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ABSTRACT

While data plays a crucial role in training contemporary AI models, it is acknowl-
edged that valuable public data will be exhausted in a few years, directing the
world’s attention towards the massive decentralized private data. However, the
privacy-sensitive nature of raw data and lack of incentive mechanism prevent these
valuable data from being fully exploited. Addressing these challenges, this paper
proposes inclusive and incentivized personalized federated learning (iPFL), which
incentivizes data holders with diverse purposes to collaboratively train personal-
ized models without revealing raw data. iPFL constructs a model-sharing mar-
ket by solving a graph-based training optimization and incorporates an incentive
mechanism based on game theory principles. Theoretical analysis shows that iPFL
adheres to two key incentive properties: individual rationality and truthfulness.
Empirical studies on eleven AI tasks (e.g., large language models’ instruction-
following tasks) demonstrate that iPFL consistently achieves the highest economic
utility, and better or comparable model performance compared to baseline meth-
ods. We anticipate that our iPFL can serve as a valuable technique for boosting
future AI models on decentralized private data while making everyone satisfied.

1 INTRODUCTION

Training on massive publicly-available data (Raffel et al., 2020; Gao et al., 2020; Schuhmann et al.,
2021; 2022), AI models have demonstrated significant proficiency in diverse domains (Brown et al.,
2020; Ouyang et al., 2022b; Rombach et al., 2022; Ramesh et al., 2021). As a well-known repre-
sentative, ChatGPT (Ouyang et al., 2022b; OpenAI, 2023) has swept the world with its exceptional
ability to solve general tasks. While it is commonly acknowledged that more data leads to better
performance (Kaplan et al., 2020), it has been estimated that available and valuable data in public
will be exhausted by the year 2026 (Villalobos et al., 2022; Muennighoff et al., 2023), significantly
impeding the continued enhancement of AI models under the current training paradigm.

The gradual depletion of public data starkly contrasts with the private sector, where massive in-
stitutions separately hold a wealth of valuable data. For instance, financial institutions such as
Bloomberg (Wu et al., 2023) possess high-quality private data to train AI models for finance. Ide-
ally, if these institutions collaborate on their resources, they can create a substantial and diverse
database capable of augmenting contemporary AI models (Wu et al., 2023; Singhal et al., 2023;
Wang et al., 2023; Chen et al., 2023). Unfortunately, two critical practical issues prevent distributed
private data from being fully exploited (Voigt & Von dem Bussche, 2017; Kairouz et al., 2021).
Firstly, the sensitivity of private data deters institutions from sharing it readily since this could raise
privacy concerns and cause interest conflict (Voigt & Von dem Bussche, 2017; Price & Cohen, 2019;
Hathaliya & Tanwar, 2020; Box & Pottas, 2013; Qi et al., 2023; Kaissis et al., 2021). Secondly, the
absence of a comprehensive incentive mechanism results in a lack of motivation for institutions to
actively and willingly engage in collaboration (Yang et al., 2019; Karimireddy et al., 2022).

Consequently, to enable the utilization of decentralized private data for the continued enhancement
of contemporary AI models, it is imperative to establish a harmonious sharing market, which should
safeguard privacy and ensure individual interests. In this market, data owners could act as buyers
who selectively buy models from others to help train stronger models for their interested tasks; or as
sellers who gain revenues from other institutions that have bought their models. Such a guarantee of
privacy (i.e., trading models rather than data) and interests can well motivate institutions to partici-
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Figure 1: Inclusive PFL market and our iPFL. a. The clients have different purposes for entering a
PFL system. A client can be: i) a trader who simultaneously buys model and sells their model; ii)
a buyer who only buys a model and never shares its own model; iii) a seller who only sells its own
model and never buys models; iv) an attacker who intends to ruin the system. b. In an inclusive
market system, the model and money transaction should satisfy the needs of all the participants and
block out attackers. c. In our iPFL, all the market behaviors are completed over a neutral server.

pate in the market, forming a virtuous circle as more participants lead to better performance which
in turn attracts more participants.

Following this vision, we adopt personalized federated learning (PFL) (Wu et al., 2022; T Dinh et al.,
2020; Fallah et al., 2020) as the technical foundation for model training in this market, due to PFL’s
properties on preserving data privacy (i.e., sharing models) and catering to personal interests (i.e.,
improving personalization performance). In this PFL-based market, coordinated by a central server,
participants share their locally-trained models to achieve personalization through collaboration (Ye
et al., 2023b; Li et al., 2021a; Huang et al., 2021). This approach has shown promising personalized
performance through techniques like model regularization (Li et al., 2021a), meta-learning (Fallah
et al., 2020), and clustering (Sattler et al., 2020). However, existing methods mainly focus on per-
sonalization techniques, overlooking participants’ economic conditions and motivations, which are
two key factors in market dynamics.

Therefore, in this paper, we introduce an inclusive PFL system that accommodates individual model
preferences and economic conditions, where we specifically consider four types of participants as
shown in Figure 1 (a). We model the overall system as a graphical game, with participants as nodes
and their exchange relationships as asymmetrically weighted edges, enabling a nuanced model-
sharing network; see illustration in Figure 1 (b). To achieve this, we propose a novel graph-based
PFL optimization objective that captures an individual’s model preference via model similarity and
economic conditions via reserving personalized utility functions. Specifically, we pursue personal-
ized models by minimizing loss on interested tasks while maximizing the pair-wise model similarity
among participants and the total social welfare within the overall collaboration graph. In this way,
participants are allowed to select models based on their preferences and affordability, improving per-
sonalization performance, enhancing system robustness against inauthentic models and promoting
cost efficiency.
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While the graph-based PFL provides the technical foundation, the market’s success also depends
on an effective incentive mechanism to motivate participation. This mechanism must fairly reward
contributions and ensure those benefiting from contributions compensate accordingly, while also
promoting honest participation and deterring dishonest or malicious behavior (Li et al., 2021b; Zhan
et al., 2020). To achieve this, we design a payment mechanism in our PFL system (we term our
overall system iPFL where i denotes incentivized and inclusive) that encourages willing and honest
participation. This mechanism sets specific prices for model transactions, calculated using game
theory principles and considering both the buyer’s economic utility and the seller’s model quality.
This ensures mutual benefit from each transaction. Through theoretical analysis, we show that iPFL
adheres to two key incentive principles: individual rationality, ensuring that all participants benefit
from each training round, and truthfulness, incentivizing clients to disclose their true training costs,
fostering a collaborative and honest market environment.

To verify the effectiveness of our proposed iPFL (see system overview in Figure 1), we conduct
extensive experiments, covering comprehensive comparisons with baselines, diverse scenarios and
tasks. Results show that iPFL consistently achieves higher economic utility, and better or com-
parable personalization performance compared to state-of-the-art PFL methods. Remarkably, in a
scenario of training large language models (Touvron et al., 2023), iPFL can achieve 49% higher
economic utility and 9% higher model utility than the best baseline method. We anticipate that our
proposed iPFL can serve as a valuable technique for boosting future AI models on decentralized
private data while making everyone satisfied.

2 RELATED WORKS

Personalized federated learning. The latest developments in personalized federated learning (PFL)
have made significant strides in enhancing individual performance. Present approach to attain per-
sonalized model for the clients in FL includes model regularization (Li et al., 2021a; T Dinh et al.,
2020), meta-learning (Fallah et al., 2020), clustering (Sattler et al., 2020) techniques, and more.

