Under review as a conference paper at ICLR 2023

LOCALLY INVARIANT EXPLANATIONS: TOWARDS
STABLE AND UNIDIRECTIONAL EXPLANATIONS
THROUGH LOCAL INVARIANT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Locally interpretable model agnostic explanations (LIME) method is one of the
most popular methods used to explain black-box models at a per example level.
Although many variants have been proposed, few provide a simple way to produce
high fidelity explanations that are also stable and intuitive. In this work, we
provide a novel perspective by proposing a model agnostic local explanation
method inspired by the invariant risk minimization (IRM) principle — originally
proposed for (global) out-of-distribution generalization — to provide such high
fidelity explanations that are also stable and unidirectional across nearby examples.
Our method is based on a game theoretic formulation where we theoretically show
that our approach has a strong tendency to eliminate features where the gradient
of the black-box function abruptly changes sign in the locality of the example we
want to explain, while in other cases it is more careful and will choose a more
conservative (feature) attribution, a behavior which can be highly desirable for
recourse. Empirically, we show on tabular, image and text data that the quality of
our explanations with neighborhoods formed using random perturbations are much
better than LIME and in some cases even comparable to other methods that use
realistic neighbors sampled from the data manifold. This is desirable given that
learning a manifold to either create realistic neighbors or to project explanations is
typically expensive or may even be impossible. Moreover, our algorithm is simple
and efficient to train, and can ascertain stable input features for local decisions of a
black-box without access to side information such as a (partial) causal graph as has
been seen in some recent works.

1 INTRODUCTION

Deployment and usage of neural black-box models has significantly grown in industry over the last
few years creating the need for new tools to help users understand and trust models (Gunning}, 2017).
Even well-studied application domains such as image recognition require some form of prediction
understanding in order for the user to incorporate the model into any important decisions (Simonyan
et al.,|2013} |Lapuschkin et al., 2016). An example of this could be a doctor who is given a cancer
diagnosis based on an image scan. Since the doctor holds responsibility for the final diagnosis, the
model must provide sufficient reason for its prediction. Even new text categorization tasks (Feng
et al.,2018) are becoming important with the growing need for social media companies to provide
better monitoring of public content. Twitter recently began monitoring tweets related to COVID-19
in order to label tweets containing misleading information, disputed claims, or unverified claims
(Roth & Pickles, |[2020). Laws will likely emerge requiring explanations for why red flags were or
were not raised in many examples. In fact, the General Data Protection and Regulation (GDPR)
(Yannella & Kaganl| 2018)) act passed in Europe already requires automated systems that make
decisions affecting humans to be able to explain them. Given this acute need, a number of methods
have been proposed to explain local decisions (i.e. example specific decisions) of classifiers (Ribeiro
et al., [2016; |Lundberg & Lee, 2017} Simonyan et al., 2013; |[Lapuschkin et al., |2016; |Dhurandhar
et al., |2018a). Locally interpretable model-agnostic explanations (LIME) is arguably the most
well-known local explanation method that requires only query (or black-box) access to the model.
Although LIME is a popular method, it is known to be sensitive to certain design choices such as
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i) (random) sampling to create the (perturbation) neighborhoocﬂ ii) the size of this neighborhood
(number of samples) and iii) (local) fitting procedure to learn the explanation model (Molnar,
2019; [Zhang et al., [2019b). The first, most serious issue could lead to nearby examples having
drastically different explanations making effective recourse a challenge. One possible mitigation
is to increase the neighborhood size, however, one cannot arbitrarily do so as it not only leads to
higher computational cost, but in today’s cloud computing-driven world it could have direct monetary
implications where every query to a black-box model has an associated cost (Dhurandhar et al., 2019).
There have been variants suggested to overcome some of

these limitations (Botari et al., 2020; Shrotri et al., 2021} Coefficient inconsistency for LIME
Plumb et all 2018) primarily through mechanisms that ~ *° .
create realistic neighborhoods or through adversarial train- _ 40 - ° .
ing (Lakkaraju et al., |2020), however, their efficacy is fa_ o ot 5 | Y
restricted to certain settings and modalities based on their £ 32 I
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that produces explanations in the form of feature attribu- " 7 sepallength (cm)
tions that are robust to neighborhood sampling and can Coefficient inconsistency for LINEX
recover faithful (i.e. mimic black-box behavior), stable (i.e. 43 J
similar for closeby examples) and unidirectional (i.e. same 4.0
sign attributions a.k.a. feature importances) for closeby £ °
examples, see section [4.1)) explanations across tabular, im- £ >
age, and text modalities. In particular, we show that our %30
method performs better than the competitors for random as §2 s
well as realistic neighborhood generation, where in some ~ “~
cases even with the prior strategy our explanation quality 2.0 .

is close to methods that employ the latter. Qualitatively, 45 50 55 60 65 7.0 75 80
our method highlights (local) features as important that in sepal length (cm)

the particular locality i) have consistently high gradient
with respect to (w.r.t.) the black-box function and ii) where
the gradient does not change significantly, especially in
sign. Such stable behavior for LINEX is visualized in
Figure [I] where we get similar explanations for nearby
examples in the IRIS dataset. The (in)fidelity of LINEX
is still similar to LIME (see Table @, but of course our
explanations are much more stable.

Figure 1: Above we visualize for the
IRIS dataset the Coefficient Inconsis-
tency (CI) (see Section E] for exact def-
inition and setup details) between the
explanation (top two features) for an ex-
ample and its nearest neighbor in the
dataset. Each circle denotes an exam-
ple and a rainbow colormap depicts the
degree of inconsistency w.r.t. its nearest
2 RELATED WORK neighbor where red implies least incon-
sistency, while violet implies the most.
As can be seen LINEX explanations are

Posthoc explanations can typically be partitioned into two much more consistent than LIME’s.

broad categories global and local. Global explainability

avers to trying to understand a black-box model at a holis-

tic level where the typical tact is knowledge transfer (Hinton et al.| 2015} Dhurandhar et al.,[2018bj
2020) where (soft/hard) labels of the black-box model are used to train an interpretable model such as
a decision tree or rule list (Rudin}, 2019). Local explanations on the other hand avers to understanding
individual decisions. These explanations are typically in two forms, either exemplar based or feature
based. For exemplar based as the name suggests similar but diverse examples (Kim et al., |2016;
Gurumoorthy et al.,2019)) are provided as explanations for the input in question. While for feature
based (Ribeiro et al., |2016; [Lundberg & Leel 2017 [Dhurandhar et al., [2018a}; [Lapuschkin et al.,
2016; Zhao et al., 2021)), which is the focus of this work, important features are returned as being
important for the decision made for the input. There are some methods that do both (Plumb et al.|
2018). Moreover, there are methods which provide explanations that are local, global as well as at a
group level (Ramamurthy et al.l 2020). All of these methods though may not still provide stable and
robust local feature based explanations which can be desirable in practice (Ghorbani et al.,[2019).

'By perturbation neighborhood — referred to as simply neighborhood — we mean neighborhoods generated
for local explanations. By exemplar neighborhood, we mean nearest examples in a dataset to a given example.
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Given this there have been more recent works that try to learn either robust or even causal explanations.
In (Lakkaraju et al., 2020) the authors try to learn robust and stable local explanations relative to
distribution shifts and adversarial attacks. However, the distribution shifts they consider are linear
shifts and adversarial training is performed which can be slow and sometimes unstable (Zhang et al.,
2019a). Moreover, the method seems to be applicable primarily to tabular data. Works on causal
explanations (Frye et al., |2020; Heskes et al.| 2020) mainly modify SHAP and assume access to a
partial causal graph. Some others (Vig et al.| 2020) assume white-box access. In this work we do not
assume availability of such additional information. There are also works which show that creating
realistic neighborhoods by learning the data manifold for LIME (Botari et al., |2020; |Shrotri et al.|
2021) can lead to better quality explanations, where in a particular work (Anders et al.l 2020) it is
suggested that projecting explanations themselves on to the manifold can also make them more robust.
The need for stability in a exemplar neighborhood for LIME like methods has been highlighted in
(Zhang et al.| 2019b), with the general desire for stable explanations being also expressed in (Yeh
et al.,|2019; |Visani et al., 2020).

Given that our approach is inspired from IRM we now describe, how it is novel w.r.t. to it. It is
important to realize that IRM approaches such as |Ahuja et al.| (2021} [2020) are designed for the
out-of-distribution (OOD) generalization, which learn global models directly from the data. The main
similarity of these works to ours is only that they also are game theory based approaches, but with
the details being quite different. For one, they assume accessibility to environments which (ideally)
correspond to different interventional distributions and with assumptions on the structural causal
model derive results on how the true causal factors could be divulged. In our case, we propose ways
to generate environments as they are not given, and have [, and |, constraints on the entire and
environment specific parts of the model respectively, which is not the case with these prior works.
As such those algorithms do not produce sparse unidirectional models that are also consumable.
Moreover, the perspective we provide is novel in the context of local posthoc explanations where a
priori it is not obvious that approaches from OOD generalization could be extended and adapted.
Additionally, we propose a novel metric Unidirectionality which is not part of any of these works, but
as we have argued it is a desirable property for explanations.

3 PRELIMINARIES

Invariant Risk Minimization: Given a collection of training datasets D = {D.}.ce,, gathered
from a set of environments &;,., where D, = {z!,y! 7, is the dataset gathered from environment
e € &, and n. is the number of points in environment e. The feature value for data point ¢ is
x! € X and the corresponding label is y¢ € ), where X C R? and I C R. Each point (z¢, y})
in environment e is drawn i.i.d from a distribution P.. Define a predictor f : X — R. The goal
of IRM is to use these collection of datasets D to construct a predictor f that performs well across
many unseen environments &, where £,y 2 &,.. Define the risk achieved by f in environment e as
Re(f) = Ec[0(f(X.),Ye)], where £ is the square loss when f(X.) is the predicted value and Y, is
the corresponding label, (X,,Y.) ~ P, and the expectation E, is defined w.r.t. the distribution of
points in environment e.

