
Should You Trust DQN?

Aditya Gopalan
Electrical Communication Engineering

Indian Institute of Science (IISc)
Bengaluru 560012, India
aditya@iisc.ac.in

Gugan Thoppe
Computer Science and Automation
Indian Institute of Science (IISc)

Bengaluru 560012, India
gthoppe@iisc.ac.in

Abstract

For a Reinforcement Learning (RL) algorithm to be practically useful, the policy it
estimates in the limit must be superior to the initial guess, at least on average. In
this work, we show that the widely used Deep Q-Network (DQN) fails to meet even
this basic criterion, even when it gets to see all possible states and actions infinitely
often (a condition that ensures tabular Q-learning’s convergence to the optimal
Q-value). Our work’s key highlights are as follows. First, we numerically show
that DQN generally has a non-trivial probability of producing a policy worse than
the initial one. Second, we give a theoretical explanation for this behavior in the
context of linear DQN, wherein we replace the neural network with a linear function
approximation but retain DQN’s other key ideas, such as experience replay, target
network, and ϵ-greedy exploration. Our main result is that the tail behaviors of
linear DQN are governed by invariant sets of a deterministic Differential Inclusion
(DI), a set-valued generalization of a differential equation. Notably, we show that
these invariant sets need not align with locally optimal policies, thus explaining
DQN’s pathological behaviors, such as convergence to sub-optimal policies and
policy oscillation. We also provide a scenario where the limiting policy is always
the worst. Our work addresses a longstanding gap in understanding the behaviors
of Q-learning with function approximation and ϵ-greedy exploration.

1 Introduction

Deep Q-Network (DQN) [Mnih et al., 2015] is popular in Reinforcement Learning (RL) due to its
groundbreaking success in mastering complex tasks, such as playing a video game. Notably, DQN
has achieved human-level performance on a variety of Atari 2600 games, demonstrating its potential
to learn and make decisions in environments with high-dimensional sensory inputs. This success
has been attributed to four factors: i) neural network to reasonably approximate Q∗, the optimal
Q-value function, for large state and action spaces, ii) ϵ-greedy policy to balance exploration and
exploitation of optimal actions at different states, iii) experience replay to decouple the algorithm’s
sub-module that interacts with the environment from the one that updates Q∗’s estimate, and iv)
a target network to stabilize training. In recent times, though, the DQN algorithm has also been
reported to show several pathological behaviors (beyond the classical instability [Baird, 1995]) such
as policy oscillation, i.e., alternating between two or more policies without end, and convergence
to sub-optimal policies (including the worst) [Gordon, 1996, 2000, De Farias and Van Roy, 2000,
Bertsekas, 2011, Young and Sutton, 2020]. In fact, Patterson et al. [2023] claim the following:

"... we observed (rare) catastrophic failure events for DQN across nearly every tested domain
... In Lunar Lander, some agents would simply fly off into oblivion, obtaining incredible
amounts of negative reward until the episode was mercifully terminated ... In Cliff World,
DQN would get stuck in a corner perpetually in every single episode ... some agents would
learn to jump into the cliff immediately to obtain massive negative rewards."

Workshop on Aligning Reinforcement Learning Experimentalists and Theorists (ARLET 2024).

Figure 1: Scatterplot of initial (x) vs. final
value-function suboptimality (y) for DQN run on
randomly generated MDPs. To get this plot, we
first generated a population of 10-state, 10-action
MDPs (100 in all) by drawing each reward r(s, a)
and transition probability P(s′|s, a) independently
and uniformly from the interval [0, 1] (and then nor-
malizing them). We then plotted each blue dot by
a) picking a random MDP from this population, b)
initializing DQN with a random Q-value network,
c) finding the difference between V ∗ and the value
of the greedy policy of the initial Q-network (to
get the x-coordinate of the dot), d) running DQN
for a fixed budget of iterations, and e) finding the
value of the greedy policy of the final Q-network
(to get the y-coordinate of the dot). The red dashed
line is the diagonal y = x. We see that over 50%
of the runs lead to a policy worse than the initial,
represented by the dots above the diagonal.

These conflicting narratives lead us to the following three questions about DQN’s behavior: 1) Does
DQN ensure a monotonic improvement in the optimal policy estimate? 2) If not, does it at least
ensure convergence to a locally optimal policy? 3) At the very least, is there any improvement over
the initial policy? These questions have remained unresolved, even for basic Q-learning with linear
function approximation and ϵ-greedy exploration. In fact, Problem 1 in ‘Open Theoretical Questions
in Reinforcement Learning’ [Sutton, 1999] addresses the need to explain the peculiar behaviors
observed in the closely related linear1 SARSA algorithm with ϵ-greedy exploration:

“... The parameters of the linear function can be shown to have no fixed point in the expected
value. Yet neither do they diverge; they seem to ‘chatter’ in the neighborhood of a good
policy [Bertsekas and Tsitsiklis, 1996]. This kind of solution can be completely satisfactory
in practice, but can it be characterized theoretically? What can be assured about the quality of
the chattering solution? New mathematical tools seem necessary."

Similarly, for linear Q-learning, the following questions have been asked [Lu et al., 2021]: “Does (it)
have a (fixed-point) solution? Does the solution (correspond) to a good policy?"

In this work, we provide both empirical and theoretical evidence to show that the answer to all the
three questions above is an emphatic no in general. As our first evidence, we present Figure 1. It
shows the change in the value function of the policies learned by DQN over single runs in randomly
generated MDPs. As can be seen, over 50% of the runs result in DQN learning a policy that is worse
than the initial guess; on ≈ 20% on the runs, it is in fact significantly worse. While studies evaluating
DQN’s performance in specific MDPs such as Mujoco environments and Atari games are extensive,
we believe ours is the first over a population of randomly generated MDPs. One may consider DQN
to be a complex algorithm and, hence, attribute our observed performance simply to a poor tuning of
hyperparameters such as the experience replay length, the target network refresh rate, and the stepsize
schedule. The rest of our work shows that these behaviors are consequences of more fundamental
issues with DQN’s update and sampling rules themselves.

For an initial glimpse of these fundamental issues, look at Figure 2, which shows three runs of
a ‘linear-DQN’ variant (see Section B for the implementation details). As in a standard DQN
[Mnih et al., 2015], this variant also employs ϵ-greedy exploration, experience replay, and a target
network. However, it uses a linear function instead of a neural-network-induced nonlinear function for
approximating Q∗. The reduction in the approximation power is offset by including2 Q∗ in this linear
function class. The starting conditions for all three runs are the same, ensuring that the initial policy is
close to π∗. In this idealized setting, one would expect linear DQN to always find π∗. Surprisingly, we
see three different behaviors: i) convergence to a sub-optimal policy (green), ii) oscillation between
two sub-optimal policies (red, tail end) and iii) convergence to π∗ (blue). This example already shows

1Linear Q-learning (resp. linear SARSA) is Q-learning (resp. SARSA) with linear function approximation.
2This is ensured by setting one column of the state-action feature matrix to the optimal value function.

2

(a) (b)

Figure 2: Trajectories of three runs of DQN on a 2-state 2-action MDP with a linear 2-dimensional Q-value
approximation which perfectly represents Q∗ (see Section B for implementation details). Figure 2a shows
these trajectories in the parameter space (the faded part is the initial behavior). The black star at (1, 0) is Q∗’s
parameters. All trajectories start at the same place (the black dot), chosen so that the initial behavior is the
ϵ-greedy version of π∗. Figure 2b shows the greedy policies associated with the different trajectories.

how unreliable DQN is. It also uncovers serious issues beyond instability (divergence to infinity),
which a practitioner cannot avoid by just throwing in more data and computation time.