Particularly, our work is related to the PFL methods that incorporate graph regularization (Huang
et al., 2021; Ye et al., 2023b; Zhang et al., 2021). Huang et al. (2021) proposes FedAMP, which
introduces regularization with a predefined attention-inducing function capturing the pairwise col-
laboration among the clients. In pFedGraph proposed by Ye et al. (2023b), a collaboration graph is
learned from clients’ model similarity and then used to regularize the update of personalized mod-
els. These methods are more interpretable as they explicitly describe the collaboration relationships
among the clients, which are suitable for the basis of a market system. The collaboration topology
in previous performance-prior graph-based PFL methods is usually determined by model attributes.
In our works, we additionally introduce a market system into the formulation of the collaboration
graph, so that our PFL system can balance performance and economy simultaneously.

We defer literature review on incentivized federated learning in Section E.4.

3 PROBLEM FORMULATION

We consider the popular PFL settings, where m institutions join the system as clients and are man-
aged by a central server. Each client i holds a private dataset Zi = (zi,1, ..., zi,Ni) with Ni data
points sampled from client i’s local data distribution Di. Each client i maintains its own model
parameters θi. Given a common loss criterion l(·, ·), the empirical loss of client i on its own dataset
Zi is: Li(θi) =

1
Ni

∑
k∈[Ni]

l(θi; zi,k). The clients hope to train a personalized model that performs
well on its local data distribution Di. In this case, the population loss (testing loss) for client i is
L∗
i (θi) = Ez∼Di l(θi; z).

Due to privacy concerns and communication constraints in multi-institutional scenarios, the clients
cannot directly send their data to other clients. In our work, we consider the model-sharing strategy
in PFL. As a member of the federation, each client can refer to others’ model parameters, coordinated
by the server and realized at the server side. Specifically, to describe the model sharing to topology
among the clients, we use a directed graph represented by the adjacency matrix A = (aij)m×m
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with:

aij =

{
1 if i ̸= j and client i imports the model of client j
0 else

Each client may participate in federated learning with different purposes (i.e., for a better model
for their local tasks or economic rewards). Meanwhile, we assume that the server has no interest in
clients’ tasks and only acts as a neutral coordinator. With the model sharing topology A, we then
use a graphical game model to formulate the market of PFL. The players in this game are the clients,
without the server. In the market, the clients can choose the models they will import, so the action of
client i is described by ai (the ith roll of A). The action of model sharing can reflect the fairness of
the training. For example, a client may share its own model with many other clients, but import few
models from them. In this case, this client may not be satisfied with the arrangement of training, as
it cannot obtain proportionate treatment from the federation. Therefore, we additionally introduce
a utility function to capture the clients’ non-training benefits (i.e., economic gain, satisfaction with
the collaboration) in the procedure of training.
Definition 1 (utility). Consider that the clients are sharing models for multiple rounds (in each round
t the clients share models according to At). The utility of client i in each round is defined as:

U t
i = Gi(a

t
i)−

∑
j∈[m]

atjici − pti. (1)

We elaborate on the three components as follows:
Definition 2 (collaboration gain). Gi : {0, 1}m → R is the gain function for client i, with Gi(a

t
i)

describing client i’s gain of data resource from chosen collaborators ati.
In our work, we consider a specified Gi to describe the diminishing collaboration gain for the
quality-aware clients. We assume that for client i the gain is related to the amount of imported
data, which can be represented by a continuous and concave function gi : R → R. Specifically, we
consider:

Gi(ai) = gi(
∑
j∈[m]

aijNj) =

√
Ki

Ni
−

√
Ki

Ni +
∑

j∈[m] aijNj
, (2)

with hyper-parameter Ki representing client i’s level of eagerness for data. Ki can be varied among
the clients , reflecting their different data needs. If Ki = 0, that means the client cannot benefit
from enlarged data access, so he may be a pure model seller and will not buy models from any other
client. If Ki > 0, getting more data from the collaborators will increase the gain, but the marginal
benefit brought by each collaborator will become smaller. If there is no collaborator, the gain is zero,
as Gi(0) = gi(0) = 0.
Definition 3 (sharing cost). If θti is imported by one another client, client i will suffer a loss of ci.
ci indicates client i’s unwillingness to share its model due to fairness or privacy concerns. By defini-
tion, unless the payback is larger than ci, the change of utility is negative and client i is reluctant to
share its model. From this perspective, ci can also be taken as a minimum price to share the model.
So we introduce money transactions to overcome this barrier to collaboration.
Definition 4 (overall payment). pti represents the amount of payment client i should pay to the
system in round t.
If pti > 0, that means client i has to pay for the benefits gained from the federation; otherwise,
that means client i is rewarded for his contribution to the federation. Since the server is neutral, we
only consider the monetary transaction among the clients. Denote rtij as the remittance from client
i to client j. Since the money transaction is symmetric: pti =

∑
j∈[m] r

t
ij −

∑
j∈[m] r

t
ji, there is∑

i∈[m] p
t
i = 0.

Based on our evaluation of clients’ utility, we have the social welfare of the whole market system.
Definition 5 (social welfare). Denote c = (c1, ..., cm)⊤, the social welfare at round t is defined as:

SW(At) =
∑
i∈[m]

U t
i =

∑
i∈[m]

[
Gi(a

t
i)− c⊤ati

]
. (3)
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In iPFL, our goal is to build up an inclusive PFL system that provides personalized training according
to clients’ models and economic needs. To achieve this, we propose a novel PFL optimization
problem, which pursues smaller training loss and larger between-collaborators model similarity,
while maintaining the economic utility of all the clients. Define the similarity between two models
θi and θj using a differentiable function d(θi, θj). To enable more collaboration among more similar
clients, we can include pair-wise similarity in the optimization problem of PFL. Thus, our training
objective is defined as:

min
∀i∈[m]:θi;A

∑
i∈[m]

Li(θi) + λ
∑

i,j∈[m]

aij
Nj

Ni
d(θi, θj)− SW(A). (4)

The first two terms Li(θi) + λ
∑

i,j∈[m] aij
Nj

Ni
d(θi, θj) are model-similarity-aware training loss.

With pairwise collaboration indicated by binary indicator aij , if client i imports j’s model, a regu-
larization term λ

Nj

Ni
d(θi, θj) will be added to the training loss. The third term SW(A) is the social

welfare under the graph A, which can also be taken as a regularization term to avoid A degrade
to 0. Therefore, the clients can attain personalized models without losing generality by minimizing
both the loss on local tasks and the model difference compared to their collaborators. At the same
time, our system also optimizes social welfare by refining the clients’ selection of references, which
ensures the benefits of each client and makes the training more economic-efficient.

4 INCLUSIVE AND INCENTIVIZED PERSONALIZED FEDERATED LEARNING

We overview the system in Algorithm 1, which takes T rounds in total to alternatively optimize
personalized model θi and neighbor selection Ai for each client and assign appropriate payment
among clients. Specifically, in each round t, the clients first update and upload their local models θti .
Then, the server calculates the data sharing graph At by optimizing the clients’ actions according
to the game model. The amount of payment pti for each client is also calculated according to At of
round t. At the end of each round, the clients have two choices: 1) pay pti and receive the aggregated
model θ̄ti for next round; 2) quit the federation and take the best model in previous rounds as the
final model. So the clients can leave the multi-round training at ant time.