An invariant predictor is composed of two parts a representation ® € R%*™ and a predictor (with the
constant term) w € R4*1, We say that a data representation @ elicits an invariant predictor w ™ ®
across the set of environments &, if there is a predictor w that achieves the minimum risk for all
the environments w € arg mincpax: Re (W' @), Ve € E;,.. IRM may be phrased as the following
constrained optimization problem (Arjovsky et al.,2019):

min E Re(w'®) st w € argmin R, (w' ®), Ve € &,
PeRIX weRIX! ccE WEREX 1
tr

If w' ® solves the above, then it is an invariant predictor across the training environments &,

Nash Equilibrium (NE): To understand how certain key aspects of our method function let us revisit
the notion of Nash Equilibrium (Dutta, |1999). A standard normal form game is written as a tuple
Q= (N, {ui }ien, {Si}tien), where N is a finite set of players. Player ¢ € A takes actions from a
strategy set S;. The utility of player i is u; : S — R, where we write the joint set of actions of all the
players as S = IL;cnrS;. The joint strategy of all the players is given as s € S, the strategy of player
iis s; and the strategy of the rest of playersis s_; = (s )Z-/#.
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Definition 1. A strategy s € S is said to be a pure strategy Nash equilibrium (NE) if it satisfies,
ui(s!, s'.) > ui(k, s’ ), Vk € 8;,Vi € N, where u;(s!, s" ) = u;(s], s}, ..., sl,) = uy(s?).

NE thus identifies a state where each player is using the best possible strategy in response to the rest
of the players leaving no incentive for any player to alter their strategy. In seminal work by (Debreu,
1952) it was shown that for a special class of games called concave games such a pure NE always
exists. This is relevant because the game implied by Algorithm|l|falls in this category.

4 METHODOLOGY

We first define desirable properties we would like our explanation method to have. The first three
have been seen in previous works, while the last Unidirectionality is something new we propose. We
then describe our method where the goal is to explain a black-box model f : X — R for individual
inputs @ based on predictors w by looking at their corresponding components, also termed as feature
attributions. We take inspiration from IRM since, our goal here too is to extract robust features that
are ideally stable and unidirectional.

4.1 DESIRABLE PROPERTIES

We now discuss certain properties we would like our explainability method to have in order to provide
robust explanations that could potentially be used for recourse. Let D, denote a (test) dataset with
examples (, y) where y;(z) is the black-box models prediction on z and y* () is the prediction
on z (€ X) using the explanation model at 2’. The feature attributions (or coefficients) for the
explanation model at x are denoted by ¢Z, and NV, denotes the exemplar neighborhood of z with
|.|cara denoting cardinality.

Fidelity: This is the most standard property which all proxy model based explanation methods
are evaluated against (Ribeiro et al., 2016} |[Lundberg & Lee| [2017; Lakkaraju et al.| 2020) as it
measures how well the proxy model simulates the behavior of the black-box (a.k.a. faithfulness
to the black box) it is attempting to explain. Here we define inverse of it, that is Infidelity (INFD),
as the MAE between the black-box and explanation model predictions across all the test points:

INFD = 50— 3, e p, () =y (@)].

card

We also define another metric here called Generalized Infidelity (GI), which also been used in previous
works (Ramamurthy et al., [2020) to measure the generalizability of local explanations to neighboring

test points. It is defined as: GI = ﬁ > (ey)eDs m Ywren, () —yg (2)].

Stability: This is also a popular notion (Hancox-Li, 2020; Ramamurthy et al., 2020; |Yeh et al.,|2019)
to evaluate robustness of explanations. Largely, stability can be measured at three levels. One is
prediction stability, which measures how much the predictions of an explanation model change for
the same example subject to different randomizations within the method or across close by examples.
The second is the variance in the feature attributions again for the same or close by examples. It is
good for a method to showcase stability w.r.t. both even though in many cases the latter might imply
the former. An interesting third notion of stability is the correlation between the feature attributions
of an explanation model and average feature values of examples belonging to a particular class. This
measures how much does the explanation method pick features that are important for the class, rather
than spurious ones that seem important for the example of interest. Given this we define two stability
metrics.

Coefficient Inconsistency (CI): This notion has been used before (Hancox-Lil 2020) to measure an
explanation methods robustness. It can be defined as the MAE between the attributions of the test

: : : : . _ 1 1 x
points and their respective neighbors: CI = 51— 2 (z)eD, Vol Dwren, I —ce i

Class-Attribution Consistency (CAC): For local explanations of classification black-boxes, we expect
certain important features to be highlighted across most of the explanations of a class. This is codified
by this metric which is defined as follows: CAC = D’\ﬁ > yey (1Y, p1y), where Y denotes the
set of class labels in the dataset, p, the mean (vector) of all inputs in class y € Y, p the mean
explanation for class y and r the Pearson’s correlation coefficient.
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Algorithm 1: Locally Invariant EXplanations (LINEX) method.

Input: example to explain x, black-box predictor f(.), number of environments to be created k,
(lso) threshold v > 0, (1) threshold ¢ > 0 and convergence threshold € > 0

Initialize: Vi € {1,...,k} w; =0and A =0

Let &1(.), ..., & (.) be k environment creation functions as described in section[4.2.2]

do

fori =11t0 k do

~+ _ ~ .
w_,; = Zje{l,...,k},j;ﬁi wj
~ prev ~

w

i — Wi

2
W, = argmin 4, o) (f(:z) @ — 'LZ;TaE) st [@F, + @), < tand @]e <7
- ;

A = max (|Jw!"® — w;|2, A)
end
while A > ¢;
Output: w = Zie{L..,,k} w;

Black-box Invariance: This is the same as implementation invariance defined in (Sundararajan et al.|
2017). Essentially, if two models have exactly the same behavior on all inputs then their explanations
should also be the same. Since, our method is model agnostic with only query access to the model it
is easy to see that it satisfies this property if the same environments are created.

Unidirectionality: This is a new property, but as we argue that this is a natural one to have. Loosely
speaking, unidirectionality would measure how consistently the sign of the predictor for a feature is
maintained for the same or close by examples by an explanation method. This is a natural metric
(Miller| [2018])), which from an algorithmic recourse (Karimi et al., 2021)) perspective is also highly
desirable. For instance, recommending a person to increase their salary to get a loan and then
recommending to another person with a very similar profile to decrease their salary for the same
outcome makes little sense.

We define the unidirectionality T as a measure of how consistent the sign of the attribution for a
particular feature in a local explanation is when varying neighborhoods for the same example or when
considering different close by examples. In particular, given m attributions for each of d features

denoted by wgl), e wgff ) the unidirectionality metric for an example is:
1 d m
— (4)
T = o ;:1 JE:l sgn (wj ) 1 (1)

where |.| stands for absolute value. Clearly, the more consistent the signs for the attribution of a
particular feature across m attributions the higher the value, where the maximum value can be one.
If equal number of attributions have different signs for all features then Y will be zero, the lowest
possible value. This property thus measures how intuitively consistent (ignoring magnitude) the
explanations are. Given its sole focus on the sign of the attributions it compliments the above metrics
along with attributional robustness metrics (Chen et al., 2019; Sarkar et al., 2021).

4.2 METHOD

4.2.1 DESCRIPTION

In Algorithm [T} we show the steps of our method LINEX. The input to the method is the example
we want to explain x, the black-box predictor, a few thresholds that we describe next and & (local)
environments whose creation is described in Section 4.2.2]

In the algorithm we iteratively learn a constrained least squares predictor for each environment, where
the final (local) linear predictor is the sum of these individual predictors. In each iteration when com-
puting the contribution of environment e; to the final summed predictor, the most recent contributions
of the other predictors are summed and the residual is optimized subject to the constraints. The first
constraint is a standard lasso type constraint which tries to keep the final predictor sparse as in LIME.
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Why [, constraint? The second constraint is more unique and is a [, constraint on the predictor of
just the current environment. This constraint as we prove in Section is essential for obtaining
robust predictors. To intuitively understand why this is the case consider we have two environments.
In this case if the optimal predictors for a feature in each environment have opposite signs, then
the Nash equilibrium (NE) is when each predictor takes +~ or —v values as they try to force the
sum to have the same sign as them. In other words, features that have a disagreement in even the
direction of their impact are eliminated by our method. LIME type methods on the other hand would
simply choose some form of average value of the predictors which may be a risky choice especially
for actionability/recourse given that the directions change so abruptly. On the other hand, if the
optimal predictors for a feature in the two environments have the same sign, the lower absolute valued
predictor would be chosen (assuming + is greater) making it a careful choice. The reasoning for this
and a discussion involving more than two environments is given in Section[4.3]

The overall algorithm resembles a (simultaneous) game where each environment is a player trying to

find the best predictor for its environment given all the other predictors and constraints. Formally,

fori € {1,...,k} the players are N' = {&;}, their strategy space is S; = [, 7]¢ and their utility
2

i (Wi, W5) = =Y sce (@ (f(:i:) — ot @ — ’lIJLTii‘) . Also note that the optimization problem

solved by each player is convex as norms are convex.

