR CC -0.32 ( 0.47 ) 1.439 0.896
MNAR IPW (P) -0.068 ( 0.474 ) 1.322 0.964
MNAR IPW (SP) -0.062 ( 0.475 ) 1.322 0.952

The key takeaways from the results in the tables are as follows:

1. When the missing data is ignorable (i.e., under MAR), both the CC and IPW estimators perform well in terms of
estimation accuracy and empirical coverage.

2. In the case of nonignorable missingness (i.e., MNAR), the CC estimator suffers from significant bias, higher MSE, and
lower coverage, which negatively impacts the performance of value estimation. In contrast, our proposed IPW-based
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estimator, whether using a parametric or semi-parametric dropout model, remains stable in terms of both bias and
coverage.

3. Across different values of (n, T ), we observe that increasing the total number of data points, i.e., nT , leads to slightly
more stable estimates, particularly when examining the standard error in the Bias column and the MSE in the MSE
column.

Table 5. Results of value estimates and 95% confidence intervals for Setting 2 in the 2D-Linear environment. The average bias, MSE
values, and ECP are reported for each estimator (with standard error in parenthesis).

T n DROPOUT METHOD BIAS MSE ECP

10

500

NO DROPOUT CC 0.013 ( 0.602 ) 1.592 0.968
MAR CC -0.028 ( 0.807 ) 2.198 0.972
MAR IPW -0.025 ( 0.806 ) 2.207 0.980

MNAR CC -0.598 ( 0.823 ) 2.658 0.904
MNAR IPW (P) -0.016 ( 0.851 ) 2.315 0.976
MNAR IPW (SP) 0.015 ( 0.861 ) 2.340 0.960

1000

NO DROPOUT CC -0.04 ( 0.443 ) 1.235 0.968
MAR CC -0.029 ( 0.58 ) 1.538 0.944
MAR IPW -0.03 ( 0.582 ) 1.545 0.956

MNAR CC -0.614 ( 0.587 ) 2.013 0.820
MNAR IPW (P) -0.023 ( 0.602 ) 1.591 0.940
MNAR IPW (SP) 0.003 ( 0.608 ) 1.596 0.932

25

500

NO DROPOUT CC -0.027 ( 0.413 ) 1.168 0.944
MAR CC -0.021 ( 0.723 ) 1.925 0.952
MAR IPW -0.016 ( 0.723 ) 1.927 0.956

MNAR CC -0.655 ( 0.743 ) 2.476 0.864
MNAR IPW (P) -0.072 ( 0.76 ) 2.025 0.944
MNAR IPW (SP) -0.041 ( 0.764 ) 2.031 0.964

1000

NO DROPOUT CC -0.033 ( 0.245 ) 0.985 0.976
MAR CC -0.034 ( 0.485 ) 1.361 0.972
MAR IPW -0.034 ( 0.486 ) 1.361 0.976

MNAR CC -0.648 ( 0.509 ) 1.919 0.780
MNAR IPW (P) -0.057 ( 0.523 ) 1.443 0.972
MNAR IPW (SP) -0.033 ( 0.523 ) 1.439 0.956

E. Additional Experimental Details
In this section, we provide more details on the experiments and our implementation.

E.1. Algorithm

The outline for the proposed estimator is presented in Algorithm 1. In Line 5, when employing a semi-parametric model
to estimate the dropout propensity function (see Appendix B.2), an approximation of the estimated standard deviation
σ̃π,IPW(G), as given in Equation (35), can be used as a substitute for the exact solution σ̂π,IPW(G). Accordingly, the

confidence interval can be obtained as
[
V̂ πIPW(G)± zα/2(nT )

−1/2σ̃π,IPW(G)
]
.

E.2. Simulation Settings

E.2.1. DATA GENERATION

The initial states are generated from the standard bivariate normal distribution N (02, I2). For t ≥ 0, we slightly modify
the original dynamics and consider the following transition: S(1)

t+1 = (2At − 1)S
(1)
t + ε

(1)
t , S(2)

t+1 = (1− 2At)S
(2)
t + ε

(2)
t ,

where ε(1)t and ε(2)t are independent N (0, 0.25) random variables. The immediate reward is designed as Rt+1 = 2S
(1)
t+1 +

S
(2)
t+1 + 0.5S

(2)
t − 0.25(2At − 1) + ε

(3)
t , where ε(3)t ∼ N (0, 10−4). The behavior policy follows a Bernoulli distribution

with a mean of 0.5. Throughout the simulation studies, we set the discount factor γ to 0.9.
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Algorithm 1 Off-Policy Evaluation with Nonignorable Monotone Missingness
1: Input: Observed dataset D = {τi}ni=1, target policy π, discount factor γ, number of basis L
2: Fit dropout propensity model (6) using the semiparametric approach
3: Construct a set of basis ΦL(s) from state variables and estimate β̂π,IPW by (3)

4: Estimate value V̂ πIPW(s) = U⊤
π (s)β̂

π

π,IPW, V̂ πIPW(G) =
∫
s∈S V̂

π
IPW(s)G(ds)

5: Calculate the asymptotic variance σ̂2
π,IPW(G) given by Equation (34)

6: Return: the CI of V π(G):
[
V̂ πIPW(G)± zα/2(nT )

−1/2σ̂π,IPW(G)
]

To generate complete data with n trajectories, we first sample n initial states from the reference distribution G, and then
generate the action, next state and reward following the generative model described above. This process is repeated until
reaching the maximum horizon T . To generate incomplete data, we first calculate the dropout probability λi,t at each step
using the dropout model λj(·) defined in Section 5, this corresponds to the probability of subject i dropping out after taking
action At. Given the dropout probability, we sample the response indicator ηi,t+1 from a Bernoulli distribution with mean
(1− λi,t). To control the overall missing rate, we also set a no-dropout period of two steps, i.e., ηi,0 = ηi,1 = 1. After the
second step, the dropout probability is applied and a trajectory will terminate when the response indicator ηi,t turns 0.

E.2.2. COMPLETE-CASE (CC) ESTIMATOR

The OPE step of Shi et al. (2021b) approximates the Q-function with linear sieves, Qπ(s, a) ≈ Φ⊤
L (s)βπ,a, where

ΦL(·) =
{
ϕL,1(·), · · · ,ϕL,L(·)

}⊤
is a vector consisting of L spline bases. In our implementation, we first scale the

state variables onto [0, 1] and then construct 6 cubic B-spline bases for each dimension, where the knots are placed at
equally-spaced quantiles of the transformed state variables. To avoid extrapolation of the basis function, three repeated
knots are placed on the boundary. The tensor product of the basis for each dimension is used to construct the final basis,
hence L = 36. The number of basis functions L is allowed to grow with the sample size to reduce the approximation error.
For a fair comparison, here we fix L = 36 throughout the experiments despite the sample sizes. The CC estimator of the
Q-function parameter β∗

π is given in (4.2). The matrix inversion of Σ̂π ∈ RmL×mL tends to be unstable when mL is large,
so we add a small ridge penalty with weight 10−5 to improve the stability. Given β̂π , the value function can be calculated as
V̂ π(s) = U⊤

π (s)β̂π. We approximate the integrated value V̂ π(G) =
∫
s∈S V̂

π(s)G(ds) by sampling 10,000 states from
the reference distribution G and take the average of the estimated value for each state.

E.2.3. SOLVING THE ESTIMATING EQUATION (4)

To calculate the IPW estimator, we need to estimate the dropout probability from the data first. For ignorable missingness
(MAR), we fit a logistic regression with the correctly specified model to predict the dropout probability. For nonignorable
missingness (MNAR), we adopt both parametric (Miao et al., 2024) and semiparametric methods (Shao & Wang, 2016) for
flexible dropout model estimation.

In the parametric estimation for the simulation study, we select h(St, At, Zt) = [1, S
(1)
t , Zt]

T for simplicity when learning
ψ. Theoretically, it has been established (see Miao et al. (2024)) that any function of (St, At, Zt) can be chosen as the h-
function in the estimating equation while maintaining estimation consistency. Furthermore, Miao et al. (2024) demonstrated,
by leveraging doubly robust estimation derived from the efficient influence function of ψ, that there exists a specific function
heff(St, At, Zt) capable of minimizing the estimation variance. However, given that the proposed value estimator in this
work is based on IPW and to simplify practical implementation, we recommend users choose h to be as simple as possible
in real applications. For instance, incorporating an intercept term, using the original form of the non-shadow variables rather
than higher-order polynomial transformations, and including the shadow variable in the construction of h to ensure the
identifiability of ψ can help reduce estimation variance and potentially improve the overall accuracy of the estimate.

In the semi-parametric estimation for the simulation study, the shadow variable S(2)
t is discretized into 4 bins based on the

quartiles. The nonparametric part is approximated using Gaussian kernel with bandwidth hl = c · σln−1/3
l , where σl’s and

nl’s are the estimated standard deviation and the sample size for samples with S2 = l ∈ {1, 2, 3, 4}. We pick c = 7.5 in
the bandwidth formula based on an inspection of the objective function curve. The parametric part, i.e. ψ, is estimated
using Equation (5) by setting h(St, At, Zt) = [1(Zt = 1), . . . ,1(Zt = 3)]T . In the minimization step of GMM, we use the
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limited-memory BFGS algorithm (Liu & Nocedal, 1989) for both parametric and semi-parametric estimation with several
initial values to avoid local minimum. In the semi-parametric estimation procedure, we recommend users construct the
h-function using the discretized shadow variable, which has been empirically shown to perform well in our synthetic studies.

E.2.4. IPW ESTIMATOR

After getting an estimate of the parameter ψ̂nT for the dropout model, we plug in the estimated probability to calculate
β̂π,IPW, which is given in (3). To avoid extremely large inverse weight, we bound the missing propensity below at 0.01. After
obtaining β̂π,IPW, we calculate the integrated value V̂ πIPW(G) in a similar way to the CC estimator. Finally, we can construct
the confidence interval for the proposed IPW estimator based on the theoretical form of the asymptotic variance, as provided
in Equation (34). Note that when using a semi-parametric model for dropout estimation, the asymptotic variance of ψ has
a complex form (as discussed in Shao & Wang (2016)), making it difficult to compute due to the non-parametric kernel
g(Ut). To simplify the computation, we suggest using an approximation of σ̂2

π,IPW(G) given by (35). In all the empirical
experiments presented in the main paper and appendices, the confidence intervals based on this approximation are very close
to those obtained through bootstrapping and provide stable and satisfactory coverage. Therefore, we use this approximation
in our implementation.