Existing attempts to study Q-learning or SARSA with function approximation are mainly based on
the Ordinary Differential Equation (ODE) method. However, these are of limited utility for explaining
the above pheneomena. To see why, note that the ODE method applies to algorithms of the form

θn+1 = θn + αn[f(θn) + ρn +Mn+1], n ≥ 0, (1)

where f : Rd 7→ Rd is some driving function, αn is a decaying stepsize, ρn is some bias term, and
Mn+1 is the noise. When f is ‘nice’ overall, e.g., globally Lipschitz continuous, the ODE method can
be used to show that the limiting dynamics of (1) is governed by the ODE θ̇(t) = f(θ(t)) [Benaïm,
1999, Borkar, 2022]. This niceness holds in policy evaluation. For Q-learning or SARSA, though, f
is quite complex: even with linear function approximation, the update rule is nonlinear and involves
sampling from distributions that change with θn. So far, the ODE method has only been made to work
for such methods by viewing them as general nonlinear schemes and using restrictive assumptions on
the sampling distribution: fixed behavior policy [Carvalho et al., 2020], near-optimal behavior policy
[Melo et al., 2008, Chen et al., 2022], smooth soft-max behavior policy [Zou et al., 2019], etc. With
ϵ-greedy exploration, the situation is worse since f then is discontinuous and no analysis exists for
it. As we discuss in Section 4, this discontinuity can, in fact, introduce new limiting behaviors, e.g.,
sliding mode, which cannot be explained by continuous ODEs.

Key contributions: The main highlights of our work can be summarized as follows.

1. Novel analysis framework: We introduce a new framework (see Section 3) utilizing Differential
Inclusion (DI) theory [Aubin and Cellina, 2012] to analyze Q-learning and SARSA. Its key steps
are i) breaking down the parameter space into regions where the algorithm’s dynamics are simple,
ii) identifying a DI that stitches the local dynamics together, and iii) using this DI to explain the
algorithm’s overall (possibly complex) behavior. Note that a DI is an extension of an ODE that
enables the above stitching by allowing for multiple update directions at every point.

2. Explanation of linear Q-learning and SARSA(0) behaviors: Our main result (Theorem 6) states
that the DIs uncovered by our framework govern all asymptotic behaviors of linear Q-learning and
SARSA(0) employing ϵ-greedy exploration, (idealized) experience replay, and a target network.
We thereby answer the question posed by Sutton [1999] and also show our framework’s prowess
in explaining the behaviors of linear-DQN-type methods, such as those in Figure 2.

3. Discovery of traps that impede learning: Our work shows that the limiting DI in general could
have several kinds of attractors, and some of these could correspond to sub-optimal policies (see
Section 4). In the latter case, these attractors act as traps that prevent the algorithm from learning
a better policy. Surprisingly, we note that these attractors do not often align with locally optimal

3

policies. We also show that the policy-oscillation phenomenon is due to a new ‘sliding-mode’
attractor. We remark that our DI analysis also applies to the tabular setting, but here there are no
local traps because of the guaranteed existence of a global Lyapunov function.

Related work: Several works report various pathological behaviors for approximate value-function-
based methods. In planning, Bertsekas and Tsitsiklis [1996] argues that approximate policy iteration
may generally be prone to policy oscillations, chattering, and convergence to poor solutions. Similarly,
De Farias and Van Roy [2000] shows how approximate value iteration may oscillate forever and
not possess any fixed points. Within RL, Gordon [1996, 2000] and Zhang et al. [2023] discuss
the chattering phenomenon in linear SARSA(0), but they formally establish only convergence to a
bounded region. More recently, Young and Sutton [2020], Schaul et al. [2022], and Patterson et al.
[2023] empirically discuss the above pathological behaviors in approximate value-function-based RL
methods with greedification. Our work is the first to rigorously explain all these phenomena in RL.

Within the Q-learning literature, a prominent stream uses the ODE method to analyze the linear [Melo
et al., 2008, Carvalho et al., 2020, Chen et al., 2022] and nonlinear (neural) function approximation
[Fan et al., 2020, Xu and Gu, 2020] variants. However, these works hold the behavior policy fixed
and impose other conditions such as this policy being close to the optimal policy. These assumptions
ensure that the resulting nonlinear ODE has a Lyapunov function and thus convergence guarantees.
Another such notable work is [Lee and He, 2020], which uses the switched system theory for analysis.
None of these analyses carry over to the ϵ-greedy exploration case because the behavior policy and
the resultant dynamics discontinuously change.

There are also analyses that apply ODE methods to study SARSA(0) with changing policies [Melo
et al., 2008, Zou et al., 2019]. However, these apply only when the policy improvement operator is
Lipschitz continuous with a sufficiently small Lipschitz constant, which ensures the limiting ODE
is ‘very smooth.’ This restrictive condition holds, e.g., for softmax-type policies with a sufficiently
small inverse-temperature parameter. Hence, these analyses reveal very little about the behavior
under discontinuous ϵ-greedy exploration (the case when the inverse temperature parameter is ∞).

A few variants of Q-learning have already been analyzed using DI-based approaches [Maei et al.,
2010, Bhatnagar and Lakshmanan, 2016, Avrachenkov et al., 2021]. However, they use DIs for
other reasons: the use of sub-gradients, or an intrinsic problem having multiple solutions. This is
fundamentally different from our need, which stems from the discontinuity of ϵ-greedy exploration.
Finally, [Wunder et al., 2010] and [Banchio and Mantegazza, 2022] use DIs to shed light on the
dynamics of (tabular) Q-learning in stateless, multi-agent repeated games.

2 Preliminaries

This section has two distinct parts: this first gives a brief background on Q-learning and SARSA with
linear function approximation and ϵ-greedy exploration; the second, a concise introduction to DIs.

2.1 Linear Q-learning and SARSA with ϵ-greedy policy: setup and update rules

For a set U, let ∆(U) denote the set of probability measures on it. Our setup is that of an MDP
(S,A, γ,P, r), where S is a finite state space, A is a finite action space equipped with a total order,
γ ∈ [0, 1) is the discount factor, and P : S × A → ∆(S) and r : S × A × S → R are functions
such that P(s, a)(s′) ≡ P(s′|s, a) specifies the probability of moving from a state s to s′ under some
action a, while r(s, a, s′) is the one-step reward obtained in this transition. Let Q∗ ∈ R|S||A| be the
optimal Q-value function associated with this MDP, and Φ ∈ R|S||A|×d the given feature matrix. The
standard goal in RL then is to find a θ∗ ∈ Rd such that Q∗ ≈ Φθ∗.

Two algorithms to find such a θ∗ are linear Q-learning and linear SARSA(0) with ϵ-greedy exploration.
Various forms of these algorithms have been discussed in the literature, ranging from the plain vanilla
type to more sophisticated ones with a replay buffer and a target network. Up to some idealization,
all these variants can be expressed via a single template update rule, which we now describe.

Let ϵ ∈ [0, 1) be the greedy-exploration parameter and ϵ′ ∈ [0, 1] the action-sampling parameter at
the succeeding state. Further, let ℓ ≥ 0 and µ ≡ (µ0, . . . , µℓ) be the replay-buffer length and an
associated buffer-sampling distribution. Also, let ∆ ∈ (0, 1] be the rate at which the target-network
estimate is updated. Finally, let θ−0 , θ0, . . . , θ−ℓ ∈ Rd be some initial estimates of θ∗. Then, for

4

n ≥ 0, an unified update rule for linear Q-learning and SARSA(0) is

θn+1 = θn + αnδnϕ(sn, an), (2)

where
δn = r(sn, an, s

′
n) + γϕT (s′n, a

′
n)θ

−
n − ϕT (sn, an)θn. (3)

In this update rule, αn ∈ R≥0 is the stepsize, θn ∈ Rd is the current estimate of θ∗, while θ−n ∈ Rd,
n ≥ 1, is the output of the target network. Further, (θ−n)n≥0 is updated3 using

θ−n+1 = θ−n + τn(θn − θ−n)ζn+1, (4)

where (ζn) is a sequence of IID Bernoulli random variables with mean ∆, and (τn) is another
stepsize sequence. Next, ϕT (s, a), with T being transpose, denotes the (s, a)-th row of Φ, while δn
is the one-step Temporal-Difference (TD) error. The next paragraph explicitly describes how the
state-action pairs (sn, an) and (s′n, a

′
n) are sampled.

Let πϵ
n : S → ∆(A) be the ϵ-greedy policy at time n ≥ −ℓ, i.e., the policy that samples the greedy

action w.r.t. Φθn (the current Q∗ estimate) with probability 1−ϵ and a random action with probability
ϵ. In mathematical notations,

πϵ
n(a|s) =

1− ϵ+

ϵ

|A|
, a = argmax

a′
ϕT (s, a′)θn,

ϵ

|A|
, otherwise.