The training procedure involves three key steps: local model training at the client side, where per-
sonalized models are trained locally; graph topology learning at the server side, where the model
sharing topology is learnt from the uploaded local models; payment calculation at the server side,
where a bill for each client is determined by the server and the clients complete money transaction
by paying the bill.

Local model training. To train a personalized model by collective data, each client updates its
model parameters locally by simultaneously minimizing loss on local tasks and model-level distance
from the selected collaborators’ models. Since it is not feasible to optimize all the clients’ models at
the same time, we update the local models by block gradient descent. That is, in round t, each client
updates its model by:

θt+1
i = argmin

θi
Li(θi) + λ

∑
j∈[m]

At
ij

nj

ni
d(θi, θ

t
j), (5)

where At
ij is the collaboration indicator in At determined by the server at round t. If the server

determines that client i should collaborate with client j, Aij will be set as 1, so that client i will
be encouraged to learn from client j during the local model training by minimizing the distance be-
tween local model θi and collaborators’ models {θtj}Aij=1. However, directly solving Equation (5)
requires times of communication cost because client i need access to all collaborators’ local models.
To efficiently avoid introducing additional communication costs, we propose to apply the proximal
gradient descent method, in which the server computes Equation (6) in advance before transmitting
information to clients and each client optimizes Equation (7) during local model training in practical
implementation:

θ̄ti = θti −
η

ni

∑
j∈[m]

At
ijnj∇θt

i
d(θti , θ

t
j) (6)

θt+1
i = argmin

θi
Li(θi) +

λ

2η
∥θi − θ̄ti∥22, (7)
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where η is the step size in the calculation of the proximal center. With such a technique, the server
only needs to send client i a proximal center θ̄ti at round t instead of multiple models from collabo-
rators.

Graph topology learning. The server needs to find a suitable model-sharing graph based on the
local models uploaded by clients. The graph is optimized by minimizing the model distance between
collaborators and maximizing social welfare of the overall system, which corresponds to solving a
sub-problem of Equation (4):

∀i ∈ [m] : At
i = argmin

Ai

ϕi(Ai) = λ
∑
j∈[m]

Aij
nj

ni
d(θti , θ

t
j) + c⊤Ai −Gi(Ai) (8)

s.t. ∀i, j ∈ [m] : Aij ∈ {0, 1}.
where ϕi denotes the objective function of the sub-problem for each client. The problem is an
NP-hard integer programming and finding an optimal solution can be very costly. Therefore, we
propose an efficient graph learning algorithm (Algorithm 2) to get an approximate solution for this
optimization problem in O(m) time. In this algorithm, we calculate a threshold data amount nTh

k

for each potential collaborator of client i by gi(n
Th
j ) − gi(n

Th
j − nj) = cj + λ

nj

ni
d(θti , θ

t
j). Since

the marginal collaboration gain brought by each collaborator of client i decreases with client i’s
total accessible data amount, if Aij = 0 and nTh

j > nj +
∑

k∈[m] Aiknk, then setting Aij = 1

would make ϕi smaller. Therefore, Algorithm 2 keeps adding the client j with the largest nTh
j to the

collaborators of client i until ∀j : Aij = 0 ⇒ nTh
j ≤ nj+

∑
k∈[m] Aiknk. Hence, after Algorithm 2

reaches the condition of termination, we have a solution A∗
i that satisfies:

∀j ̸= i : A∗
ij = 1 ⇒ ϕi(A

∗
i −Ej) > ϕi(A

∗
i ) (9)

∀j ̸= i : A∗
ij = 0 ⇒ ϕi(A

∗
i +Ej) ≥ ϕi(A

∗
i ),

where Ej is the jth row of the identity matrix. Though this algorithm cannot ensure a globally
optimal solution to Equation (8), its solution A∗

i is a locally optimal choice for client i, as adding or
removing any collaborator will not make the objective ϕi smaller. By introducing such an approxi-
mate solution, our graph learning algorithm can attain a feasible At efficiently and robustly without
sacrificing a large amount of time searching for unnecessary optimality, which is sufficiently effec-
tive in practice.

Payment calculation. According to the definition of the utility of clients in Definition 1, if client i
imports the model from j, it will pose a cost of cj to client j. This indicates that the model sharing
is not reciprocal, leading to the dilemma that some clients lack the incentive to join the training.
Therefore, after confirming the collaboration graph At among clients, the server needs to determine
the required payment pti for client i, which needs to ensure that contributions from clients are aptly
rewarded and those benefiting from these contributions are appropriately charged. In our payment
design, we consider the reward calculated based on the benefit brought by the imported model. The
payment is defined as follows: if client i imports j’s model, client i pays to j the marginal benefit
minus the model difference:

rtij = At
ij [Gi(A

t
i)−Gi(A

t
i −Ej)− λ

nj

ni
d(θti , θ

t
j)],

where Gi(A
t
i)−Gi(A

t
i−Ej) is the marginal benefit (change of the gain) brought by j’s model and

λ
nj

ni
d(θti , θ

t
j) is the model difference term defined in Equation (4). In this way, pti can be written as:

p
t
i =

∑
j∈[m]

r
t
ij −

∑
j∈[m]

r
t
ji

=
∑

j:At
ij

=1

[
Gi(A

t
i) − Gi(A

t
i − Ej) − λ

nj

ni

d(θ
t
i , θ

t
j)

]
−

∑
j:At

ji
=1

[
Gj(A

t
j) − Gj(A

t
j − Ei) − λ

ni

nj

d(θ
t
j , θ

t
i)

]
. (10)

We can see that this payment policy is beneficial for both client i and j: while client j gets paid more
than minimal price, client i does not lose all the benefits brought by client j’s model. Therefore, the
model transaction in our system is reciprocal and no client is conveying benefits to others for free.
Also, different from simply covering client j’s cost by setting rtij = cj , the clients cannot directly
affect the payment by manipulating ci. This can significantly reduce the regret of pricing (i.e., losing
money for not setting ci higher) and greedy behaviors (i.e., reporting higher ci for more profits).
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5 ANALYSIS

In this section, we provide some theoretical discussion to show the special properties of our system.
First, we show that our system is individual rational. Theorem 1 ensures that the clients will be
satisfied with the training arrangement (the proofs in this section are in Appendix D).
Theorem 1 (Individual Rationality). If At is given by Algorithm 2, then ∀i ∈ [m], t ∈ [T ] : U t

i =
Gi(a

t
i)−

∑
j∈[m] a

t
jici − pti ≥ 0.

Second, Theorem 2 shows that the claim of ci is incentive compatible, as increasing ci will result in
less sharing of client i’s model. So clients can control the spread of their models.
Lemma 2 (Incentive Compatibility of ci). Denote At the graph calculated by the server when
everyone honestly reports their ci and Ât the new graph when client i report ĉi > ci. Then {j|âtji =
1} ⊆ {j|atji = 1}.
On the basis of Theorem 2 we can additionally prove Theorem 3, which ensures that the clients
cannot obtain additional income by overstating ci.
Theorem 3 (Truthfulness). Denote Ui the one-round utility of client i when everyone honestly re-
ports their ci and Û t

i as its utility when client i reports ĉi > ci. Then ∀t : Û t
i ≤ U t

i .
At the same time, if client i reports ĉi < ci, it risks selling his model at a low price and the mecha-
nism cannot ensure U t

i > 0. Thus, the clients are encouraged to reveal their true cost ci to the server.
This contributes to harmonious collaboration because clients do not need to be secretive about their
unwillingness to share.