E.3. Real Data Application

Data description The sepsis dataset is extracted from the MIMIC-III v1.4 database (Johnson et al., 2016). We follow the
data processing procedure described in Komorowski et al. (2018) and use a pure-python re-implementation available at
https://github.com/microsoft/mimic_sepsis. Data is included from the diagnosis of sepsis and until 48
hours following the onset of sepsis to capture treatment management at the early phase. We exclude mortality cases within
this time window and only focus on early discharged patients.

Model features We consider a 14-dimensional state feature vector to represent important features clinicians would
examine when deciding treatment and dosage for patients. The following physiological features are used in our model:

• Demographics: Age

• Lab values: Arterial pH, Chloride, Hemoglobin, INR-International Normalized Ratio, PT-Prothrombin Time, Arterial
Blood Gas, Ionised Calcium, Calcium, Arterial Lactate

• Vital signs: SpO2, Temperature, Heart Rate

• Other: Sequential Organ Failure Assessment (SOFA) score

The features are aggregated over a time resolution of 4 hours, we carry the last value forward if no record is available in the
current time window.

Target policies In our experiments, we evaluate a fitted behavior policy and optimal policies learned via Deep Q-Network
(Mnih et al., 2015), Dueling Double Deep Q-Network (Wang et al., 2016) and a discrete version of Batch-Constrained Deep
Q-Learning (BCQ) (Fujimoto et al., 2019). The behavior policy is fitted with a random forest with 250 trees. For the other
three types of Q-learning algorithms, we run for 2× 105 iterations with minibatch size 256 and learning rate 1× 10−3.

More details about implementation Similar to the simple environment, we first scale the state variables onto [0, 1]
and construct 4 cubic B-spline basis for each dimension. We do not use tensor product here due to high-dimensionality
concern, so there are L = 56 bases in total. To fit the dropout model, we use the previous GCS score as a shadow variable,
it is discretized into 4 bins based on quantiles. We consider the model in (6) with Ut = {1(SFiO2

t ≤ 0.6),1(60 ≤ SHR
t ≤

100),1(10 ≤ SRR
t ≤ 30)}, Zt+1 = 1(SGCS

t+1 ≥ 14), and a bandwidth of hl = 10σln
−1/3
l . For large dataset, the kernel

estimator used in this semiparametric method can be a bottleneck in computation. To accelerate the algorithm, we apply
the downsample technique where we repeatedly sample random subsets from the whole dataset and aggregate the value
estimation results by taking average.
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F. Generalizability of the Proposed Framework
In the main paper, we focus on the dropout scenario that occurs after the action is observed but before the reward and the
next state are observed. Additionally, we use Least-Squares Temporal Difference Learning (LSTDQ) as the base OPE
algorithm to investigate the effect of missing data. In this section, we will expand our scope to more general dropout patterns
and other OPE methods.

F.1. More General Dropout Patterns

The proposed framework is universally applicable to a broader class of dropout patterns. Specifically, the theoretical results
for our IPW estimator are valid when dropout occurs after the observed action, regardless of whether the reward is observed
or not. This is because the key idea behind the proposed IPW estimator is to assign weights to each transition based on the
inverse probability of observing the complete transition quadruple (St, At, Rt+1, St+1) given observed (St, At). On the
other hand, when dropout occurs after an observed state but before an observed action, the proposed framework also applies.
The distinction lies in that MAR and MNAR are now defined with respect to St instead of (St, At). If the missingness
of the current action only depends on the current state and not on the action itself, it is considered ignorable. In such
cases, the CC estimator remains valid, and no further adjustment is required. This can be seen from the decomposition
E {ηt+1M t (β

∗
π)} = E {E (ηt+1 | St, ηt)E (M t (β

∗
π) | St)} = 0. Here, E (M t (β

∗
π) | St) = 0 follows from the law of

total probability together with equation E {Rt+1 + γV π(St+1)−Qπ(St, At)|St, At} = 0. In the case of nonignorable
missingness where the dropout is dependent on the potential action, the CC estimator can be biased, and the proposed IPW
estimator can still be used to mitigate such bias.

Moreover, the idea of IPW adjustment can potentially be extended to handle intermittent missingness. The key distinction
from monotone missingness lies in estimating the dropout propensity, which should be determined on a case-by-case basis
and sometimes requires additional assumptions regarding the missing pattern. We leave this for future investigation.

F.2. More General OPE Methods

In this section, we discuss how the proposed framework can be extended to Marginalized Importance Sampling-based (MIS)
methods. We first introduce some additional notations and review the MIS value estimator.

Given the discount factor γ and reference distribution of initial states G, the discounted state-action visitation probability
density for policy π is defined as dπ(s, a) = (1 − γ)π(a | s)

∑∞
t=0 γ

tP (St = s | π). It satisfies the backward Bellman
recursion

dπ(s
′, a′) =(1− γ)G(s′)π(a′|s′) + γ · π(a′|s′)

∫
s∈S

∑
a∈A

dπ(s, a)p(s
′|s, a)ds′. (7)

With the notation of dπ(s, a), the policy value can also be expressed as

V πG =
1

1− γ
E(St,At)∼dπ,Rt+1∼r(St,At) {Rt+1} .

In offline settings, the data may be collected from potentially different policies than the target policy π, denote the state-
action visitation probability density under behavior policies as dD. To estimate the value using off-policy data, define the
marginalized density ratio under the target policy π as

ωπ(s, a) :=
dπ(s, a)

dD(s, a)
.

Then the policy value can be equivalently expressed as

V πG =
1

1− γ
E(St,At)∼dD,Rt+1∼r(St,At) {ωπ(St, At) ·Rt+1} ,

which leads to the MIS value estimator (Liu et al., 2018; Xie et al., 2019). Compared with trajectory-based importance
sampling methods, such a marginalized density ratio plays a critical role in breaking the curse of horizon. To handle
unknown behavior policies, it is preferred to model the density ratio ωπ(s, a) directly, and plug in ω̂π(s, a) to obtain the
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final value estimate as follows,

V̂ πG =
1

1− γ

1

nT

n∑
i=1

T−1∑
t=0

ω̂π(Si,t, Ai,t)Ri,t+1.

The key for estimating ωπ(s, a) is by noting the following result derived from (7),

EdD
{
ωπ(St, At)

(
f(St, At)− γESt+1∼p(·|St,At),a′∼π(·|St+1) [f(St+1, a

′)]
)}

= (1− γ)ES0∼G,a∼π(·|S0) [f (S0, a)] .

A special case is to replace with f(s, a) with Qπ(s, a), leading to the following equation

EdD
{
ωπ(St, At)

(
Qπ(St, At)− γESt+1∼p(·|St,At),a′∼π(·|St+1) [Q

π(St+1, a
′)]
)}

= (1− γ)ES0∼G,a∼π(·|S0) [Q
π (S0, a)] .

(8)

Another way to derive (8) is by noting the equivalence between two expressions of the policy value

EdD [ωπ(St, At) · r(St, At)] = (1− γ)ES0∼G,a∼π(·|S0) [Q
π (S0, a)] ,

and then replacing r(St, At) with Qπ(St, At)− γESt+1∼p(·|St,At),a′∼π(·|St+1)[Q
π(St+1, a

′)] using the Bellman equation.

Based on this equation, several methods have been developed to estimate the density ratio ωπ(s, a) (Nachum et al., 2019;
Uehara et al., 2020). These methods typically learn ωπ(s, a) by minimizing the difference between the two sides of
equation (8) within the chosen function classes for Qπ(s, a) and ωπ(s, a). Denote the function class for Qπ(s, a) as Q
and the function class for ωπ(s, a) as Ω. To illustrate the estimation process, we use Minimax Weight Learning (MWL)
(Uehara et al., 2020) as an example, which estimates ωπ by solving ω̂π,nT (s, a) = argmin

ωπ∈Ω
sup
Qπ∈Q

LnT (ωπ, Qπ)2, where

LnT (ωπ, Qπ) is defined as follows

LnT (ωπ, Qπ) =
1

nT

n∑
i=1

T−1∑
t=0

ηi,t+1ωπ(Si,t, Ai,t)

(
γ
∑
a′∈A

π(a′|Si,t+1)Q
π(Si,t+1, a

′)−Qπ(Si,t, Ai,t)

)

+ (1− γ) · ES0∼G

{∑
a∈A

π(a|S0)Q
π (S0, a)

}
.

(9)

The complete-case MIS value estimator can then be obtained by plugging in ω̂π,nT (s, a) as follows,

V̂ πCC(G) =
1

1− γ

1

nT

n∑
i=1

T−1∑
t=0

ηi,t+1ω̂π,nT (Si,t, Ai,t)Ri,t+1. (10)

Next, we present the consistency results under the two missingness mechanisms.

Theorem F.1. Assume conditions 3.1-4.4 and A.1(a)(f) hold. Let ωπ(s, a) denote the true density ratio under missing data
and ω̂π(s, a) denote the estimated density ratio from the observed data. Further assume

(a) There exists a constant cω > 0 such that sups,a |ωπ(s, a)| ≤ cω and the function class Ω satisfies ∥ω∥∞ ≤ cω for all
ω ∈ Ω.

(b) LnT (ω̂π, Qπ) = op(1), where Qπ represents the true Q-function.

Under ignorable missingness (MAR), the value estimate (10) remains consistent. On the other hand, if the missingness is
nonignorable (MNAR), the value estimator (10) can be biased.

In Assumptions (a), the boundedness of marginalized state-action density ratio ωπ can be ensured if the enumerator dπ is
bounded above and the denominator dD is bounded away from 0. Such an assumption is commonly made in the literature
related to importance sampling or inverse weighting. Additionally, the boundedness of function class Ω can be guaranteed
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through a truncation argument. Assumption (b) states that ω̂π ensures equation (8) approximately holds when substituting
f(s, a) with the true Q-function Qπ(s, a). This assumption can be achieved when the function class Q captures the true
Q-function, i.e., Qπ ∈ Q, and the OPE algorithm minimizes sup

Qπ∈Q
LnT (ωπ, Qπ)2 sufficiently close to 0.

The proof for Theorem F.1 can be found in Appendix G.4. It is noteworthy that the statement in Theorem F.1 can also be
viewed from a special case of MWL, where ωπ(s, a) and Qπ(s, a) are modeled with the same set of basis functions, i.e.,
ωπ(s, a) = ΦL(s)

⊤απ,a and Qπ(s, a) = ΦL(s)
⊤βπ,a. The corresponding value estimator can be shown to be

V̂ πCC(G) ={∫
s

Uπ(s)G(ds)

}{
1

nT

n∑
i=1

T−1∑
t=0

ηi,t+1ξi,t
(
ξi,t − γUπ,i,t+1

)⊤}−1(
1

nT

n∑
i=1

T−1∑
t=0

ηi,t+1ξi,tRi,t+1

)
.

which is identical to the complete-case (CC) estimator discussed in Section 4.2; the derivation is similar to Appendix A.3 of
Uehara et al. (2020). Consequently, these two estimators share the same theoretical properties described in Theorem 4.5. In
the case of nonignorable missingness, the IPW adjustment discussed in Section 4.2 can be applied to this estimator as well.