(5)

In the above definition, we presume that argmax breaks ties using the total order on A. Similarly,
define πϵ′

n with respect to θ−n . Since the state and action spaces are finite, the number of ϵ-greedy
policies is finite. We suppose throughout that these policies satisfy the following condition.

B1. The Markov chain induced by each ϵ-greedy policy is ergodic or, equivalently, aperiodic
and irreducible (and hence has a unique stationary distribution).

For n ≥ −ℓ, let dϵn be the stationary distribution associated with the Markov chain induced by πϵ
n.

Then, for each n ≥ 0, (sn, an) and (s′n, a
′
n) are sampled4 as follows. First, an index k ∈ {0, . . . , ℓ}

is sampled from µ; then, sn is sampled from dϵn−k and an from πϵ
n−k(·|sn); finally, s′n is sampled

from P(·|sn, an) and a′n from πϵ′

n (·|s′n). These five samples are drawn with independent randomness.
Remark 1. Note that (2) with ϵ′ = 0 (resp. ϵ′ = ϵ) is linear Q-learning (resp. SARSA(0)) with
ϵ-greedy exploration. Specifically, the max operator with which Q-learning is usually written is
implicitly specified via the manner in which action a′n is sampled (from the ϵ′-greedy policy).

Remark 2. The sampling choice for sn leads to different variants of Q-learning and SARSA. In
standard DQN, sn is randomly sampled from a replay buffer that holds a sufficiently long but finite
record of all the state-action pairs observed recently. Our way of sampling sn from the stationary
distributions associated with θn, . . . , θn−ℓ serves as an idealized version of this strategy.

2.2 Primer on Differential Inclusions

A DI is a relation of the form θ̇(t) ∈ h(θ(t)) where h(θ) is a non-empty subset of Rd for each θ ∈ Rd.
It reduces to an ODE if h(θ) is a singleton for all θ. Its solution is any (absolutely continuous) function
t 7→ θ(t) that satisfies the given DI relation and an initial condition like θ(0) = θ0. Unlike ODEs
though, the solutions of a DI for an initial condition need not be unique.

The need for DIs can be seen from the following example (cf. [Cortes, 2008, (11)]). Consider (1)
with d = 1, f(θ) = −1 (resp. +1) for θ > 0 (resp. θ ≤ 0), and no bias or noise (i.e., ρn,Mn+1 ≡ 0).
Due to decaying stepsizes, the iterates should converge to 0. However, this behavior cannot be studied
via the ODE θ̇(t) = f(θ(t)) for which the origin is not even an equilibrium point. In fact, this ODE
has no solution at 0: there exists no t 7→ θ(t) map with θ(0) = 0 and θ̇(t) = f(θ(t)); the natural
choices: θ(t) = −t, θ(t) = +t, or θ(t) ≡ 0 do not work.

3In practice, the target network is updated after every 1/∆-many steps for some ∆ ∈ (0, 1). We idealize this
by presuming that the target-network estimate is updated with probability ∆ in every step.

4In Section 4, we show that our analysis of this idealized algorithm explains all the behaviors seen in Fig. 2.

5

The dynamics of the above algorithm, though, can be studied using the DI θ̇(t) ∈ h(θ(t)), where
h(θ) = {+1} (resp. {−1}) when θ < 0 (resp. θ > 0), and the interval [−1,+1] for θ = 0. Since
h(0) contains the origin, the latter is indeed an unique attractor for this DI. In particular, since h(0) is
the convex closure of the set {-1, + 1}, it can be shown that h is Marchaud, i.e., Lipschitz continuous
in a set-valued sense (see C1 in Theorem 11 for details). Like Lipschitz continuity guarantees the
existence of solutions for an ODE (for any initial point), the Marchaud property does so for a DI.

In Section 4, we show that the above picture is natural even in Q-learning with ϵ-greedy policy.

3 Key contributions: our analysis framework & its application to linear
Q-learning/SARSA with ϵ-greedy policy

This section has two subsections. In the first, we provide a detailed description of our proposed
analysis framework. In the second, we use this framework to give the first pathway to systematically
explain all asymptotic behaviors of Q-learning and SARSA(0) with linear function approximation
and ϵ-greedy exploration. This approach is summarized in our main result (Theorem 6) below. Proofs
of all the results stated here are given in Section A in the appendix.

3.1 Our Analysis Framework

We propose the following approach to analyze an update rule like (1) when f is not continuous.

1. Partition the parameter space Rd into regions over which f is ‘simple’: The word simple is
subjective and will depend on the algorithm. For linear Q-learning and SARSA with ϵ-greedy
exploration, our partition is made up of the θ’s where the ϵ-greedy policy is constant. Under linear
function approximation, f restricted to these regions turns out to be linear and continuous, but it
changes discontinuously from one region to the other.

2. Use ‘Filippov convexification’ to stitch the different f -pieces and make a DI: Formally, the f -
pieces are to be combined via the set-valued map h : Rd → 2R

d

(power set of Rd) given by

h(θ) =
⋂
δ>0

co(f(B(θ, δ))). (6)

Here, co is the convex closure. Further, B(θ, δ) and f(B(θ, δ)) mean the open ball of radius δ at θ,
and its image under f, respectively. The set h(θ) is the singleton set {f(θ)} if f is continuous at θ,
and all convex combinations of neighboring update directions otherwise. The Filippov construction
is commonly employed in control theory to deal with discontinuous dynamics [Filippov, 2013].
The DI to study the overall behavior of (1) is

θ̇(t) ∈ h(θ(t)). (7)

Clearly, the DI for Section 2.2’s example matches the one obtained via the above construction.
3. Establish a formal link between the DI and the algorithm’s dynamics: The idea is to show that the

discrete-time iterates (θn) of (1) eventually track a solution of the (non-stochastic) DI in (7). To
prove this claim, one typically has to show that h is Marchaud, i.e., continuous in a set-valued
sense, and that the stepsizes decay sufficiently fast so that the cumulative noise and bias effect is
negligible. In our work, we build upon [Borkar, 2022] to rigorously establish these claims. The
asymptotics of the DI solutions can then be used to explain all limiting behaviors of the algorithm.

3.2 Application of our framework to linear Q-learning/SARSA with ϵ-greedy policy

We now use our framework to analyze the limiting behaviors of Q-learning and SARSA(0) with linear
function approximation, ϵ-greedy exploration, (idealized) experience replay, and a target network.

3.2.1 Analysis Step 1 (partitioning Rd)

We first show how (2) can be rewritten as (1). For any θ−, θ(0), . . . , θ(−ℓ) ∈ Rd, let

v(θ−, θ(0), . . . , θ(−ℓ)) := E
[
δ0ϕ(s0, a0)

∣∣∣∣θ−0 = θ−, θk = θ(k), k = −ℓ, . . . , 0

]
. (8)

6

Further, for any θ ∈ Rd, let
f(θ) := v(θ, θ, . . . , θ). (9)

Finally, for n ≥ 0, let

ρn := v(θ−n , θn, . . . , θn−ℓ)− f(θn) (10)

Mn+1 := δnϕ(sn, an)− v(θ−n , θn, . . . , θn−ℓ). (11)

Using the above definitions, it is easy to see that (2) can be expressed in the form given in (1).

Next, we describe the way we partition Rd. For a ≡ (a(s))s ∈ AS , let Ra := {θ ∈ Rd : ∀s ∈
S,a(s) = argmaxa ϕ

T (s, a)θ}, where we break ties in argmax using the total order. Clearly, for
any θ ∈ Rd, there is a unique a such that θ ∈ Ra. Thus, {Ra : a ∈ AS} partitions Rd, and this is
the one we work with. For a where Ra ̸= ∅, the greedy (hence, ϵ-greedy) policy corresponding to
Φθ is the same for every θ ∈ Ra, and it is a. Hence, we refer to Ra as the greedy region associated
to a. Finally, note that each Ra is a cone, i.e., θ ∈ Ra =⇒ cθ ∈ Ra for any scalar c > 0.

