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Abstract
Sparse Autoencoders (SAEs) are widely used to interpret neural networks by
identifying meaningful concepts from their representations. However, do SAEs
truly uncover all concepts a model relies on, or are they inherently biased toward
certain kinds of concepts? We introduce a unified framework that recasts SAEs
as solutions to a bilevel optimization problem, revealing a fundamental challenge:
each SAE imposes structural assumptions about how concepts are encoded in
model representations, which in turn shapes what it can and cannot detect. This
means different SAEs are not interchangeable—switching architectures can expose
entirely new concepts or obscure existing ones. To systematically probe this effect,
we evaluate SAEs across a spectrum of settings: from controlled toy models that
isolate key variables, to semi-synthetic experiments on real model activations and
finally to large-scale, naturalistic datasets. Across this progression, we examine
two fundamental properties that real-world concepts often exhibit: heterogeneity in
intrinsic dimensionality (some concepts are inherently low-dimensional, others are
not) and nonlinear separability. We show that SAEs fail to recover concepts when
these properties are ignored, and we design a new SAE that explicitly incorporates
both, enabling the discovery of previously hidden concepts and reinforcing our
theoretical insights. Our findings challenge the idea of a universal SAE and
underscores the need for architecture-specific choices in model interpretability.

1 Introduction
Interpretability has become an important research agenda for assuring, debugging, and controlling
neural networks [1–5]. To this end, sparse dictionary learning methods [6–10], especially Sparse
Autoencoders (SAEs), have seen a resurgence in literature, since they offer an unsupervised pipeline
for simultaneously enumerating all concepts a model may rely on for making its predictions [11–18].
Specifically, an SAE decomposes representations into an overcomplete set of latents that (ideally)
correspond to abstract, data-centric concepts which, upon aggregation, explain away the model
representations [19, 20]. In other words, an SAE is expected to result in monosemantic latents which
are more interpretable than the neurons of the original model [21]. For example, SAE latents derived
from models in diverse domains have been demonstrated to activate for meaningful concepts such
as specific monuments, behaviors, and scripts in language [22, 23]; specific objects, people, and
scene properties in vision [15, 24]; and correlate with binding sites and functional motifs in protein
autoregressive models [25–27].

To the extent the concepts uncovered using SAEs faithfully represent the concepts used by a model
for making its predictions, we can use this information to perform surgical interventions on a model’s
representations and hence achieve control over its behavior [23, 28, 29]. While this forms a bulk of
the motivation around research in SAEs [12, 30, 31], we argue the theoretical foundations that suggest
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Figure 1: The Duality Between SAEs Architectures and Their Implicit Data Assumptions. A)
SAEs do not passively extract concepts—they impose constraints that shape what can be detected.
Each SAE architecture inherently assumes a specific structure in how features are encoded, leading
to a corresponding dual assumption about the data. B) Different SAEs rely on different assumptions:
some expect features to be linearly separable (ReLU, JumpReLU) or separable by angle while having
uniform intrinsic dimensionality (TopK). These assumptions dictate what an SAE can successfully
extract—and what it may miss entirely.

SAEs are an optimal tool for achieving this goal are lacking. For example, is it possible that instead
of uncovering all concepts a model utilizes in its computation, SAEs are biased towards identifying
only a specific, narrower subset of concepts? Furthermore, is it possible that different SAEs, which
generally achieve similar fidelity/sparsity, have qualitatively different biases and hence uncover
different concepts from model representations? An affirmative answer to these questions may explain
recent negative results on SAEs, e.g., algorithmic instability [15, 32] and lack of causality [33, 34].
Motivated by this, we make the following contributions in this work.

• Duality between Concepts’ Organization and the Optimal SAE that Identifies Them. We
formulate SAEs as solutions to a specific bilevel optimization problem, which highlights a
fundamental duality between concept structure in model representations and an SAE encoder’s
receptive fields (formalized in Def. 3.2). Crucially, this implies any SAE is implicitly biased
towards identifying concepts that are organized in a specific manner (Fig. 1).

• Empirical Validation via Concepts that do not Follow SAEs’ Implicitly Assumed Organiza-
tion. We evaluate SAEs on concepts with heterogeneous intrinsic dimensionality (i.e., different
concepts occupy subspaces of varying dimension) and nonlinear separability through experiments
on controlled synthetic setups to real-world model activations, demonstrating that SAEs failing
to account for these properties systematically miss the corresponding concepts.

• A Methodology for Designing Task-Specific SAEs. Our results suggest no single SAE archi-
tecture may be universally optimal, and hence SAEs should be designed by accounting for how
concepts are encoded in model representations. To validate this, we introduce SpaDE, a novel
SAE that explicitly incorporates heterogeneity and nonlinear separability into its encoder. As we
show, SpaDE successfully identifies concepts that other SAEs fail to detect, reinforcing the need
for data-aware choices in interpretability.

2 Preliminaries

Notation. We denote vectors as lowercase bold (e.g., x) and matrices as uppercase bold (e.g., X).
[n] denotes {1, . . . , n} and B = {x | ∥x∥2 ≤ 1} the unit ℓ2-ball in Rd. We assume access to a
dataset of k samples, X = {x1, . . . ,xk}, where x ∈ Rd. For any matrix X or vector x, we use
X ≥ 0 (resp. x ≥ 0) to indicate element-wise non-negativity.

Sparse Coding. Also known as Sparse Dictionary Learning [10, 35], sparse coding assumes a
generative model of data as a sparse combination of latents. Specifically, sparse coding involves
solving the following optimization problem:

argmin
z≥0,D∈B

∑
x

∥x−Dz∥22 + λR(z), (1)

where z ∈ Rs is a sparse latent code, D ∈ Rd×s are the dictionary atoms, and R(z) is a sparsity-
promoting regularizer, typically ∥z∥1. Note that the optimization is performed over both the sparse
code z (with z ≥ 0) and the dictionary D. Further details are included in Appendix A.
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Figure 2: Projection As The Key Architectural Difference Between SAEs. A) SAE encoders
do more than just linearly transform data—they project it onto an architecture-specific constraint
set. This projection fundamentally determines which features an SAE can extract and which it will
suppress. B) Different SAEs rely on different projection sets S: ReLU projects onto the positive
orthant, TopK onto K−sparse subspaces, and JumpReLU combines ReLU with a projection onto a
hypercube (via a Heaviside step function).

Sparse Autoencoders. SAEs [36] approximate sparse dictionary learning by using a single hidden
layer to compute the sparse code from data:

(i) z = f(x) = g(W Tx+ be), and (ii) x̂ = Dz + bd, (2)

where W ,D ∈ Rd×s and g : Rs → Rs is the encoder non-linearity. 1 Here, sparsity is enforced
on the SAE latent code z. SAEs are trained on the sparse dictionary learning loss (Eq. 1), with
the sparsity-promoting regularizer R. Different SAEs typically differ in the choice of encoder
nonlinearity g and the regularizer R, as discussed in our unified framework next.

3 Unified Framework for SAEs

Table 1: Projection Nonlinearities in SAE Encoders.
Each model can be understood by its nonlinear orthog-
onal projection g(·) onto a constraint set S which de-
termines its activation behavior, sparsity structure, and
implicit data assumptions.

Model g(v)

ReLU ΠS {v}, S = {y ∈ Rs : y ≥ 0}
TopK ΠS {v}, S = {y ∈ Rs : y ≥ 0, ||y||0 ≤ k}

Heaviside (H) ΠS
{
v + 1

2
1
}

, S = {0, 1}s
JumpReLU ReLU(v − θ) + θ ⊙H(v − θ)

In this section, we develop a framework
which captures multiple SAEs used in prac-
tice. More specifically, we analyze the
following three popular SAE architectures:
ReLU SAE [11, 12], TopK SAE [13, 37]
and JumpReLU SAE [14, 38]. This frame-
work unravels a duality between how con-
cepts are encoded in model representations
and an SAE’s architecture. The nonlinear-
ity of the SAEs under study is an orthog-
onal projection onto some set, where the
choice of projection set differentiates SAEs
(see Fig. 2). We formalize such nonlinearities as projection nonlinearities, as defined below.
Definition 3.1 (Projection Nonlinearity). Let v ∈ Rs be a pre-activation vector. A projection
nonlinearity ΠS {·} : Rs → Rs is defined as:

ΠS {v} = argmin
π∈S

∥π − v∥22, (3)

where S ⊆ Rs is the constraint set onto which v is orthogonally projected. Popular SAE nonlinearities,
e.g., ReLU, JumpReLU, and TopK, are orthogonal projections onto different sets (see Tab. 1).

Generalizing the variational form of projection nonlinearities allows us to formalize SAEs as follows.
Claim 3.1 (Bilevel optimization of SAEs). A sparse autoencoder (Eq. 2) with the dictionary learning
loss function (Eq. 1) solves the following bi-level optimization problem:

argmin
D∈B,z≥0

∑
x

∥x−Dz∥22 + λR(z)

s.t. z = f(x) ∈ argmin
π∈S

F (π,W ,x),
(4)

where F is a variational formulation of the SAE encoder f . For SAEs, f(x) = g(W Tx + be)
(Eq. 2). Note that this inner optimization with the objective F is what differentiates different SAEs.

1Encoder bias be is not used in the TopK SAE [13].
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Proof. The outer optimization follows from the dictionary learning loss with sparsity-inducing
penalty of the SAE (Eq. 1). The constraint is imposed by the SAE encoder’s architecture (Eq. 2).
The variational formulation of the encoder as the minimization of some objective F over set S is a
generalization of projection nonlinearities (Eq. 3) for which F (π,W ,x) = ∥W Tx+be−π∥22.

This framework implies that each SAE solves a different, constrained (through encoder architecture)
optimization version of sparse dictionary learning. This constraint dictates the quality of the solution
obtained, since it restricts the search space of solutions to dictionary learning, and hence does not have
to capture the full sparse coding solution. To further formalize this claim in the next section, we now
define receptive fields, a popularly used concept in neuroscience to study the response properties of
biological neurons [35]. We use the term neuron to define receptive fields in line with the inspiration
from neuroscience, but they refer to neurons of SAEs (SAE latents) in subsequent analysis.