4.2.2 CREATING LOCAL ENVIRONMENTS

In the standard IRM framework environments are assumed to be given, however, in our case of local
explainability we have to decide how to produce them. We offer a few options for the environment
creation functions &; Vi{1, ..., k} in Algorithm[I]

Random Perturbation: This possibly is the simplest approach and similar to what LIME employs.
We could perturb the input example by adding zero mean gaussian noise to create the base environment
(used by LIME) and then perform bootstrap sampling to create the k different environments. This
will efficiently create neighbors in each environment, although they may be unrealistic in the sense
that they could correspond to low probability points w.r.t. the underlying distribution.

Realistic Generation/Selection: One could also create neighbors using data generators such as done
in MeLIME (Botari et al.l [2020) or select neighboring examples from the training set as done in
MAPLE (Plumb et al.,[2018]) to create the base environment following which bootstrap sampling
could be done to form the £ different environments. This approach may provide more realistic
neighbors than the previous one, but may be much more computationally expensive.

Other than bootstrapping one could also over sample and try to find the optimal hard/soft partition
through various clustering type objectives (Aggarwal & Reddy, 2013} |Creager et al., [2020).

4.3 THEORETICAL RESULTS

In this section, we analyze the output of Algorithm 1 when there are two environments. The
extension to multiple environments is discussed following this result, where the general intuition is
still maintained but some special cases arise depending on whether there are an even or odd number
of environments. To prove our main result we make two assumptions.

Assumption 1 The feature values for each of the dimensions in the samples created forming the local
environments are independent.

This assumption is satisfied by the most standard way of creating neighborhoods/environments, where
random gaussian noise is used to create them as described in Section[¢.2.2]

Assumption 2 ¢t > ~d, where d is the dimensionality of the feature vector.

Making this assumption ensures that we closely analyze the role of the /., penalty, which is one of
the main novelties in our method.

Definition 2 Let the explanation that each environment &; arrives at for an example x based on
unconstrained least squares minimization be w; where,

w; € arg mdinE:zesi(x)[(f(i)Q — ' z)’] (2)
weR?
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The expectation is taken w.r.t the environment generation distribution.
Theorem 1. The output of Algorithm[l\under Assumptions 1, 2 and equation[2]is given by:

w = (wT@lww;elwﬂ +w$®1lw;\>\w;|)1w1®w;zo 3)
where © is element wise product and 1 is the indicator function.

Proof Sketch. The above expression describes the NE of the game played between the two local
environments each trying to move w towards their least squares optimal solution. Given assumptions
1 and 2, we witness the following behavior of our method. Let the i*" feature of the predictors 1,
and W, from Algorithm[I]be w1; and wy; respectively. Let the corresponding least squares optimal
predictors for the i* feature have the following relation: w}; > w3, and |w};| > |wj,|. Then the
two environments will push the ensemble predictor, w;; + ws;, in opposite directions during their
turns, with the first environment increasing its weight, wy;, and the second environment decreasing its
weight, Wo;. Eventually, the environment with a higher absolute value (§; = 1 since |wj;| > |w3,])
reaches the boundary (wy; = <) and cannot move any further due to the /., constraint. The other
environment £, best responds, where it either hits the other end of the boundary (wy; = —7), in
which case the weight of the ensemble for component i is zero, a case which occurs if w}; and w3,
have opposite signs; or gets close to the other boundary while staying in the interior (Wg; = w3; — ),
in which case the weight of the ensemble for feature ¢ is w3;, a situation which occurs if wj; and ws,
have the same sign. O

Implications of the Theorem [T} The following are the main takeaways from Theorem [T} (1) If the
signs of the explanations for unconstrained least squares for the two environments differ for some
feature, then the algorithm outputs a zero as the attribution for that feature. (2) If the signs of the
explanations for the two environments are the same, then the algorithm outputs the lesser magnitude
of the two. These two properties are highly desirable from an algorithmic recourse or actionability
perspective, where the first biases us to not rely on features where the black-box function changes
direction rapidly (unidirectionality). The second, provides a reserved estimate so that we do not
incorrectly over rely on the particular feature (stability). Based on similar logic presented in the proof
sketch the behavior for more than two environments for LINEX is discussed in Appendix

5 EXPERIMENTS

We test our method on five real world datasets covering all three modalities: IRIS (Tabular) (Dheeru
& Karra Taniskidoul [2017), Medical Expenditure Panel Survey (Tabular) (Agency for Healthcare Re+
search and Quality| 2019), Fashion MNIST (Image) (Xiao et al.,|2017), CIFAR10 (Image) [Krizhevsky
(2009) and Rotten Tomatoes reviews (Text) (Pang et al.,|2002) with LIME-like random (rand) and
MeLIME-like realistic neighborhood generation (real) or MAPLE-like realistic neighborhood se-
lection (mpl). The summary of black-box classifier accuracies, and type of realistic perturbation
used for the datasets are provided in Table [3|in the appendix. In other cases except FMNIST and
CIFAR10 which come with their own test partition we randomly split the datasets into 80/20%
train/test partition and average results for the local explanations over this test partition. For LINEX
we produce two environments where the two environments are formed by performing bootstrap
sampling on the base environment which is created either by rand, real or mpl type neighborhood
generation. Thus in all cases the union of the environments is the same as a single neighborhood used
to produce explanations for the competitors making it a fair comparison. LINEX behavior with more
environments is in Appendix

Given the neighborhood generation schemes we compare LINEX with LIME, Smoothed LIME
(S-LIME), MeLIME and MAPLE, where for S-LIME we average the explanations of LIME across
the LINEX environments. SHAP’s results are in Appendix [H] since it is not a natural fit here. Nor are
methods such as saliency maps, gradcam, integrated gradients etc. as they are white-box methods
requiring access to a differentiable model.

Metrics: We evaluate using five simple metrics: Infidelity (INFD), Generalized Infidelity (GI),
Coefficient Inconsistency (CI), Class Attribution Consistency (CAC) and Unidirectionality (),
which are defined in section The first two evaluate faithfulness, the next two stability and the last
goodness for recourse.

We report the above metrics in Table |2} Each result in Table[2|is mean = standard error of the mean
over five kernel sizes 7v/d generally, where 7 = {0.05,0.1,0.25,0.5,0.75}. Test neighborhoods do
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(4a) MeLIME:r=0.292 (4b) LINEX:r=0.633 (4c) Original (f) Original
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(d) MeLIME:r=0.297 (e) LINEX:r=0.962
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Figure 2: Sample results using FMNIST dataset for two classes. (a-c): Class Dress, (d-f): Class
Sandal. (a, d): MeLIME explanations. (b, d): LINEX explanations. (c, f): Original images. We
observe that LINEX explanations capture important artifacts and thus exhibit significantly higher
correlation with the original images for the same level of sparsity, where in aggregate too the
correlations are high w.r.t. images belonging to a particular class, thus showcasing higher stability
(i.e. high CAC) as is seen in TableEl More examples are shown in Appendix

Original LINEX MeLIME  Original LINEX MeLIME 10
- = 0.8

0.6
0.4

0.2

Feature Attribution

a.0

Figure 3: Sample results using CIFAR10 dataset for dog and bird class. As can be seen LINEX
focuses more on salient features such as head and legs for the dog, and wings for the bird (rather than
also the background). More examples are shown in Appendix

not make sense for random perturbations with FMNIST, CIFAR10 and Rotten Tomatoes because
the features (viz. superpixels) used by neighboring test examples are different. Also, we do not use
realistic perturbations with MEPS since KDE and VAE generators do not work well with categorical
data. In addition, since MEPS data uses regression black-box, CAC cannot be computed. Also for
CIFAR10 images in a class are not aligned so CAC is inapplicable. All these justify the missing
entries in Table[2] The results were generated on Linux machines with 56 cores and 242 GB RAM.
More details regarding the exact perturbation schemes for LIME/MeLIME/MAPLE, the perturbation
neighborhood sizes and the time taken by the different methods are in Appendices [A]and [D]

Observations: Quantitatively, we see that in terms of CAC, LINEX is better than baselines in all
cases which indicates that on average the local explanations with LINEX highlight the important
features characterzing the entire class making them more stable. This is further verified by looking at
the YT and CI metrics where LINEX is similar or better than others. For GI and INFD metrics, the
results are more evenly spread which implies that LINEX’s main advantage is obtaining stable and
unidirectional explanations that are faithful to a similar degree. Ablation studies showing superiority
of LINEX over MeLIME on the FMNIST dataset where we have significantly higher INFD than
MeLIME are given in Appendix I.

An interesting observation is that when it comes to the stability metrics (CI and CAC) and unidirec-
tionality LINEX with even random perturbation model is better than MeLIME in some cases. This
is very promising as it means LINEX could be potentially be trusted without the need to generate
realistic perturbations which may be computationally expensive or not even possible.

Qualitatively, we see in Figures[2]and 3] that LINEX explanations are more coherent and highlight
more salient features compared to MeLIME. Even on the text data we see more reasonable attributions

in Table[I] where “masterpiece”, “moving” and “audacious” are highlighted as the most important
words indicative of positive sentiment in the three examples.

We also performed qualitative error analysis on FMNIST where our INFD is much worse than
MeLIME and is described in Appendix [l We see that even where LINEX has high infidelity it
invariably still focuses on salient features ignoring superfluous features that may not be critical for
correct identification, but focusing on which may result in lower infidelity for the specific example.
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Table 1: Below we see three example positive sentiment sentences from the Rotten Tomatoes dataset.
Green and red indicate the most important word highlighted by and LINEX respectively.
As can be seen LINEX highlights stronger positive sentiment words. More examples in Appendix

Example 1 Example 2
moving tale of love and destruction in

places , unexamined lives

Example 3

one-of-a- near-masterpiece yet audacious . . .