G. Consistency and Asymptotic Results
In this section, we provide the proofs for Theorem 4.5, 4.6 and 4.7. For simplicity, we will omit the subscript π in Σπ,
Σ̂π ,βπ , β̂π , σπ , σ̂π . We first introduce the following lemmas from Shi et al. (2021b), the proofs can be found in Section E
of their paper.
Lemma G.1. Under Assumption A.1(a), there exists some constant c′ > 0 such that Qπ(s, a) ∈ Λ(p, c′) for any policy π
and a ∈ A.

Lemma G.2. Under Assumption A.1(b), there exists some constant c∗ ≥ 1 such that

(c∗)
−1 ≤ λmin

{∫
s∈S

ΦL(s)Φ
⊤
L (s)ds

}
≤ λmax

{∫
s∈S

ΦL(s)Φ
⊤
L (s)ds

}
≤ c∗

and sups∈S ∥ΦL(s)∥2 ≤ c∗
√
L.

Lemma G.3. Suppose Assumption A.1 holds. Define Σ = EΣ̂, we have ∥Σ−1∥2 ≤ 3c̄−1, ∥Σ∥2 = O(1), ∥Σ̂ −Σ∥2 =

Op
{
L1/2(nT )−1/2 log(nT )

}
, ∥Σ̂

−1
− Σ−1∥2 = Op

{
L1/2(nT )−1/2 log(nT )

}
and ∥Σ̂

−1
∥2 ≤ 6c̄−1 with probability

approaching 1, as either n→ ∞ or T → ∞.

Lemma G.4. Suppose Assumption A.1 holds. As either n → ∞ or T → ∞, we have
λmax(T

−1
∑T−1
t=0 Eξtξ

⊤
t ) = Op(1), λmax{(nT )−1

∑n
i=1

∑T−1
t=0 ξi,tξ

⊤
i,t} = Op(1), λmin(T

−1
∑T−1
t=0 Eξtξ

⊤
t ) ≥ c̄/2 and

λmin{(nT )−1
∑n
i=1

∑T−1
t=0 ξi,tξ

⊤
i,t} ≥ c̄/3 with probability approaching 1.

Lemma G.5.
∥∥∫
s
U(s)G(ds)

∥∥
2
≥ m−1/2

∥∥∫
s
ΦL(s)G(ds)

∥∥
2
, where m is the number of actions in the action space.

Lemma G.6. Define Σ∗ =
∫
s∈S

∑
a∈A ξ(s, a){ξ(s, a)− γu(s, a)}⊤b(a | s)µ(s)ds. Suppose T → ∞. Under the given

conditions in Lemma G.3, we have ∥Σ−Σ∗∥2 ⪯ T−1/2.

Remark G.7. The notation an ⪯ bn means that there exists some constant C > 0 such that an ≤ C · bn for any n. The
notation an ⪯ 1 means an = Op(1).

Next, we will go through the proof for the consistency and asymptotic result for the proposed IPW estimator. The big idea
is similar to the proof of Theorem 1 in Shi et al. (2021b) but with additional components to handle inverse weights and
associated uncertainty.

G.1. Proof of Theorem 4.5

Theorem Suppose Assumption A.1 holds. V̂ πCC(G) is a consistent estimator if the missing mechanism is ignorable (MAR).
However, if the missing mechanism is nonignorable (MNAR), V̂ πCC(G) can be biased.

Proof. We first provide a sketch of the big idea. Assume the true Q-function is Qπ(s, a) = Φ⊤
L (s)β

∗
π and the true parameter

β∗ satisfies E {M t (β
∗
π)} = 0, whereM t(βπ) = ξt

{
Rt+1 − (ξt − γUπ,t+1)

⊤βπ
}

. Under incomplete data, the equation
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becomes E {ηt+1M t (βπ)} = 0. Using the condition of MAR (Definition 4.1), we apply the conditional independence
between ηt+1 and (St+1, Rt+1) to separate the ηt+1 andM t term as follows

E {ηt+1M t (βπ)} = E {E (ηt+1M t (βπ) | St, At, ηt)}
= E {E (ηt+1 | St, At, ηt)E (M t (βπ) | St, At)} .

It follows from E{Rt+1 + γ
∑
a′∈AQ

π(St+1, a
′)π(a′|St+1) − Qπ(St, At)|St, At} = 0 that E{M t(β

∗
π)|St, At} = 0.

Therefore, E {ηt+1M t (β
∗
π)} = 0, then β∗

π is still the solution to E {ηt+1M t (βπ)} = 0. As a result, the corresponding
value estimator is still unbiased under some regularity conditions. However, for nonignorable missingness (MNAR),
E {ηt+1M t (β

∗
π)} = 0 no longer holds because ηt+1 and M t cannot be separated using the conditional independence.

Thus the complete-case estimator β̂π,CC will be biased from β∗
π unless the probability P (ηt+1 = 1 | St, At, Rt+1, St+1, ηt)

is a constant.

Next, we provide a more rigorous proof that takes into account the approximation error.

By Condition A.1(a)(b)(e), the number of basis L for the Q-function satisfies L2p/d ≫ nT
{
1 + ∥

∫
s
ΦL(s)G(ds)∥−2

2

}
, it

follows from Lemma G.5 that L2p/d ≫ nT
{
1 + ∥

∫
s
U(s)G(ds)∥−2

2

}
. By Lemma G.1 and Condition A.1(b), there exist a

set of vectors {β∗
a} that satisfy

sup
s∈S,a∈A

∣∣Qπ(s, a)− Φ⊤
L (s)β

∗
a

∣∣ ≤ CL−p/d, (11)

for some constant C > 0 (Huang et al., 1998). Let β∗ = (β∗⊤
1 , . . . , β∗⊤

m )⊤, define

ri,t = γ
∑
a∈A

{
Φ⊤
L (Si,t+1)β

∗
a −Qπ (Si,t+1, a)

}
π (a|Si,t+1)−

{
Φ⊤
L (Si,t)β

∗
Ai,t

−Qπ (Si,t, Ai,t)
}
,

εi,t = Ri,t+1 + γ
∑
a∈A

Qπ(Si,t+1, a)π (a|Si,t+1)−Qπ(Si,t, Ai,t).
(12)

The condition P (maxt |Rt| ≤ c0) = 1 in Assumption A.1(f) implies that Ri,t ≤ c0, ∀i, t, almost surely. By Lemma G.1,
we have |Qπ(s, a)| ≤ c′ for any π, s, a. Therefore, the error term εi,t can be bounded as follows

max
0≤t<T,1≤i≤n

|εi,t| ≤ c0 + (γ + 1)c′ ≤ c0 + 2c′, almost surely. (13)

In addition, it follows from (11) that

max
0≤t<T,1≤i≤n

|ri,t| ≤ 2 sup
s∈S,a∈A

∣∣Qπ(s, a)− Φ⊤
L (s)β

∗
a

∣∣ ≤ 2CL−p/d. (14)

For incomplete data, we can only leverage the observed samples for inference. With the response indicator ηt defined in
Section 4, the estimating equations can be written as E {M t (β

∗) |ηt+1 = 1} = 0, or equivalently, E {ηt+1M t (β
∗)} = 0.

The estimator for β∗ is given by

β̂CC =

{
1

nT

n∑
i=1

T−1∑
t=0

ηi,t+1ξi,t
(
ξi,t − γU i,t+1

)⊤
︸ ︷︷ ︸

Σ̂CC

}−1(
1

nT

n∑
i=1

T−1∑
t=0

ηi,t+1ξi,tRi,t+1

)
.
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Let ΣCC = EΣ̂CC. By definition,

β̂CC − β∗ = Σ̂
−1

CC

[
1

nT

n∑
i=1

T−1∑
t=0

ηi,t+1ξi,t

{
Ri,t+1 −

(
ξi,t − γU i,t+1

)⊤
β∗
}]

= Σ̂
−1

CC

[
1

nT

n∑
i=1

T−1∑
t=0

ηi,t+1ξi,t×{
Ri,t+1 − Φ⊤

L (Si,t)β
∗
Ai,t

+ γ
∑
a∈A

Φ⊤
L (Si,t+1)β

∗
aπ (a | Si,t+1)

}]

= Σ̂
−1

CC

{
1

nT

n∑
i=1

T−1∑
t=0

ηi,t+1ξi,t (εi,t + ri,t)

}

= Σ−1
CC

(
1

nT

n∑
i=1

T−1∑
t=0

ηi,t+1ξi,tεi,t

)
︸ ︷︷ ︸

ζ1

+
(
Σ̂

−1

CC −Σ−1
CC

)( 1

nT

n∑
i=1

T−1∑
t=0

ηi,t+1ξi,tεi,t

)
︸ ︷︷ ︸

ζ2

+ Σ̂
−1

CC

(
1

nT

n∑
i=1

T−1∑
t=0

ηi,t+1ξi,tri,t

)
︸ ︷︷ ︸

ζ3

.

It suffices to derive the error bounds for ∥ζ1∥2, ∥ζ2∥2, and ∥ζ3∥2.

Error bound for ∥ζ3∥2. For any a ∈ RmL,∣∣∣∣∣a⊤

(
1

nT

n∑
i=1

T−1∑
t=0

ηi,t+1ξi,tri,t

)∣∣∣∣∣ ≤ 1

nT

n∑
i=1

T−1∑
t=0

∣∣a⊤ξi,t
∣∣ |ri,tηi,t+1| ≤ max

i,t
|ri,t|

(
1

nT

n∑
i=1

T−1∑
t=0

∣∣a⊤ξi,t
∣∣)

≤ 2CL−p/d

(
1

nT

n∑
i=1

T−1∑
t=0

∣∣a⊤ξi,t
∣∣) ≤ 2CL−p/d

(
1

nT

n∑
i=1

T−1∑
t=0

a⊤ξi,tξ
⊤
i,ta

)1/2

.

(15)

The second inequality uses the bound of binary ηt that |ηt| ≤ 1, the third inequality follows from (14), and the fourth
inequality applies the Cauchy-Schwarz inequality. Then we obtain∥∥∥∥∥ 1

nT

n∑
i=1

T−1∑
t=0

ηi,t+1ξi,tri,t

∥∥∥∥∥
2

≤ 2CL−p/dλ1/2max

(
1

nT

n∑
i=1

T−1∑
t=0

ξi,tξ
⊤
i,t

)
.