Definition 3.2 (Receptive Field). Consider a neuron k, which computes a function f (k) : Rd → R.
The receptive field of this neuron is defined as Fk = {x ∈ Rd | f (k)(x) > 0}.

Intuitively, Fk represents the region of input space where neuron k is active. The structure of receptive
fields in an SAE is dictated by its encoder’s architecture.

Duality: Properties of the SAE encoder will constrain receptive fields’ structure for SAE latents.
These constraints directly translate to assumptions (often implicit, see Sec. 4) about the data structure,
since “monosemanticity” [12, 21] requires receptive fields to match structure of concepts in data.
Alternatively, if one knows how concepts are organized in the data (model representations), duality
can be used to design an appropriate SAE architecture (see Sec. 4.1).

Fundamental Limitation of SAEs

An SAE’s encoder enforces implicit dual assumptions about data, fundamentally shaping
which concepts it can identify and which remain obscure. To build more effective SAEs,
these assumptions must explicitly match the true structure of the data.

4 Implicit SAE Assumptions and Data Properties

In this section, we explicitly state the data assumptions made by ReLU, TopK and JumpReLU SAEs.

Theorem 4.1 (Implicit Assumptions; Informal). An SAE makes implicit assumptions about the
structure of concepts in data, reflecting it in the receptive fields of its encoder. These assumptions are
explicitly stated in Tab. 2 for ReLU, JumpReLU and TopK SAEs (derived in App. D.2).

Figure 3: Illustration of Two
Reasonable Data Assumptions.
A) Concepts may not be sep-
arable using hyperplanes. B)
Some concepts are inherently low-
dimensional, while others span
higher-dimensional spaces.

The optimality of the above assumptions depends on the “true
structure” of concepts in model representations. By "true struc-
ture" of concepts, we refer to the ground truth structure in
accordance with which concepts are organized in a model’s
activations. While concept structure is not known in its en-
tirety, we highlight two properties of how (certain) concepts are
organized in a model based on recent interpretability literature.

1. Nonlinear separability of concepts. Concepts are not sep-
arable by linear decision boundaries. Evidence towards
such concepts include features with dependence on mag-
nitude, such as onion features [39]. Even “linear features”
[9, 40]), having different magnitudes may fail to be linearly
separable (Fig. 3).

2. Heterogeneity of concepts. Different concepts belong to
subspaces with different dimensions. Evidence for this property includes unidimensional features
representable as concept activation vectors [19], e.g., truth [41], multidimensional features such
as days of the week in a 2-D subspace [42], and higher dimensional safety-relevant features
[43]. Here, higher dimensional concepts may be compositions of atomic (one-dimensional)
concepts (such as safety features composed of "refusal behavior", "hypothetical narrative", and
"role-playing" [43]).
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Table 2: Implicit Assumptions of SAEs. The receptive fields of SAEs implicitly assume concepts
are organized with a specific structure in the data, i.e., in model representations.

Model Receptive Field Data Assumption

ReLU half-spaces Linear separability of concepts
JumpReLU half-spaces Linear separability of concepts

TopK union of hyperpyramids Angular separability of concepts;
same dimensionality per concept

Table 3: Compatibility of SAEs with nonlinear
separability and heterogeneity.

Model Nonlinear Sep. Heterogeneity

ReLU ✗ ✓
JumpReLU ✗ ✓

TopK ✓ ✗

We characterize the compatibility of different
SAEs’ implicit assumptions and these properties
in Tab. 3. Note that ReLU and JumpReLU can
potentially capture heterogeneity since they can
show different sparsity levels for each concept,
but they require linear separability of concepts
due to half-space receptive fields. TopK may
be able to handle nonlinear separability to some
extent (provided concepts are separable by angle), but it cannot adapt to heterogeneous concepts,
since it involves a fixed choice of sparsity level for all inputs. BatchTopK [16], a modification of
TopK which selects average sparsity level per batch, does not capture concept heterogeneity either,
since it still requires choosing the average sparsity level K. To enable evaluation of our claims, we
next design an SAE that accommodates the two properties above into its architecture, presented in
the following subsection.

4.1 SpaDE, or How to Design A Geometry-Driven SAE

We now use the data properties studied above—nonlinear separability and concept heterogeneity—and
through the duality, construct one set of sufficient conditions on the SAE to capture both properties,
resulting in a novel SAE called SpaDE (Sparsemax Distance Encoder). See App. D.4 for details. We
introduce SpaDE as a geometry-driven SAE to validate our claims about the duality between concept
geometry and SAE architecture. Hence, SpaDE is expected to capture concepts better than other
SAEs when its data assumptions are met.

Nonlinear separability can be captured by SAE encoders with a competitive projection nonlinearity
(allowing flexible receptive fields, shaped by locations of all weights) and compute Euclidean
distances to a set of prototypes instead of linear transforms (to better exploit magnitude). For concept
heterogeneity, SAEs must demonstrate adaptive sparsity in their latent representations, i.e., different
concepts must be able to activate different numbers of latents (Fig. 4).

Figure 4: SpaDE shows adaptive
sparsity by projecting onto the
probability simplex. In this illus-
trative 3D figure, note ∥x∥0 = 3
for points on the face, ∥x∥0 = 2 for
points on edges along subspaces,
and ∥x∥0 = 1 for corners on co-
ordinate axes.

To satisfy the desiderata above, we use a simple first-order
equality constraint on the projection set S (Eq. 4), resulting
in the probability simplex S = ∆s = {x ∈ Rs :

∑
i xi =

1,x ≥ 0}. The non-negativity is necessary to explain away
data as a combination of features with positive contributions.
Projection onto the simplex (see Fig. 4) results in the sparsemax
nonlinearity ([44]):

Sparsemax(v) = argmin
π∈∆s

∥π − v∥22.

The probability simplex ∆s admits representations with any
(non-zero) level of sparsity, as illustrated in Fig. 4. Combining
Sparsemax with euclidean distances then yields SpaDE:

z = f(x) = Sparsemax(−λd(x,W )),

where d(x,W ))i = ∥x−Wi∥22.
(5)

In the above, λ is a scaling parameter (akin to inverse temperature), while Wi is the ith column of
the encoder matrix W which behaves as a prototype (or landmark) in input space since we compute
euclidean distance from input x to Wi. App. D.4 and D.2.3 describe the receptive fields of SpaDE in
further detail and show how it captures nonlinear separability and concept heterogeneity.
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ReLU JumpReLU TopK SpaDE
(a)

(b)

(c)

Figure 5: Effect of Nonlinear Separability on SAEs. Each column represents a different SAE. a) F1

scores of the top 5 most monosemantic latents (highest F1 scores), where shaded region is ±1SD, of
each SAE on two concepts—orange (linearly separable) and purple (non-linearly separable). SAEs
that assume linear separability struggle to capture the nonlinearly separable concept. b) Receptive
fields of the most monosemantic latent for each SAE, illustrating how some architectures fail to
isolate the nonlinear concept cleanly. Intensity of color indicates strength of SAE latent activation. (c)
Matrix of pairwise cosine similarities between sparse codes of different datapoints, and data clusters
obtained through spectral clustering on this matrix. In the scatter plot, points colored by the same
color belong to one spectral cluster, which intuitively indicates that they activate a common set of
SAE latents. SpaDE is able to maintain clear concept boundaries and doesn’t mix distinct features,
while other SAEs group subsets of different features into the same spectral cluster (same color).

We also note that the outer optimization for SpaDE is K-Deep Simplex (KDS, [45]), a modified
dictionary learning technique which incorporates locality into sparse representations. The regularizer
from KDS is a distance-weighted ℓ1 regularizer R(z) =

∑
i zi∥x − Wi∥22, which encourages

prototypes to move closer to data when they are active, increasing sparsity of representation 2. The
inner optimization for SpaDE is a one-sided sparsity-regularized optimal transport (see App. D.4).

Our claim about the duality between SAE architectures and data assumptions about concepts also
applies to SpaDE. Beyond nonlinear separability and concept heterogeneity, SpaDE implicitly
assumes that Euclidean distances are useful in concept space—concepts are distance-separated—and
distances can be used to disentangle concepts.

5 Results: Empirical Validation of SAE behavior

We perform a suite of experiments which involve training ReLU, JumpReLU, TopK and SpaDE SAEs
on synthetic Gaussian clusters, semi-synthetic formal-language model activations and natural vision
model activations. Our synthetic experiments aim to validate our claims about implicit assumptions
in SAEs. Experiments on more naturalistic data seek to demonstrate our claims extend to realistic
data settings. Further analysis is deferred to App. E. The code to replicate synthetic experiments is
available at: https://github.com/Sai-Sumedh/SaeConceptDuality-SpaDE, formal language
experiments is at: https://github.com/EkdeepSLubana/spadeFormalGrammars, and vision
experiments is at: https://github.com/KempnerInstitute/Overcomplete.

5.1 Separability Experiment

Dataset and Experiment: We construct a 2-dimensional dataset with Gaussian clusters (abstraction
of concepts) of different magnitudes in order to demonstrate nonlinear separability of concepts in a

2This regularizer encourages dictionary atoms to “stick” to the data, addressing the recently raised concern [15,
32] that directions learned by SAEs may be out-of-distribution (OOD), contributing to their instability.
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(a)

(b)

(c)

ReLU JumpReLU TopK SpaDE

Figure 6: Effect of Concept Heterogeneity on SAEs. a) Per-concept sparsity as a function of
intrinsic dimension. Colors indicate per-concept MSE—higher errors (red/yellow) show when an
SAE fails to capture a concept effectively. Each solid line indicates one model with a specific choice
of hyperparameters. b) Normalized MSE vs. per-concept sparsity. A well-performing SAE should
maintain low error across all concepts. TopK SAE only achieves good reconstruction (below the
dashed 20% error threshold) when sparsity (fixed for a given model) exceeds intrinsic dimensionality,
highlighting its lack of flexibility. c) Cosine similarity between pairs of SAE latents across all
concepts (showing co-occurrence), visualized for two sparsity levels.

simple setting which facilitates visualization. Here, each cluster is defined as its own concept, and
we expect SAEs to learn latents responding to individual clusters. The concepts with smaller norm
are not linearly separable, while those with larger norm are linearly separable. We train all SAEs on
this dataset for a range of sparsity levels. Following our arguments about implicit assumptions in
SAEs, we hypothesize that ReLU and JumpReLU will be unable to capture the nonlinearly separable
concepts with monosemantic latents (measured using F1 scores; see Eq. 9).