We defer analysis on our system’s robustness against abnormally reported data amount Ni and model
parameters θti in Section C.

6 EXPERIMENTS

6.1 PERFORMANCE EVALUATION

We use five image and text classification datasets commonly used in FL literature; and four
instruction-tuning datasets for training instruction-following large language models. Classification
datasets includes CIFAR-10 Krizhevsky et al. (2009), Fashion-MNIST Xiao et al. (2017), PACS Li
et al. (2017), FEMNIST Caldas et al. (2018), and Shakespeare Caldas et al. (2018); while instruction-
tuning datasets includes three financial datasets (FIQA Maia et al. (2018), TFNS Magic (2022), and
NWGI Yang (2023)) and a coding dataset Chaudhary (2023). We compare our algorithm iPFL with
other 7 baselines, including two general FL algorithms–FedAvg McMahan et al. (2017) and Fed-
Prox Li et al. (2020), and 5 classical PFL algorithms–Ditto Li et al. (2021a), FedAMP Huang et al.
(2021), CFL Sattler et al. (2020), FedFomo Zhang et al. (2020) and pFedGraph Ye et al. (2023b).

To evaluate the economic performance of iPFL, we introduce the utility function, as defined in Def-
inition 1. It consists of three components: collaboration gain (Equation (2)) with preference K, the
sharing cost with individual unwillingness c and accumulated payment (Equation (10)) in all rounds.
To evaluate model performance, we utilize the classification accuracy metric in classification tasks.
For evaluation in instruction-tuning tasks, we utilize the corresponding test dataset for financial
clients to evaluate accuracy and Humaneval Chen et al. (2021) for coding clients to evaluate passing
rate. The baselines, specific settings for K and c, and implementation details are provided in the
experimental section in supplementary information.

For classification tasks, we consider 9 settings with 5 datasets. For CIFAR-10 and Fashion-MNIST,
we design three types of data partition among clients: termed as NIID, Cluster, and Skew. (i) NIID is
a common setting Wang et al. (2020); Yurochkin et al. (2019); Acar et al. (2020); Ye et al. (2023a),
where local data among clients follows the Dirichlet distribution (default β = 0.1). (ii) The Cluster
involves random client clustering, distinguishing between high (smaller β) and low heterogeneous
levels within and between groups. (iii) For Skew, total classes are divided into clusters so that in each
cluster, each client possesses 5 classes. FEMNIST and Shakespeare exhibit natural heterogeneity.
In the case of PACS with four domains, each cluster represents one domain, namely the Cluster
partition. The evaluation results of our iPFL against eight baselines across nine settings are shown in
Figure 2, emphasizing the comparisons on the trade-off between model performance and economic
utility. Our iPFL achieves a comparable or even better performance with performance-oriented
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Figure 2: Comparison of average utility and accuracy in scatter under different settings. Our iPFL
achieves comparable or even better model performance and the highest utility across 9 settings.

baselines. Meanwhile, iPFL consistently excels in economic utility, as evidenced by its highest
plot scatter across diverse settings. Specifically, iPFL outperforms FedAMP by 1.75% in accuracy
and 217.4 in utility, respectively. Overall, these results show that iPFL effectively strikes a balance
between model performance and economic utility, demonstrating its capacity to harmonize model
performance and economic benefits within the personalized federated learning framework.

For the instruction-tuning tasks, we consider two scenarios. (i) We configure a scenario for finan-
cial sentiment analysis with six clients, where every two clients share one of the following datasets:
FIQA Maia et al. (2018), TFNS Magic (2022), or NWGI Yang (2023). (ii) We consider a more
complex scenario to represent a higher heterogeneity level, where five clients possess the code data
from CodeAlpaca Chaudhary (2023) and three clients own the financial data from NWGI. The re-
sults presented in Section 6.1 demonstrate the superiority of iPFL: it excels in both accuracy and
utility metrics across scenarios. For example, iPFL demonstrates a remarkable 5.55% improvement
in accuracy and a 58.3 gain in utility on the financial scenario compared to other baselines. Besides,
in the second setting, other baselines are inferior to local training in utility for some clients, failing
to guarantee the IR property. This dual achievement highlights the effectiveness of our approach in
enhancing model performance and economic utility.

6.2 INCLUSIVE MARKET

To verify that our iPFL is inclusive that can include clients with diverse preferences and economic
conditions, we simulate a market that consists clients with diverse roles. In the market, some traders
buy and sell models, buyers who only buy models, sellers who only sell models, and attackers who
try to sell poisoned models (we use a randomly parameterized model). These are achieved by setting
the profiles of clients: we set the level of data eagerness as a random positive value for traders and
buyers, while zero for sellers and attackers; we set the cost as a random positive number for traders,
+∞ for buyers, zero for sellers and attackers; see details in supplementary material. Finally, we
build a market based on CIFAR-10-Cluster scenario with 12 clients and conduct model training
for 20 rounds. We record the accumulated money transaction and the accuracy difference between

8
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Table 1: Comparisons of model performance (accuracy or passing rate, %) and utility of different
algorithms on two instruction-tuning scenarios. Our iPFL consistently outperforms other baselines.

Scenarios Finance Finance & Code
Evaluation FIQA TFNS NWGI Avg-Utility NWGI Code Avg-Utility

Local 84.02±6.09 80.58±0.83 43.17±4.48 0.0±0.0 50.61±2.63 13.54±2.30 0.0±0.0
FedAvg 78.19±1.94 81.25±5.30 52.25±4.77 45.9±0.0 49.94±2.46 15.00±0.70 58.2±150.4
FedProx 78.55±0.40 80.56±6.28 52.44±1.68 45.9±0.0 49.61±2.67 15.00±1.26 58.2±150.4
FedAMP 84.01±4.03 76.63±5.48 42.56±6.98 45.9±0.0 51.58±1.38 14.02±0.86 58.2±150.4

CFL 85.11±6.61 77.06±6.98 45.94±4.68 45.9±0.0 52.28±4.97 14.15±0.80 58.2±150.4
pFedGraph 83.65±5.57 76.75±5.66 47.94±3.09 45.9±0.0 50.00±5.65 14.27±1.76 137.7±291.6

iPFL 85.47±6.10 83.38±2.83 56.25±1.06 96.5±0.0 53.11±0.51 15.85±1.14 208.1±131.1

Client 1 (Seller)
Earned: $ 102.67

Client 3 (Buyer)
ACC: +0.63%
Spent:  $ 48.02

Client 2 (Buyer)
ACC: +1.07%
Spent: 50.77

Client 4 (Trader)
ACC: +0.84%
Spent:  $ 3.89

Client 6 (Seller)
Earned: $ 26.12

Client 8 (Seller)
Earned: $ 26.12

Client 11 (Seller)
Earned: $ 104.35

Client 5 (Trader)
ACC: +0.99%
Spent: $ 35.84

Client 7 (Trader)
ACC: +0.47%
Spent:  $ 10.32

Client 9 (Buyer)
ACC: +1.36%
Spent: $ 44.99

Client 10 (Buyer)
ACC: +2.17%
Spent: $ 59.36

Client 12: Attacker
Earned:  $ 0

$ 23.29

$ 24.66

$ 24.73

$ 26.11$ 14.29

$ 14.95

$ 11.84

$ 10.99

$ 9.05

$ 54.73

 $ 44.99 $ 59.36

Trader Seller Buyer Attacker Model Transaction Money Transaction

Figure 3: The illustration of the transaction graph of an inclusive market.

model trained by iPFL and local training, and demonstrate them in Figure 3. From the figure, we can
clearly see that the transactions among the clients are well aligned with their roles (i.e., purposes).
The traders buy models from others to obtain models with higher accuracy, and sell models to others
to make a profit at the same time. The buyers pay others to buy models to improve their models while
the sellers earn money by selling models. The attacker is successfully isolated by others, doing no
harm to the market. Overall, the experiments verify that iPFL is an incentivized and inclusive PFL
system since every unique individual gains benefits from joining the system.