By Lemma G.3 and Lemma G.4, we have

∥ζ3∥2 ≤
∥∥∥Σ̂−1

CC

∥∥∥
2

∥∥∥∥∥ 1

nT

n∑
i=1

T−1∑
t=0

ηi,t+1ξi,tri,t

∥∥∥∥∥
2

= Op(1)Op

(
L−p/d

)
= Op

(
L−p/d

)
, (16)

which indicates that ζ3 is driven by the approximation error of the Q-function, and can be controlled by increasing the
number of basis functions.

The main difference between ignorable missingness (MAR) and nonignorable missingness (MNAR) lies in (ζ1 + ζ2). In the
following steps, we will show that the complete-case value estimator V̂ πCC(G) is still consistent under ignorable missingness
(MAR) but becomes biased under nonignorable missingness (MNAR).

• MAR

To show ∥β̂CC − β∗∥2 = op(1), we need to derive the error bound for ∥ζ1∥2, ∥ζ2∥2 and show they are op(1).
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Error bound for ∥ζ2∥2. We first derive the error bound for ∥ζ2∥2. By Markov Assumption, Conditional Mean Indepen-
dence Assumption and Bellman equation, E (εt|Ft) = E (εt|St, At) = 0, where Ft = {(Sj , Aj , Rj+1)}0≤j<t ∪ {St, At}
denotes the past information up to time t. Together with the conditional independence of ηt+1 and εt based on the definition
of MAR, we have E {ηt+1ξtεt} = E {E (ηt+1ξtεt|Ft, ηt)} = E {ξtE (ηt+1|Ft, ηt)E (εt|Ft)} = 0. Similarly, for any
0 ≤ t1 < t2 < T , we obtain E{ηt1+1ηt2+1εt1εt2ξ

⊤
t1ξt2} = 0. In addition, by the independence assumption among

trajectories, we have E{ηi1,t1+1ηi2,t2+1εi1,t1εi2,t2ξ
⊤
i1,t1ξi2,t2} = 0. It follows that E∥

∑n
i=1

∑T−1
t=0 ηi,t+1ξi,tεi,t∥22 =∑n

i=1

∑T−1
t=0 E

{
η2i,t+1ε

2
i,tξ

⊤
i,tξi,t

}
= n

∑T−1
t=0 E

{
η2t+1ε

2
tξ

⊤
t ξt

}
. Together with (13) and Lemma G.2, we obtain

E

∥∥∥∥∥
n∑
i=1

T−1∑
t=0

ηi,t+1ξi,tεi,t

∥∥∥∥∥
2

2

≤ (c0 + 2c′)
2
n

T−1∑
t=0

Eξ⊤t ξt ≤ (c0 + 2c′)
2
nT sup

s∈S
∥ΦL(s)∥22 ⪯ nTL.

By Markov inequality,

1

nT

n∑
i=1

T−1∑
t=0

ηi,t+1ξi,tεi,t = Op{
√
L/(nT )}.

Combine with Lemma G.3 yields

ζ2 = Op{
√
L/nT log(nT )}Op{

√
L/(nT )} = Op

{
L(nT )−1 log(nT )

}
. (17)

Error bound for ∥ζ1∥2. Using similar arguments as bounding ∥ζ2∥2, we obtain

ζ1 = Op

{
L1/2(nT )−1/2

}
. (18)

Combining (16), (17), and (18), we have

β̂CC − β∗ = Op

{
L1/2(nT )−1/2

}
+Op

{
L(nT )−1 log(nT )

}
+Op

{
L−p/d

}
.

It follows from Condition A.1(e) that

∥β̂CC − β∗∥2 = Op

(
L−p/d

)
+Op

{
L1/2(nT )−1/2

}
= op(1).

Recall that V̂ πCC(G) =
{∫
s
U(s)G(ds)

}⊤
β̂CC, thus,∣∣∣V̂ πCC(G)− V π(G)

∣∣∣ ≤ ∥∥∥∥∫
s

U(s)G(ds)

∥∥∥∥
2

∥∥∥β̂CC − β∗
∥∥∥
2
= op(1), (19)

that is, V̂ πCC(G)
p→ V π(G) as nT → ∞. Therefore, the value estimator V̂ πCC(G) is still consistent when the dropout

mechanism is MAR.

• MNAR

Error bounds for ∥ζ1 + ζ2∥2. Under nonignorable missingness, the conditional independence of ηt+1 and εt no longer
holds, so

E {ηt+1ξtεt} = E {E {ηt+1ξtεt | Ft, St+1, Rt+1, ηt}} = E {ξtεtE {ηt+1 | Ft, St+1, Rt+1, ηt}}
= E {ξtεtηt(1− λ(St, At, St+1, Rt+1))} ≠ 0.

We cannot bound the term 1
nT

∑n
i=1

∑T−1
t=0 ηi,t+1ξi,tεi,t as in the MAR case. As a result, ∥ζ1+ ζ2∥ = op(1) may no longer

holds. Therefore, V̂ π(G) can be biased when the dropout mechanism is MNAR.
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G.2. Proof of Theorem 4.6

Theorem Assume conditions A.1 and A.2 hold. V̂ πIPW(G) is a consistent estimator for value, i.e., V̂ πIPW(G)
p→ V π(G) as

either n→ ∞ or T → ∞.

Proof. The steps in this proof will be very similar to the proof of Theorem 4.5, but now we incorporate the inverse weights.
For simplicity, we use the notation

ωi,t+1(ψ) := ηi,t+1{1− λ(Si,t, Ai,t, Ri,t+1, Si,t+1;ψ)}−1

to represent the weighting term, where ψ ∈ Rk is the parameter of the dropout propensity model. Under assumption
A.2(a) on the correct specification of the dropout propensity, there exists some ψ∗ such that λ(St, At, Rt+1, St+1) =
λ(St, At, Rt+1, St+1;ψ

∗). It follows from the definition of dropout propensity that E(ηt+1|Ft, Rt+1, St+1, ηt = 1) =
1− λ(St, At, Rt+1, St+1;ψ

∗), therefore, E {ωt+1(ψ
∗)|Ft, Rt+1, St+1, ηt = 1} = 1.

Similar to the previous proof, β̂IPW − β∗ can be decomposed as

β̂IPW − β∗ =Σ−1

(
1

nT

n∑
i=1

T−1∑
t=0

ωi,t+1(ψ̂)ξi,tεi,t

)
︸ ︷︷ ︸

ζ1

+
(
Σ̂

−1

IPW −Σ−1
)( 1

nT

n∑
i=1

T−1∑
t=0

ωi,t+1(ψ̂)ξi,tεi,t

)
︸ ︷︷ ︸

ζ2

+ Σ̂
−1

IPW

(
1

nT

n∑
i=1

T−1∑
t=0

ωi,t+1(ψ̂)ξi,tri,t

)
︸ ︷︷ ︸

ζ3

.

To prove its consistency, it suffices to show ∥ζ1∥2, ∥ζ2∥2, and ∥ζ3∥2 are op(1). To bound these terms, we first introduce the
following lemma. This lemma is similar to Lemma G.3, but it is with respect to Σ̂IPW instead of Σ̂. The proof can be found
in Appendix G.5.

Lemma G.8. Suppose Assumption A.1-A.2 holds. We have ∥Σ̂IPW − Σ∥2 = Op
{
L1/2(nT )−1/2 log(nT )

}
, ∥Σ̂

−1

IPW −
Σ−1∥2 = Op

{
L1/2(nT )−1/2 log(nT )

}
and ∥Σ̂

−1

IPW∥2 ≤ 6c̄−1 with probability approaching 1, as either n → ∞ or
T → ∞.

Next, we will use Lemma G.8 to derive the error bounds for ∥ζ1∥2, ∥ζ2∥2, and ∥ζ3∥2.

Error bound for ∥ζ3∥2. It follows from condition A.2(b) that max1≤i≤n,0≤t<T |ωi,t(ψ)| ≤ c−1
λ . Using similar arguments

in (15), we have ∣∣∣∣∣a⊤

(
1

nT

n∑
i=1

T−1∑
t=0

ωi,t+1(ψ̂)ξi,tri,t

)∣∣∣∣∣ ≤ 2CL−p/d

cλ

(
1

nT

n∑
i=1

T−1∑
t=0

a⊤ξi,tξ
⊤
i,ta

)1/2

for any a ∈ RmL. Thus,∥∥∥∥∥ 1

nT

n∑
i=1

T−1∑
t=0

ωi,t+1(ψ̂)ξi,tri,t

∥∥∥∥∥
2

≤ 2CL−p/d

cλ
λ1/2max

(
1

nT

n∑
i=1

T−1∑
t=0

ξi,tξ
⊤
i,t

)
= Op(L

−p/d).

By Lemma G.8, we obtain

ζ3 = Op

(
L−p/d

)
. (20)
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Error bounds for ∥ζ2∥2. The RHS of ζ1 and ζ2 can be decomposed as follows

1

nT

n∑
i=1

T−1∑
t=0

ωi,t+1(ψ̂)ξi,tεi,t =
1

nT

n∑
i=1

T−1∑
t=0

ωi,t+1(ψ
∗)ξi,tεi,t

+
1

nT

n∑
i=1

T−1∑
t=0

(
ωi,t+1(ψ̂)− ωi,t+1(ψ

∗)
)
ξi,tεi,t.

(21)

We first show that
1

nT

n∑
i=1

T−1∑
t=0

ωi,t+1(ψ
∗)ξi,tεi,t = Op{

√
L/(nT )}.

By the property of conditional expectation, we have

E {ωt+1(ψ
∗)ξtεt} =E {E (ωt+1(ψ

∗) | Ft, Rt+1, St+1, ηt) ξtεt} = E {ηtξtεt} = 0. (22)

Using similar arguments in deriving ζ2’s error bound in Proof G.1, we show

E

∥∥∥∥∥
n∑
i=1

T−1∑
t=0

ωi,t+1(ψ
∗)ξi,tεi,t

∥∥∥∥∥
2

2

= n

T−1∑
t=0

E
{
ω2
t+1(ψ

∗)ε2tξ
⊤
t ξt

}

≤ (c0 + 2c′)
2

c2λ
n

T−1∑
t=0

Eξ⊤t ξt ≤
(c0 + 2c′)

2

c2λ
nT sup

s∈S
∥ΦL(s)∥22 ⪯ nTL.