Observations: Fig. 5 shows how different SAEs fare on this experiment. ReLU and JumpReLU
achieve an F1 score of 1 for the separable concept (orange), while their F1 scores are much lower and
bounded above (by 0.5) for the nonlinearly separable concept (purple). The receptive fields of ReLU,
JumpReLU in Row (b) clearly overlap with other concepts in the nonlinearly separable case. TopK
performs somewhat poorly on both concepts, showing comparable F1 scores in both cases. SpaDE
shows a top F1 score of 1.0 for both concepts (perfect precision and recall), with its receptive fields
capturing concept structure even for nonlinearly separable concepts. While ReLU and JumpReLU
show significant cross-concept correlations (between concepts C1, C2, C3, Row (c)) and TopK does
marginally better with smaller correlations, SpaDE shows clear delineation of different concepts with
clearly separated concepts (no cross correlations, spectral clustering identifies concepts). Note SpaDE
may overspecialize and lead to further subclusters, as seen by two colors within concept 1 in row (c).

5.2 Heterogeneity Experiment

Dataset and Experiment: We generate Gaussian clusters (again an abstraction for concepts) in a
128-dimensional space. The five concepts are heterogeneous—they belong to subspaces with different
intrinsic dimensions (6, 14, 30, 62, 126), but are designed to have isotropic structure within each
cluster, and similar total variances across clusters. We trained ReLU, JumpReLU, TopK SAEs and
SpaDE on this data with varying sparsity levels. We hypothesize that TopK will not be able to adapt
its representations to the intrinsic dimension of each cluster.
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ReLU JumpReLU TopK SpaDE

Conj.Adj.Adv.Verb(Pro)Noun

(a)

(b)

(c)

(d)

Figure 7: Investigating SAE properties on GPT for formal languages. (a) 3D PCA of model
activations and SAE encoder weights, where datapoints are colored by part-of-speech (PoS). Encoder
weights are indicated by points for SpaDE and arrows for the other SAEs. (b) Matrix of cosine
similarities between pairs of data and pairs of latents (in order) for each SAE. White lines separate
different PoS. (c) MSE normalized by PoS variance as a function of sparsity, for each PoS. Inset:
cumulative sum of variance (eigenvalues of data correlations) of each PoS, where the effective
dimension (variance > 99%) of each PoS is shown. (d) Top-20 F1-scores for different PoS from
each SAE’s latents (a measure of monosemanticity).

Observations: Fig. 6 shows the results of all SAEs on this experiment. In Row (a), TopK shows the
same level of sparsity per concept for all concepts, along with worse reconstruction error for higher
dimensional concepts. In contrast, other SAEs—ReLU, JumpReLU and SpaDE—show adaptive
sparsity to different extents by adjusting their representations to the intrinsic dimension of each
concept. SpaDE can capture the intrinsic dimension nearly perfectly (along the dashed y = x curve)
for a specific choice of hyperparameters.

Note that a naïve estimator which predicts the mean of each concept will achieve a normalized MSE
of 1. For TopK, normalized MSE (Row (b)) goes below 20% (i.e., explains 80% of the variance) for
each concept only when k exceeds the dimension of that concept. For example, d = 6 goes below the
dashed line only after k = 8, similarly for other concepts. Other SAEs are able to stay below the
20% threshold for nearly all concepts across hyperparameters.

In Row (c), each latent is assigned a concept which it activates maximally for. Note that different
concepts use different numbers of latents in ReLU, JumpReLU, and SpaDE. However, there are
correlations across concepts in ReLU and JumpReLU (for the dense case), indicating co-occurrence
of latents across concepts, which is reduced in the sparse case. Correlations are absent in SpaDE under
both cases. TopK uses similar number of latents across concepts, inline with its lack of adaptivity.

5.3 Formal Languages

Dataset and Experiment: Building on recent work using formal languages for making predictive
claims about language models [46–48], we use this setting as a semi-synthetic setup for corroborating
our claims. Specifically, we analyze the English PCFG (Probabilistic Context-Free Grammars, formal
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ReLU JumpReLU TopK SpaDE

(a)

(b)

(c)

Figure 8: SAE properties on DINOv2 activations. (a) 3-D PCA of model activations colored by
class, and SAE encoder weights (points for SpaDE, arrows for other SAEs). (b) Cosine similarities
of sparse codes of pairs of data and pairs of SAE latents (in order) for each SAE. White lines separate
classes. (c) F1 scores of top-5 most monosemantic latents for each SAE across classes (color-coded)

models of language often used to study its syntactic properties, see App. C.3) with subject-verb-object
sentence order proposed in [34]. We train 2-layer Transformers [49] from scratch on strings of
maximum length 128 tokens from the formal grammar above. SAEs are then trained on activations
retrieved from the middle residual stream of the model.

Observations: Results are shown in Fig. 7. Different parts of speech (PoS), the core concepts of
the grammar, form clusters in a 3D PCA of their representations (see row (a)). SpaDE learns to tile
the PoS clusters well. While all SAEs do a good job at making their latents uncorrelated across PoS
(first column per SAE, row (b)), there are co-occurring latents across PoS in all SAEs except SpaDE
(second column per SAE, row (b)). PoS seem to have different intrinsic dimensions (number of
dimensions to capture 99% of total variance in data, inset in row (c)), which leads to TopK requiring
different values of K to explain the data (crosses 5% normalized MSE with differing values of k, row
(c)). PoS also appear to have differing levels of linear separability, as ReLU and JumpReLU show
lower F1 scores which peak at different levels of sparsity for each concept (row (d)), while SpaDE
shows a perfect F1 score of 1 in its most monosemantic latents.

5.4 Vision

Dataset and Experiment: We use Imagenette, a 10-class subset of ImageNet [50], containing 1.5k
images per class. Representations are extracted from the DINOv2-base (with registers), yielding
261 tokens per image. Over the course of 50 training epochs, this yields approximately 200 million
tokens. SAEs are trained on all available tokens, including spatial, CLS, and registers tokens, for 50
epochs with 200 latent dimensions.

Observations: Results are shown in Fig. 8. SpaDE again tiles the class structure well in the 3-D PCA
(row (a)). Similarities between sparse codes of data (first column of each SAE in row (b)) show that
all SAEs are able to decorrelate different classes in their latent representations. Latent co-occurrence
(second column of each SAE in row (b)) is widespread in ReLU, JumpReLU and TopK SAEs, but it
seems to be specific to certain pairs of latents in SpaDE. F1 scores (row (c)) show that SpaDE has
the most monosemantic latents across all classes. The varying F1 scores for ReLU and JumpReLU
across classes indicate different levels of linear separability across classes. Importantly, we find
SpaDE identifies interpretable concepts such as foreground/background, different parts of objects in
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an image (hands, face, fins of fish, windows/ stairs in church images, eyes, ears, snout of dogs, etc),
which are visualized using feature attribution maps in App. E.4.

6 Discussion and Limitations

Our findings reveal critical insights into the limitations and strengths of different sparse autoencoder
(SAE) architectures for concept discovery. We observed that ReLU and JumpReLU SAEs fail to
capture nonlinear separability ( low F1 scores, latent co-occurrence across concepts), while Top-K
SAE struggles to capture concept heterogeneity (high MSE when concept dimension exceeds choice
of K). A common issue across these architectures is the co-occurrence of latents across multiple
concepts, indicating a lack of concept specialization. In contrast, SpaDE achieves the highest F1
scores for its most monosemantic latents, exhibits low latent co-occurrence across concepts and
enforces adaptive sparsity, making it an effective choice for structured concept representations. Our
observations about the limitations of ReLU, JumpReLU and TopK SAEs highlight that the failure
modes of different SAEs stem from a mismatch between their inductive biases and the true structure
of the data. Specifically, ReLU and JumpReLU assume linear separability of concepts, which does
not always hold, even for concepts that correspond to specific directions in the latent space. On
the other hand, our results suggest that incorporating data geometry into SAE design significantly
improves concept specialization of SAE latents, allowing it to learn latents that are better aligned
with the data.

Overall, our results emphasize that there may not be a single best SAE architecture for all contexts
unless the architecture explicitly integrates a sufficient set of data properties relevant to the specific
problem. This suggests a shift in focus from using generic SAEs to tailoring their design based on
prior knowledge about the underlying data geometry.

Our analysis of receptive fields of SAE encoders and their relation with concept geometry to study
monosemanticity properties is quite general, and can also be used to study other kinds of interpreter
models such as transcoders [51, 52].

Limitations: While SpaDE demonstrates promising improvements over ReLU, JumpReLU and
TopK SAEs in synthetic, semi-synthetic and realistic data, we do not claim it to be the optimal SAE
for all scenarios. Instead, we present it as a concrete example of how incorporating reasonable data
properties (nonlinear separability and concept heterogeneity) can improve interpretability. Thus,
several limitations remain, as follows.

• Data properties beyond those considered here may be crucial for improved SAE performance.
Future work may explore additional geometric structure of concepts in neural networks to design
better SAEs.

• SpaDE implicitly assumes concepts are separated by Euclidean distance, which may still result in
latent co-occurrence if concepts do not satisfy this assumption.

• Overly specialized latents may emerge in SpaDE if the sparsity level is too aggressive, potentially
leading to latents that capture special cases rather than generalizable concepts.

• We have focused our attention on mutually exclusive concepts, where the presence of one concept
implies the absence of others. While our arguments about SAE assumptions hold even when
concepts overlap, the expected co-occurrence structure may differ in such cases. For co-occurring
concepts, our receptive field analysis can be applied to the presence/absence of each concept.