7 CONCLUSION

Our work addresses the challenges of depleted publicly available data and the need for collaboration
among private institutions through an inclusive sharing market. This market incentivizes diverse
participants with unique model preferences and economic conditions to contribute effectively. Our
proposed iPFL, as demonstrated by comprehensive experiments, excels in balancing model per-
formance and economic utility across diverse tasks and scales. It promotes individual rationality,
robustness to various model attacks and preventing dishonest practices, which contributes to a stable
and trustworthy market environment. We anticipate that our iPFL can serve as a valuable technique
for boosting future AI models on decentralized private data while making everyone satisfied.
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A ALGORITHM PSEUDO CODES

Algorithm 1 Overview of iPFL
1: input: m clients, each with a local private dataset for training.
2: Server sends an initial model θ0 to every client.
3: for i = 1 to m do
4: Client i performs local training and obtains θ1i = argminθi Li(θi) +

λ
2η∥θ

t
i − θ̄0i ∥22.

5: Client i reports ni, ci, Gi(·) back to Server.
6: end for
7: for t = 1 to T − 1 do
8: for i = 1 to m do
9: Client i reports θti back to Server.

10: end for
11: for i = 1 to m do
12: Server calculates At

i by Algorithm 2. \\ Graph Topology Learning
13: end for
14: for i = 1 to m do
15: Server calculates pti according to At. \\ Payment Calculation
16: if Client i pays pti to Server then
17: Server calculates the prox-center θ̄ti = θti −

η
ni

∑
j∈[m] aijnj∇θid(θi, θ

t
j).

18: Server sends the prox-center model θ̄ti to Client i.
19: Client i updates θt+1

i = argminθi Li(θi) +
λ
2η∥θ

t
i − θ̄ti∥22. \\ Local Model Training

20: else
21: Client i quits and takes the best θi ∈ {θt′i |t′ ≤ t}.
22: end if
23: end for
24: end for
25: output: θi, i ∈ [m] for each client.

Algorithm 2 Graph Topology Learning

1: input: gi, {θt1, ..., θtm}, {c1, ..., cm}, {n1, ..., nm}. \\ Here gi(x) =
√

Ki

ni
−

√
Ki

ni+x

2: initialization: Ai = 0, n = 0
3: for j = 1 to m do
4: Calculate threshold nTh

j by solving gi(n
Th
j )− gi(n

Th
j − nj) = cj + λ

nj

ni
d(θti , θ

t
j).

5: if no solution then
6: Set nTh

j = 0.
7: end if
8: end for
9: for j = 1 to m do

10: k = argmaxj n
Th
j s.t.Aij = 0

11: if n+ nk < nTh
k then

12: Aik = 1 \\ Add the remaining client with the largest threshold
13: n = n+ nk

14: else
15: break \\ Stop adding if total data amount reaches the threshold
16: end if
17: end for
18: output: Ai.

B RELATED WORK ON INCENTIVE FEDERATED LEARNING

There have been extensive works on incentive FL mechanisms by introducing economic rewards.
To appropriately assign economic rewards, one direct approach is to allocate rewards by precise
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and fair contribution assessment(Wang et al., 2019; Lv et al., 2021; Shi et al., 2022). For example,
in FedFAIM by Shi et al. (2022), the amount of reward is decided by model quality assessment
and Shapley value-based contribution measure. Another approach to assign economic rewards by
combining FL with game theory models like reverse auction Deng et al. (2021); Cong et al. (2020)
or contract theory(Liu et al., 2022; Kang et al., 2019). For example, in FAIR by Deng et al. (2021), a
reverse auction is conducted to recruit clients by their bids and model quality, which ensures clients’
incentive and server’s model quality at the same time.

Nonetheless, present standalone solutions are usually designed for traditional FL framework (all
clients contribute to one central model) and fixed market structure (server buys models from clients),
which cannot be applied to PFL scenarios and complicated inclusive markets. To overcome these
limitations, there have been some discoveries about incentive FL mechanisms under personalized
model needs or heterogeneous economic conditions. In addressing personalized model needs, Khan
et al. (2023) proposes an incentivized PFL framework, PIFL, which can provide personalized models
by client clustering and incentivize the clients by setting prices for participating in a cluster. In the
face of heterogeneous economic conditions, Han et al. (2022) proposes TIFF, where the clients are
considered providers and consumers of the central model. However, neither of them considers both
personalized model needs and heterogeneous economic conditions at the same time, so there is still
a gap between present mechanisms and an inclusive and incentivized PFL system.

Therefore, in our work, we first consider a graph-based PFL framework, which can reserve a per-
sonalized model for each client and clearly describe the collaboration topology of the clients. Then
we design a graphical game in such graph-based PFL, where each client has its unique economic
profile: it can be a seller, buyer or both. With such a design, we can evaluate the personalized needs
of each client and set up an inclusive market system in PFL.

C THEORY

Here, we discuss our system’s robustness against abnormally reported data amount Ni and model
parameters θti . For benign and quality-aware clients, they have no reason to be dishonest about Ni

and θti as lying about Ni and θti is harmful to their models: reporting wrong Ni will result in inac-
curate model aggregation; uploading fake θti may result in less personalization. However, malicious
attackers can upload noisy models to attack the system or exaggerate their data amount to defraud
extra payment and increase their weight in others’ models. To address this issue, client selection
procedure considers both data amount and model similarity in Algorithm 2. Theorem 4 shows that
malicious clients who upload abnormal Ni and θi are likely to be isolated without introducing extra
efforts of model verification (e.g., testing models on a validation set).

Theorem 4 (Robustness against abnormal data amount). If At is given by Algorithm 2 and Ni →
+∞, then ∀j ∈ [m] : atji = 0.

As a result, the malicious clients whose priority is attacking the federation can only be trusted
by other clients when they report a relatively smaller data volume. This means that their impact
is limited: if client j reports a smaller Nj , it will receive a smaller reference weight (Nj/Ni) in
the second term of Equation (5) and other clients will not strongly emphasize its parameters in
aggregation. Besides, the consequence of uploading a fake model is similar. If client i is malicious
and uploads a fake model θ′i (e.g., perturbing the real model parameters), θ′i is very likely to be
different from other clients’ normal models that are trained on real datasets, indicating that the
model difference term ∥θi − θj∥22 is large, which will increase the value of NThresh

i calculated by
other clients and make client i less possible to be chosen. Therefore, the influence of such malicious
clients is also limited.

D PROOFS FOR THE THEORIES

Here we present the proofs of all the theories in our paper.