Then by the Markov inequality,

1

nT

n∑
i=1

T−1∑
t=0

ωi,t+1(ψ
∗)ξi,tεi,t = Op{

√
L/(nT )}. (23)

Next, we show that
1

nT

n∑
i=1

T−1∑
t=0

(
ωi,t+1(ψ̂)− ωi,t+1(ψ

∗)
)
ξi,tεi,t = Op{(nT )−1/2}.

A mean value expansion of 1
nT

∑n
i=1

∑T−1
t=0 ωi,t+1(ψ̂) around ψ∗ yields

1

nT

n∑
i=1

T−1∑
t=0

ωi,t+1(ψ̂)ξi,tεi,t =
1

nT

n∑
i=1

T−1∑
t=0

ωi,t+1(ψ
∗)ξi,tεi,t +H1(ψ̂ −ψ∗) + op(∥ψ̂ −ψ∗∥), (24)

whereH1 = E
{
ξtεt∇ψωt+1(ψ

∗)⊤
}
∈ Rm×q. Similarly, we obtain

1

nT

n∑
i=1

T−1∑
t=0

ωi,t+1(ψ̂) =
1

nT

n∑
i=1

T−1∑
t=0

ωi,t+1(ψ
∗) + E

{
∇ψωt+1(ψ

∗)⊤
}
(ψ̂ −ψ∗) + op(∥ψ̂ −ψ∗∥).

Recall that in Equation (4), E[mt(ψ
∗)] = 0. A mean value expansion of 1

nT

∑n
i=1

∑T−1
t=0 mi,t(ψ̂) = 0 yields

1

nT

n∑
i=1

T−1∑
t=0

mi,t(ψ̂) =
1

nT

n∑
i=1

T−1∑
t=0

mi,t(ψ
∗) + E {∇ψmt(ψ

∗)} (ψ̂ −ψ∗) + op(∥ψ̂ −ψ∗∥),

where ∇ψmt(ψ
∗) =

ηt+1h(St, At, Zt)

(1− λ(St, At, Rt+1, St+1;ψ
∗))2

· ∂λ(St, At, Rt+1, St+1;ψ)

∂ψ⊤

∣∣∣
ψ=ψ∗

.

(25)

According to Central Limit Theorem (CLT) for M-estimators,

√
nT (ψ̂ −ψ∗) = − 1√

nT

n∑
i=1

T−1∑
t=0

ϕi,t+1 + op(1)
d→ N (0,Σψ∗), (26)
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where ϕi,t+1 = [E {∇ψmt(ψ
∗)}]−1

mt(ψ
∗), and Σψ∗ =

[
E
{
∇ψmt(ψ

∗)
}]−1

Var(mt(ψ
∗))
[
E
{
∇ψmt(ψ

∗)
}]−1

.

Plug (26) into (24) yields

1

nT

n∑
i=1

T−1∑
t=0

(
ωi,t+1(ψ̂)− ωi,t+1(ψ

∗)
)
ξi,tεi,t =H1(ψ̂ −ψ∗) + op(∥ψ̂ −ψ∗∥2) = Op{(nT )−1/2}. (27)

Combining (23) and (27) yields

1

nT

n∑
i=1

T−1∑
t=0

ωi,t+1(ψ̂)ξi,tεi,t = Op{
√
L/(nT )}.

Together with Lemma G.8, we obtain

ζ2 = Op{
√
L/nT log(nT )}Op{

√
L/(nT )} = Op

{
L(nT )−1 log(nT )

}
. (28)

Error bounds for ∥ζ1∥2. Similarly, we obtain the error bound for ζ1 as follows

ζ1 = Op

{
L1/2(nT )−1/2

}
. (29)

Combining (20), (28) and (29), we have

β̂IPW − β∗ = Op

{
L1/2(nT )−1/2

}
+Op

{
L−p/d

}
+Op

{
L(nT )−1 log(nT )

}
= op(1). (30)

Following similar arguments as (19), we show |V̂ πIPW(G) − V π(G)| = op(1), therefore V̂ πIPW(G) is a consistent value
estimator.

G.3. Proof of Theorem 4.7

Theorem (Bidirectional Asymptotics) Assume conditions A.1-A.2 hold. As either n→ ∞ or T → ∞, we have
√
nT σ̂−1

π,IPW(G){V̂ πIPW(G)− V π(G)} d→ N (0, 1).

Proof. We first provide an outline for the proof, which consists of four steps. In the first step, we give the form of
σ̂2

IPW(s) and σ2
π,IPW(s). In the second step, we show the linear representation

√
nT
{
V̂ πIPW(G)− V π(G)

}
/σπ,IPW(G) =

√
nT
{∫
s
U(s)G(ds)

}⊤
ζ1/σπ,IPW(G)+op(1) holds. In the third step, we show

√
nT
{∫
s
U(s)G(ds)

}⊤
ζ1/σπ,IPW(G)

d→
N (0, 1) based on the martingale central limit theorem. In the last step, we show σ̂π,IPW(G)/σπ,IPW(G)

p→ 1. A detailed
proof is presented as follows. For succinctness, we will write ωt+1(ψ̂) and ωt+1(ψ

∗) as ω̂t+1 and ω∗
t+1 respectively for

the rest of the derivation, and use notation ωt+1,ψ to replace ωt+1(ψ). Also, we will use m∗
t , m̂t to represent mt(ψ

∗),
mt(ψ̂).

Step 1. Derive σ̂2
π,IPW(s) and σ2

π,IPW(s).

In the previous proof, we have already shown that β̂IPW − β∗ = ζ1 + ζ2 + ζ3, where

ζ1 = Σ−1

(
1

nT

n∑
i=1

T−1∑
t=0

ω̂i,t+1ξi,tεi,t

)
= Op

{
L1/2(nT )−1/2

}
ζ2 =

(
Σ̂

−1

IPW −Σ−1
)( 1

nT

n∑
i=1

T−1∑
t=0

ω̂i,t+1ξi,tεi,t

)
= Op

{
L(nT )−1 log(nT )

}
ζ3 = Σ̂

−1

IPW

(
1

nT

n∑
i=1

T−1∑
t=0

ω̂i,t+1ξi,tri,t

)
= Op

(
L−p/d

)
29
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As long as the number of basis L satisfies Assumption A.1(e), we have

√
nT (β̂IPW − β∗) =

√
nTζ1 + op(1) = Σ−1

(
1√
nT

n∑
i=1

T−1∑
t=0

ω̂i,t+1ξi,tεi,t

)
+ op(1).

Plug (26) into the mean expansion in (24) and defineH2 =H1E[∇ψmt(ψ
∗)]−1, we can express

√
nTζ1 as follows

√
nTζ1 = Σ−1

{
1√
nT

n∑
i=1

T−1∑
t=0

(
ω∗
i,t+1ξi,tεi,t −H1ϕi,t+1

)}
+ op(1)

= Σ−1

{
1√
nT

n∑
i=1

T−1∑
t=0

(
ω∗
i,t+1ξi,tεi,t −H2mi,t(ψ

∗)
)}

+ op(1).

Let ζi,t := ω∗
i,t+1ξi,tεi,t −H2m

∗
i,t, the expression for

√
nTζ1 can be simplified as

√
nTζ1 = Σ−1

{
1√
nT

n∑
i=1

T−1∑
t=0

ζi,t

}
+ op(1)

d→ N
(
0,Σ−1ΩIPW(Σ⊤)−1

)
, (31)

where
ΩIPW = E

(
ζi,tζ

⊤
i,t

)
= E

{
(ω∗
i,t+1ξi,tεi,t −H2m

∗
i,t)(ω

∗
i,t+1ξi,tεi,t −H2m

∗
i,t)

⊤}
Remark G.9. The estimator Ω̂IPW can be calculated using the empirical form.

Ω̂IPW =
1

nT

n∑
i=1

T−1∑
t=0

{
(ω̂i,t+1ξi,tε̂i,t − Ĥ2m̂i,t)(ω̂i,t+1ξi,tε̂i,t − Ĥ2m̂i,t)

⊤}, (32)

where
ω̂i,t+1 = ηi,t+1/{1− λ(Si,t, Ai,t, Ri,t+1, Si,t+1; ψ̂nT )},

ε̂i,t = Ri,t+1 + γ
∑
a∈A

Φ⊤
L (Si,t+1)β̂aπ(a|Si,t+1)− Φ⊤

L (Si,t)β̂Ai,t
,

Ĥ2 =

[
1

nT

n∑
i=1

T−1∑
t=0

ξi,tε̂i,t∇̂ψωt+1(ψ̂nT )
⊤
][

1

nT

n∑
i=1

T−1∑
t=0

hi,t∇̂ψωt+1(ψ̂nT )
⊤
]−1

,

∇̂ψωt+1(ψ̂nT )
⊤ =

ηt+1

(1− λ(St, At, Rt+1, St+1; ψ̂nT ))
2
· ∂λ(St, At, Rt+1, St+1;ψ)

∂ψ⊤

∣∣∣
ψ=ψ̂nT

.

For any parametric model of λ(ψ), ω̂i,t+1 can be estimated directly by substituting the expressions for ω̂i,t+1, ε̂i,t, Ĥ2, and
∇̂ψωt+1(ψ̂nT )

⊤ as defined above. However, when using a semi-parametric model to estimate ψ, as described in Appendix
B.2, computing the explicit expression for ∇̂ψωt+1(ψ̂nT )

⊤ becomes challenging, as noted by Shao & Wang (2016). Due to
the complexity of Ω̂IPW, we simplify by ignoring the uncertainty from dropout propensity estimation and retaining only the
first term. Specifically, we approximate ΩIPW with Ω̃IPW for variance calculation in the semi-parametric dropout model, as
given by:

Ω̃IPW =
1

nT

n∑
i=1

T−1∑
t=0

ω̂2
i,t+1ε̂

2
i,tξi,tξ

⊤
i,t

=
1

nT

n∑
i=1

T−1∑
t=0

ξi,tξ
⊤
i,t

{
ηi,t+1

1− λ(Si,t, Ai,t, Ri,t+1, Si,t+1; ψ̂nT )
×

(Ri,t+1 + γ
∑
a∈A

Φ⊤
L (Si,t+1)β̂aπ(a|Si,t+1)− Φ⊤

L (Si,t)β̂Ai,t
)

}2

.

(33)
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The asymptotic variance of V̂ πIPW(s) and its estimator are given by

σ2
π,IPW(s) = U⊤

π (s)Σ
−1ΩIPW(Σ⊤)−1Uπ(s),

σ̂2
π,IPW(s) = U⊤

π (s)Σ̂
−1

IPWΩ̂IPW(Σ̂
⊤
IPW)−1Uπ(s),

where Ω̂IPW can be replaced by Ω̃IPW as defined in Equation (33) for semi-parametric dropout estimation.