Overall, we note our work is not a proposal for the best SAE, but a guiding framework for improving
design of SAEs that yield useful interpretations demonstrating how better integration of data geometry
can enhance model interpretability. The interpretability community may need to prioritize a deeper
understanding of latent space geometry, and translate novel insights into SAE design, leading to
models with more faithful and structured representations of concepts.
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A Dictionary Learning

Sparse coding [10] (alternatively known in this work as sparse dictionary learning, or just dictionary
learning) was initially proposed to replicate the observed properties ("spatially localized, oriented,
bandpass receptive fields") of biological neurons in the mammalian visual cortex. It aims to invert a
linear generative model with a sparsity prior on the latents:

x = D∗z∗ + η

where x ∈ Rn is the data, D∗ ∈ Rn×s is the set of s dictionary atoms, z∗ ∈ Rs
+ is the sparse

code, and η is additive white Gaussian noise. Given data {x(1), . . . ,x(P )}, sparse coding performs
maximum aposteriori (MAP) estimation for the dictionary D∗ and representations z∗ under suitably
defined prior and likelihood functions [53] by solving the following optimization problem (repeated
from Eq. 1):

argmin
D∈B,z(·)≥0

∑
k

∥x(k) −Dz(k)∥22 + λR(z(k)) (6)

where R(·) is a sparsity-promoting regularizer. The set B ⊆ Rn×s includes restriction to unit norm
(typical). Generally, the L1 penalty is used as the regularizer term, i.e., R(z(k)) = ∥z(k)∥1, since
using the L0 penalty makes the problem NP-hard [54]. When the number of dictionary atoms is less
than or equal to the dimension of input space, s ≤ n, this is an undercomplete problem, and the
sparse code can be readily obtained using the pseudo-inverse of the dictionary matrix D (provided
the dictionary atoms are linearly independent), leading to the solution z = (DTD)−1DTx. Note
that in this (undercomplete) case, the sparse code is a linear transformation of the input. The more
interesting setting involves using an overcomplete dictionary (s > n), and was initially studied in
[35]. Obtaining the sparse code z from input data x is nontrivial in this case.

In this case, sparse coding results in a sparse representation of the data and a dictionary which behaves
as a data-adaptive basis. Correspondingly, sparse codes have been shown to capture interesting
concepts in data [55, 56], e.g., responding to wavelet-like regions when trained on natural images [57].
In this (overcomplete) setting, a popular approach is using iterative shrinkage and thresholding
algorithms (ISTA) [58] and their variants such as FISTA (Fast ISTA) [59]. Modern approaches to this
problem use ISTA to design deep residual networks with shared weights and train the network on
the sparse coding objective, in a technique called Learned ISTA (LISTA) [60]. Algorithm unrolling
[61] is a generalization of this technique and involves designing interpretable neural networks using
iterative algorithms where each layer of the network reflects an iteration of the algorithm. These
networks are interpretable since the weights correspond to an underlying process which was used to
design the iterative algorithm. Unrolling has widespread applications in signal processing, and is
extensively reviewed in [61].

We also note that sparse coding has been used with algorithm unrolling as a model-based interpretable
deep learning technique for a wide range of applications, including image super-resolution [62], graph
signal denoising [63], mechanical fault diagnosis [64], deconvolving neural activity of dopamine
neurons in mice [65]. Therefore, assuming a linear generative model of data (Eq. 1) where the
dictionary atoms are physically relevant in some application, sparse coding using an unrolled network
learns the underlying interpretable dictionary atoms.

B Related Work

SAEs are a specific instantiation of the broader agenda of dictionary learning tools for concept-
level explainability [7–9, 19, 20, 66]. A number of SAE architectures have been proposed recently,
including ReLU SAE [12], TopK SAE [13, 37], gated SAE [67], JumpReLU SAE [14], Batch TopK
SAE ([16]), ProLU SAE ([68]), and so on. While promising results have been discovered, e.g.,
latents that respond to concepts of refusal, gender, text script [12, 22, 23], foreground vs. background
concepts [17], and concepts of protein structures [25–27], a series of negative results have started
to emerge on the limitations of SAEs. For example, [33, 69] show a mere prompting baseline can
outperform model control compared to SAE or probing based feature ablation baseline. Similar
results were observed by [34] in a narrower formal language setting. Meanwhile, criticizing the
underlying linear representation hypothesis that has informed design of earlier SAE architectures
(specifically, the vanilla ReLU SAEs), [42, 70] has shown that SAE features can be multidimensional
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and nonlinear. Importantly, recent results from [15, 32, 71] have shown that two SAEs trained on
the exact same data, just with a different seed, can yield very different concepts and hence very
different interpretations. These results are related to the lack of canonical nature in SAE latents [72]
This behavior, often called algorithmic instability, makes reliability of SAEs challenging for any
practical purposes. More broadly, given the hefty research investment going into the topic, we
believe it is warranted that a more formal and theoretical account help solidify the limitations and
challenges SAEs (or at least the current paradigm thereof) faces. This can help steer the research
in a direction that yields meaningful improvement in SAEs, e.g., in their practical utility. This
motivation underscores our work. For a related effort on this front, we highlight the work by [73],
who contextualize SAEs from a minimum-description length perspective and enable an intuitively
solid account of how features may split to overly specialized concepts (e.g., tokens).

Disentangled Representation Learning. As mentioned in Sec. 3, results similar to ours have
been reported in the field of disentangled representation learning, wherein one aims to invert a
data-generating process to identify the factors of variants (i.e., latent variables) that underlie it. To
this end, autoencoders were used as a popular tool, since they offer a method that can (ideally)
simultaneously invert the generative process and identify the underlying latents [74]. However, [75]
showed that in fact this problem is rather challenging: unless one designs an autoencoder architecture
that bakes-in assumptions about the generative process, i.e., the precise function mapping itself,
there are no guarantees the retrieved latents will correspond to the ground-truth ones. This result
led to design of several methods focused on exploiting “weak supervision”, i.e., extra information
available from data-pairs such as multiple views of an image or temporally consistent video frames,
to circumvent the theoretical challenges of disentanglement [76–78]. Our contributions are similar in
nature to these results on disentanglement, but we (i) specifically focus on the context of SAEs and (ii)
provide a more concrete proof that establishes precisely what the inductive biases of popular SAEs
are, i.e., what concepts the SAEs are biased towards uncovering. Having established these results, we
now believe the next step that the disentanglement community took, i.e., use of weak supervision,
would make sense for the SAEs community as well. This can involve exploiting temporal correlations
between tokens in a sentence, or the fact that representations across layers do not change much, as in
Crosscoders and Transcoders [51, 52, 79].

C Experimental Setup

The synthetic experiments (separability, heterogeneity) and vision experiments were run on NVIDIA
A100 40GB GPUs, while the formal language experiments were run on NVIDIA RTX A6000 48GB
GPUs.

C.1 Separability experiment

We construct a synthetic dataset consisting of six isotropic Gaussian clusters in a two-dimensional
(2D) space. The cluster centers are arranged such that adjacent clusters are separated by an angular
difference of 2π/6, with alternate clusters having norms of 1 and 3. Each cluster is sampled from
a multivariate normal distribution with a variance of 2−5.5. The dataset consists of 1 million data
points per concept, yielding a total of 6 million samples. Of these, we use 70% (700,000 points) for
training.

Our experiments evaluate four sparse autoencoder (SAE) architectures: ReLU SAE, JumpReLU
SAE, TopK SAE, and SpaDE. The first three architectures are implemented following their original
formulations (in [12],[14],[13]), with the decoder activations normalized in the forward pass. The
SpaDE model follows the same single hidden-layer autoencoder structure but differs in that it utilizes
Euclidean distance computations and a SparseMax activation function for the encoder. Across all
models, the hidden-layer width is set to 128, and a pre-encoder bias is used in all cases except for
SpaDE.

For training, the (inverse) temperature parameter λ in SpaDE is initialized to 1/(2× input dimension)
and parameterized using the Softplus function to ensure non-negativity. This parameter trained along
with the encoder and decoder weights, to allow the model to learn its desired sparsity level. Note
that large values of λ lead to greater sparsity since Sparsemax is scale-sensitive. In JumpReLU,
the threshold is initialized at 10−3 across all latent dimensions, with a bandwidth of 10−3 for
the straight-through estimator (STE), as it is proposed in [14]. All models are trained using the
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Adam optimizer with a learning rate of 10−2, which follows a cosine decay schedule from 10−2 to
10−4. The momentum parameter is set to 0.9, and we use a batch size of 512. Training runs for
approximately 8000 iterations, and gradient clipping is applied (gradient norms are clipped at 1) to
stabilize optimization.

Regularization parameters are selected such that sparsity levels remain comparable across models.
Specifically, the regularization coefficient γ is chosen in the range 10−6 to 1 for ReLU and JumpReLU
SAEs, between 4 and 64 (powers of 2) for TopK SAE, and in the range 10−6 to 1 for SpaDE. Each
model applies a different regularization strategy: ReLU SAE uses L1 regularization, JumpReLU SAE
applies L0 regularization with a straight-through estimator (STE) as in [14], TopK SAE does not use
explicit regularization but incorporates an auxiliary loss term as in [13], with Kaux = k (same as the
choice of sparsity level k in TopK) with γaux = 1 (the scaling for the auxiliary loss term), and SpaDE
employs a distance-weighted L1 regularization, which comes from [45].

All networks are initialized such that the decoder weights are initially set as the transpose of the
encoder weights, though they are allowed to update freely during training. Model weights are
sampled from a normal distribution N (0, 1). To maintain consistency in scale between inputs and
latent activations, a scaling factor λ is applied to all latent units, given by λ ≈ 1/2× input dimension
(note that this is not trainable for ReLU, JumpReLU and TopK SAEs). Across all architectures,
we use the Mean Squared Error (MSE) loss function, with the regularizers and regularizer scaling
constants as described above.

For evaluation, we analyze a subset of 1000 data points per concept. The primary metric for
comparison is the F1-score, which is computed based on precision and recall. Precision is defined as:

Precision =
True Positives

True Positives + False Positives
, (7)

while recall is given by:

Recall =
True Positives

True Positives + False Negatives
. (8)

Using these definitions, the F1-score is computed as:

F1 =
2× Precision × Recall

Precision + Recall
. (9)

In our setup, precision and recall are computed by thresholding latent activations at 10−6. Additionally,
we analyze the receptive fields by creating a 2D meshgrid, passing all points through the model, and
extracting their SAE latent representations. Cosine similarities between pairs of data points are also
computed by obtaining their latent representations, calculating the pairwise cosine similarity, and
organizing the results by class.