Table 2: Comparison of the different methods based on infidelity (INFD), generalized infidelity
(GI), coefficient inconsistency (CI), class attribution consistency (CAC) and unidirectionality (). 1
indicates higher value for the metric is better, and | indicates lower is better. Statistically significant
results based on paired t-test are bolded. LINEX is better than baselines in 21 out of 40 cases,
and worse only in 5 cases. Plots showing behavior with varying neighborhood size, number of

environments and kernel width are in Appendix

[ Dataset | Method INFD | GI | CI}] T+ CAC 1 ]
LIME 0.015+0.011 | 0.132 4£0.042 | 0.319 £ 0.132 | 0.646 4 0.040 | 0.667 £+ 0.167
S-LIME 0.015+0.010 | 0.077 £ 0.011 | 0.143 £ 0.045 | 0.704 £ 0.037 | 0.878 £ 0.034
LINEX/rand| 0.013 £ 0.009 {0.052 + 0.008|0.044 + 0.013|0.802 + 0.043(0.921 + 0.042
IRIS MeLIME | 0.008 £ 0.003 | 0.049 £ 0.018 | 0.219 £ 0.108 | 0.629 4+ 0.013 | 0.464 £+ 0.100
LINEX/real | 0.009 4+ 0.003 [0.029 + 0.003|0.024 4+ 0.002|0.744 + 0.044|0.942 + 0.023
MAPLE | 0.009 4+ 0.001 | 0.038 £0.004 | 0.261 £ 0.033 | 0.458 4+ 0.032 | 0.586 £ 0.035
LINEX/mpl | 0.013 4+ 0.000 [0.020 + 0.000|0.026 + 0.002|0.694 £ 0.008|0.929 + 0.004
LIME 0.158 £ 0.066 | 0.214 4+ 0.041 | 0.005 £ 0.001 | 0.981 + 0.006
S-LIME 0.158 + 0.066 | 0.214 £ 0.042 | 0.005 + 0.001 | 0.974 £ 0.008 NA
MEPS |LINEX/rand|0.130 #+ 0.052{0.164 + 0.021| 0.003 £ 0.001 | 0.979 4 0.006
MAPLE [0.063 + 0.000{0.067 4= 0.000| 0.007 £ 0.000 | 0.957 4 0.000 NA
LINEX/mpl | 0.098 £ 0.001 | 0.094 £ 0.001 | 0.007 £ 0.000 | 0.950 4 0.000
LIME 0.162 4+ 0.003
S-LIME 0.142 + 0.003 NA NA NA NA
FMNIST |\LINEX/rand| 0.149 4 0.002
MeLIME [0.001 #+ 0.000(0.277 £ 0.000| 0.007 &£ 0.000 | 0.769 4 0.000 | 0.327 £ 0.000
LINEX/real | 0.100 4+ 0.002 | 0.304 + 0.001 | 0.002 4 0.000 |0.780 + 0.000|0.649 + 0.001
LIME 0.191 + 0.005
S-LIME 0.185 4+ 0.002 NA NA NA NA
CIFARIO |LINEX/rand| 0.186 £ 0.002
MeLIME | 0.100 + 0.003 | 0.412 4 0.007 | 0.014 £ 0.000 | 0.546 + 0.003 NA
LINEX/real | 0.090 £+ 0.005 |0.279 + 0.001|0.006 4+ 0.000|0.679 + 0.004
LIME 0.079 + 0.036
Rotten S-LIME 0.075 + 0.035 NA NA NA NA
Tomatoes LINEX/rand| 0.069 + 0.032
MeLIME [0.029 + 0.001| 0.391 £ 0.000 | 0.000 £ 0.000 | 0.999 4+ 0.000 | 0.909 + 0.000
LINEX/real | 0.053 4+ 0.000 {0.361 + 0.000| 0.000 4 0.000 | 1.000 £ 0.000 {0.953 4+ 0.001

The goodness of these features identified by LINEX can be further verified by looking at other metrics
such as GI, CAC, CI and Y in Table Q] where it is either comparable or better than MeLIME.

6 DISCUSSION

In this paper we have provided a method based on a game theoretic formulation and inspired by the
invariant risk minimization principle to provide faithful, stable and unidirectional explanations. We
have defined the latter property and argued that it is somewhat of a necessity (may not be sufficient)
for recourse. We have theoretically shown that our method has a strong tendency to be stable and
unidirectional as we will mostly eliminate features where the black-box models gradient changes
abruptly and in other cases choose a conservative value. Empirically, we have verified this where
we outperform competitors in majority of the cases on these metrics. An interesting observation is
also that in some cases our method provides more stable and unidirectional explanations with just a
random perturbation model relative to more expensive methods that use realistic neighbors.

In the future, it would be worth experimenting with more varied strategies to form environments and
if possible find the optimal ones (Creager et al.,[2020), which may lead to picking even more relevant
features that are “causal” to the local decision.
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ETHICS AND REPRODUCIBILITY STATEMENT

With the wide adoption of deep learning technologies, explaining or understanding the reasons behind
their decisions has become extremely important in many critical applications (Arya et al., [2019).
Numerous explainability methods have been proposed in literature to explain individual decisions
of black-box models (Ribeiro et al.| [2016; [Plumb et al.| 2018 [Botari et al., |2020; IDhurandhar
et al.,[2018a; Lundberg & Lee), |2017). Although LINEX is more stable and undirectional than other
competing approaches, it still is a posthoc explainability method that may not be completely faithful
to the black-box model. This of course is not just a limitation of our approach, but nonetheless
should be taken into account before a user makes a decision. Our method could also be used to
divulge information by exposing the inner workings of the black-box leading to privacy concerns.
One possible mitigation strategy in this case would be to keep the sensitive attributes hidden from the
explainer.

Experimental details are provided in Section [5]of the main paper and Appendix [D] All datasets are
public. Code will be provided during the discussion phase through an anonymized link.
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Table 3: Datasets, models and neighborhoods used in experiments. RF— Random Forest, NN—
Neural Network, ResNet— Residual Network and NB— Naive Bayes.

Dataset Modality ~ Black-box model acc/R?,  Realistic neighborhood creation methods

IRIS tabular RF classifier, 93% KDEGen (Botari et al., [2020), RF (Plumb
et al.| [2018)

MEPS tabular RF regressor, 0.325 (Plumb et al.| 2018))

FMNIST image NN classifier, 87% VAEGen (Botari et al .| [2020)

CIFAR10 image ResNet18, 95% VAEGen (Botari et al.| |[2020)

Rotten Tomatoes  text NB classifier, 75% Word2VecGen (Botari et al., [2020)

A EFFICIENCY OF LINEX

It is important to note that the query complexity (i.e. number of times we query the black box to
obtain an explanation) of LINEX is the same as that of LIME since the union of the environments is
the same as a LIME perturbation neighborhood. This is important in todays cloud-driven world where
models may exist on different cloud platforms and posthoc explanations are an independent service
where each call to the model has an associated cost. In terms of running time for two environments,
convergence was fast and running time was approximately 2.5 times that of LIME (LINEX took
2.5 seconds on IRIS for 30 examples as opposed to 1 second by LIME, LINEX took 47 seconds on
MEPS for 500 examples as opposed to 18 seconds by LIME), which is very similar to Smoothed
LIME (S-LIME) (took 2.3 seconds on IRIS and 40 seconds on MEPS) that we still outperform in
majority of the cases.

Realistic neighborhood generation can be time consuming especially for MeLIME since generators
have to be trained which may take up to an hour using a single GPU for datasets such as FMNIST.
After the generator is trained and neighborhood sampled MeLIME takes the same amount of time as
LIME since the model fitting procedure is the same. MAPLE took 1.5 seconds for the IRIS dataset
for 30 examples and 27 seconds for 500 MEPS examples.

A way to further speed up LINEX would be to implement it through embarrassing parallelism which
can easily be done across explanations. This will prevent scaling of the running time in the number of
examples when many explanations are needed. The setting with many explanations is anyway where
we would need efficiency because if only few explanations were desired the slightly higher running
time of LINEX would not be an issue.

B PROOF OF THEOREM 1

Expanding on the proof sketch provided in the main paper we now provide a case wise analysis to
prove Theorem 1.

e w} = wj: If the optimal solutions to both environments in the convex set [—~,~]? are the same,
then in the first iteration itself where we fit to the first environment we would have reached the optimal
solution to our problem where w; = wj. This is because in the second iteration where we fit the
second environment to the residual from the previous fit w, = 0 and the algorithm would terminate.
This would imply the output of algorithm 1 would be w = wj.

e w; # wj: When the optimal solutions for the two environments are not equal we consider the
following two cases:

* Opposite sign attributions: If the i*" component of w} and w have opposite signs, then
the it" components of the ensemble predictor, wy; and ws; are both at the boundary ~
and —+ respectively if w;; > 0. This is because both try to push the ensemble (i.e. their
sum) towards the sign they have where eventually they reach the boundary £+ and have no
incentive to deviate. Any deviation from these values will lead to a higher least squares error
in their environment, thus making this a NE.

* Same sign attributions: If the i*" component of w7} and w} have same signs, then the
it" component of ensemble predictor constructed from the NE is set to the least squares
attribution with a smaller absolute value, i.e., w; = wj;, where |wj;| < |w3;|. Without
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loss of generality assume 0 < wj; < ws3;, the attribution of the environments’ predictors
in NE, then w,; and ws,; have opposite signs, i.e., ws; = v and wy; = wj; — v where the
ensemble predictor for the i component would be w; = 1Wy; + W2 = wi; — v + v = w};,
since any deviation from this would lead to a worse least squares loss for the corresponding
environment. This shows that ensemble predictor is conservative and selects the smaller

least squares attribution.