It then follows that

σ2
π,IPW(G) =

{∫
s

U(s)G(ds)

}⊤

Σ−1ΩIPW(Σ⊤)−1

{∫
s

U(s)G(ds)

}
,

σ̂2
π,IPW(G) =

{∫
s

U(s)G(ds)

}⊤

Σ̂
−1

IPWΩ̂IPW(Σ̂
⊤
IPW)−1

{∫
s

U(s)G(ds)

} (34)

Again, for semi-parametric dropout model, asymptotic variance can be approximated by σ̃2
π,IPW(G), given by

σ̃2
π,IPW(G) =

{∫
s∈S

Uπ(s)G(ds)

}⊤

Σ̂
−1

IPWΩ̃IPW(Σ̂
⊤
IPW)−1

{∫
s∈S

Uπ(s)G(ds)

}
. (35)

Step 2. Show the following linear representation holds
√
nT
{
V̂ πIPW(G)− V π(G)

}
σπ,IPW(G)

=

√
nT
{∫
s
U(s)G(ds)

}⊤
ζ1

σπ,IPW(G)
+ op(1). (36)

Using arguments similar to step 2 of Theorem 1’s proof in Shi et al. (2021b), we have∣∣∣∣∣V̂ πIPW(G)− V π(G)−
{∫

s

U(s)G(ds)

}⊤

ζ1

∣∣∣∣∣ ≤
∥∥∥∥∫

s

U(s)G(ds)

∥∥∥∥
2

∥∥∥β̂IPW − β∗ − ζ1

∥∥∥
2
+ CL−p/d. (37)

Here we introduce the following lemma.

Lemma G.10. Suppose Assumption A.1-A.2 holds. Then there exist CΩ,1 such that λmin(ΩIPW) ≥ CΩ,1 with probability
approaching 1. Besides, λmax(ΩIPW) = Op(1).

Lemma G.10 can be shown by noting that

λmin

(
1

T

T−1∑
t=0

E
{
ω∗2
i,t+1ε

2
i,tξi,tξ

⊤
i,t

})
= λmin

(
1

T

T−1∑
t=0

E

{
1

1− λ∗i,t
ε2i,tξi,tξ

⊤
i,t

})

≥ λmin

(
1

T

T−1∑
t=0

E
{
ε2i,tξi,tξ

⊤
i,t

})
≥ c−1

0 λmin

(
1

T

T−1∑
t=0

E
{
ξi,tξ

⊤
i,t

})
≥ c

3c0
:= CΩ,1,

λmax(A) ≤ c−1
λ (c0 + 2c′)2λmax

(
1

T

T−1∑
t=0

E
{
ξi,tξ

⊤
i,t

})
= Op(1).

By Lemma G.10, the lower bound of σ2
π,IPW(G) satisfies

σ2
π,IPW(G) ≥ CΩ,1

{∫
s

U(s)G(ds)

}⊤

Σ−1
(
Σ⊤
)−1

{∫
s

U(s)G(ds)

}
. (38)

According to Lemma G.3, we have λmax(Σ
⊤Σ) = O(1). This implies that λmin{Σ−1(Σ⊤)−1} ≥ C̄ for some constant

C̄ > 0, hence

σ2
π,IPW(G) ≥ CΩ,1C̄

∥∥∥∥∫
s

U(s)G(ds)

∥∥∥∥2
2

(39)
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Combining Equation (39) together with Equation (37) yields that

1

σπ,IPW(G)

∣∣∣∣∣V̂ πIPW(G)− V π(G)−
{∫

s

U(s)G(ds)

}⊤

ζ1

∣∣∣∣∣
≤ 1√

CΩ,1C̄

∥∥∥β̂IPW − β∗ − ζ1

∥∥∥
2
+

CL−p/d√
CΩ,1C̄

∥∥∫
s
U(s)G(ds)

∥∥
2

.

According to the previous proof, we have

β̂IPW − β∗ = ζ1 +Op
{
L(nT )−1 log(nT )

}
+Op

(
L−p/d

)
Together with the condition that L≪

√
nT/ log(nT ) and L2p/d ≫ nT

{
1 +

∥∥∫
s
U(s)G(ds)

∥∥−2

2

}
, we obtain

√
nT{V̂ πIPW(G)− V π(G)}

σπ,IPW(G)
=

√
nT
{∫
s
U(s)G(ds)

}⊤
ζ1

σπ,IPW(G)
+ op(1). (40)

This completes the second step of the proof.

Step 3. Show √
nT
{∫
s
U(s)G(ds)

}⊤
ζ1

σπ,IPW(G)

d→ N (0, 1).

In this step, we first construct a martingale and then apply the martingale central limit theorem. For any integer 1 ≤ g ≤ nT ,
let i(g) and t(g) be the quotient and the remainder of g + T − 1 divided by T , that is, g = {i(g) − 1} · T + t(g) + 1,
1 ≤ i(g) ≤ n, 0 ≤ t(g) < T . Let F (0) = {S1,0, A1,0}, then iteratively define {F (g)}1≤g≤nT as follows:

F (g) = F (g−1) ∪
{
Ri(g),t(g)+1, ηi(g),t(g)+1, Si(g),t(g)+1, Ai(g),t(g)+1

}
, if t(g) < T − 1

F (g) = F (g−1) ∪
{
Ri(g),T , ηi(g),T , Si(g),T , Si(g)+1,0, Ai(g)+1,0

}
, otherwise.

Use ξ(g),m(g), ε(g), ω
(g)
ψ to represent ξi(g),t(g),mi(g),t(g), εi(g),t(g), and ωi(g),t(g)+1,ψ, respectively. It follows from (31)

that
√
nT

{∫
s
U(s)G(ds)

}⊤
ζ1

σπ,IPW(G)
=

nT∑
g=1

{∫
s
U(s)G(ds)

}⊤
Σ−1ζ(g)

√
nTσπ,IPW(G)

+ op(1), (41)

where ζ(g) = ω∗(g)ξ(g)ε(g) −H2m
∗(g). Using similar arguments as (22), we can show E{ω∗(g)ξ(g)ε(g) | F (g−1)} = 0.

Meanwhile, E{m∗(g) | F (g−1)} = 0 holds as a result of E{ω∗(g) | F (g−1)} = 1. Therefore, E{ζ(g) | F (g−1)} = 0, the
first term of the RHS of (41) forms a martingale with respect to the filtration {σ(F (g))}g≥0, where σ(F (g)) stands for the
σ-algebra generated by F (g).

We can then use a martingale central limit theorem for triangular arrays (Corollary 2.8 of McLeish (1974)) to show the
asymptotic normality. This requires to verify the following two conditions:

(a) max1≤g≤nT

∣∣∣{∫sU(s)G(ds)
}⊤

Σ−1ζ(g)
∣∣∣ /{√nTσπ,IPW(s)} p→ 0.

(b) (nT )−1
∑nT
g=1

∣∣∣{∫sU(s)G(ds)
}⊤

Σ−1ζ(g)
∣∣∣2 /{σ2

π,IPW(s)
} p→ 1.

First, we verify condition (a). It follows from Cauchy-Schwarz inequality that∣∣∣∣∣
{∫
s
U(s)G(ds)

}⊤
Σ−1ζ(g)

√
nTσπ,IPW(s)

∣∣∣∣∣ ≤
∥∥∥{∫sU(s)G(ds)

}⊤
Σ−1

∥∥∥
2

∥∥ζ(g)∥∥
2√

nTσπ,IPW(s)
.
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Notice that ∥∥∥ζ(g)∥∥∥
2
=
∥∥∥ω∗(g)ξ(g)ε(g) −H2m

∗(g)
∥∥∥
2
≤
∥∥∥ω∗(g)ξ(g)ε(g)

∥∥∥
2
+
∥∥∥H2m

∗(g)
∥∥∥
2

≤ |ω∗(g)|
∥∥∥ξ(g)∥∥∥

2
|ε(g)|+ ∥H2∥2

∥∥∥m∗(g)
∥∥∥
2

≤ (c0 + 2c′)

cλ
sup
s

∥ΦL(s)∥2 + ∥H2∥2 ∥m
∗(g)∥2

≤ (c0 + 2c′) c∗

cλ

√
L+

(
1

cλ
− 1

)
∥H2∥2 ≤ Cζ

√
L, for some constant Cζ .

Together with Equation (39), we have∣∣∣∣∣
{∫
s
U(s)G(ds)

}⊤
Σ−1ζ(g)

√
nTσπ,IPW(s)

∣∣∣∣∣ ≤ Cζ√
CΩ,1C̄

√
L√
nT

.

Since L≪
√
nT/ log(nT ), condition (a) is proven.

Next, we verify condition (b). Notice that∣∣∣∣∣∣∣
1

nT

nT∑
g=1

∣∣∣{∫sU(s)G(ds)
}⊤

Σ−1ζ(g)
∣∣∣2

σ2
π,IPW(s)

− 1

∣∣∣∣∣∣∣
=

1

σ2
π,IPW(s)

×

∣∣∣∣∣
{∫

s

U(s)G(ds)

}⊤

Σ−1

(
1

nT

nT∑
g=1

ζ(g)ζ(g)⊤ −ΩIPW

)(
Σ⊤
)−1

{∫
s

U(s)G(ds)

}∣∣∣∣∣ ,
where

ΩIPW =
1

T

T−1∑
t=0

E
{
ζ(g)ζ(g)⊤

}
In view of Equation (38), it suffices to show∥∥∥∥∥ 1

nT

nT∑
g=1

ζ(g)ζ(g)⊤ −ΩIPW

∥∥∥∥∥
2

= op(1). (42)

This can be proven using similar arguments in bounding ∥Σ̂−Σ∥2 in the proof of Lemma G.3. Therefore,

√
nT

{∫
s
U(s)G(ds)

}⊤
ζ1

σπ,IPW(G)
=

nT∑
g=1

{∫
s
U(s)G(ds)

}⊤
Σ−1ζ(g)

√
nTσπ,IPW(G)

d→ N (0, 1).

It follows from (40) and Slutsky’s theorem that,
√
nT{V̂ π(G)− V π(G)}

σπ,IPW(G)

d→ N (0, 1).

Step 4. Show σ̂π(G)/σπ,IPW(G)
p→ 1.

Using similar arguments in verifying condition (b), it suffices to show ∥Σ̂
−1

IPWΩ̂IPW(Σ̂
⊤
IPW)−1−Σ−1ΩIPW(Σ⊤)−1∥2 = op(1).