To further examine latent space structure, we compute the stable rank of the representation matrix.
Stable rank for the similarity matrix is computed as the sum of singular values divided by the largest
singular value (alternatively called the intrinsic dimension of this matrix):

Stable Rank =

∑
σi

σmax
. (10)

Finally, spectral clustering is performed on the similarity matrix derived from latent representations.
The number of clusters is determined by the stable rank of this similarity matrix (rounded up),
providing insights into the correlations between SAE latent representations.

C.2 Heterogeneity experiment

We construct a synthetic dataset consisting of five isotropic Gaussian clusters in a 128-dimensional
space. The intrinsic dimensionality of each cluster follows the sequence 2q − 2 for different values of
q ∈ {3, 4, 5, 6, 7}, resulting in clusters with intrinsic dimensions of 6, 14, 30, 62, 126, respectively.
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The lower-dimensional clusters belong to subspaces that form strict subsets of the subspaces of
higher-dimensional ones, meaning that the first six dimensions are fully contained in the next 14,
which are further contained in the next 30, and so on up to 126 dimensions. Cluster centers are
sampled uniformly at random from the range [0, 1

21 ] along each dimension. The variance of each
concept is chosen to be inversely proportional to its intrinsic dimension to ensure that the total
variance per concept remains constant across all concepts. The dataset contains 6.4 million data
points per concept, yielding a total of 32 million samples, of which 70% (approximately 22 million
points) are used for training.

Our models follow four different sparse autoencoder (SAE) architectures: ReLU SAE, JumpReLU
SAE, TopK SAE, and SpaDE. The first three are implemented according to their original formulations
in [12], [14], and [13], with the decoder activations normalized in the forward pass. The SpaDE model
follows the same single hidden-layer autoencoder structure but differs in that it utilizes Euclidean
distance computations and a SparseMax activation function for the encoder. Across all models,
the SAE hidden-layer width is set to 512. A pre-encoder bias is applied in all cases except for
SpaDE. Additionally, for the TopK SAE, a ReLU activation is applied before selecting the top k
latent dimensions.

For training, the temperature parameter λ in SpaDE is initialized at 1/(2 × input dimension) and
parameterized using the Softplus function to ensure non-negativity. This parameter trained along with
the encoder and decoder weights, to allow the model to learn its desired sparsity level. In JumpReLU,
the threshold is initialized at 10−3 across all latent dimensions, with a bandwidth of 10−3 for the
straight-through estimator (STE). All models are trained using the Adam optimizer with a learning
rate of 10−2, which follows a cosine decay schedule from 10−2 to 10−4. The momentum parameter
is set to 0.9, and we use a batch size of 2048. Training runs for approximately 10,000 iterations, and
gradient clipping (restricting gradient norms to be less than 1) is applied to stabilize optimization.

Regularization parameters are selected such that sparsity levels remain comparable across models.
Specifically, the regularization coefficient γ is chosen in the range 10−3 to 5.0 for ReLU SAE, 10−3

to 1 for JumpReLU SAE, from 4 to 256 (powers of 2) for TopK SAE, and from 10−3 to 10 for
SpaDE. Each model applies a different regularization strategy: ReLU SAE uses L1 regularization,
JumpReLU SAE applies L0 regularization with a straight-through estimator (STE) following from
[14], TopK SAE does not use explicit regularization but incorporates an auxiliary loss term with
γaux = 1 (scaling for the auxillary term in the loss) and Kaux = k (same as sparsity level), and
SpaDE employs a distance-weighted L1 regularization.

All networks are initialized such that the decoder weights are initially set as the transpose of the
encoder weights, though they are allowed to update freely during training. Model weights are
sampled from a normal distribution N (0, 1). To maintain consistency in scale between inputs and
latent activations, a scaling factor λ is applied to all latent units, given by λ ≈ 1/2× input dimension.
Across all architectures, we use the Mean Squared Error (MSE) loss function.

For evaluation, we analyze a subset of 1000 data points per concept. We report the normalized MSE,
defined as the ratio of the standard MSE to the variance of the corresponding concept:

Normalized MSE =
MSE

Variance of Concept
. (11)

We also compute sparsity (L0) per concept, measured as the average number of active latents per
data point, averaged over each concept.

To analyze latent representations, we examine cosine similarities in two contexts: (i) between pairs of
SAE latent representations for different input data points (per-input co-occurrence) and (ii) between
pairs of latents aggregated over all data points (global co-occurrence). For the latter, each latent is
assigned a concept label based on the concept for which it is most frequently activated on average.
This assignment provides insight into how latents specialize across different underlying structures in
the dataset.

C.3 Formal Languages experiment

Data. The formal language setup analyzed in the main paper (Sec. 5.3) involves training a 2-layer
nanoGPT model on strings from an English-like PCFG (Probabilistic Context-Free Grammars).
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Broadly, a PCFG is defined via a 5-tuple G = (NT, T, R, S, P), where NT is a finite set of non-terminal
symbols; T is a finite set of terminal symbols, disjoint from NT; R is a finite set of production rules,
each of the form A → αβ, where A ∈ NT and α, β ∈ (NT ∪ T); S ∈ NT is the start symbol; and P is
a function P : R → [0, 1], such that for each A ∈ NT,

∑
α:A→α∈R P(A → αβ) = 1. To generate a

sentence from the grammar, the following process is used.

1. Start with a string consisting of the start symbol S.
2. While the string contains non-terminal symbols, randomly select a non-terminal A from the

string. Choose a production rule A → αβ from R according to the probability distribution
P(A → α).

3. Replace the chosen non-terminal A in the string with α, the right-hand side of the production
rule.

4. Repeat the production rule selection and expansion steps until the string contains only
terminal symbols (i.e., no non-terminals remain).

5. The resulting string, consisting entirely of terminal symbols, is a sentence sampled from the
grammar.

We follow the same rules of the grammar considered in [34]. The strings are tokenized via one-hot
encoding via a manually defined tokenizer.

Model training. Models are trained from scratch on strings sampled from the grammar above.
Strings are padded to length 128 (if not already that length), and a batch-size of 128 (∼10K tokens
per batch) is used for training. Training uses Adam optimizer with a cosine learning-rate schedule
starting at 10−3 and ending at 10−4 after 70K iterations, alongside a weight decay of 10−4. The
nanoGPT models used in this work have a width of 128 units, with an MLP expansion factor of 2 and
also 2 attention heads per attention layer.

SAE training. All SAEs trained in the formal language setup involve an expansion factor of 2×,
i.e., 256 latents for a residual stream of 128 dimensions. Training involves a constant learning rate
of 10−3 and lasts for 10K iterations (∼1M tokens). We sweep regularization strength for SAEs’
training, yielding SAEs with different sparsity levels. While we fix the regularization strength for
SpaDE based on best values identified from the synthetic, Gaussian cluster datasets, for other SAEs
(ReLU, JumpReLU, and TopK) we report the best possible results from our sweep by looking at
the top-10 per-concept F1 scores; i.e., reported results are a best-case estimate of results achievable
by training of these SAEs, and in practice performance can be expected to be poorer than what we
analyze. Cross-task transfer for SpaDE’s hyperparameters is intriguing in this regard, since we found
other SAEs’ hyperparameters to not transfer.

C.4 Vision experiment

Data. We use an off-the-shelf, large-scale pretrained model for our analysis in these experiments,
specifically DINOv2-base (with registers). For simplicity, we focus on a 10-class subset of ImageNet,
called Imagenette, containing 1.5k images per class. Representations are extracted from the model
for images of these classes, yielding 261 tokens per image.

SAE training. SAEs are trained on all available tokens, including spatial, CLS, and registers tokens,
for 50 epochs with 200 latent dimensions. With 261 tokens per image, this amounts to ∼200M tokens
for training SAEs over the course of 50 training epochs. For each SAE, the best reconstruction is
selected based on a sparsity-controlled learning rate sweep. This resulted in an optimal learning rate
of 5× 10−4 for TopK, ReLU, and SpaDE, while JumpReLU performed best with 10−4 (using Adam
optimizer). Additionally, we note our JumpReLU implementation employs a Silverman kernel with a
bandwidth of 10−2, which we found to work best for our setting.

D Further Theory Results

D.1 Projections and Nonlinearities

The nonlinearity of popular SAEs is commonly an orthogonal projection onto some set, where
the choice of projection set differentiates SAEs (see Fig. 2). We formalize such nonlinearities as
projection nonlinearities, as (re)defined below.

20



Definition D.1 (Projection Nonlinearity). Let v ∈ Rs be a pre-activation vector. A projection
nonlinearity ΠS {·} : Rs → Rs is defined as:

ΠS {v} = argmin
π∈S

∥π − v∥22, (12)

where S ⊆ Rs is the constraint set onto which v is orthogonally projected. The structure of S
determines the properties of the nonlinearity.

Table 4: Projection Nonlinearities in SAE Encoders.
Each model can be understood by its nonlinear orthog-
onal projection g(·) onto a constraint set S which de-
termines its activation behavior, sparsity structure, and
implicit data assumptions.

Model g(v)

ReLU ΠS {v}, S = {x ∈ Rs : x ≥ 0}
TopK ΠS {v}, S = {x ∈ Rs : x ≥ 0, ||x||0 ≤ k}

Heaviside (H) ΠS
{
v + 1

2
1
}

, S = {0, 1}s
JumpReLU ReLU(v − θ) + θ ⊙H(v − θ)

We will say a function f(·) is a Projection
Encoder if it uses a projection nonlinear-
ity g(·) applied to a linear transformation
of the input. This is equivalent to using
v = W Tx+be, and f = g(v) (see Eq. 2),
where g is a projection nonlinearity. Pop-
ular SAEs can be understood as a similar
Projection Encoder with different projec-
tion nonlinearities, as shown in Tab. 4 (see
Theorem D.3 for a derivation).
Lemma D.2 (Elementwise projections).
For projection nonlinearities whose projec-
tion sets satisfy componentwise constraints, i.e. S = {x ∈ Rs : f(xj) ≤ 0, h(xk) = 0∀j, k ∈ [s]},
the projection problem can be decoupled and broken down into a combination of elementwise projec-
tions, leading to an elementwise nonlinearity. The converse is also true: any elementwise nonlinearity
which is also a projection nonlinearity can be written as a combination of elementwise projections,
leading to componentwise constraints on the projection set

Proof.