C BEHAVIOR FOR MORE THAN TwO ENVIRONMENTS

Given Assumptions 1 and 2 we now discuss the behavior of our method for more than two environ-
ments. If the number of environments is odd, then using similar logic to that discussed in the proof
sketch one can see that the feature attribution would be equal to the median of the feature attributions
across all the environments. Essentially, all environments with optimal least squares attributions
above the median would be at +-y, while those below it would be at —v. The one at the median would
remain so with no incentive for any environment to alter its attribution making it a NE. This is a
stable choice that is also likely to be faithful as we have no more information to decide otherwise. On
the other hand if we have an even number of environments the final attribution in this case depends
on the middle two environments in the same manner as the two environment case proved in Theorem
Thus, if the optimal least squares attributions of the middle two environments have opposite sign,
then the final attribution is zero, else its the lower of the two attributions in terms of the numerical
value. This happens because the NE for the other environments is &7 depending on if their optimal
least squares attributions are above/below those of the middle two environments. This again is a
stable and likely to be faithful choice, where also unidirectionality is preferred.

D EXPERIMENTAL DETAILS

D.1 DATASET DETAILS AND HYPERPARAMETER SPECIFICATIONS

We describe the datasets and the hyperparameters used for each. We set perturbation neighborhood
sizes 10 (IRIS), 500 (MEPS), 100 (FMNIST-random), 500 (FMNIST-realistic), 100 (CIFAR10-
random), 500 (CIFAR10-realistic), 100 (Rotten tomatoes) for generating local explanations. We
also use 3, 10, 10, 10, 5 as exemplar neighborhood sizes to compute GI, CI and Y metrics for the
five datasets respectively. We also use 5—sparse explanations for all cases except FMNIST and
CIFAR10 with realistic perturbations where we follow MeLIME and generate a dense explanation
using ridge penalty with penalty multiplier value of 0.001. The £, bound ~y in Algorithm|[I]is set
as the maximum absolute value of linear coefficient computed by running LIME/MeLIME in the
two individual environments. Please look at IRIS dataset first since it contains some of the common
details used across others.

IRIS (Tabular): This dataset has 150 instances with four numerical features representing the sepal
and petal width and length in centimeters. The task is to classify instances of Iris flowers into three
species: setosa, versicolor, and virginica. A random forest classifier was trained with a train/test
split of 0.8/0.2 and yielded a test accuracy of 93%. We provide local explanations for the prediction
probabilities for class setosa. For both random and realistic perturbations, we use a perturbation
neighborhood size of n. For random perturbations, we used the same approach followed by LIME
and sample from a Gaussian around each data point. Realistic perturbations (with the same number
n) were generated using KDEGen [Botari et al.|(2020), a kernel density estimator (KDE) with the
Gaussian kernel fitted on the training dataset to sample data around a sample point. For both random
and realistic perturbations, we weight the neighborhood using a Gaussian kernel of width 7+/d, where
d is the dimension of the feature vector and 7 = {0.05,0.1,0.25,0.5,0.75}, and this corresponded
to kernel widths {0.1,0.2,0.5,1.0,1.5}. We also perform a weighted version of realistic selection
where we use MAPLE [Plumb et al.|(2018) to assign weights to all the test examples and pick the top
n weighted examples to use as the perturbation neighborhood. For random/realistic perturbations and
realistic selection, the corresponding environments (of size n each) for LINEX are created by drawing
k bootstrap samples where k = {2, 3,4, 5} in our experiments. We test for n = {10, 20, 30, 40, 50}
with this dataset.
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Medical Expenditure Panel Survey (Tabular): The Medical Expenditure Panel Survey (MEPS)
dataset is produced by the US Department of Health and Human Services. It is a collection of surveys
of families of individuals, medical providers, and employers across the country. We choose Panel 19
of the survey which consists of a cohort that started in 2014 and consisted of data collected over 5
rounds of interviews over 2014 — 2015. The outcome variable was a composite utilization feature that
quantified the total number of healthcare visits of a patient. The features used included demographic
features, perceived health status, various diagnosis, limitations, and socioeconomic factors. We filter
out records that had a utilization (outcome) of 0, and log-transformed the outcome for modeling.
These pre-processing steps resulted in a dataset with 11136 examples and 32 categorical features.
We train a random forest regressor that has a test R? of 0.325 in this dataset. We provide local
explanations of the predictions. With MEPS, we do not use realistic perturbations since KDE and
VAE generators do not work well with categorical data. Otherwise the setting is similar as IRIS
data, except that we use n = {50, 100, 200, 300,400, 500}. The kernel widths in this case were
{0.28,0.57,1.41,2.83,4.24}. We use k = {2, 3,4, 5} for this dataset.

Fashion MNIST (Images): This dataset has 28 x 28 grayscale images of fashion articles with
60,000 train and 10,000 test samples. The task is to classify these into 10 classes corresponding
to coat, shoe, and so on. A neural network trained with test accuracy of 87%. Explanations are
generated for the prediction probabilities corresponding to the predicted class for each example.
We choose 1000 test examples to generate explanations. Realistic perturbations were generated
using VAEGen Botari et al.|(2020), a Variational Auto Encoder (VAE) fitted on the training dataset.
For random perturbations, we chose n from {50, 100, 200, 300, 400,500} and kernel sizes were
{0.43,0.85,2.14,4.27,6.41}. For realistic perturbations we chose n from {250, 500, 750, 1000} and
the kernel widths were {1.4,2.8,7.0,14.0,21.0}. We use k = {2, 3,4, 5} for this dataset.

CIFAR10 (Images): This dataset has 32 x 32 colored images belonging to 10 different classes.
The dataset has 50,000 train and 10,000 test samples. The task is to classify these into 10 classes cor-
responding to dog, bird, and so on. A residual network with 18 units (ResNet18) was trained with test
accuracy of ~ 95%. Explanations are generated for the prediction probabilities corresponding to the
predicted class for each example. We choose 1000 test examples to generate explanations. Realistic
perturbations were generated using VAEGen Botari et al.|(2020), a Variational Auto Encoder (VAE) fit-
ted on the training dataset. For random perturbations, we chose n from {50, 100, 200, 300, 400, 500}
and kernel sizes were {0.43,0.85,2.14,4.27,6.41}. For realistic perturbations we chose n from
{250, 500, 750, 1000} and the kernel widths were {1.4,2.8,7.0,14.0,21.0}. We use k = {2, 3,4, 5}
for this dataset.

Rotten Tomatoes (Text): This dataset contains 10662 movie reviews from rotten tomatoes website
along with their sentiment polarity, i.e., positive or negative reviews and the task is to classify the
sentiment of the reviews into positive or negative. The review sentences were vectorized using
CountVectorizer and TfidfTransformer and a sklearn Naive Bayes classifier was fitted on train-
ing dataset which yielded a test accuracy of 75%. Explanations are generated for the prediction
probabilities corresponding to the predicted class for each example. Realistic perturbations were
generated using Word2VecGen Botari et al.[(2020), wherein word2vec embeddings are first trained
using the training corpus and new sentences are generated by randomly replacing a sentence word
whose distance in the embedding space lies within the radius of the neighbourhood. For both
random and realistic perturbations, n was chosen from {25, 50, 75,100}. The kernel sizes were
{0.42,1.06,2.12, 3.18} for random perturbations (kernel size 0.21 resulted in numerical issues), and
{0.21,0.42,1.06,2.12, 3.18} for realistic perturbations. We use k = {2,3, 4,5} for this dataset.

E RESULTS WITH ALL DATASETS AND HYPERPARAMETER COMBINATIONS
FOR RANDOM AND REALISTIC PERTURBATIONS

We present results with all hyperparameter combinations for random and realistic perturbations.
Results for LIME with random perturbations (LIME), smoothed LIME (S-LIME), LINEX with
random perturbations (LINEX/rand), MeLIME (MeLIME), LINEX with MeLIME-like realistic
neighborhoods (LINEX/real), MAPLE (MAPLE), LINEX with MAPLE-like realistic neighborhoods
(LINEX/mpl) are presented in figures The legend for these figures are given in Figure
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For the five datasets, we perform ablations by varying one of perturbation neighborhood size (Figures
[HP), number of environments (Figures [I0{I4), and kernel width (Figures [I5HT9). Each point in
these figures are averaged over all possible values for the two parameters that are not ablated. For
example, each point in Figure[5]is averaged over all possible values for kernel widths and number of
environments for a given perturbation neighborhood size. Standard errors of the mean are also plotted
in the same color with lesser opacity. Lower values of Infidelity (INFD), Generalized Infidelity (GI),
Coefficient Inconsistency (CI) are better whereas for Unidirectionality (1) and Class Attribution
Consistency (CAC) higher values are better.

Figures [5}9]show ablations with respect to perturbation neighborhood sizes. Considering all datasets,
the stability/recourse metrics (CI, T, CAC) are clearly better for LINEX compared to its counter-
parts. For LINEX methods (LINEX/rand, LINEX/real, LINEX/mpl), the metrics get better or stays
approximately the same generally as perturbation neighborhood size increases keeping with the
intuition that larger perturbation neighborhood sizes should produce explanations that are more stable
in the exemplar neighborhood. Y for FMNIST and CIFARI10 are already good for small perturbation
neighborhood sizes possibly because of the quality of MeLIME perturbations.

Turning to the fidelity metrics (INFD and GI) in tabular datasets, we see that the results still favor
LINEX, but less heavily compared to the stability/recourse metrics. This is in line with what we
observe in Table[2] In IRIS and MEPS, LINEX is close to or outperforms the corresponding baselines
in the GI measure (except for LINEX/mpl with MEPS). This gap closes a bit with INFD, but we note
that GI is a better measure since it estimates how faithful explanations are in a exemplar neighborhood.
With the text dataset, LINEX variants are slightly more favored, whereas with the image dataset, the
baselines have an edge.