The advantage of the above partition is that f has a simple linear form in each region, which we
describe in Lemma 3 below. We need a few notations for stating this result. Let πϵ

a (resp. πϵ′

a)
be the ϵ-randomization (resp. ϵ′-randomization) of the policy a. That is, at any state s, πϵ

a picks a
random action with probability ϵ and a(s), the action prescribed by a, with probability 1− ϵ. Clearly,
πϵ
n = πϵ

a (resp. πϵ′

n = πϵ′

a) whenever θn ∈ Ra (resp. θ−n ∈ Ra). Next, let dϵa denote the stationary
distribution associated with the Markov chain induced by πϵ

a, and let

ba := E[ϕ(s, a)r(s, a, s′)] = ΦTDϵ
ar (12)

and
Aa := E[ϕ(s, a)ϕT (s, a)− γϕ(s, a)ϕT (s′, a′)] = ΦTDϵ

a(I− γP ϵ′

a)Φ. (13)
In the above definitions, the expectation is with respect to s ∼ dϵa, a ∼ πϵ

a(·|s), s′ ∼ P(·|s, a),
and a′ ∼ πϵ′

a (·|s′). Further, Dϵ
a is the diagonal matrix of size |S||A| × |S||A| whose (s, a)-th

diagonal entry is dϵa(s)π
ϵ
a(a|s), r is the |S||A|-dimensional vector whose (s, a)-th coordinate is

r(s, a) =
∑

s′∈S P(s′|s, a)r(s, a, s′), while P ϵ′

a is the matrix of size |S||A| × |S||A| such that
P ϵ′

a ((s, a), (s′, a′)) = P(s′|s, a)πϵ′

a (a
′|s′).

Lemma 3. For θ ∈ Rd, the function f given in (9) satisfies f(θ) =
∑

a∈AS (ba −Aaθ)1[θ ∈ Ra].

Remark 4. While f is nonlinear overall, Lemma 3 shows that it is piece-wise linear. That is,
f(θ) = ba − Aaθ for θ ∈ Ra, and this definition changes discontinuously from one greedy region
to the other. For ϵ = ϵ′, f |Ra is the driving function that governs the behavior of TD(0) with linear
function approximation for evaluating the policy πϵ

a [Sutton and Barto, 2018, (9.11)]. Figure 3 shows
the partitions and the nature of f over each sub-region for two different MDP settings.

3.2.2 Analysis Step 2 (DI identification)

The DI to study the limiting dynamics of (2) is the one given in (7), where the set-valued map
h : Rd → 2R

d

from (6) is defined using the function f from (9) (or, equivalently, the one in
Lemma 3). Henceforth, we refer to this DI as the limiting DI of (2).

In Lemma 5 below, we give an equivalent but simpler description of this specific function h.
For θ ∈ Rd, let supp(θ) =

{
a ∈ AS : ϕT (s,a(s))θ = maxa∈A ϕT (s, a)θ ∀s ∈ S

}
. Clearly, 1 ≤

|supp(θ)| ≤ |A||S| since {Ra} partitions Rd. In particular, if θ is in the interior of Ra for some a,
then supp(θ) = {a}; for the one on the boundary, |supp(θ)| ≥ 2.

Lemma 5. For θ ∈ Rd, we have h(θ) = co {ba −Aaθ : a ∈ supp(θ)} , where co is the convex hull.
Specifically, h(θ) = {ba −Aaθ} for any θ in the interior of Ra. Further, f(θ) ∈ h(θ).

3.2.3 Analysis Step 3 (algorithm-DI connection)

Our main result (Theorem 6) is that (2)’s limiting DI completely governs its limiting dynamics. To
state this result, we need two additional assumptions. Let ∥ · ∥ denote the Euclidean norm.

B2. (αn) satisfies supn≥0 αn ≤ 1,
∑

n≥0 αn = ∞ and
∑

n≥0 α
2
n < ∞. Further, (τn) satisfies

supn≥0 τn ≤ 1,
∑

n≥0 τn = ∞,
∑

n≥0 τ
2
n < ∞, and limn→∞

αn

τn
= 0.

7

B3. Φ has full column rank.

Our result also needs a few definitions. In relation to (7), we will say a set Γ ⊆ Rd is invariant
if, for every θ0 ∈ Γ, there is some solution trajectory (θ(t))t∈(−∞,∞) of (7) with θ(0) = θ0 that
lies entirely in Γ. An invariant set Γ is additionally internally chain transitive if it is compact and
connected in a certain way: for x, y ∈ Γ, ν > 0, and T > 0, there exist m ≥ 1 and points
x0 = x, x1, . . . , xm−1, xm = y in Γ such that a solution trajectory of (7) initiated at xi meets the ν-
neighborhood of xi+1 for 0 ≤ i < m after a time that is equal or larger than T. Such characterizations
are useful to restrict the possible sets to which (2) could converge to. For example, for the DI in
Section 2.2, while R, [0,∞), (−∞, 0], and {0} are all invariant, only {0} is internally chain transitive.
Theorem 6 (Main Result). Suppose B1, B2, and B3 hold. Then, (θn) obtained by (2) converges to a
closed, connected, internally chain transitive set of its limiting DI a.s. on the event {supn ∥θn∥ < ∞}.
Remark 7. Our result states that (θn) either diverges to ∞ or converges to a suitable (sample-point
dependent) invariant set of its limiting DI. In this way, our result captures all possible limiting
behaviors of (2) and resolves the open question in [Sutton, 1999, Problem 1]. Notably, our result is
the first to characterize the asymptotic behaviors of any value-function-based algorithm with function
approximation and ϵ-greedy exploration. In Section 4, we show that the convergence to an invariant
set does not guarantee the superiority of a resulting limiting greedy policy over intermediate policies.
Remark 8. The limiting DI for (2) does not depend on the hyperparameters such as experience
replay length ℓ, target-network refresh rate ∆, and the stepsizes (αn) and (τn). This means that
adjusting these hyperparameters does not change the possible limiting sets for the sequence (θn).

Remark 9. There are two important cases of value-function-based algorithms where the iterates
are already known to be almost surely stable, i.e., P{supn≥0 ∥θn∥ < ∞} = 1. In these cases, our
claim holds on almost every sample point. The first case is that of linear SARSA(0) with ϵ-greedy
exploration (ϵ′ = ϵ), but without experience replay (ℓ = 0) or a target network (θ−n = θn). Its
stability has been established in [Gordon, 2000]. The second case is that of tabular Q-learning
(Φ = I), whose stability follows using a simple inductive argument, e.g., [Gosavi, 2006].
Remark 10. Our DI-based approach can also recover the well-known result that tabular Q-learning
(i.e., (2) with ϵ′ = 0 and Φ = I) converges to Q∗ a.s. First, Theorem 6 and Remark 9 together show
that this algorithm’s iterates must a.s. converge to some invariant set of its limiting DI. Separately, it
can be shown that ∥θ −Q∗∥ serves as a global Lyapunov function and, hence, {Q∗} is the unique
globally asymptotically stable invariant set of this DI. The desired claim now follows. We note that,
even here, we have greedy regions and dynamics change discontinuously from one region to the other.

4 Numerical illustrations and discussion

We now use Theorem 6 to explain the ‘problematic’ behaviors of linear DQN in Figure 2. Additionally,
we give an MDP example where linear DQN will always converge to the worst policy.

Explanation of Figure 2. For the linear DQN example in Figure 2, we use Step 1 (Lemma 3) of
our framework to get the associated vector-field f : R2 → R2 of its limiting DI. This is given in
Figure 3a, along with the underlying partition. This MDP has four distinct policies: the colored cones
are the corresponding greedy regions. The local dynamics is governed by the associated ba and Aa

values. Each diamond is the point A−1
a ba, the equilibrium for θ̇(t) = ba −Aaθ(t), which we dub as

the ‘landmark’ for the dynamics in Ra. Note how the vector field is discontinuous at the boundaries.

Step 2 convexifies the vector field on the boundaries between regions. In effect, it permits solutions
(of the DI) in which the velocity at a boundary point can be any convex combination of the two
(different) velocities associated with the regions comprising the boundary. Applying this logic to
Figure 3a, we get the following patterns: i.) trajectories starting from the blue region either remain
there and converge to its (blue) landmark at [1, 0]T (representing Q∗) or cross over to the green
region, ii.) trajectories that start within the green region converge either to its (green) landmark or
cross over to the blue region, iii.) trajectories that start from the red region either cross over to the
green region, or hit the red-white boundary in finite time. In the latter case, since the red and white
vector fields near the boundary are always oriented towards it, the resultant solutions are forced to
‘slide’ along the boundary towards a point where the red and white regions’ velocities oppose each
other (a sliding mode attractor), iv.) trajectories starting from the white region either cross over to the
blue region, after which i.) applies, or hit the red-white boundary and slide as before.