ΠS {x} = argmin
π∈S

∥π − x∥2 (13)

= argmin
f(πj)≤0,g(πj)=0,j∈[s]

∑
k

(πk − xk)
2 (14)

= (..., argmin
f(πk)≤0,g(πk)=0,

(πk − xk)
2, ...) (15)

i.e., ΠS{x}k = argmin
f(πk)≤0,g(πk)=0,

(πk − xk)
2 (16)

This is a consequence of the objective function above (squared euclidean norm of the difference
π − x) decomposing into a sum over componentwise functions. The above argument can be traced
backward, since all steps are invertible, which proves the converse.

Theorem D.3 (Projection Nonlinearities). ReLU, TopK, JumpReLU are simple combinations of
orthogonal projections onto nonlinearity-specific sets: ReLU is a projection onto the positive orthant,
TopK is a projection onto the union of all k-sparse subspaces, and JumpReLU is a sum of shifted
ReLU and shifted Heaviside step, which itself is a projection onto the corners of a hypercube.

Proof. First consider the ReLU nonlinearity, defined for x ∈ Rs as:

z = ReLU(x) (17)

zi =

{
xi if xi ≥ 0

0 else
(18)

This is an elementwise nonlinearity, so it suffices to show that each component can be written as a
projection ( from Lemma D.2). Consider this reformulation:

zi = argmin
πi≥0

(xi − πi)
2 (19)

This is equivalent to ReLU, since for all non-negative values, it equals the input, while it is 0 (nearest
non-negative point) for all negative inputs. Using Lemma D.2, ReLU is a projection nonlinearity with
projection set S = {x ∈ Rs : xi ≥ 0∀i ∈ [s]}.
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JumpReLU is defined as:
JumpReLU(x) = x⊙H(x− θ) (20)

= (x− θ + θ)⊙H(x− θ) (21)
= ReLU(x− θ) + θ ⊙H(x− θ) (22)

where the heaviside step function H is:
H(x) = I(x > 0) (23)

which is performed elementwise. Thus, JumpReLU (and the heaviside step) is also an elementwise
nonlinearity. Consider the step function:

H(x)i = H(xi) =

{
1 if xi ≥ 0

0 else
(24)

= argmin
πi∈{0,1}

(xi + 0.5− πi)
2 (25)

which is a shifted version of a projection. Again using Lemma D.2, H is a projection nonlinearity
with projection set S = {x ∈ Rs : xi ∈ {0, 1}}, i.e., the corners of a unit hypercube.

The TopK nonlinearity is defined as:
yj = ReLU(xj) (26)

TopK(x)j = yj I
(
yj ≥ yp∀p ∈ M : |M| = s−K

)
(27)

where s is the dimension of the space. Note that topK typically includes a ReLU applied first ([13]),
making all entries of the vector non-negative followed by choosing the k-largest entries of ReLU(x).
Consider a projection onto the union of all k-dimensional axis-aligned subspaces. With non-negative
entries (due to ReLU), this would lead to choosing the k largest entries of x:

argmin
π: π is k−sparse

∥x− π∥22 = argmin
π: π is k−sparse

∑
i

(xi − πi)
2 (28)

= TopK(x) (29)
This completes the proof.

Theorem D.4. Projection nonlinearities satisfy the following properties:

1. For points within the set S, projection is an identity map
x ∈ S =⇒ ΠS {x} = x

2. For points outside the set S, projection is onto the boundary
x /∈ S =⇒ ΠS {x} ∈ ∂S

3. If ∂S is a flat (linear manifold), or a subset of a flat (with flat boundaries), projection of
points outside the set S is either piecewise linear or constant:

ΠS {αx1 + βx2} = αΠS {x1}+ βΠS {x2} for α, β ∈ T , OR
ΠS {x} = c, x ∈ D (a linear piece)

where x1,x2 /∈ S , T ⊆ R is suitably defined to confine x to the corresponding linear piece

Proof. (sketch) (1) is trivial and follows from the definition of projection nonlinearities (Eq. 3).
For (2), suppose ΠS {x} is in the interior of S. This implies that ∃y ∈ Int(S) such that y =
αx+(1−α)ΠS {x} , α ∈ (0, 1] and therefore ∥y−x∥2 < ∥x−ΠS {x} ∥2, which is a contradiction.
Thus ΠS {x} ∈ ∂S.
For (3), one can consider the section of the boundary ∂S that is closest to x, and extend it to form a
subspace (possible since it is flat). Since projections onto subspaces are linear operations, ΠS {x} is
linear in some neighborhood, and thus piecewise linear. In some cases, there is a single corner point
of S that is closest to x, in which case the projection is a constant.

Projection nonlinearities are orthogonal projections onto various sets. For points within the set
S, projection is the point itself, while for points outside, the projection is onto the boundary ∂S
(Theorem D.4 in Appendix). For projections to be well defined everywhere, the set S must be
closed (so that the boundary belongs to the set, i.e., ∂S ∈ S). Note that if the set S is a subspace of
Rs, projection is a linear map. Therefore, the nonlinearity of projection nonlinearities comes from
choosing either a subset of a subspace, or a non-flat manifold. Sparsity in projection nonlinearities is
a consequence of the projection set having edges/corners along sparse subspaces.
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D.2 Receptive fields of various SAEs

First, we (re)define the four SAE encoders we study in this section:

ReLU SAE: z = ReLU(W Tx+ b) (30)

JumpReLU SAE: z = JumpReLU(W Tx+ b) (31)

TopK SAE: z = TopK(W Tx) (32)

SpaDE: z = Sparsemax(−λd(x,W )) (33)

d(x,W )i = ∥x−wi∥22 (34)

This section discusses the piecewise linear (affine) regions (by showing that each of the above is
a piecewise linear function) and neuron receptive fields in input space for each of the four SAEs
(ReLU, JumpReLU, TopK, SpaDE). Projection nonlinearities become piecewise linear when the
projection sets have flat faces. Under the requirement of monosemanticity, the structure of receptive
fields directly implies the assumption that concepts in data have the same structure as the receptive
field.

Intuition behind Theorem 4.1 Receptive fields for ReLU and JumpReLU SAEs are half-spaces
because of the linear transform in the encoder, which needs to be positive for the SAE latent to
be active (due to the ReLU/ JumpReLU nonlinearity). In TopK SAE, for a given latent to be
active, its linear transform in the encoder must be non-negative (since a ReLU is used in TopK
SAE implementation [13]), and must exceed at least s−K other linear transforms (where s is the
SAE width). This gives us an intersection of multiple half-spaces through the origin, leading to
hyperpyramids and thus angular separation.

For projection-based encoders, the receptive field can be rewritten as
Fk = f−1

(
S ∩ {zk > 0}

)
,

where S is the projection set of the encoder.

That is, Fk is the pre-image of the intersection of the projection set with the half-space {zk > 0}.
Alternatively, it can be viewed as the complement of the pre-image of the set S ∩{zk = 0}, where the
hyperplane zk = 0 indicates latent k is “dead”. This expression shows the explicit relation between
the projection set and the receptive field properties of the SAE.

First note that all four nonlinearities have some level of sparsity, i.e., some neurons are turned off at
times. The following observation is crucial in formulating the piecewise linear regions:
Lemma D.5 (Gating). Given the indices M = {i1, i2, ..., i|M|} of active neurons (with nonzero
outputs), ReLU, JumpReLU, TopK and Sparsemax are all affine functions of their inputs.

Lemma D.5 indicates that the nonlinearity in these transformation lies only in their gating, or selection
of active indices. Thus, each linear (affine) region is characterized by a specific choice of indices M
of active neurons. Note that not all choices of indices may be allowed by the nonlinearity. Denote the
set of allowed indices by M.
Let LM ⊆ Rn denote the piecewise linear (affine) region corresponding to active indices M.
Lemma D.6. The set {LM : M ∈ M} of all piecewise linear regions forms a partition of Rn.

Using the Gating lemma, we can associate each set of active indices to a piecewise linear region, and
identify receptive fields as unions of such piecewise linear regions.
Lemma D.7 (Receptive fields and piecewise linear regions). A neuron’s receptive field is a union of
piecewise linear regions where the neuron is active:

Fk = ∪M:k∈MLM

We now use the above results and obtain the piecewise linear regions for each of the four SAEs
defined previously.
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D.2.1 ReLU, JumpReLU SAE

First note that the piecewise linear regions and receptive fields of ReLU and JumpReLU SAEs are
the same—since in both cases, the gating appears through the heaviside step function (ReLU(x) =
x ⊙ I(x ≥ 0)). Thus, we develop the linear pieces and receptive fields only for ReLU, since the
corresponding ones for JumpReLU are identical. The piecewise linear regions of latents in ReLU
SAE are described by the following claim:
Claim D.1. For a layer defined as in Eq. 30, LM is given as:

LM = {x ∈ Rn : wT
mx+ bm ≥ 0∀m ∈ M,wT

q x+ bq < 0∀q /∈ M} (35)
Thus, M is an intersection of N half-spaces, and thus is a convex polytope which may be bounded or
unbounded.

Proof. This is a consequence of the observation in Lemma D.5 and the definition of the relu model
30.

Lemma D.8. If b = 0 in Eq. 30, then LM are unbounded convex polytopes with only one corner at
the origin and flat faces, i.e., they are (unbounded) hyperpyramids.

Thus, bias plays an important role in ReLU layers, allowing piecewise linear regions that are convex
polytopes with multiple corners anywhere in space. The greater flexibility in defining the pieces
allows greater expressivity by capturing a larger class of functions. The following (somewhat obvious)
claim describes the receptive fields of model 1 neurons.
Claim D.2. In Model 1 (30), for a given neuron k ∈ [n], the receptive field Fk is given as:

Fk = {x ∈ Rn : wT
k x+ bk ≥ 0} (36)

which is a half-space defined by the normal vector wk and bias bk.

This is a straightforward consequence of the definition of the ReLU model in Eq. 30.