Lemma G.10 indicates that ∥ΩIPW∥2 = Op(1). This together with Lemma G.8 and the condition L ≪
√
nT/ log(nT )

yields that

∥Σ̂
−1

IPWΩIPW(Σ̂
⊤
IPW)−1 −Σ−1ΩIPW

(
Σ⊤
)−1

∥2 ≤ ∥Σ̂
−1

IPW −Σ−1∥2∥ΩIPW∥2∥Σ̂
−1

IPW∥2

+ ∥Σ−1
IPW∥2∥ΩIPW∥2∥Σ̂

−1

IPW −Σ−1∥2

= Op

{
L1/2(nT )−1/2 log(nT )

}
= op(1).
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Thus, it remains to show ∥Σ̂
−1

IPWΩ̂IPW(Σ̂
⊤
IPW)−1 − Σ̂

−1

IPWΩIPW(Σ̂
⊤
IPW)−1∥2 = op(1), or

∥Ω̂IPW −ΩIPW∥2 = op(1). (43)

In view of (42), we only need to show ∥Ω̂IPW − 1
nT

∑nT
g=1 ζ

(g)ζ(g)⊤∥2 = op(1). Notice that

Ω̂IPW − 1

nT

nT∑
g=1

ζ(g)ζ(g)⊤ =
1

nT

nT∑
g=1

{
ζ̂(g)ζ̂(g)⊤ − ζ(g)ζ(g)⊤

}

=
1

nT

nT∑
g=1

{(
ζ̂(g) − ζ(g)

)
ζ̂(g)⊤ + ζ(g)

(
ζ̂(g) − ζ(g)

)⊤}
.

By the triangle inequality, we have∥∥∥∥∥Ω̂IPW − 1

nT

nT∑
g=1

ζ(g)ζ(g)⊤

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1

nT

nT∑
g=1

(
ζ̂(g) − ζ(g)

)
ζ̂(g)⊤

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

nT

nT∑
g=1

ζ(g)
(
ζ̂(g) − ζ(g)

)⊤∥∥∥∥∥
2

. (44)

It suffices to show∥∥∥∥∥ 1

nT

nT∑
g=1

(ζ̂(g) − ζ(g))ζ̂(g)⊤

∥∥∥∥∥
2

= op(1) and

∥∥∥∥∥ 1

nT

nT∑
g=1

ζ(g)(ζ̂(g) − ζ(g))⊤

∥∥∥∥∥
2

= op(1).

Recall that ζ̂(g) = ω̂(g)ε̂(g)ξ(g) − Ĥ2m̂
(g), where

ε̂(g) = Ri(g),t(g)+1 + γ
∑
a∈A

π
(
a | Si(g),t(g)+1

)
Φ⊤
L

(
Si(g),t(g)+1

)
β̂a − Φ⊤

L

(
Si(g),t(g)

)
β̂Ai(g),t(g)

,

and ω̂(g), Ĥ2, m̂
(g) are obtained by plugging in ψ̂.

We first show ∥ 1
nT

∑nT
g=1 ζ

(g)(ζ̂(g) − ζ(g))⊤∥2 = ∥ 1
nT

∑nT
g=1(ζ̂

(g) − ζ(g))ζ(g)⊤∥2 = op(1), the other statement can be

shown using similar arguments. By definition, ζ̂(g) − ζ(g) can be expressed as

ζ̂(g) − ζ(g) = ω̂(g)ε̂(g)ξ(g) − Ĥ2m̂
(g) − ω∗(g)ε(g)ξ(g) +H2m

∗(g)

=
(
ω̂(g)ε̂(g) − ω∗(g)ε(g)

)
ξ(g)︸ ︷︷ ︸

E
(g)
1

− (Ĥ2m̂
(g) −H2m

∗(g))︸ ︷︷ ︸
E

(g)
2

,

and ζ(g) can be expressed as
ζ(g) = ω∗(g)ε(g)ξ(g)︸ ︷︷ ︸

E
(g)
3

−H2m
∗(g)︸ ︷︷ ︸

E
(g)
4

.

By the triangle inequality,∥∥∥∥∥ 1

nT

nT∑
g=1

(ζ̂(g) − ζ(g))ζ(g)⊤

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1

nT

nT∑
g=1

E
(g)
1 E

(g)⊤
3

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

nT

nT∑
g=1

E
(g)
1 E

(g)⊤
4

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

nT

nT∑
g=1

E
(g)
2 E

(g)⊤
3

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

nT

nT∑
g=1

E
(g)
2 E

(g)⊤
4

∥∥∥∥∥
2

.

Thus, it suffices to show ∥ 1
nT

∑nT
g=1E

(g)
i E

(g)⊤
j ∥2 = op(1) for all i ∈ {1, 2}, j ∈ {3, 4}.

We first show ∥ 1
nT

∑nT
g=1E

(g)
1 E

(g)⊤
3 ∥2 = op(1). It is equivalent to showing

sup
a∈SmL−1

∣∣∣∣∣ 1

nT

nT∑
g=1

a⊤ξ(g)ξ(g)⊤a
(
ω̂(g)ε̂(g) − ω∗(g)ε(g)

)
ω∗(g)ε(g)

∣∣∣∣∣ = op(1),
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where SmL−1 denotes the unit sphere {a ∈ RmL : ∥a∥2 = 1}. According to Lemma
G.4, supa∈SmL−1

1
nT

∑nT
g=1 a

⊤ξ(g)ξ(g)⊤a = Op(1), hence we only need to show max1≤g≤nT |(ω̂(g)ε̂(g) −
ω∗(g)ε(g))ω̂(g)ε̂(g)| = op(1). The bound in (13) indicates that ε(g)’s are uniformly bounded, together with the bound
for ω∗(g) given in condition A.2(b), we obtain max1≤g≤nT |ω∗(g)ε(g)| = Op(1). Therefore, it remains to show

max
1≤g≤nT

∣∣∣ω̂(g)ε̂(g) − ω∗(g)ε(g)
∣∣∣ = op(1).

Note that the term can be decomposed as ω̂(g)ε̂(g) − ω∗(g)ε(g) = (ω̂(g) − ω∗(g))ε̂(g) + ω∗(g)(ε̂(g) − ε(g)). Using similar
arguments in showing (E.50) in Shi et al. (2021b), we have max1≤g≤nT |ε(g) − ε̂(g)| = op(1). On the other hand, the
consistency of dropout propensity model, ψ̂

p→ ψ∗, indicates that ω̂(g) p→ ω∗(g) for any g, thus max1≤g≤nT |ω(g)− ω̂(g)| =
op(1). Combine them together yields

max
1≤g≤nT

|ω̂(g)ε̂(g) − ω∗(g)ε(g)| = max
1≤g≤nT

|(ω̂(g) − ω∗(g))ε̂(g) + ω∗(g)(ε̂(g) − ε(g))|

≤ max
1≤g≤nT

|ω̂(g) − ω∗(g)||ε̂(g)|+ max
1≤g≤nT

|ω∗(g)||ε̂(g) − ε(g)| = op(1).
(45)

This completes the proof for ∥ 1
nT

∑nT
g=1E

(g)
1 E

(g)⊤
3 ∥2 = op(1).

Next, we show ∥ 1
nT

∑nT
g=1E

(g)
2 E

(g)⊤
4 ∥2 = op(1). Using similar arguments in bounding ∥Σ̂−Σ∥2 in the proof of Lemma

G.3, we obtain ∥Ĥ2 −H2∥2 = op(1) as well as
∥∥∥ 1
nT

∑nT
g=1m

∗(g)(m∗(g))⊤ − E
{
m∗(m∗)⊤

}∥∥∥
2
= op(1).

It follows from ψ̂
p→ ψ∗ that 1

nT

∑nT
g=1

∥∥∥m̂(g) −m∗(g)
∥∥∥2
2

p→ 0. Therefore,

∥∥∥∥∥ 1

nT

nT∑
g=1

m̂
(g)

(m∗(g))⊤ − 1

nT

nT∑
g=1

(m∗(g))(m∗(g))⊤

∥∥∥∥∥
2

≤ 1

nT

nT∑
g=1

∥∥∥m̂(g)
(m∗(g))⊤ −m∗(g)(m∗(g))⊤

∥∥∥
2
≤ 1

nT

nT∑
g=1

∥∥∥m̂(g) −m∗(g)
∥∥∥
2

∥∥∥m∗(g)
∥∥∥
2

≤

(
1

nT

nT∑
g=1

∥∥∥m̂(g) −m∗(g)
∥∥∥2
2

)(
1

nT

nT∑
g=1

∥∥∥m∗(g)
∥∥∥2
2

)
p→ 0,

where the last step holds since the convergence of the diagonal elements of 1
nT

∑nT
g=1m

∗(g)(m∗(g))⊤ implies that
1
nT

∑nT
g=1

∥∥m∗(g)
∥∥2
2

is bounded in probability. Based on the aforementioned results, we can show

∥∥∥∥∥ 1

nT

nT∑
g=1

E
(g)
2 E

(g)⊤
4

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

nT

nT∑
g=1

{
Ĥ2m̂

(g)
(m∗(g))⊤H⊤

2 −H2m
∗(g)(m∗(g))⊤H⊤

2

}∥∥∥∥∥
2

≤

∥∥∥∥∥(Ĥ2 −H2)

{
1

nT

nT∑
g=1

m̂
(g)

(m∗(g))⊤

}
H⊤

2

∥∥∥∥∥
2

+

∥∥∥∥∥H2

{
1

nT

nT∑
g=1

m̂
(g)

(m∗(g))⊤ −m∗(g)(m∗(g))⊤

}
H⊤

2

∥∥∥∥∥
2

= op(1).

It remains to show ∥ 1
nT

∑nT
g=1E

(g)
1 E

(g)⊤
4 ∥2 = op(1) and ∥ 1

nT

∑nT
g=1E

(g)
2 E

(g)⊤
3 ∥2 = op(1). They can be shown in similar
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ways, here we only prove ∥ 1
nT

∑nT
g=1E

(g)
1 E

(g)⊤
4 ∥2 = op(1) for brevity. Notice that

∥∥∥∥∥ 1

nT

nT∑
g=1

E
(g)
1 E

(g)⊤
4

∥∥∥∥∥
2

=

∥∥∥∥∥
{

1

nT

nT∑
g=1

(
ω̂(g)ε̂(g) − ω∗(g)ε(g)

)
ξ(g)(m∗(g))⊤

}
H⊤

2

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1

nT

nT∑
g=1

(
ω̂(g)ε̂(g) − ω∗(g)ε(g)

)
ξ(g)(m∗(g))⊤

∥∥∥∥∥
2

∥H2∥2

≤ 1

nT

nT∑
g=1

∥∥∥(ω̂(g)ε̂(g) − ω∗(g)ε(g)
)
ξ(g)

∥∥∥
2

∥∥∥m∗(g)
∥∥∥
2
∥H2∥2

≤

(
1

nT

nT∑
g=1

∥∥∥(ω̂(g)ε̂(g) − ω∗(g)ε(g)
)
ξ(g)

∥∥∥2
2

)(
1

nT

nT∑
g=1

∥∥∥m∗(g)
∥∥∥2
2

)
∥H2∥2 .