8

(a) (b)

Figure 3: The vector field f(θ) for 2 different MDP settings; the colored regions represent greedy partitions
and the diamond markers their respective landmarks. (Left) The MDP setting of Figure 2. (Right) An MDP
setting where Q-learning will always find the worst policy.

Step 3 or Theorem 6 guarantees that the (orginal) iterates of Fig. 2’s linear DQN converge to a
closed, connected, invariant and internally chain transitive set of the above DI. It can rigorously be
established that the only such sets of this DI are 4 singletons: i.) the green and blue landmark points
corresponding to a suboptimal and the optimal policy, respectively, ii.) a point θsliding on the red-white
boundary which is not a proper landmark but satisfies 0 ∈ h(θsliding), and iii.) a similar point θunstable
on the red-green boundary. This final point, though, is an unstable equilibrium point, because any
neighborhood around it contains points from where the DI’s solutions will escape away from it.

Figure 2a can now be explained as follows: the blue (resp. green) trajectory in Fig. 2a converges
to the blue (resp. green) diamond in Fig. 3a; recall that the blue diamond is Q∗’s parameter. In
contrast, the red trajectory goes to the sliding-mode attractor on the boundary between the red and
white regions. In the last case, the iterates continuously ‘chatter’ or bounce between the red and white
regions, which explains the policy oscillation we see in Fig. 2b. Suppose we define the neighborhood
of a stable equilibrium as the set of cones which i.) contain the equilibrium, or ii) shares a boundary
with the cone(s) containing the equilibrium. That is, the set of places that linear DQN can potentially
explore before reaching this equilibrium, e.g., green landmark’s neighborhood consists of the green,
blue, and red cones. Then, it follows that neither the green nor the sliding-mode attractor is locally
optimal! The positive probability of convergence to any attractor from any starting point now explains
why linear DQN may end up at a locally sub-optimal policy or even one that is worse than the initial.

Reliable convergence but to the worst policy. Fig 3b provides the vector field for linear DQN’s
limiting DI in the context of another 2-state, 2-action MDP (see Section B for details). Interpreting
this vector field as above, we get that linear DQN’s iterates will converge a.s. to the blue diamond. The
striking fact is that the greedy policy associated to this landmark is the worst of all the 4 deterministic
policies, demonstrating a hopeless ‘no-improvement’ scenario. A similar observation has been made
by Young and Sutton [2020] for the episodic (finite-horizon, undiscounted) MDP setting.

Discussion: On a somber note, our insights about Q-learning and SARSA under arguably the simplest
possible (linear) function approximation with ϵ-greedy exploration cast doubt on their utility in more
complicated, nonlinear approximation architectures. Unless the specific setting where the algorithms
are applied has favorable structural properties (in terms of its limiting DI), the practitioner must
anticipate unreliable behaviors. Our work also reinforces the fact that merely ensuring stability of an
incremental RL algorithm’s iterates is by no means sufficient to guarantee good performance—the
discontinuous policy update and the sampling distribution can still induce complex behaviors.

On the positive side, our approach provides a systematic design pathway for reliable RL algorithms
whose associated DIs are sound, e.g., those whose attractors lie in regions associated with high-value
policies, potentially via Lyapunov techniques.

9

Acknowledgments and Disclosure of Funding

We express our gratitude to the anonymous reviewers for taking out their time and providing us with
valuable comments. This feedback has helped in improving the quality of the paper. Gugan Thoppe’s
research is supported in part by DST-SERB’s Core Research Grant CRG/2021/008330, the Indo-
French Centre for the Promotion of Advanced Research—CEFIPRA (7102-1), the Walmart Center
for Tech Excellence, the Kotak-IISc AI/ML Centre, and by the Pratiksha Trust Young Investigator
Award. He would also declare his Associate Researcher position at the Robert Bosch Centre for Data
Science and Artificial Intelligence (RBCDSAI) at IIT Madras, Chennai 600 036, India.

References
J-P Aubin and Arrigo Cellina. Differential inclusions: set-valued maps and viability theory, volume

264. Springer Science & Business Media, 2012.

Konstantin E Avrachenkov, Vivek S Borkar, Hars P Dolhare, and Kishor Patil. Full gradient DQN
reinforcement learning: A provably convergent scheme. In Modern Trends in Controlled Stochastic
Processes:, pages 192–220. Springer, 2021.

Leemon Baird. Residual algorithms: Reinforcement learning with function approximation. In
Machine Learning Proceedings 1995, pages 30–37. Elsevier, 1995.

Martino Banchio and Giacomo Mantegazza. Adaptive algorithms and collusion via coupling. arXiv
preprint arXiv, 2202, 2022.

Michel Benaïm. Dynamics of stochastic approximation algorithms. In Seminaire de probabilites
XXXIII, pages 1–68. Springer, 1999.

Michel Benaïm, Josef Hofbauer, and Sylvain Sorin. Stochastic approximations and differential
inclusions. SIAM Journal on Control and Optimization, 44(1):328–348, 2005.

Dimitri P Bertsekas. Approximate policy iteration: A survey and some new methods. Journal of
Control Theory and Applications, 9(3):310–335, 2011.

Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming. Athena Scientific, 1996.

Shalabh Bhatnagar and K Lakshmanan. Multiscale Q-learning with linear function approximation.
Discrete Event Dynamic Systems, 26(3):477–509, 2016.

Vivek S Borkar. Stochastic approximation: a dynamical systems viewpoint, volume 48. Hindustan
Book Agency, 2022. Second Edition.

Diogo Carvalho, Francisco S Melo, and Pedro Santos. A new convergent variant of q-learning
with linear function approximation. Advances in Neural Information Processing Systems, 33:
19412–19421, 2020.

Zaiwei Chen, Sheng Zhang, Thinh T Doan, John-Paul Clarke, and Siva Theja Maguluri. Finite-
sample analysis of nonlinear stochastic approximation with applications in reinforcement learning.
Automatica, 146:110623, 2022.

Jorge Cortes. Discontinuous dynamical systems. IEEE Control systems magazine, 28(3):36–73,
2008.

Daniela Pucci De Farias and Benjamin Van Roy. On the existence of fixed points for approximate
value iteration and temporal-difference learning. Journal of Optimization theory and Applications,
105(3):589–608, 2000.

Jianqing Fan, Zhaoran Wang, Yuchen Xie, and Zhuoran Yang. A theoretical analysis of deep
Q-learning. In Learning for Dynamics and Control, pages 486–489. PMLR, 2020.

Aleksei Fedorovich Filippov. Differential equations with discontinuous righthand sides: control
systems, volume 18. Springer Science & Business Media, 2013.

10

Geoffrey J Gordon. Chattering in SARSA (lambda)-a CMU learning lab internal report. Technical
report, Carnegie Mellon University, 1996.

Geoffrey J Gordon. Reinforcement learning with function approximation converges to a region.
Advances in neural information processing systems, 13, 2000.

Abhijit Gosavi. Boundedness of iterates in q-learning. Systems & control letters, 55(4):347–349,
2006.

Donghwan Lee and Niao He. A unified switching system perspective and convergence analysis of
Q-learning algorithms. Advances in Neural Information Processing Systems, 33, 2020.

Fan Lu, Prashant G Mehta, Sean P Meyn, and Gergely Neu. Convex Q-learning. In 2021 American
Control Conference (ACC), pages 4749–4756. IEEE, 2021.

Hamid Reza Maei, Csaba Szepesvári, Shalabh Bhatnagar, and Richard S Sutton. Toward off-policy
learning control with function approximation. In ICML, 2010.

Francisco S Melo, Sean P Meyn, and M Isabel Ribeiro. An analysis of reinforcement learning with
function approximation. In Proceedings of the 25th international conference on Machine learning,
pages 664–671, 2008.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Andrew Patterson, Samuel Neumann, Martha White, and Adam White. Empirical design in reinforce-
ment learning. arXiv preprint arXiv:2304.01315, 2023.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pages 400–407, 1951.

Tom Schaul, André Barreto, John Quan, and Georg Ostrovski. The phenomenon of policy churn.
arXiv preprint arXiv:2206.00730, 2022.