Theorem 1 (Individual Rationality). If At is given by Algorithm 2, then ∀i ∈ [m], t ∈ [T ] : U t
i =

Gi(a
t
i)−

∑
j∈[m] a

t
jici − pti ≥ 0.
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Proof. According to the definition of economic utility Ui in Definition 1 and payment pti in Equa-
tion (10), the utility of client i in round t is:

U t
i = Gi(a

t
i)−

∑
j∈[m]

atjici − pti

= Gi(a
t
i)−

∑
j:at

ij=1

[
Gi(a

t
i)−Gi(a

t
i − ej)− λ

Nj

Ni
d(θti , θ

t
j)

]

+
∑

j:at
ji=1

[
Gj(a

t
j)−Gj(a

t
j − ei)− λ

Ni

Nj
d(θtj , θ

t
i)− ci

]
. (11)

If ati is a solution given by Algorithm 2, then ∀i ∈ [m],∀j ∈ [m]:

atij = 1

⇒ϕi(a
t
i − ej) > ϕi(a

t
i)

⇒Gi(a
t
i)−Gi(a

t
i − ej) > cj + λ

Nj

Ni
d(θti , θ

t
j). (12)

Since gi(x) =
√

Ki

Ni
−
√

Ki

Ni+x is a concave and increasing function with gi(0) = 0, there is:

Gi(a
t
i) =gi(

∑
k:at

ik=1

Nk)− gi(0)

=
∑

j:at
ij=1

[
gi(Nj +

∑
k:k<j
at
ik=1

Nk)− gi(
∑
k:k<j
at
ik=1

Nk)

]

≥
∑

j:at
ij=1

[
gi(Nj +

∑
k:k ̸=j
at
ik=1

Nk)− gi(
∑
k:k ̸=j
at
ik=1

Nk)

]

=
∑

j:at
ji=1

[
Gi(a

t
i)−Gi(a

t
i − ej)

]
. (13)

By Equation (12) and Equation (13), we have:

U t
i =Gi(a

t
i)−

∑
j:at

ij=1

[
Gi(a

t
i)−Gi(a

t
i − ej)

]

+
∑

j:at
ji>0

[
Gj(a

t
j)−Gj(a

t
j − ei)− λ

Ni

Nj
d(θtj , θ

t
i)− ci

]

+
∑

j:at
ij>0

λ
Nj

Ni
d(θti , θ

t
j)

≥
∑

j:at
ij>0

λ
Nj

Ni
d(θti , θ

t
j) ≥ 0.

Lemma 2 (Incentive Compatibility of ci). Denote At the graph calculated by the server when
everyone honestly reports their ci and Ât the new graph when client i report ĉi > ci. Then {j|âtji =
1} ⊆ {j|atji = 1}.

Proof. Denote the original and new threshold for client i calculated by client j in Algorithm 2
as NTh

i and N̂Th
i . There is ĉi > ci ⇒ N̂Th

i < NTh
i . So client i will not be added to client

j’s collaborators earlier. By the time client i is considered, N̂Th
i < NTh

i ≤
∑

k∈m ajkNk ≤∑
k∈m âjkNk, so atji = 0 ⇒ âji = 0. Therefore, {j|âtji = 1} ⊆ {j|atji = 1}.
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Theorem 3 (Truthfulness). Denote Ui the one-round utility of client i when everyone honestly re-
ports their ci and Û t

i as its utility when client i report ĉi > ci. Then ∀t : Û t
i ≤ U t

i .

Proof. First, the claim of cost ci will not change the procedure of choosing collaborators of client i
in Algorithm 2, so there is:

∀j ∈ [m] : atij = âtij . (14)

Second, the change of ci does not influence the marginal benefit of other clients. If client j keeps
the same choice for client i, then its order of adding other clients should also be unchanged, so there
is:

∀j ∈ [m] : atji = âtji ⇒ atj = âtj , (15)

Finally, by Equation (11), Equation (12), Equation (14), Equation (15), and Theorem 2, there is:

U t
i − Û t

i =
∑

j:at
ji=1

[
Gj(a

t
j)−Gj(a

t
j − ei)− λ

Ni

Nj
d(θtj , θ

t
i)− ci

]

−
∑

j:ât
ji=1

[
Gj(â

t
j)−Gj(â

t
j − ei)− λ

Ni

Nj
d(θtj , θ

t
i)− ci

]

=
∑

j:ajit−ât
ji=1

[
Gj(a

t
j)−Gj(a

t
j − ei)− λ

Ni

Nj
d(θtj , θ

t
i)− ci

]
≥ 0

which means Û t
i ≤ U t

i .

Theorem 4 (Robustness against abnormal data amount). If At is given by Algorithm 2 and Ni →
+∞, then ∀j ∈ [m] : atji = 0.

Proof. For any At attained by Algorithm 2 there is:

atji = 1 ⇒ Gj(a
t
j)−Gj(a

t
j − ei)− ci − λ

Ni

Nj
d(θi, θj) > 0. (16)

Consider i reports an enormous Ni → +∞. Assume atji = 1. Since the change of Gi is bounded:

Gj(a
t
j)−Gj(a

t
j − ei) ≤

√
Kj/Nj ,

we have:

Gj(a
t
j)−Gj(a

t
j − ei)− ci − λ

Ni

Nj
d(θi, θj) → −∞.

This contradicts to Equation (16). So atji = 0.

E EXPERIMENTAL DETAILS

E.1 BASELINES

We compare our method with the other 5 personalized baselines. 1) Ditto Li et al. (2021a) applies an
alternating optimization approach to jointly solve for the global model and personalized models. 2)
FedAMP Huang et al. (2021) encourages collaborations between clients with similar model param-
eters via empirical exponential weight calculation. 3) CFL Sattler et al. (2020) divides clients into
two clusters, minimizing the maximum similarity between clients from different clusters when the
stopping criterion is violated. 4)FedFomo Zhang et al. (2020) introduces a mechanism where clients
evaluate the performance of received models on their target task, using these evaluations to weight
each model’s parameters in a personalized update. 5) pFedGraph Ye et al. (2023b) inferring the
collaboration graph based on model similarity via solving the corresponding optimization problem.
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E.2 HYPERPARAMETER SETTINGS

Hyperparameters in the utility function. In performance evaluation, we uniformly set ci = 1, and
K depends on the data size in specific dataset. Simply speaking, since the model differences via
cosine similarity are within a certain range, the larger the data volume, the corresponding K should
be larger. Specifically, we set K = 5E5 for 5 classical datasets: CIFAR-10, Fashion-MNIST, PACS,
FEMNIST and Shakespeare; and choose K = 2E4 and K = 5E4 separately for mixed-Finance
and Code+Finance dataset.

Hyperparameters in algorithms. The hyperparameters for various federated learning baselines are
detailed below:

• FedProx Li et al. (2020): µ = 0.1, controlling the impact of local regularization on training
loss.

• Ditto Li et al. (2021a): λ = 1, governing the interpolation between local and global models.

• CFL Sattler et al. (2020): ϵ1 = 2.0, ϵ2 = 2.5, parameters in the process of splitting clients.

• FedFomo Zhang et al. (2020): M = 6, indicating the maximum number of models sent
from the server to clients.

• FedAMP Huang et al. (2021): λ = 0.01, where λ serves as a regularization parameter.

• pFedGraph Ye et al. (2023b): α = 0.8, λ = 0.01, where α influences the collaboration
graph optimization, and λ balances individual utilities with collaboration necessity.