D.2.2 TopK SAE

Claim D.3. For a layer defined as in Eq. 32, LM is given as:

LM = {x ∈ Rn : wT
mx ≥ wT

q x∀m ∈ M, q /∈ M} (37)

Thus, M is an intersection of K(N −K) half-spaces all passing through the origin, and thus is a
convex polytope which may be bounded or unbounded. In fact, it is an unbounded hyperpyramid,
with a corner at the origin and flat faces. The normals to these half-spaces are pairwise differences
between active and inactive weight vectors.

This again follows from the Gating Lemma D.5.
Claim D.4. In Model 2 (32), for a given neuron k ∈ [n], the receptive field Fk is given as:

Fk = ∪M:k∈MLM (38)
which is a union of hyperpyramids with a corner at the origin. Note that in typical implementations of
TopK, a pre-encoder bias is included, so the corner of the hyperpyramids is at the pre-encoder bias.

D.2.3 SpaDE

Claim D.5. For a layer defined as in Eq. 5, LM is given as:

LM =

{
x ∈ Rn : ∥x−wm∥22 −

1

|M|
∑
j∈M

∥x−wj∥22 −
1

λ|M|

{
≤ 0, if m ∈ M
> 0, m /∈ M

}
(39)

=

{
x ∈ Rn : (40)

(
wT

m − 1

|M|
∑
j∈M

wT
j

)
x−

(
∥wm∥22 −

1

|M|
∑
j∈M

∥wj∥22
)
+

1

λ|M|

{
≥ 0, if m ∈ M
< 0, m /∈ M

}
(41)
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Thus, M is an intersection of N half-spaces, and thus a convex polytope. Note that the normal to
each half space is now chosen in an input-adaptive fashion (m ∈ M) and is locally centered using
the mean of other nearby prototypes that are active, i.e.,

(
wT

m − 1
|M|

∑
j∈M wT

j

)
where M is input

adaptive. An alternate interpretation is using the first equation above, which defines the region as the
set of points whose distance to active prototypes is within a tolerance of the average distance to all
active prototypes, while distance to inactive prototypes is larger than the average distance to active
prototypes.

Proof. This is again a consequence of the definition of sparsemax [44].

Claim D.6. In SpaDE (33), for a given neuron k ∈ [n], the receptive field Fk is given as:

Fk = ∪M:k∈MLM (42)
which is a union of convex polytopes, each of which includes the latent k in the set of active indices
M. Due to the use of euclidean distances in choosing active indices, the receptive field is a union
of convex polytopes in the vicinity of the prototype ak of latent k. This incorporates the notion of
locality and flexibility in receptive field shapes, allowing latents to capture nonlinearly separable
concepts.

D.3 KDS and Sparse Coding

K-Deep Simplex (KDS) [45] is the sparse coding framework which forms the outer optimization in
the SpaDE. While this is a different framework, in this section we show that it is general enough to
capture the standard sparse coding, i.e., for data generated using standard sparse coding, there exists
a corresponding KDS framework that could have generated the same data. Note that we may have to
increase the latent dimension (number of dictionary atoms) by one to obtain the corresponding KDS
framework. This is stated and proved (with a constructive proof) in the following theorem.
Theorem D.9 (KDS can capture standard sparse coding). Given data D = {x(1), ...,x(P )} generated
from a standard sparse coding generative model, i.e., x = Dz+ η, where dictionary atoms (columns
of D) have unit norm and z is unconstrained, there exists a scaling of the data such that it can be
represented using the K-Deep Simplex [45] framework, i.e., x̃ = κx = D̃z̃ + η̃, where z̃ ∈ ∆s.

Proof. Consider the following scalar:

κ =

(
max
x∈D

∑
i

zi(x)

)−1

Normalizing data using κ above gives us,
x̃ = κx

= D
z

maxx∈D
∑

i zi(x)
+ κη

= Dẑ + η̃

By definition, ẑ defined above always satisfies
∑

i ẑi ≤ 1, so let β = 1 −
∑

i ẑi. Appending an
all-zeros dictionary atom to D, D̃ = [D,0] and assigning the residual to z̃ = [ẑT , β]T gives us the
following:

x̃ = D̃z̃ + η̃, where z̃ ∈ ∆s

implying that the original data can be represented in the framework of KDS.

D.4 SpaDE

Sparsemax is a projection onto the probability simplex, which can be written as (see Proposition 1 in
[44])

Let z = Sparsemax(y) (43)

Then, zi = ReLU(yi −
1

|M|
∑
j∈M

yj +
1

|M|
) (44)
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SpaDE is defined using squared euclidean distances between an input vector and some prototypes (or
landmarks) in input space (Eq. 5), which gives us

yi = −λ|x−wi|22 (45)

=⇒ Sparsemax(y)i = ReLU

2λ(wi −
1

|M|
∑
j

wj)
Tx− λ(|wi|2 −

1

|M|
∑
j

|wj |2) +
1

|M|


(46)

= ReLU(W̃ (x)x+ b̃e(x)) (47)

where W̃ (x) = 2λ(wi − 1
|M|

∑
j wj), b̃e = −λ(|wi|2 − 1

|M|
∑

j |wj |2) + 1
|M| and M is the

set of active indices, which is uniquely determined by the constraint
∑

i Sparsemax(y)i = 1 (see
Proposition 1 in [44] for uniqueness). Note that W̃ (x), b̃e(x) are both piecewise constant on regions
of input space marked by the same choice of active indices.

Thus, SpaDE is equivalent to a ReLU SAE, but with a linear transformation and bias that are input-
adaptive (piecewise constant). SpaDE is thus piecewise linear and continuous (continuity follows
from the continuity of sparsemax). Note that this is a nontrivial result: despite appearing quadratic in
input due to the use of squared euclidean distances, SpaDE is a piecewise linear function of the input.
This result is also exact, and is NOT a first order Taylor series approximation.

However, SpaDE differs from a ReLU SAE by using linear transformations defined with respect to a
local origin, which is uniquely determined by the set of active SAE latents, similar to recent work on
steering [80].

Since SAEs are completely described by their inner and outer optimization problems (see Theo-
rem 3.1), we now describe these components for SpaDE.

The inner optimization (Eq. 4) for the SpaDE is as follows:

F (π,W ,x) =
∑
i

πi∥x−wi∥22 +
1

2λ
∥π∥22

S = {π ∈ Rs : πi ≥ 0,
∑
i

πi = 1}
(48)

This resembles one-sided optimal transport with a squared 2-norm regularizer. This problem is
one-sided because there is no constraint on how much weight sits on each prototype across different
inputs (optimization is performed independently for each input). The squared 2−norm regularizer is
known to lead to sparse transport plans in the optimal transport literature (see [81]).

The outer optimization for SpaDE (Eq. 4) is a locality-enforced version of dictionary learning called
K-Deep Simplex (KDS) [45]. In this framework, the sparse code is constrained to belong to the
probability simplex, i.e., z ∈ ∆s = {y ∈ Rs :

∑
i yi = 1, yi ≥ 0∀i}, while the dictionary atoms

D are unconstrained. The distance-weighted L1 regularizer encourages each datapoint to use those
dictionary atoms which are close to itself in euclidean distance, inducing a soft clustering bias. Even
though this is a different dictionary learning framework than standard sparse coding, it is expressive
enough to capture the standard sparse coding setup, i.e., for any standard sparse coding problem,
there exists an equivalent KDS problem (see Theorem D.9 in Appendix).

While this outer optimization (KDS) is a different problem than the standard dictionary learning
problem, it may be useful for interpretability since it has the following advantages:

1. It avoids shrinkage, since the L1 norm of the sparse representation z(x) is constrained to
equal 1 for all inputs

2. Constraining the sparse code to the probability simplex finds support in an oft-cited paper
demonstrating the linear representation hypothesis in word embeddings under a random-
walk based generative model of language [9]. Their main result (Theorem 2) shows that
representations are convex combinations of concepts, as opposed to unconstrained linear
combinations, which is better interpreted as assigning vectors (with magnitude and direction;
alternatively, locations) to concepts rather than directions (without magnitude). This idea of
concepts as vectors has also been demonstrated both theoretically and empirically in the
final layer representations of language models [82].
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Note how SpaDE satisfies the two data properties of nonlinear separability and heterogeneity:

1. The projection set S in SpaDE is the probability simplex, which admits edges/corners with
varying levels of sparsity, thereby allowing the representation of heterogeneous concepts.
For any choice of k ∈ {1, 2, ..., s}, there are

(
s
k

)
choices of indices Mk for a k-sparse

representation, and points {x ∈ Rs : xi = 0, i /∈ Mk,
∑

j∈Mk
xj = 1, xj ≥ 0} ⊆ ∆s

which admit this level of sparsity, thereby capturing concept heterogeneity.
2. The receptive fields of SpaDE (see App. D.2.3) are local to each prototype (encoder weight

vector), and are flexibly defined as the union of convex polytopes. This allows latents in
SpaDE to become monosemantic to concepts which are nonlinearly separable from the rest
of the data.

E Further Results

In this section, we present a more detailed analysis of the results from each of our four experiments.

E.1 Separability Experiment
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Figure E.1: Evolution of normalized MSE with training iterations for various SAEs on the separability
experiment. Color intensity is proportional to L0 (darker colors imply more dense SAE latents).
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Figure E.2: Normalized MSE (normalized with variance of data), Stable ranks (of data correlations,
latent correlations matrices), and fraction of dead latents as a function of sparsity (L0) for the
separability experiment (Sec. 5.1)
Fig. E.1 shows the evolution of normalized MSE (NMSE- MSE normalized by the variance of data)
with training iterations for each SAE, for different levels of sparsity. Note that denser representations
(higher L0 and thus darker colors in Fig. E.1) lead to lower NMSE. While all SAEs end up at similar
levels of NMSE, their ability to extract concepts from data is markedly different (as described in
Sec. 4). A per-concept breakdown of training dynamics is shown in Fig. E.3. For comparison, this
figure also includes the mean of the squared norm of each concept (which equals MSE if the SAE
predicts the origin for all inputs), variance of each concept (which equals MSE if the SAE predicts
the mean of each concept). Thus, SAEs whose MSE saturates at the concept variance are likely to be
predicting the mean of the concept for all points, whereas when MSE goes below concept variance,
the SAE explains within-concept variance. Also shown in gray is MSE with respect to the center of
each concept, which ideally must match concept variance if the SAE reconstructs all points (which is
observed in most cases).