Richard S Sutton. Open theoretical questions in reinforcement learning. In European Conference on
Computational Learning Theory, pages 11–17. Springer, 1999.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Michael Wunder, Michael L Littman, and Monica Babes. Classes of multiagent q-learning dynamics
with epsilon-greedy exploration. In Proceedings of the 27th International Conference on Machine
Learning (ICML-10), pages 1167–1174, 2010.

Pan Xu and Quanquan Gu. A finite-time analysis of Q-learning with neural network function
approximation. In International Conference on Machine Learning, pages 10555–10565. PMLR,
2020.

Kenny Young and Richard S Sutton. Understanding the pathologies of approximate policy evaluation
when combined with greedification in reinforcement learning. arXiv preprint arXiv:2010.15268,
2020.

Shangtong Zhang, Remi Tachet Des Combes, and Romain Laroche. On the convergence of sarsa
with linear function approximation. In International Conference on Machine Learning, pages
41613–41646. PMLR, 2023.

Shaofeng Zou, Tengyu Xu, and Yingbin Liang. Finite-sample analysis for SARSA with linear
function approximation. Advances in Neural Information Processing Systems, 32, 2019.

11

A Proofs

The proofs for all Section 3’s results are given here. The proof of our main result is in Subsection A.1,
and those of Lemmas 3 and 5 are in Subsection A.2.

A.1 Proof of our Main Result (Theorem 6)

Using our Step 1 from Section 3.2, recall that the linear Q-learning/SARSA(0) update from (2) can be
rewritten as (1), where f, ρn, and Mn+1 are given by (9) (or, equivalently, the expression in Lemma 3),
(10), and (11), respectively. Compared to a standard stochastic approximation [Robbins and Monro,
1951, Borkar, 2022, Benaïm, 1999], the analysis of (2) has two main challenges. First, the resultant
driving function f is discontinuous (see Lemma 3), a consequence of the ϵ-greedy exploration.
Second, the perturbation term ρn need not necessarily decay to 0, especially when (θn) continually
jumps between two or more greedy regions. Recall that ρn arises due to the experience-replay and
target-network-based sampling of sn, an, s′n, and a′n.

Our approach to overcoming the above two challenges is as follows. We handle the discontinuity by
treating (2) as a Stochastic Recursive Inclusion (SRI) [Benaïm et al., 2005, Borkar, 2022] wherein
the driving function can also be discontinuous, unlike in a stochastic approximation. This enables
us to study the limiting dynamics of (2) using the powerful DI viewpoint instead of the standard
differential-equation-based one. Separately, we handle ρn by carefully decomposing it into terms
that arise only due to experience replay, and those that arise due to the target network. On a sample
path where the (θn) iterates are stable, we exploit the fact that the target network parameter θ−n is
updated using a faster timescale to show that ∥θ−n − θn∥ and, hence, the terms that depend on θ−n
asymptotically vanish. In contrast, for the terms that arise due to experience replay, we show that a
telescopic sum exists that ensures their cumulative effect is asymptotically negligible.

A key result that we build upon to handle the discontinuity of f in (2) is [Borkar, 2022, Corollary 5.1]
which concerns the convergence of Stochastic Recursive Inclusions (SRIs). To help the reader, we
first describe SRIs and then state the above result. Alongside, we also explain why this result is not
sufficient to directly prove Theorem 6. Finally, we provide our own proof.

An SRI is a generic update like
θn+1 = θn + αn[yn +Mn+1], n ≥ 0, (14)

where yn is some desired update vector satisfying yn ∈ h(θn) for some set-valued map h, αn is
some stepsize, and Mn+1 is noise. A stochastic approximation and more specifically a stochastic
gradient descent are special cases of an SRI, where h(θ) is a singleton for all θ. Note that (2) has
the form given in (14), but with an additional perturbation term ρn. In particular, in the case of (2),
yn = f(θn) ∈ h(θn), where f and h are as in (9) and (6), respectively.

We next state [Borkar, 2022, Corollary 5.1], which provides a sufficient set of conditions for the (θn)

sequence generated by (14) to converge to the invariant sets of the DI θ̇(t) ∈ h(θ(t)).

Theorem 11 (Corollary 5.1, Borkar [2022]). Consider a generic SRI like (14) and suppose the
following conditions hold.

C1. Driving function: h is Marchaud or continuous in a set-value sense, i.e.,

(a) h(θ) is convex and compact for all θ ∈ Rd;

(b) ∃Kh > 0 such that supy∈h(θ) ∥y∥ ≤ Kh(1 + ∥θ∥) for all θ ∈ Rd, and

(c) h is upper semicontinuous or, equivalently, {(θ, y) ∈ Rd × Rd : y ∈ h(θ)} is closed.

C2. Stepsize schedule: (αn) is a non-increasing sequence that satisfies the Robbins-Monro condition,
i.e.,

∑∞
n=0 αn = ∞, but

∑∞
n=0 α

2
n < ∞.

C3. Noise behavior: (Mn) is a square-integrable martingale-difference sequence adapted to an
increasing family of σ-fields (Fn). Furthermore, there exists a constant Km ≥ 0 such that
E[∥Mn+1∥2|Fn] ≤ Km[1 + ∥θn∥2] a.s. for all n ≥ 0.

Then, almost surely on every sample path where the iterate sequence (θn) is stable, i.e.,
supn≥0 ∥θn∥ < ∞, we have that (θn) converges to a (possibly sample-path dependent) closed,
connected, internally chain transitive set of the DI θ̇(t) ∈ h(θ(t)).

12

Theorem 11 is not directly applicable to (2) due to the additional perturbation term, ρn. Instead, we
prove Theorem 6 by building upon Theorem 11’s proof from [Borkar, 2022]. Our strategy involves,
firstly, verifying that h, (αn), and (Mn), as defined in the context of (2), meet the criteria stipulated in
Theorem 11. Thereafter, we prove that the cumulative impact of the ρn’s is asymptotically negligible,
a key and intricate part of our analysis. Finally, we show that, under the above conditions, the core
arguments and thereby the conclusions of Theorem 11 are upheld, which then leads to our result.

Proof of Theorem 6. We first show that the conditions C1, C2, and C3 of Theorem 11 hold for (2).

Consider C1. Lemma 5 shows that h(θ) is convex. Since |supp(θ)| ≤ |AS |, a finite number, we also
have that h(θ) is closed and bounded (hence, compact). This establishes (C1.a). Similarly, we have

sup
y∈h(θ)

∥y∥ ≤ max

{
max
a∈AS

∥ba∥, max
a∈AS

∥Aa∥
}
(1 + ∥θ∥).

Separately, since we have finite state and action spaces, we have that ∃Kϕ,Kr ≥ 0 such that, for any
s, s′ ∈ S and a ∈ A,

∥ϕ(s, a)∥ ≤ Kϕ and |r(s, a, s′)| ≤ Kr. (15)

From (12), (13), and (15), it then follows that ∥ba∥ ≤ KϕKr and ∥Aa∥ ≤ (1 + γ
√
|S|)K2

ϕ.

Hence, (C1.b) is satisfied for Kh := Kϕ max{Kr, (1 + γ
√
|S|)Kϕ}. It remains to establish the

upper semicontinuity of h. That is, for any sequences (xn) and (zn) such that xn → θ, zn → y,
and zn ∈ h(xn)∀n ≥ 0, we need to show that y ∈ h(θ). This is a consequence of the ‘Filippov
convexification’ and, hence, we use the form of h given in (6) for deriving it. Let δ > 0 be arbitrary.
Then, ∃Nδ ≥ 0 such that xn ∈ B(θ, δ) for all n ≥ Nδ. Further, for each such n, since B(θ, δ) is
open, there is also small ball around xn that is contained in B(θ, δ) which, in turn, implies

zn ∈ h(xn) ⊆ co(f(B(θ, δ))). (16)

Because the set on the extreme right is closed and y is the limit of (zn), we have y ∈ co(f(B(θ, δ))).
The choice of δ being arbitrary finally shows that y ∈ h(θ), as desired.

Condition C2 holds due to our stepsize assumption in B2.