The hyperparameters λ and η in iPFL are tuned according to the demand of participants (reflected
by Ki) in different datasets. The tuning of λ and η used in our experiments is shown in Table 2.

Table 2: The tuned optimal hyperparameters of our algorithm for each dataset.
Dataset CIFAR-10 F-MNIST PACS FEMNIST Shakes. mixed-Fin. Code+Fin.

λ 2 0.001 0.0001 1 2 5 1
η 5 5 5 5 5000 1 5

Hyperparameters in FL setting. For the number of clients and corresponding average data size
in each setting, we list the information in Table 3. Especially for FEMNIST and Shakespeare, we
select the 20 and 10 clients with the largest amount of data respectively.

E.3 IMPLEMENTING DETAILS

Classification tasks. We use the same setup for all the baselines and our method. Specifically, we
run FL for 50 communication rounds and train local models for τ = 200 iterations (except τ = 50
iterations for FEMNIST) with a batch size 64. We use SGD optimizer with a learning rate of 0.01.
We utilize CNN-based networks for image classification tasks, and LSTM for text-related tasks.

Instruction-tuning tasks The QA tasks involve training the smallest Llama2 model, boasting 7
billion parameters. We employ the conventional supervised fine-tuning (SFT) method Ouyang et al.
(2022a) and integrate quantization and parameter-efficient fine-tuning techniques Hu et al. (2021)

Table 3: Information of dataset across different settings in our experiments. We use F-MNIST
to short for Fashion-MNIST, Shakes. for Shakespeare and similarly for mixed-Finance and
Code+Finance.

Dataset CIFAR-10 & F-MNIST PACS FEMNIST Shakes. mixed-Fin. Code+Fin.
Partition NIID Cluster Skew Cluster Natural - -

# Client 10 9 10 8 20 10 6 8
# Data size 5000&6000 999 443 38682 200 387
Data type image image image text text text
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to reduce trainable parameters. We conduct 50 communication rounds of Federated Learning (FL).
The initial learning rate starts at 5 × 10−5 in the first round and diminishes to 1 × 10−6 by the
final round. The batch size is set to 8 and the maximum sequence length is set to 512. The rank of
LoRA Hu et al. (2021) is set at 32, with a scalar α value of 64. We adhere to the Alpaca Taori et al.
(2023) template for formatting instructions.

E.4 EXPERIMENTS OF INCENTIVE PROPERTIES

E.5 INCENTIVE PROPERTIES

Individual rationality. Here, we show the individual client utility distribution on CIFAR-10-
Cluster, PACS and Fashion-MNIST-NIID scenarios in Figure 4. We compare iPFL with 7 rep-
resentative baselines. Remarkably, in these scenarios, our proposed iPFL ensures that the utility
of each client remains positive, outperforming all the other algorithms. These experiments con-
vincingly verify that our proposed iPFL ensures the property of individual rationality (i.e., every
participant benefits from the system), a critical property to incentivize institutions to join the market
willingly Kang et al. (2019); Zeng et al. (2021). Note that we accordingly provide the theoretical
guarantee in Theorem 1.

(a) CIFAR-10-Cluster (b) PACS (c) Fashion-MNIST-NIID

Figure 4: The utility distribution of clients with different algorithms under three settings. Specifi-
cally, the circle denotes the mean utility of all clients, and the gray scatter represents the individual
client utility values. Our iPFL guarantees positive utility for each client and achieves the highest
average utility.

Robustness. In this part, we investigate the robustness of FL algorithms against four distinct types of
model poisoning attackers Ye et al. (2023b). Attack strategies include (a) shuffling model updates,
(b) flipping the numerical sign of model updates, (c) manipulating model updates with the same
value at each element, and (d) manipulating model updates based on random Gaussian noises. Based
on the CIFAR-10-Cluster scenario, we conduct one experiment for each attack type, where one at-
tacker is introduced. We compare our iPFL with four representative state-of-the-art PFL algorithms:
Ditto Li et al. (2021a), pFedGraph Ye et al. (2023b), CFL Sattler et al. (2020), and FedAMP Huang
et al. (2021). In Figure 5, we illustrate the changes in the averaged performance of benign clients
and the utility of malicious clients after being exposed to attack. Notably, only our iPFL succeeds
in reducing the utility of the malicious attacker while simultaneously maintaining accuracy for the
benign clients. This unique characteristic positions our iPFL as a robust technical foundation for a
healthy model-sharing market.

Truthfulness. Here, we explore the effects of clients being dishonest by considering a scenario
where one client lies about the dataset size or training cost. In Table 4, we show the liar’s accuracy
and utility over different lying ratios (compared with true value). The table shows that in our iPFL,
the liar always achieves lower or the same accuracy, and significantly lower utility. These results
verify that one cannot benefit by lying, which demonstrates the effectiveness of our iPFL in discour-
aging dishonest behaviors, contributing to promote the healthy development of the market. Note
that we accordingly provide the theoretical interpretation in Theorem 3.

E.6 ADDITIONAL DETAILS FOR INCLUSIVE MARKET

The data distribution of each client in the simulation of our proposed inclusive market is shown in
Figure 6. As illustrated, we use a smaller value of β = 10 to create a less heterogeneous intra-cluster,
while maintaining a high level of heterogeneity inter-cluster with β = 0.1.
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Figure 5: The change of average benign clients’ performance (%) and malicious client utility after
4 different attack types of an attacker, under the Cluster setting on CIFAR-10. For each algorithm,
we utilize the circle • and star ⋆ to separately represent the benign clients’ states with their mean
accuracy and utility.

Table 4: Liar’ performance(%) and utility comparison under different lying ratios (1 denotes honest)
of her true data size or cost, under the NIID setting of CIFAR-10. Lying on reported private infor-
mation causes performance degradation and loss of earnings.

Cases Honest Lying on data size Lying on cost

Lying Ratio 1 0.1 0.5 10 2 5 10
Liar’s Accuracy 75.430 66.933 75.331 75.430 75.430 75.430 75.430

Liar’s Utility 617.295 -513.410 -9.951 0.00 0.00 0.00 0.00

Our inclusive market simulation, for each client i, denotes Ki to represent the level of data eagerness
and denotes ci as the cost of sharing a model concerning privacy and communication consumption.
Therefore, we utilize both Ki and ci to portray 4 different client types within the personalized
inclusive market in Figure 1. For instance, a client with ci setting to ∞ is not willing to share its
model, namely a model buyer. In our experiments, the profile (Ki and ci) of each kind of client
is randomly generated according to Table 6. Since only the traders and the buyers desire to attain
others’ models, so for these two types Ki > 0, with larger Ki indicating the stronger tendency of
buying models. We set ci = +∞ for the buyers to show their ban on sharing their own models.
For traders, we randomly generate ci to show their different reluctance to model sharing. Naturally,
sellers and attackers with ci = 0 urge to sell (or spread) their models. We assume the attacker
uploads a random model in each round.

Table 5 shows not only the model improvement and utility of each client but also the model transac-
tion and total money transaction.

E.7 VALIDATION ON GAIN FUNCTION

Our gain function comes from the theoretical improvement of model performance brought by extra
data resource. By McDiarmid’s inequality, if supθ,z l(θ; z) ≤ B, with probability 1− δ:

L∗
i (θi) ≤ Li(θi) +B

√
ln(1/δ)

2Ni
.