In Fig. E.2, final NMSE as a function of sparsity (L0) shows that while all SAEs have comparable
MSE-sparsity curves at dense representations (high L0), TopK’s NMSE goes down significantly more
than others. This is a consequence of TopK learning a redundant solution, by just using two latents
as an orthogonal basis to represent all data. Fraction of dead latents show large numbers of dead
latents at high sparsity levels for ReLU, JumpReLU and TopK, with this going down (exponentially)
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as representations become more dense. However, SpaDE shows significantly fewer dead latents at all
levels of sparsity. Stable ranks of cosine similarities between latent representations of pairs of data
points (data corr.), and between pairs of latents across all data points (latent corr.) show that SpaDE
has very high stable ranks, indicating high specialization of latents. The other SAEs have comparable
stable ranks, all much lower than the desirable stable rank of 6 (equal to the number of clusters in
data).

The SAE latent activation profiles for each concept are shown as histograms in Fig. E.4. While
variations exist across concepts, there is a common structure to the profiles for each SAE (SpaDE
appears pointy, indicating a second mode other than zero).

Cosine similarities between latent representations of pairs of data points are shown for different levels
of sparsity in Fig. E.5. Notice that SpaDE has the lowest cross-concept correlations of all SAEs,
and these correlations do not decrease much especially in ReLU and JumpReLU. The corresponding
figure with similarities between pairs of latents across all datapoints is in Fig. E.6. Here, the number
of dead latents increases with increasing sparsity, leading to very few active latents (only active
latents are shown). Broadly, note the decrease in co-occurrences with increase in sparsity- also note
how ReLU and JumpReLU result in newer correlation structures with greater sparsity.
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Figure E.3: Training dynamics for each concept (column) across SAEs (rows) for separability
experiment: colored solid lines are MSE, with intensity of color proportional to L0. Gray lines show
MSE of SAE predictions with respect to the center of each cluster; intensity is again proportional to
L0. . Black dotted line shows the mean squared norm of each cluster, which would equal the MSE if
the SAE predicted the origin for all datapoints. Red dotted line shows variance of each cluster, which
again equals MSE if an SAE predicts the center of the cluster. Note that when a model reconstructs
data well, MSE wrt cluster center equals the variance of the cluster (as observed here)
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Figure E.4: Histogram of latent representations for each concept of various SAEs on the separability
experiment.
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E.2 Heterogeneity Experiment

The overall training dynamics (on data from all concepts) is shown in Fig. E.8- note, again, that for
low sparsity (high L0, darker color) all SAEs reach similar levels of NMSE, but differ for higher
sparsity levels. The per-concept breakdown of MSE, and comparison with mean squared norm,
concept variance and MSE with respect to the center of each concept is in Fig. E.3 . The kink in
gray lines is precisely the point where the model transitions from learning to represent the mean,
to learning to explain the within-concept variance, clearly demonstrating two phases in learning:
learning the right scale for the data (since initial model predictions may not match the true scale of
data), thereby predicting the mean well, followed by learning the distribution of the data.

Fig. E.10 shows latent activation profiles for each concept and each SAE (k = 32 in TopK). Since
TopK with k = 32 cannot allocate enough latents for large intrinsic dimension concepts, it increases
activations on smaller number of concepts instead. Cosine similarities between SAE latent represen-
tations for pairs of data points, and pairs of latents across all datapoints, is shown for varying levels
of sparsity in Fig. E.11, E.12 respectively. All SAEs (except JumpReLU) do a decent job at reducing
correlations between pairs of data points, but in the latent correlation plots, we see how TopK fails to
adaptively allocate latents to heterogenous concepts, especially at moderate levels of sparsity, while
the other SAEs do well- have different sized blocks in block-structured matrix.
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Figure E.7: Normalized MSE (normalized with variance of data), Stable ranks (of data correlations,
latent correlations matrices), and fraction of dead latents as a function of sparsity (L0) for the
heterogeneity experiment (Sec. 5.2)
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Figure E.9: Training dynamics for each concept (column) across SAEs (rows) for heterogeneity
experiment: colored solid lines are MSE, with intensity of color proportional to L0. Gray lines show
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L0. . Black dotted line shows the mean squared norm of each cluster, which would equal the MSE if
the SAE predicted the origin for all datapoints. Red dotted line shows variance of each cluster, which
again equals MSE if an SAE predicts the center of the cluster. Note that when a model reconstructs
data well, MSE wrt cluster center equals the variance of the cluster (as observed here)
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Figure E.10: Histogram of latent representations for each concept of various SAEs on the heterogene-
ity experiment.
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Figure E.11: Data correlations for various sparsity levels on the heterogeneity experiment: Pairwise
cosine similarities between SAE latent representations of datapoints. White lines separate different
concepts.
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Figure E.12: Latent correlations for various sparsity levels on the heterogeneity experiment: Pairwise
cosine similarities: pairwise cosine similarities between different SAE latents, computed across data
from all concepts.
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E.3 Formal Language Experiments

In this section, we report several more results in the formal language experimental setup. Specifically,
we show how with changing sparsity of the latent code, fidelity metrics, e.g., normalized MSE scales
changes and stable rank of both data and latent correlations changes (Fig. E.13); how monosemanticity
changes, i.e., how F1 scores averaged across latents and the concept they achieve maximum F1 score
on change (indicating their specialization to that concept) (Fig. E.14 Left); and how percentage of
dead latents change (Fig. E.14 Right). These results are repeated at the concept-level, i.e., at the level
of parts-of-speech, in Figs. E.15, E.16. Inline with results on heatmaps demonstrating correlation
between sparse codes of samples from different concepts and between vector denoting which samples
a given latent activates for, we retrieve results in Fig. E.17, E.18. The results above are perfectly
inline with our findings from the main paper, e.g., that SpaDE achieves highly monosemantic features.
The new and intriguing results involve demonstrations of how effective SpaDE can be at discerning
position of a concept (part-of-speech) in a sentence, when compared to other protocols which learn a
more uniform representation.

Further, we also provide 2D and 3D PCA visualizations of different SAEs’ retrieved latents in
two different manners: (i) assess which datapoints a latent activates for and project it into a low-
dimensional space identified using PCA, and (ii) assess which latents a datapoint activates, and
project this activation vector. The former helps assess how monosemantic latents are, i.e., whether
they activate for specific concepts, and the latter helps assess how specific latents are, i.e., whether a
datapoint only activates a specific latent and hence there is no regularity present. Results show most
SAEs, when they perform well, organize latents in a very structured manner (like a tetrahedron), but
SpaDE succeeds at this throughout.

Figure E.13: Normalized MSE and Stable ranks as a function of sparsity in the Formal Language
setup.

Figure E.14: Monosemanticity (F1 scores averaged over latents) and fraction of dead latents as a
function of sparsity for different SAEs in the Formal Language setup.
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Figure E.15: Normalized MSE decomposed by concepts (parts-of-speech) and plotted as a function
of sparsity in the Formal Language setup.

Figure E.16: Percentage of Dead Latents decomposed by concepts (parts-of-speech) and plotted as a
function of sparsity in the Formal Language setup. Note that in such a concept-conditioned count of
dead latents, one ends up counting both the latents that are always inactive and ones that are inactive
for the specific concept under consideration.
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Figure E.17: Correlation between sparse codes of different concepts (parts-of-speech) in the Formal
Language setup. Datapoints for different concepts are sorted according to which concept they come
from (using a predefined order on the parts-of-speech) and according to their position in a sentence,
hence highlighting position dependence. Lines demarcate boundaries at which tokens corresponding
to different concepts start / end.
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Figure E.18: Correlation between which datapoints a latent activates for in the Formal Language
setup. Latents are sorted according to which concept (part-of-speech) they most strongly activated
for (as measured using F1-score). White lines demarcate boundaries at which latents of different
concepts start / end.
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Figure E.19: 2D PCA visualization of sparse codes corresponding to different concepts (parts-of-
speech).
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Figure E.20: 3D PCA visualization of sparse codes corresponding to different concepts (parts-of-
speech).
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Figure E.21: 2D PCA visualization of a matrix whose elements capture which tokens a latent activates
for. That is, which concepts (parts-of-speech) the latent is specialized towards, if any.
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Figure E.22: 3D PCA visualization of a matrix whose elements capture which tokens a latent activates
for. That is, which concepts (parts-of-speech) the latent is specialized towards, if any.
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E.4 Vision Experiment

In this section, we show, visually, the concepts SpaDE has learnt in the vision experiment, by
visualizing feature attribution maps for inputs from each class from Imagenette. We perform this
visualization for the top concepts for each class for five classes- Tench (Fig. E.23), Chainsaw (Fig.
E.24), Church (Fig. E.25), Golf (Fig. E.26) and Springer (Fig. E.27)).

Figure E.23: Feature Attribution maps for monosemantic latents from SpaDE on the Tench class
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Figure E.24: Feature Attribution maps for monosemantic latents from SpaDE on the Chainsaw class
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Figure E.25: Feature Attribution maps for monosemantic latents from SpaDE on the Church class
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Figure E.26: Feature Attribution maps for monosemantic latents from SpaDE on the Golf class
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Figure E.27: Feature Attribution maps for monosemantic latents from SpaDE on the Springer class
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rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Justification: We include relevant details on compute resources in Appendix C.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
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9. Code of ethics
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NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We are confident that the paper conforms with the NeurIPS Code of Ethics in
every respect.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work describes limitations in existing approaches to interpret large models
and potential ways to mitigate these, and does not directly have any potential harmful
impacts.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
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particular applications, let alone deployments. However, if there is a direct path to any
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out that an improvement in the quality of generative models could be used to generate
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• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We describe limitations of tools used to interpret large models (SAEs)– our
work poses no risk of misuse.
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Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
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• We recognize that providing effective safeguards is challenging, and many papers do not
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We include all relevant citations for existing models/ datasets that we use.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service
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licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: New synthetic datasets created are included in the code and described in
Appendix C. New SAE (SpaDE) is included in the code.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset
is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
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14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our research does not involve human subjects or crowdsourcing.
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• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
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of the paper involves human subjects, then as much detail as possible should be included
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
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Answer: [NA]
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Guidelines:
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may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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