Next, consider C3. Let Fn be the σ-field generated by θ−0 , θ0, . . . , θ−ℓ, s0, a0, s
′
0, a

′
0, . . . , sn−1, an−1,

s′n−1, a
′
n−1. The fact that (Mn) is a martingale-difference sequence adapted to (Fn) is a direct

consequence of its definition in (11). Further, for any n ≥ 0, it follows from (2) and (15) that

∥δnϕ(sn, an)∥ ≤ |δn| ∥ϕ(sn, an)∥
≤ Kϕ

[
Kr + γKϕ∥θ−n ∥+Kϕ∥θn∥

]
(17)

and, hence,
∥Mn+1∥ ≤ 2Kϕ

[
Kr + γKϕ∥θ−n ∥+Kϕ∥θn∥

]
. (18)

Therefore, E[∥Mn+1∥2|Fn] ≤ Km[1 + ∥θ−n ∥2 + ∥θn∥2] for Km = 12K2
ϕ max{K2

r ,K
2
ϕ}. Note

that there is an additional ∥θ−n ∥ term in this expression. However, it does not pose any additional
difficulties and can be handled just like the ∥θn∥ term. It remains to show that (Mn) is a square
integrable sequence, i.e., E∥Mn∥2 < ∞ for all n ≥ 1. Since ∥θ0∥2, ∥θ−0 ∥2 < ∞, it follows from (2),
(4), and using (17) and (18) for n = 0, that E∥M1∥2 < ∞, E∥θ1∥2 < ∞ and E∥θ−1 ∥2 < ∞. The
desired result now follows by induction.

We now study the asymptotic behavior of (θn), updated using (2) and (4), along the lines given in the
proof of [Borkar, 2022, Corollary 5.4]. Fix a sample point where supn≥0 ∥θn∥ < ∞. Then, using a
simple induction argument, it follows that supn≥0 ∥θ−n ∥ < ∞.

Next, we look at θ−n ’s asymptotic behavior. Clearly, (2) and (4) can be jointly viewed as a two-
timescale algorithm. Specifically, since αn/τn → 0, it follows that (θn) is updated on a slower
timescale relative to (θ−n); hence, the (θn) sequence would appear static from the viewpoint of (4).
Now, for the case where θn ≡ θ for some θ ∈ Rd, (4)’s limiting ODE ẋ(t) = ∆(θ − x(t)) has θ
as its unique globally asymptotically stable equilibrium. This limit, as a function of θ, is trivially
Lipschitz continuous. Hence, from [Borkar, 2022, Lemma 8.1], we have

∥θ−n − θn∥ → 0. (19)

13

Next, we discuss the asymptotic behavior of (θn) obtained via (2). Let T > 0 be an arbitrary horizon.
Further, for n ≥ 0, let mn be the smallest index k such that T ≤

∑n+k
j=n αj ≤ T + 1. Then, for any

n ≥ 0 and m such that 0 ≤ m ≤ mn, we have that

θn+m+1 = θn +

n+m∑
j=n

αjf(θn) +

n+m∑
j=n

αjMj+1 +

n+m∑
j=n

αjρj . (20)

The above expression is of the form given in [Borkar, 2022, (2.1.6)]5, except for the additional sum
involving the perturbation terms. Hence, if we can show that sup0≤m≤mn

∥
∑n+m

j=n αjρj∥ → 0 as
n → ∞, then Theorem 6 would follow by using similar arguments as in [Borkar, 2022, Corollary 5.4].

We now show the above claim. For this, we decompose αnρn into terms that arise due to experience
replay and those arise due to the target network. From (8), (3), (12), and (13), we have that, for any
θ−, θ(0), . . . , θ(−ℓ),

v(θ−,θ(0), . . . , θ(−ℓ))

= E
[
δ0ϕ(s0, a0)

∣∣∣θ−0 = θ−, θk = θ(k), k = −ℓ, . . . , 0
]

=

ℓ∑
k=0

µk

(∑
a∈AS

[
(ba −Aaθ

(0))1[θ(−k) ∈ Ra]− γΦTDϵ
aP

ϵ′

a Φθ(0)1[θ(−k) ∈ Ra]
]

+
∑

a,a′∈AS

γΦTDϵ
aP

ϵ′

a′Φθ−1[θ(−k) ∈ Ra, θ
− ∈ Ra′]

)
.

Therefore, using (10), we get that
αnρn = αn

[
v(θ−n , θn, . . . , θn−ℓ)− f(θn)

]
= αn

ℓ∑
k=0

µk

(∑
a∈AS

(ba −Aaθn)1[θn−k ∈ Ra]

+
∑

a,a′∈AS

γΦTDϵ
a

[
P ϵ′

a′Φθ−n − P ϵ′

a Φθn

]
1[θn−k ∈ Ra, θ

−
n ∈ Ra′]− f(θn)

)
= ρ(1)n + ρ(2)n + ρ(3)n + ρ(4)n , (21)

where

ρ(1)n :=

ℓ∑
k=0

µk [αn−kf(θn−k)− αnf(θn)] ; (22)

ρ(2)n :=

ℓ∑
k=0

µk(αn − αn−k)f(θn−k); (23)

ρ(3)n := αn

ℓ∑
k=0

µk

[∑
a∈AS

(ba −Aaθn)1[θn−k ∈ Ra]− f(θn−k)

]

+ αn

ℓ∑
k=0

µk

∑
a∈AS

γΦTDϵ
aP

ϵ′

a Φ(θn−k − θn)1[θn−k ∈ Ra] (24)

= αn

ℓ∑
k=0

µk

∑
a∈AS

[
Aa + γΦTDϵ

aP
ϵ′

a Φ
]
(θn−k − θn)1[θn−k ∈ Ra]; (25)

ρ(4)n := αn

n∑
k=0

µk

∑
a,a′∈AS

γΦTDϵ
a

[
P ϵ′

a′Φθ−n − P ϵ′

a Φθn−k

]
1[θn−k ∈ Ra, θ

−
n ∈ Ra′]. (26)

5Due to the discontinuity in f, we actually need to consider the analogous form needed to derive [Borkar,
2022, Lemma 5.1]; however, as stated in ibid, the latter’s proof mimics that of [Borkar, 2022, Lemma 2.1].

14

The sum in (21) is our proposed decomposition for αnρn. Note that ρ(1)n , ρ
(2)
n , and ρ

(3)
n capture the

complexities which are only due to experience replay, while ρ
(4)
n is also due to the target network.

We now individually study the behaviors of the four terms in the decomposition. We first look at the
ρ
(4)
n term. For each (s, a) combination, we have

P ϵ′

a (·|s, a)Φθn−k 1[θn−k ∈ Ra]

=
∑
s′∈S

P(s′|s, a)

[
(1− ϵ′)max

b
ϕT (s′, b)θn−k +

ϵ′

|A|
∑
a′∈A

ϕT (s′, a′)θn−k

]
.

Similarly,

P ϵ′

a′ (·|s, a)Φθ−n 1[θ−n ∈ Ra′]

=
∑
s′∈S

P(s′|s, a)

[
(1− ϵ′)max

b
ϕT (s′, b)θ−n +

ϵ′

|A|
∑
a′∈A

ϕT (s′, a′)θ−n

]
.

Since |maxb ϕ
T (s′, b)θ−n −maxb ϕ

T (s′, b)θn−k| ≤ maxb |ϕT (s′, b)θ−n −ϕT (s′, b)θn−k|, the above
relations now show that∥∥∥[P ϵ′

a′Φθ−n − P ϵ′

a Φθn−k

]
1[θn−k ∈ Ra, θ

−
n ∈ Ra′]

∥∥∥
∞

≤ ∥Φθn−k − Φθ−n ∥∞.

However, ∥Φθn−k −Φθ−n ∥∞ ≤ ∥Φθn −Φθ−n ∥∞ + ∥Φθn−k −Φθn∥∞. Further, for any 0 ≤ k ≤ ℓ,

∥θn−k − θn∥ ≤
n−1∑

j=n−ℓ

∥θj − θj+1∥

≤
n−1∑

j=n−ℓ

αj |δj | ∥ϕ(sj , aj)∥

= O(αn−ℓ),

where the last relation follows since i) the rewards and feature vectors are bounded (due to (15)), ii) the
stepsize sequence (αn) is non-increasing (see B2), and iii) supn≥0 ∥θn∥ and supn≥0 ∥θ−n ∥ are finite.