Therefore, assuming client i has correctly imported models under similar data distribution, in this
paper we define its collaboration gain as the change of the last term after importing others’ models:

Gi(ai) =
√

Ki

Ni
−

√
Ki

Ni+
∑

j∈[m] aijNj
. In our assumption for modeling the expected performance

gain, we rewrite the accuracy gain for the 10-classification task on CIFAR-10 Krizhevsky et al.
(2009) as

ACC ≈ ACC0 −
√

K

N
=

p1√
N

+ p2, (17)

where p1 and p2 are undetermined fitting coefficients. We conduct experiments of local training on
CIFAR-10 with different data sizes under the IID (independent and identical distribution) to find the
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Figure 6: The data distribution of the clients (without attacker).

Figure 7: The fitting curve of expected performance gain and real scatter data.
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Table 5: The details of inclusive market simulation.

Client Type Ni Ki ci
Local

ACC (%)
Fed

ACC (%)
ACC

Increase (%) Balance ($) Utility

1 Seller 4546 0 0.00 70.10 70.10 0.00 102.67 102.67
2 Buyer 3468 414917 +∞ 69.17 70.23 1.07 -50.77 53.04
3 Buyer 5278 468962 +∞ 71.91 72.54 0.63 -48.02 34.41
4 Trader 4885 550503 0.85 70.24 71.08 0.84 -3.89 23.46
5 Trader 3550 563596 0.82 85.65 86.63 0.99 -35.84 78.59
6 Seller 3212 0 0.00 83.55 83.55 0.00 26.12 26.12
7 Trader 4185 382752 0.78 84.42 84.88 0.47 -10.32 51.57
8 Seller 2688 0 0.00 82.48 82.48 0.00 20.04 20.04
9 Buyer 4473 351546 +∞ 74.07 75.42 1.36 -44.99 3.98
10 Buyer 4353 590118 +∞ 71.50 73.68 2.17 -59.36 6.05
11 Seller 4065 0 0.00 73.05 73.05 0.00 104.35 104.35
12 Attacker 5297 0 0.00 - - - 0.00 0.00

Table 6: The profile of the four types of clients. ∼ U(, ) denotes the uniform distribution.
Type Trader Buyer Seller Attacker

Ki ∼ U(3e5, 6e5) ∼ U(3e5, 6e5) 0 0
ci ∼ U(0.5, 1) +∞ 0 0

corresponding coefficients, shown in Table 7, and relevant fitting results are shown in Figure 7 and
Table 8. The relationship between accuracy and data volume under IID fits well with the equation
we modeled in Equation (17). Thus, for the sake of simplicity, we fixed the hyper-parameter K =
p21 ≈ 5e5 in subsequent experiments (K affects the calculation of utility and graph learning).

E.8 ABLATION STUDY

The ablation experiments are conducted under the Cluster setting on CIFAR-10.

Effects of K and λ on collaboration graph. In this experiment, we delve into the impact of
hyperparameters K and λ on the collaboration graph within our federated learning framework. We
separately tune the hyper-parameter K with λ = 2, η = 5, λ with K = 1e7, η = 5 under the Skew
setting on CIFAR-10 in Figure 8. The heatmaps vividly portray that larger K or smaller λ leads to
the inclusion of a greater number of clients in the collaboration process.

(a) K (b) λ

Figure 8: Effects of K and λ when selecting collaborators. Larger K or smaller λ indicates more
clients can be included.

Effects of local iterations. Table 9 shows the performance and utility in different local iterations
(10, 50, 100, 200, 400, 800). In our experiments for most datasets, we choose iterations equal to 200
regarding the performance and utility.

F DISCUSSION

In response to the challenges posed by the depletion of publicly available data and the need for
collaboration among private institutions, we establish an inclusive sharing market that incentivizes
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Table 7: Accuracy (%) V.S. Data size for local training under the uniform data distribution.
Data size 50000 25000 10000 5000 2500 1000 500 250

Accuracy (%) 62.880 62.353 59.834 55.490 48.454 40.384 34.751 29.483

Table 8: Fiiting results
Args p1 p2 R2 RMSE
Value -698.87 66.00 0.98275 1.8486

the contributions of diverse participants with unique model preferences and economic conditions.
Rooted in the personalized federated learning paradigm, iPFL integrates a graphical game within
the framework based on the directed collaboration graph. iPFL introduces a novel and multifaceted
objective, aiming to minimize loss on relevant tasks, maximize pairwise model similarity, and en-
hance overall social welfare within the system. Our iPFL framework modifies local training methods
to achieve improved personalization, flexibly adjusts collaboration regarding models and economic
conditions, and implements a sophisticated payment mechanism. The proposed system iPFL fa-
cilitates training, collaboration, and transactions to meet each participant’s demands and achieves
incentive properties theoretically and experimentally. Regarding privacy preservation, our iPFL
avoids direct data sharing, ensuring effective data isolation. Regarding the communication over-
head, participants in iPFL only need to additionally report their model preference Ki, cost ci and
data amount Ni at the start of training. These one-time uploads are negligible for communication
but significantly improve the ability to balance model performance and economic utility.

Comprehensive experiments reveal several significant findings about our iPFL. First, iPFL demon-
strates exceptional versatility in balancing model performance and economic utility of the AI land-
scape. Extensive experiments, spanning various machine learning tasks and model scales in Figure 2
and Section 6.1, highlight its capability to achieve comparable or superior model performance and
consistently highest social welfare. Second, iPFL ensures individual rationality, as every institution
involved in the system achieves non-negative benefits (see Figure 4). This inherent motivation acts as
a catalyst, encouraging a growing number of institutions to join the ecosystem. This, in turn, leads to
an expansion of the market size, fostering a resilient and extensive database that can further catalyze
advancements in AI research. Third, iPFL exhibits a remarkable capability to prevent dishonest
practices. Exaggerating data size and cost by participants results in reduced utility (shown in Ta-
ble 4), acting as a deterrent against dishonest behavior and market fraud. This feature underscores
iPFL’s commitment to fostering an environment of honesty and integrity. Fourth, iPFL showcases a
robust defense against potential attackers. Achieved by effectively isolating malicious participants
in Figure 5, iPFL contributes to a stable and trustworthy market environment. In addition, our inclu-
sive simulation experiment in Figure 3 further supports these findings. It demonstrates that honest
institutions with distinct needs can acquire what they require, showcasing iPFL as an epitome of an
actual healthy market.

Through these advancements, iPFL paves the way for a new era in collaborative AI. With iPFL,
institutions can not only benefit from personalized models but also actively contribute to and gain
from a flourishing inclusive market while preserving privacy. However, our work also has limita-
tions. Our work assumes the static nature of data, economic needs, and participants’ willingness to
join during the entire training process. However, in practical scenarios, institutions may choose to
exit the training process. For instance, buyers may not require the model for specific tasks or seek
more attractive markets. Our framework, designed under the assumption of a static federation, may
not fully accommodate such dynamic transformations, especially autonomous exits or joins. Fu-
ture research could explore more flexible frameworks that adapt to the dynamic states, by adjusting
model-sharing strategies, or pricing mechanisms.
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Table 9: The average accuracy (%) and utility results in different local iterations.
Iterations 10 50 100 200 400 800

Acc. 60.434 73.156 72.948 73.268 72.672 71.584
Utility 106.9 108.1 111.1 111.3 108.0 102.7
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