Since 1
nT

∑nT
g=1

∥∥m∗(g)
∥∥2
2

and ∥H2∥2 are bounded in probability, it suffices to show
1
nT

∑nT
g=1

∥∥∥(ω̂(g)ε̂(g) − ω∗(g)ε(g)
)
ξ(g)

∥∥∥2
2
= op(1). We have already prove max1≤g≤nT |ω̂(g)ε̂(g) − ω∗(g)ε(g)| = op(1)

in (45), hence max1≤g≤nT (ω̂
(g)ε̂(g) − ω∗(g)ε(g))2 = op(1). Meanwhile, by Lemma G.4, we have

supa∈SmL−1
1
nT

∑nT
g=1 a

⊤ξ(g)ξ(g)⊤a = Op(1). Thus,

sup
a∈SmL−1

∣∣∣∣∣ 1

nT

nT∑
g=1

a⊤ξ(g)ξ(g)⊤a
(
ω̂(g)ε̂(g) − ω∗(g)ε(g)

)2∣∣∣∣∣ = op(1),

equivalently, 1
nT

∑nT
g=1

∥∥∥(ω̂(g)ε̂(g) − ω∗(g)ε(g)
)
ξ(g)

∥∥∥2
2
= op(1). This completes the proof for ∥ 1

nT

∑nT
g=1E

(g)
1 E

(g)⊤
4 ∥2 =

op(1). We can also show ∥ 1
nT

∑nT
g=1E

(g)
2 E

(g)⊤
3 ∥2 = op(1) using similar steps.

Combine these results together yields ∥ 1
nT

∑nT
g=1 ζ

(g)(ζ̂(g)− ζ(g))⊤∥2 = op(1) . Similarly we can show ∥ 1
nT

∑nT
g=1(ζ̂

(g)−
ζ(g))ζ̂(g)⊤∥2 = op(1) . Therefore, ∥Ω̂IPW − 1

nT

∑nT
g=1 ζ

(g)ζ(g)⊤∥2 = op(1), and hence (43) is proven.

G.4. Proof of Theorem F.1

Proof. Similar to the proof of Theorem 4.5, we define εi,t as follows:

εi,t = Ri,t+1 + γ
∑
a∈A

Qπ(Si,t+1, a)π (a|Si,t+1)−Qπ(Si,t, Ai,t),

and use Ft = {(Sj , Aj , Rj+1)}0≤j<t ∪ {St, At} to denote the past information up to time t. Based on Assumption 3.1,
3.2, and Bellman equation, εi,t satisfies E (εt|Ft) = E (εt|St, At) = 0. For simplicity, we use ω̂π,i,t and ωπ,i,t to represent
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ω̂π,nT (Si,t, Ai,t) and ωπ(Si,t, Ai,t) respectively. The value estimation error V̂ πCC(G)− V π(G) can be decomposed as

V̂ πCC(G)− V π(G)

=
1

1− γ

1

nT

n∑
i=1

T−1∑
t=0

ηi,t+1ω̂π,i,tRi,t+1 − ES0∼G

{∑
a∈A

π(a|S0)Q
π (S0, a)

}

=
1

1− γ

1

nT

n∑
i=1

T−1∑
t=0

ηi,t+1ω̂π,i,t

[
εi,t+1 +Qπ(Si,t, Ai,t)− γ

∑
a∈A

Qπ(Si,t+1, a)π (a|Si,t+1)

]

− ES0∼G

{∑
a∈A

π(a|S0)Q
π (S0, a)

}

=− 1

1− γ
LnT (ω̂π, Qπ) · · · · · · (I)

+
1

1− γ

1

nT

n∑
i=1

T−1∑
t=0

ηi,t+1ω̂π,i,tεi,t+1 · · · · · · (II)

For (I), note that LnT (ω̂π, Qπ) captures the difference between two sides of equation (8) under the estimated density ratio
and the true Q-function. This loss term is dependent on the specific algorithm, the choice of function class Q, and the
computation procedure. Under Assumption F.1(b), this term converges to 0. For (II), by applying the Cauchy inequality and
the boundedness condition in Assumption F.1(a), we have

E

{
1

nT

n∑
i=1

T−1∑
t=0

ηi,t+1ω̂π,i,tεi,t

}2

≤E

(
1

nT

n∑
i=1

T−1∑
t=0

ω̂2
π,i,t

)(
1

nT

n∑
i=1

T−1∑
t=0

η2i,t+1ε
2
i,t

)

≤c2ω · E

(
1

nT

n∑
i=1

T−1∑
t=0

η2i,t+1ε
2
i,t

)
.

(46)

The last inequality follows from the boundedness of ω̂π,i,t.

Next, we derive the bound for E
(
(nT )−1

∑n
i=1

∑T−1
t=0 η2i,t+1ε

2
i,t

)
. Under the MAR assumption, ηt+1 and εt are condition-

ally independent, it follows that

E {ηt+1εt} = E {E (ηt+1εt|Ft, ηt)} = E {E (ηt+1|Ft, ηt)E (εt|Ft)} = 0.

Similarly, for any 0 ≤ t1 < t2 < T , we obtain E{ηt1+1ηt2+1εt1εt2} = 0. In addition, by the independence assumption
among trajectories, we have

E {ηi1,t1+1ηi2,t2+1εi1,t1εi2,t2} = 0.

Applying the bound for εt derived from (13) yields

E

{
1

nT

n∑
i=1

T−1∑
t=0

ηi,t+1εi,t

}2

=
1

(nT )2

n∑
i=1

T−1∑
t=0

E
{
η2i,t+1ε

2
i,t

}
=

1

(nT )2
· n

T−1∑
t=0

E
{
η2t+1ε

2
t

}
≤ 1

nT
(c0 + 2c′)

2
.

(47)

Combine (46) and (47), we have

E

{
1

nT

n∑
i=1

T−1∑
t=0

ηi,t+1ω̂π,i,tεi,t

}2

≤ 1

nT
(c0 + 2c′)

2
c2ω.
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By Markov inequality,

1

nT

n∑
i=1

T−1∑
t=0

ηi,t+1ω̂π,i,tεi,t = Op{(nT )−1/2}.

As a result, V̂ πCC(G)
p→ V π(G) as nT → ∞, indicating that V̂ πCC(G) is a consistent estimator of V π(G) under ignorable

missingness.

However, when the missingness is nonignorable, the conditional independence between ηt+1 and εt no longer holds. As a
result, the convergence of (II) to 0 is not guaranteed, and the complete-case value estimator V̂ πCC(G) will be biased from
V π(G).

G.5. Proof of Lemma G.8

Lemma Suppose Assumption A.1-A.2 holds. We have ∥Σ̂IPW −Σ∥2 = Op
{
L1/2(nT )−1/2 log(nT )

}
, ∥Σ̂

−1

IPW −Σ−1∥2 =

Op
{
L1/2(nT )−1/2 log(nT )

}
and ∥Σ̂

−1

IPW∥2 ≤ 6c̄−1 with probability approaching 1, as either n→ ∞ or T → ∞.

Proof. Recall that

Σ̂IPW =
1

nT

n∑
i=1

T−1∑
t=0

ω̂i,t+1ξi,t
(
ξi,t − γUπ,i,t+1

)⊤
Σ = E

{
ω∗
i,t+1ξi,t(ξi,t − γUπ,i,t+1)

}
= E

{
ξi,t(ξi,t − γUπ,i,t+1)

}
.

It follows that

Σ̂IPW −Σ =
1

nT

n∑
i=1

T−1∑
t=0

ω̂i,t+1ξi,t
(
ξi,t − γUπ,i,t+1

)⊤ −Σ

=

(
1

nT

n∑
i=1

T−1∑
t=0

(ω̂i,t+1 − ω∗
i,t+1)ξi,t

(
ξi,t − γUπ,i,t+1

)⊤)

+

(
1

nT

n∑
i=1

T−1∑
t=0

ω∗
i,t+1ξi,t

(
ξi,t − γUπ,i,t+1

)⊤ −Σ

)

Using similar arguments in proving Lemma G.3, we obtain∥∥∥∥∥ 1

nT

n∑
i=1

T−1∑
t=0

ω∗
i,t+1ξi,t

(
ξi,t − γUπ,i,t+1

)⊤ −Σ

∥∥∥∥∥
2

= Op

{
L1/2(nT )−1/2 log(nT )

}
.

On the other hand, using a similar technique as in (24), we have

1√
nT

n∑
i=1

T−1∑
t=0

(
ω̂i,t+1 − ω∗

i,t+1

)
ξi,t
(
ξi,t − γUπ,i,t+1

)⊤
=

√
nTH3(ψ̂ −ψ∗) + op(1),

for some tensorH3. By convergence of ψ̂ given in (26), we have∥∥∥∥∥ 1

nT

n∑
i=1

T−1∑
t=0

(
ω̂i,t+1 − ω∗

i,t+1

)
ξi,t
(
ξi,t − γUπ,i,t+1

)⊤∥∥∥∥∥
2

= Op{(nT )−1/2}.
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Therefore,

∥∥∥Σ̂IPW −Σ
∥∥∥
2
≤

∥∥∥∥∥ 1

nT

n∑
i=1

T−1∑
t=0

ω∗
i,t+1ξi,t

(
ξi,t − γUπ,i,t+1

)⊤ −Σ

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

nT

n∑
i=1

T−1∑
t=0

(
ω̂i,t+1 − ω∗

i,t+1

)
ξi,t
(
ξi,t − γUπ,i,t+1

)⊤∥∥∥∥∥
2

= Op

{
L1/2(nT )−1/2 log(nT )

}
+Op{(nT )−1/2}

= Op

{
L1/2(nT )−1/2 log(nT )

}
.

Based on this result, we can follow similar steps in the proof for Lemma G.3 to show ∥Σ̂
−1

IPW∥2 ≤ 6c̄−1 and ∥Σ̂
−1

IPW−Σ−1∥2 =
Op
{
L1/2(nT )−1/2 log(nT )

}
. The proof is hence completed.
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