Considering Figures [TOHT4] we see that variations are less stark with respect to number of environ-
ments overall for LINEX variants. Note that except for S-LIME, other baselines do not use multiple
environments, and hence stay constant. The slight variations in MAPLE are due to the effect of
random seeds. In the stability/recourse metrics, again LINEX variants emerge as the clear winner
across datssets. With the faithfulness metrics (GI and INFD), in the text dataset, LINEX variants
generally perform better, whereas the baselines have a better performance in the image dataset.

Finally, we study the variation of the performance measures with respect to kernel width in Figures
[T3}{I9 We see that the stability/recourse metrics flatten out in all cases with large kernel widths.
This behaviour holds true for faithfulness metrics (GI and INFD) as well except in some cases.
GI and INFD measures also increase before they flatten out since the fit becomes poorer at larger
kernel widths. The stability/recourse metrics become better or remain approximately the same since
explanations generally improve or preserve their stability properties as kernel widths increase. Note
that very small kernel widths can lead to unexpected behavior that does not fit the trend as seen with
the tabular datasets since explanations can become hyper-local. MAPLE and LINEX/mpl stay the
same at different kernel widths since they use a different weighting scheme. As with other ablations,
we see that LINEX variants are similar or better in stability/recourse metrics overall, while with the
faithfulness metrics the results are more mixed.

Note that we do not compute MeLIME perturbations with MEPS since KDE and VAE generators
do not work well with categorical data, and do not use compute CAC since the task is regression.
Further, the features used in explanations for different test examples are not comparable for random
perturbations with FMNIST, CIFAR10 and Rotten Tomatoes, hence we cannot compute CAC for
those cases as well. This explains the missing curves/plots.
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F EXAMPLE FEATURE ATTRIBUTIONS IN TEXT DATA: MELIME vs LINEX

Below we see sample attributions by the two methods along with the magnitude of the attributions.
Attribution magnitudes are printed with a precision of 10~3 and shown along with the corresponding
words in descending order.
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F.1 POSITIVE SENTIMENT

enticing and often funny documentary
MeLIME: documentary funny and enticing often
LINEX : documentary funny often enticing and
MeLIME: 0.517 0.446 0.333 0.317 0.311
LINEX : 0.416 0.377 0.342 0.331 0.330

one-of-a-kind near-masterpiece .
MeLIME: kind near masterpiece
LINEX : masterpiece kind one
MeLIME: 0.832 0.695 0.182

LINEX : 0.712 0.384 0.381

a fast , funny , highly enjoyable movie
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MeLIME: enjoyable highly funny fast movie
LINEX : enjoyable highly fast funny movie
MeLIME: 0.550 0.432 0.412 0.389 0.198
LINEX : 0.409 0.389 0.372 0.350 0.326

ferrara’s strongest and most touching movie of recent years .
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MeLIME: touching years most strongest and
LINEX : touching most recent strongest and
MeLIME: 0.735 0.490 0.450 0.443 0.427
LINEX : 0.490 0.488 0.450 0.444 0.407

saved from being merely way-cool by a basic , credible compassion
MeLIME: cool basic credible merely from

LINEX: cool credible merely compassion from

MeLIME: 1.514 0.050 0.040 0.029 0.026

LINEX : 0.358 0.308 0.304 0.299 0.293

really quite funny

MeLIME: funny quite really
LINEX : funny quite really
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MeLIME: 0.559 0.417 0.233
LINEX : 0.462 0.368 0.275

spare yet audacious

MeLIME: spare yet audacious
LINEX : audacious spare yet
MeLIME: 0.626 0.447 0.395
LINEX : 0.501 0.431 0.422

an engrossing and infectiously enthusiastic documentary
MeLIME: engrossing documentary and enthusiastic an
LINEX : engrossing documentary an enthusiastic and
MeLIME: 0.593 0.455 0.358 0.354 0.333

LINEX : 0.461 0.407 0.374 0.357 0.350

a wildly funny prison caper
MeLIME: funny caper wildly prison
LINEX : funny caper prison wildly
MeLIME: 0.541 0.364 0.214 0.193
LINEX : 0.403 0.335 0.245 0.239

this charming but slight tale has warmth , wit

and interesting characters compassionately portrayed
MeLIME: charming compassionately and interesting portrayed
LINEX : charming compassionately has tale portrayed
MeLIME: 0.690 0.507 0.456 0.444 0.424

LINEX : 0.464 0.435 0.431 0.430 0.429

thoughtful , provocative and entertaining
MeLIME: thoughtful entertaining and provocative
LINEX : thoughtful entertaining and provocative
MeLIME: 0.612 0.517 0.402 0.395

LINEX : 0.505 0.461 0.415 0.404

the film is quiet , threatening and unforgettable
MeLIME: quiet unforgettable and film the

LINEX : unforgettable quiet film and is

MeLIME: 0.597 0.483 0.412 0.325 0.303

LINEX : 0.421 0.416 0.388 0.378 0.338

a moving tale of love and destruction in unexpected places , unexamined lives
MeLIME: unexpected moving love tale lives

LINEX : moving unexpected places lives in

MeLIME: 0.692 0.662 0.577 0.538 0.499

LINEX : 0.538 0.530 0.521 0.513 0.501

though frodo’s quest remains unfulfilled , a hardy group of
determined new zealanders has proved its creative mettle
MeLIME: creative group proved has new

LINEX : creative quest its proved determined

MeLIME: 0.602 0.441 0.424 0.402 0.393

LINEX : 0.410 0.392 0.390 0.385 0.381

F.2 NEGATIVE SENTIMENT

originality is sorely lacking

MeLIME: lacking sorely is originality
LINEX : lacking sorely originality is
MeLIME: 0.543 0.381 0.296 0.278
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LINEX : 0.430 0.356 0.314 0.271

an ugly , pointless , stupid movie
MeLIME: stupid pointless ugly movie an
LINEX : stupid pointless ugly movie an
MeLIME: 0.543 0.499 0.385 0.365 0.276
LINEX : 0.446 0.411 0.373 0.360 0.350

so devoid of pleasure or sensuality that it cannot even be dubbed hedonistic
MeLIME: devoid even be dubbed of

LINEX : devoid so dubbed be cannot

MeLIME: 0.666 0.416 0.413 0.372 0.344

LINEX : 0.400 0.392 0.387 0.380 0.368

neither revelatory nor truly edgy--merely crassly flamboyant
and comedically labored

MeLIME: edgy neither nor labored revelatory

LINEX : edgy neither nor labored truly

MeLIME: 1.256 0.338 0.277 0.204 0.021

LINEX : 0.439 0.398 0.398 0.369 0.349

occasionally funny , sometimes inspiring , often boring
MeLIME: boring occasionally inspiring sometimes often
LINEX : boring occasionally sometimes often inspiring
MeLIME: 0.669 0.242 0.218 0.210 0.182

LINEX : 0.377 0.266 0.266 0.250 0.236

a cumbersome and cliche-ridden movie greased
with every emotional device known to man
MeLIME: cliche every device movie with

LINEX : cliche every man cumbersome emotional
MeLIME: 0.695 0.449 0.327 0.280 0.268

LINEX : 0.385 0.361 0.354 0.349 0.309

ponderous , plodding soap opera disguised as a feature film
MeLIME: plodding soap ponderous opera disguised

LINEX : plodding soap film ponderous feature

MeLIME: 0.579 0.522 0.421 0.408 0.382

LINEX : 0.442 0.440 0.418 0.406 0.377

kitschy , flashy , overlong soap opera
MeLIME: soap flashy opera overlong kitschy
LINEX : soap flashy opera overlong kitschy
MeLIME: 0.499 0.397 0.391 0.358 0.230
LINEX : 0.389 0.362 0.360 0.346 0.300

[a] poorly executed comedy
MeLIME: poorly comedy executed
LINEX : poorly comedy executed
MeLIME: 0.653 0.348 0.257
LINEX : 0.502 0.335 0.309

a bad movie that happened to good actors
MeLIME: bad happened movie to that

LINEX : bad happened to movie actors
MeLIME: 0.692 0.396 0.371 0.367 0.242
LINEX : 0.442 0.384 0.367 0.361 0.344

a complete waste of time
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MeLIME: waste complete time of
LINEX : waste complete time of
MeLIME: 0.614 0.425 0.313 0.247
LINEX : 0.480 0.381 0.348 0.278

don’t waste your money

MeLIME: waste money don your
LINEX : waste money don your
MeLIME: 0.592 0.497 0.408 0.309
LINEX : 0.483 0.450 0.411 0.337

witless and utterly pointless

MeLIME: pointless witless and utterly
LINEX : pointless witless utterly and
MeLIME: 0.652 0.491 0.263 0.245

LINEX : 0.506 0.444 0.311 0.269

G EXAMPLE FEATURE ATTRIBUTIONS IN IMAGE DATA: MELIME vs LINEX

We show feature attributions for individual example images with MeLIME and LINEX with MeLIME
perturbations in Figure In Figure [21| we show class-wise mean feature attributions along with
mean images. In Figure[22] we see examples from CIFAR10. LINEX explanations seem to provide
more meaningful feature attributions.

H RESULTS FOR ALL METHODS INCLUDING SHAP

In Table 4] we provide the results for SHAP along with all methods for easy comparison. Note
that SHAP does not have standard errors since it is computed only once per test point. The INFD
values for SHAP are miniscule since SHAP values add up to the predictions by definition. In order to
compute GI, CI, T, CAC, we convert the SHAP values to SHAP attributions [Amparore et al.|(2021)
first and follow the same approach used by other explanation methods.