Therefore, ρ(4)n /αn = O(∥θ−n − θn∥) +O(αn−ℓ) → 0 due to (19) and the fact that αn−ℓ → 0. Now,
since

∑j=n+mn

j=n αj ≤ CT for some constant C ≥ 0, it follows that sup0≤m≤mn
∥
∑n+m

j=n ρ
(4)
j ∥ =

O(T supj≥n ∥θ−j − θj∥+ Tαn−ℓ) → 0, as n → ∞.

Next, consider ρ(3)n . Clearly,

∥ρ(3)n ∥
αn

≤
ℓ∑

k=0

µk

∑
a∈AS

∥Aa + γΦTDϵ
aP

ϵ′

a Φ∥∥θn−k − θn∥.

Again, by arguing as above, we have sup0≤m≤mn
∥
∑n+m

k=n ρ
(3)
j ∥ = O(Tαn−ℓ) → 0 as n → ∞.

Finally, we study the asymptotic behaviors of ρ(1)n and ρ
(2)
n . Unlike ρ(3)n and ρ

(4)
n , though, these terms

are not o(αn), i.e., ρ(1)n /αn and ρ
(2)
n /αn do not decay to 0. However, as we now show, there exists

a telescopic sum that ensures their cumulative effect over any finite T -length horizon is negligible.
Formally,

n+m∑
j=n

αjρ
(1)
j =

ℓ∑
k=0

µk

n+m∑
j=n

[αj−kf(θj−k)− αjf(θj)] (27)

=

ℓ∑
k=0

µk

[n+k−1∑
j=n

αj−kf(θj−k) (28)

−
n+m∑

j=n+m+1−k

αjf(θj)

]
, (29)

15

where the intermediate terms get canceled due to their telescopic nature. Note that the two in-
ner summations contain at most ℓ many terms. Combining these statements with the facts that
supn≥0 ∥θn∥ < ∞ and that the stepsize sequence (αn) is non-increasing (see B2), we get

sup
m≥0

∥∥∥∥ n+m∑
j=n

αjρ
(1)
j

∥∥∥∥ = O(αn−ℓ). (30)

Similarly, we have supm≥0 ∥
∑n+m

j=n αjρ
(2)
j ∥ = O(αn−ℓ).

We can now conclude that
∑

0≤m≤mn
∥
∑n+m

j=n αjρj∥ → 0, as desired. By arguing as in the proof
of [Borkar, 2022, Corollary 5.4], the desired claim now follows.

A.2 Proofs of Lemmas 3 and 5

Proof of of Lemma 3. Let θ ∈ Rd be arbitrary. Since {Ra} partitions Rd, we have θ ∈ Ra for some
unique policy a. Now suppose the initial estimates satisfy θ−0 = θ0 = · · · = θ−ℓ = θ. Then, (3)
shows that

δ0ϕ(s0, a0) = ϕ(s0, a0)r(s0, a0, s
′
0)−

[
ϕ(s0, a0)ϕ

T (s0, a0)− γϕ(s0, a0)ϕ
T (s′0, a

′
0)
]
θ.

Further, dϵk = dϵa for all k = −ℓ, . . . , 0, where dϵk and dϵa are the stationary distributions defined
below B1 and above (12), respectively. Finally, by recalling how s0, a0, s

′
0 and a′0 are sampled from

the discussion below B1, it follows from (8), (9), (12), and (13) that

f(θ) = E
[
δ0ϕ(s0, a0)

∣∣θ−0 = θ, θk = θ, k = −ℓ, . . . , 0
]

= ba −Aaθ.

Note that the above conclusion is not influenced by the choice of the buffer-sampling-distribution µ.
The desired result now follows.

Proof of of Lemma 5. Fix θ ∈ Rd. By definition, h(θ) is a closed convex set. Our first claim is that
ba −Aaθ ∈ h(θ) for each a ∈ supp(θ). From the convexity of h(θ), it will then follow that

h′(θ) := co {ba −Aaθ : a ∈ supp(θ)} ⊆ h(θ). (31)

To see the claim, consider an arbitrary a ∈ supp(θ). For each δ > 0, B(θ, δ) ∩ Ra ̸= ∅ by the
definition of supp(θ); take θδ ∈ B(θ, δ)∩Ra. Since B(θ, δ1)∩Ra ⊆ B(θ, δ2)∩Ra for any δ1 ≤ δ2,
it follows that {θδ : 0 < δ < δ′} ⊆ B(θ, δ′) for any δ′ > 0. Hence, {ba − Aaθδ : 0 < δ < δ′} ⊆
f(B(θ, δ′)) for any δ′ > 0. Now, since limδ→0 θδ = θ, it follows that ba − Aaθ ∈ f(B(θ, δ′)) ⊆
co(f(B(θ, δ′))) for any δ′ > 0. Hence, ba −Aaθ ∈ h(θ), as desired.

We now prove that h(θ) ⊆ h′(θ). Suppose not. Then there exists x ∈ h(θ) such that x /∈ h′(θ).
Since the latter is a closed set, there in fact exists some δ′ > 0 such that ∥x − y∥2 ≥ δ′ for
all y ∈ h′(θ). Now let δ0 > 0 be the largest δ > 0 such that B(θ, δ) ∩ Ra ̸= ∅ if and only if
a ∈ supp(θ) (the existence of such a δ0 for θ ̸= 0 can be seen from the definition of supp(θ) and
the fact that the number of a’s is finite; for θ = 0, take δ0 = ∞). Pick δ such that 0 < δ <
min{δ0, δ′/(2maxa ∥Aa∥2)}. Because x ∈ h(θ), we have x ∈ co(f(B(θ, δ))). The closure implies
there exists x′ :=

∑m
i=1 νi(bai

−Aai
θi) ∈ co(f(B(θ, δ))) such that ∥x− x′∥ < δ′/2, where m ≥ 1

and, for 1 ≤ i ≤ m, θi ∈ B(θ, δ), ai ∈ supp(θ), and νi ∈ [0, 1] with
∑m

i=1 νi = 1. Also, since δ <
δ′/(2maxa ∥Aa∥2), we have ∥x′−x′′∥2 < δ′/2 for x′′ :=

∑m
i=1 νi(bai

−Aai
θ) ∈ h′(θ). However,

this implies ∥x− x′′∥ < δ′, which leads to a contradiction. Hence, it holds that h(θ) ⊆ h′(θ). The
desired claim follows.

B MDP and DQN implementation details for Figure 2 and 3b

For Figure 2, the details are as follows.

• MDP and linear state-action-value feature matrix:
States S = {s1, s2}, Actions A = {a1, a2},

16

{P(s′|s, a1)}s,s′ =
[

0.380 0.620
0.786 0.214

]
, {P(s′|s, a2)}s,s′ =

[
0.124 0.876
0.426 0.574

]
,

Φ =

 1.919 0.112
2.581 −0.659
1.912 1.679
1.560 −0.168

, r =

 −0.031
0.785
−0.282
−0.418

, γ = 0.9, ϵ = 0.05.

• DQN algorithm implementation details: Replay buffer size: 10, Batch size: 8, Target update
duration: 8, Step sizes: 2/n at iteration n.

For Figure 3b, the details are as follows.

• MDP and linear action-value feature matrix:
States S = {s1, s2}, Actions A = {a1, a2},

{P(s′|s, a1)}s,s′ =
[

0.355 0.645
0.598 0.402

]
, {P(s′|s, a2)}s,s′ =

[
0.820 0.180
0.288 0.712

]
,

Φ =

 0.985 0.951
0.395 1.078
−0.904 1.276
0.063 1.214

, r =

 −0.599
−1.427
0.658
0.300

, γ = 0.75, ϵ = 0.1.

17

	Introduction
	Preliminaries
	Linear Q-learning and SARSA with -greedy policy: setup and update rules
	Primer on Differential Inclusions

	Key contributions: our analysis framework & its application to linear Q-learning/SARSA with -greedy policy
	Our Analysis Framework
	Application of our framework to linear Q-learning/SARSA with -greedy policy
	Analysis Step 1 (partitioning Rd)
	Analysis Step 2 (DI identification)
	Analysis Step 3 (algorithm-DI connection)

	Numerical illustrations and discussion
	Proofs
	Proof of our Main Result (Theorem 6)
	Proofs of Lemmas 3 and 5

	MDP and DQN implementation details for Figure 2 and 3b