I ERROR ANALYSIS OF LINEX

We perform error analysis for LINEX to gain better understanding about the method. We choose
FMNIST dataset for doing this since, LINEX/real under performs MeLIME in terms of the INFD
measure here (see Table[2) more heavily compared to other datasets and so we wanted to investigate
the reasons for this. This also happens to be one of the higher dimensional datasets that is intuitive to
visualize and understand.

We start by observing that even though LINEX/real underperforms in the INFD metric, the gap is not
so great in the GI metric, which suggests that MeLIME may be overfitting explanations here. We
also note that in terms of CI, Y, and CAC metrics, LINEX/real clearly outperforms MeLIME.

We now choose a sample of images from the dataset where LINEX/real has highest instance-
level infidelity numbers and display them in Figure 23] Just looking at the explanations and the
corresponding original images visually, it is evident that LINEX/real highlights the prominent features
like sleeves and collar in a shirt, handles of the bags, outlines of the boots/shoes, even though the
infidelity values are high. However, MeLIME misses out on some of these prominent features and
focuses only on optimizing the local fit. The fact that LINEX zeroes in on important features also
provides additional evidence for the closeness of GI metrics between the two methods, and the better
performance of LINEX/real with CI, T, and CAC metrics.

This conclusion is also verified when we look at the performance of LINEX at a class level. In Figure
we see two classes one where the infidelity of LINEX is low (i.e. Trousers class) and the other
where its infidelity is high (i.e Shirt class). As can be seen since the Trousers class has examples with
less superfluous features (viz. varied designs) focusing on which might reduce infidelity but are not
critical for determination of the class, LINEX does better in terms of infidelity on the prior. However,
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Figure 20: Results using individual samples for realistic perturbations for FMNIST dataset for all
classes:1-10 (T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag and Ankle boor).
(a) MeLIME feature attributions for an image. (b) LINEX feature attributions for an image. (c)
Original image in the class. The r values show Pearson’s correlation between feature attributions
and the original image from the respective class. We observe that LINEX attributions/explanations
exhibit significantly higher correlation with the original image belonging to a particular class (i.e.
high CAC).

0 10 20 10 20

0 20

0 10 20 0 10 20

although infidelity is higher for the latter Shirt class it does much better on other metrics such as GI,
CAC, CI and 7Y indicating that LINEX truly focuses on robust features.

J ABLATION ANALYSIS OF IMPORTANT FEATURES FOR VARIOUS
EXPLANATION METHODS

We wanted to analyze the most challenging case for us in the reported experiments which is on the
FMNIST dataset where we are more worse than MeLIME in terms of INFD than any of the other
setups. We thus assess if the features deemed important - those with the largest coefficients - by the
explanation methods are indeed important for the black box model to make their predictions. To
assess this, we set the we set a fraction of features (pixel values) corresponding to the top coefficients
of MeLIME and LINEX/realistic to a baseline value and run the modified images again through
the black box model - this is what we mean by ablation here. The baseline value here was chosen
to be -1 since that is the value of the background pixels. We then used two measures to assess the
quality of explanations - higher values being better for both. The first measure is mean absolute error
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Figure 21: Results using realistic perturbations for FMNIST dataset with mean feature importances
for all classes:1-10 (T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag and Ankle
boot). (a) Mean feature attributions of all images in the class using MeLIME. (b) Mean feature
attributions of all images in the class using LINEX. (c) Mean of all images in the class. The 7 values
show Pearson’s correlation between average feature attributions and mean of the original images
from the respective classes. We observe that LINEX explanations/attributions exhibit significantly
higher correlation with the original images belonging to a particular class (i.e. high CAC).
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between the predicted scores before and after ablation, corresponding to the original predicted class.
The second measure is the fraction of images that changed their predicted class after ablation. We
see from Figure [23] that LINEX/realistic substantially outperforms MeLIME in both these measures,
clearly demonstrating the relevance of features chosen by our method to the black box.

K ERROR ANALYSIS OF LINEX BASED ON ABLATION

Highlighting stable features for examples near non-linearities is a key strength of LINEX. However,
in some cases for examples near class boundaries it may ignore sensitive features as we show in this
demonstration.

In Figure[26] we show 6 examples that are appear to be close to class boundaries. We ablate pixels
corresponding to top 15% of important features chosen by MeLIME and LINEX/realistic using the
approach discussed in Section [J]] Ablation based on MeLIME importances meaningfully changes
classes, whereas ablation by LINEX importances does not. The changes in prediction for MeLIME
ablation for the six images are respectively from Dress to Trouser, Sneaker to Sandal, Pullover to
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Figure 22: Results using realistic perturbations for CIFAR10 dataset. We see above images of a dog,
a horse, a truck, a bird, a boat and a dog again randomly selected from CIFAR10. The original images
are greyed out here so that the (normalized) attributions are clearly visible. As can be seen LINEX
attributions seem to consistently focus on salient features as compared to MeLIME. For example for
the first dog image we highlight the head, ears and leg, while MeLIME focuses more on the neck and
some of the background. For horse too LINEX focuses on head and body, while MeLIME focuses
on the legs and neck. For truck both seem to focus on important features. For bird LINEX hones
in on the wings, while MeLIME although giving importance to wings also attributes some of the
background. The boat image LINEX focuses on the center of the boat, while Melime on the edges
and some of the water around the boat. For the dog face image LINEX focuses on the nose, eyes and
ears, while Melime focuses on the ears and neck.

Feature Attribution

Dress, Sneaker to Sandal, Bag to Pullover, and Sneaker to Sandal. The new class assignment looks
reasonable looking at the ablated images. We also see that the changes in class probabilities for the
original class (p) are much higher after MeLIME ablation compared to LINEX/realistic ablation.

MeLIME ablated images for the first example has structures that look like trouser legs, for the second,
fourth and sixth examples the area around the heel is more open making the original sneaker look like
a sandal, for the third example, there is a hole in the hooded part of the pullover making it resemble a
dress. The fifth example is classified as a pullover possibly because of the elongated structures on the
sides that look like hands.

Note that such cases of LINEX under performing are rare though as is confirmed by its superior
performance in Figure 23]

L UNDERSTANDING BEHAVIOR OF LIME AND LINEX WITH SYNTHETIC
DATA

We consider explaining the behavior of a function of two variables z and y with Class 1 sandwiched
between Class 0 (see Figure[27). The third (or vertical) axis denotes the probability of being in Class
1. Clearly, x is the only important feature here that determines the class label.

From Figure [27] (left), we see that the LIME (here MeLIME would be the same as LIME since
the space is flat and all points are realistic) feature attributions at points a, b, and ¢ will provide
importance to z feature for small as well as large kernel width (1 and 2 respectively) neighborhoods.
For point ¢, in the interior of the Class 0, the attributions are stable across kernel widths. However
for points a and b close to the boundary of classes, the attributions for small kernel width and large
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Table 4: Comparing the different methods (including SHAP) using metrics infidelity (INFD), gen-
eralized infidelity (GI), coefficient inconsistency (CI), class attribution consistency (CAC) and
unidirectionality (7).

[ Dataset | Method | INFD] ] GI | [ Cr} [ T 1 [ CAC 1 ]
LIME 0.015+0.011 | 0.132 4£0.042 | 0.319 £ 0.132 | 0.646 4 0.040 | 0.667 £ 0.167
S-LIME 0.0154+0.010 | 0.077 £0.011 | 0.143 +0.045 | 0.704 £ 0.037 | 0.878 + 0.034
LINEX/rand| 0.013 = 0.009 [0.052 + 0.008|0.044 + 0.013|0.802 £+ 0.043|0.921 + 0.042
IRIS NB/rand | 0.040 £ 0.010 | 0.067 & 0.003 | 0.319 £ 0.132 | 0.646 + 0.040 | 0.667 4= 0.167
MeLIME | 0.008 £ 0.003 | 0.049 4 0.018 | 0.219 £0.108 | 0.629 4 0.013 | 0.464 £+ 0.100
LINEX/real | 0.009 &+ 0.003 {0.029 + 0.003|0.024 + 0.002|0.744 + 0.044(0.942 + 0.023
NB/real 0.058 +0.022 | 0.034 £ 0.000 | 0.219 +0.108 | 0.629 £ 0.013 | 0.464 + 0.100
MAPLE 0.009 4+ 0.001 | 0.038 £0.004 | 0.261 +0.033 | 0.458 £ 0.032 | 0.586 + 0.035
LINEX/mpl | 0.013 £+ 0.000 [0.020 £+ 0.000|0.026 + 0.002|0.694 £ 0.008|0.929 + 0.004
SHAP 0.007 0.197 0.248 0.664 0.524
LIME 0.158 & 0.066 | 0.214 £ 0.041 | 0.005 & 0.001 | 0.981 £ 0.006
S-LIME 0.158 + 0.066 | 0.214 £+ 0.042 | 0.005 4+ 0.001 | 0.974 £+ 0.008 NA
MEPS LINEX/rand|0.130 £ 0.052|0.164 + 0.021| 0.003 4+ 0.001 | 0.979 £ 0.006
NB/rand 0.275 4+ 0.062 | 0.311 £ 0.079 | 0.005 4+ 0.001 | 0.981 £ 0.006
MAPLE [0.063 4+ 0.000(0.067 = 0.000| 0.007 £ 0.000 | 0.957 4+ 0.000 NA
LINEX/mpl | 0.098 £ 0.001 | 0.094 £ 0.001 | 0.007 £ 0.000 | 0.950 4 0.000
SHAP 0.000 0.091 0.009 0.940 NA
LIME 0.162 4+ 0.003
S-LIME 0.142 + 0.003
FMNIST |} \NEX/rand| 0.149 + 0.002 NA NA NA NA
NB/rand | 0.207 4 0.000
MeLIME [0.001 £+ 0.000/0.277 + 0.000| 0.007 £ 0.000 | 0.769 £ 0.000 | 0.327 & 0.000
LINEX/real | 0.100 & 0.002 | 0.304 4 0.001 | 0.002 £ 0.000 {0.780 4+ 0.000(0.649 + 0.001
NB/real 0.017 4+ 0.000 | 0.446 £ 0.000 | 0.007 & 0.000 | 0.769 £ 0.000 | 0.327 + 0.000
SHAP 0.000 1.962 0.589 0.551 0.038
LIME 0.191 4+ 0.005
S-LIME 0.185 4+ 0.002
CIFARIO |LINEX/rand| 0.186 + 0.002 AL NA . NA
NB/rand 0.208 4+ 0.001
MeLIME | 0.100 £ 0.003 | 0.412 + 0.007 | 0.014 £ 0.000 | 0.546 + 0.003
LINEX/real | 0.090 & 0.005 {0.279 4 0.001|0.006 + 0.000|0.679 + 0.004 NA
NB/real 0.103 +0.002 | 0.398 £+ 0.004 | 0.014 4+ 0.000 | 0.546 £ 0.003
SHAP 0.003 1.376 0.398 0.512 NA
LIME 0.079 + 0.036
Rotten S-LIME 0.075 £ 0.035
Tomatoes |LINEX/rand| 0.069 £ 0.032 NA NA NA NA
NB/rand 0.241 4+ 0.007
MeLIME [0.029 £+ 0.001]| 0.391 & 0.000 | 0.000 £ 0.000 | 0.999 + 0.000 | 0.909 £ 0.000
LINEX/real | 0.053 £ 0.000 {0.361 + 0.000| 0.000 £ 0.000 | 1.000 #+ 0.000 {0.953 £ 0.001
NB/real 0.035 4 0.000 | 0.535 £ 0.000 | 0.000 4 0.000 | 0.999 =+ 0.000 | 0.909 + 0.000
SHAP 0.000 0.384 0.008 0.999 0.015

kernel width neighborhoods differ significantly along the = direction. This shows the instability of
LIME explanations near boundaries of classes for different kernel widths.

In contrast in Figure [27|(right), we see that the LINEX explanation constructed for the two kernel
widths provides stable feature attributions for all points a, b, c. For a and b, LINEX will conservatively
pick a smaller feature attribution along the x direction since the function changes rapidly in its
neighborhood. As such though LINEX will still pick the feature in the = direction in this scenario.

M  VARIATION OF FEATURE ATTRIBUTIONS WITH 7y

Based on the proof of Theorem[T] if for a feature the optimal attributions have opposite sign for each
of the two environments, then v can be made arbitrarily small (except 0) or large and the output
of Algorithm [I] should still be the same which is 0 as the Nash Equilibrium is £~. If the optimal
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attributions are the same sign then we should still get the same output from Algorithm [T as long
as v > min(|wy;|, |we;|) since the attribution from our algorithm is the minimum of those values.
When v < min(Jwy;|, |wse;|) then the feature attributions will smoothly reduce as «y reduces.

We demonstrate this behavior in Figure 28] using an example from the IRIS dataset with random
perturbations using the same setting as in Section[3} In the experiments in Section[5] we set v = 0.329
which is the maximum absolute value based on a linear fit to each environment. As -y increases beyond
0.329, the attributions are unchanged demonstrating robustness. Same holds true while reducing ~y
up to 0.165 beyond which we see smooth reduction in the attribution values. Qualitatively, similar
behavior is seen for other examples too. Because we set  pessimistically (ignoring constraints) to a
high value, we can expect our reported performances in the paper to be robust across many values of

.
N CONVERGENCE OF LINEX PROCEDURE AND COMPARISONS

We demonstrate based on a synthetic example how Algorithm [I] and provides a unidirectional
explanation. We generate synthetic data using a function in R? (Figure left)). The function gently
rises with increasing y values, and along x it is flat first, then rises abruptly and then falls gradually.
We want to obtain robust attributions of this function at the point x = 1.0,y = 0.0, which is close to
the end of the rising edge along x direction.

As we can imagine, since the slope changes abruptly along = direction near the point, it should be
ideally excluded from an explanation intended towards recourse based on a linear proxy. Otherwise,
the explanation will not generalize in the neighborhood of this point. On the other hand, the y
direction should be included since the function changes smoothly along y throughout.

To generate explanations We first create two environments centered at the example to explain with
variances 0.5 and 2.0. Now independently fitting to these environments leads to feature attributions
that are {—0.033,0.098} and {0.084,0.102}. Appending the two environments the attributions
are {0.029,0.095}, whereas with LINEX, the attributions would be {0.0,0.093}. Thus, LINEX
effectively eliminates the feature with high variability or abrupt changes. The behavior of the
coefficients for each environment as LINEX converges is shown in Figure 29(right). As such, one
can also see the convergence is fast.

O LIMITATIONS

Like any other posthoc explainable AI method there is no way to surely say that LINEX exactly
reflects the true reasoning behind a black box classifier in arbitrary applications. It also is somewhat
slower than LIME as shown in section A given the game theoretic nature of the algorithm, where its
stability and unidirectionality hopefully offsets the additional time required. On the flip side, given
its favorable properties in terms of recovering explanations it could be used to violate privacy which
may be concerning from a social standpoint.
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Figure 23: Error analysis for a chosen set of examples in FMNIST using MeLIME and LINEX/real
methods. The three columns are the MeLIME feature attributions, LINEX/real feature attributions,
and the original images. The rows correspond to different examples. We show the Pearson’s
correlation coefficient between feature attributions and mean of the original images from the respective
classes (r) and instance-level infidelity (INFD) measures. LINEX seems to highlight important
features like stripes in the t-shirt, handles of the bags, outlines of the boots/shoes more prominently,
while MeLIME seems to overfit to the data while missing out on highlighting some key features
prominently.
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Figure 24: We see above that infidelity is lower for Trousers class for LINEX as compared with the
Shirts class. A reason for this is that the trousers are more plain with less superfluous features such
as the different designs in shirts. Since LINEX focuses on robust features focusing excessively on
the designs is not critical for it to determine a shirt, albeit focusing on these designs might reduce
infidelity. Advantage of it relying on robust features is however apparent when we look at other
metrics such GI, CAC, Cl and T as seen in Table@]where it is much closer to or superior to MeLIME.
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Figure 25: Ablation analysis to determine if the features deemed important by the explanation
methods are actually considered important for prediction by the black box model. We see that features
chosen by LINEX impact the prediction of the black box model much more than those chosen by
MeLIME. This is true with respect to both MAE measure (left) between the predicted probabilities
before and after ablation for winning (or argmax) class, and the change in predicted classes (right)
before and after ablation. Higher values here mean that the features chosen by the explanations are
more relevant for the black box to make its predictions. The maximum value of both measures is 1.0.

31



Under review as a conference paper at ICLR 2023

MeLime Coeffs LINEX/real Coeffs. Original - p=0.9987, cls. 3 MeLIME ablate - p=0.1472, cls_ 1 LINEX/real ablate - p=0.7400, cls. 3

Original - p=0.9509, cls. 7 MeLIME ablate - p=0.3041, cls. 5 LINEX/real ablate - p=0.5137, cls. 7

MeLime Coeffs LINEX/real Coeffs

MeLime Coeffs. LINEX/real Coeffs

Original - p=0.9105, cls. 2

MeLIME ablate - p=0.3437. cls. 3 LINEX/real ablate - p=0.8116. cls. 2

MeLime Coeffs. LINEX/real Coeffs. Original - p=0.9905, cls. 7

Original - p=0.9228, cls. 8

Original - p=0.5980, cls. 7

Figure 26: FError analysis for a chosen set of examples in FMNIST using MeLIME and
LINEX/realistic methods, using ablation of important features. Each row shows results for a particular
image. The columns show the: (a) MeLIME coefficients, (b) LINEX/realistic coefficients, (c) the
original image along with its predicted class (cls.) and predicted probability for that class (p), (d) the
image after MeLIME ablation along with the predicted probability for the original class (p) and the
new class prediction (cls.), and (e) the image after LINEX/realistic ablation along with the predicted
probability for the original class (p) and the new class prediction (cls.). The changes in prediction
for MeLIME ablation for the six images are respectively from Dress to Trouser, Sneaker to Sandal,
Pullover to Dress, Sneaker to Sandal, Bag to Pullover, and Sneaker to Sandal. No changes in classes
are seen for LINEX ablation.
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Figure 27: LIME (left) and LINEX (right) feature attributions for three points (a, b, c) for a synthetic
data where we have Class 1 sandwiched between Class 0. For LIME, the different colors pink and
blue correspond to feature attributions obtained with the small and large kernel width neighborhoods.
Note how explanations for LIME change significantly (in magnitude) by kernel widths near the class
boundaries, whereas the LINEX explanation remains stable, where it still picks up the important
feature.
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Figure 28: Feature attributions for the four features for an example in the IRIS dataset are shown

above when varying . We used the same setting as in Section 3] for this experiment. The attributions
increase smoothly as v increases and stay constant after v > min(|wy;|, |wa;|)Vi.
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Figure 29: Left side: Explaining a scalar function in R? at the point indicated by the triangle. The
point is centered at z = 1.0,y = 0.0. The two environments are created by sampling multivariate
normals with variances 0.5 and 2.0 respectively (samples not shown) centered at this point. Right
side: Convergence of individual environment attributions. The attributions for first feature (z), w1 o
and ws o, converge to v and —+ leading to the optimal attribution of 0. For the second feature (y) the
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optimal attribution (w11 + ws,1) converges to a positive value.
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