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Pre-operative lung ablation prediction
using deep learning
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Abstract
Objective Microwave lung ablation (MWA) is a minimally invasive and inexpensive alternative cancer treatment for
patients who are not candidates for surgery/radiotherapy. However, a major challenge for MWA is its relatively high tumor
recurrence rates, due to incomplete treatment as a result of inaccurate planning. We introduce a patient-specific, deep-
learning model to accurately predict post-treatment ablation zones to aid planning and enable effective treatments.

Materials and methods Our IRB-approved retrospective study consisted of ablations with a single applicator/burn/
vendor between 01/2015 and 01/2019. The input data included pre-procedure computerized tomography (CT), ablation
power/time, and applicator position. The ground truth ablation zone was segmented from follow-up CT post-treatment.
Novel deformable image registration optimized for ablation scans and an applicator-centric co-ordinate system for data
analysis were applied. Our prediction model was based on the U-net architecture. The registrations were evaluated using
target registration error (TRE) and predictions using Bland-Altman plots, Dice co-efficient, precision, and recall, compared
against the applicator vendor’s estimates.

Results The data included 113 unique ablations from 72 patients (median age 57, interquartile range (IQR) (49–67);
41 women). We obtained a TRE ≤ 2mm on 52 ablations. Our prediction had no bias from ground truth ablation volumes
(p= 0.169) unlike the vendor’s estimate (p < 0.001) and had smaller limits of agreement (p < 0.001). An 11% improvement
was achieved in the Dice score. The ability to account for patient-specific in-vivo anatomical effects due to vessels, chest
wall, heart, lung boundaries, and fissures was shown.

Conclusions We demonstrated a patient-specific deep-learning model to predict the ablation treatment effect prior to
the procedure, with the potential for improved planning, achieving complete treatments, and reduce tumor recurrence.

Clinical relevance statement Our method addresses the current lack of reliable tools to estimate ablation extents,
required for ensuring successful ablation treatments. The potential clinical implications include improved treatment
planning, ensuring complete treatments, and reducing tumor recurrence.

Key Points
● Reliable tools to predict the extent of ablation treatments are currently lacking.
● Our novel patient-specific deep-learning algorithm was shown to predict ablation zones with higher accuracy and less bias
compared to the currently used estimates provided by applicator vendor.

● Our method for ablation prediction allows for real-time clinical deployment, with potential for improved treatment planning
and reduced tumor recurrence.
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Introduction
Microwave lung ablation (MWA) is used to eradicate
tumors in the lung [1], and offers a low morbidity and
inexpensive alternative to surgical resection [2]. Addi-
tionally, MWA shows no detectable long-term effects on
pulmonary function, making it an attractive alternative to
stereotactic body radiation therapy [3]. However, wide-
spread adoption of MWA has been hindered by higher
local recurrence rates [4], which result from incomplete
ablations with insufficient tumor margins [5].
Achieving adequate margins (> 5 mm) with MWA is

challenging [5]. The ablation device vendors provide a
chart of the expected ablation/treatment zone dimen-
sions as a function of power and duration (henceforth
referred to as the vendor model), which is used for pre-
procedure planning. The vendor model is based on
ablations of ex-vivo animal organs. However, clinical
ablation zones are affected by nearby vessels and airways
that act as heat sinks, pleural boundaries that cause
distortions, and complex lung deformations due to
patient position and breathing. Observed ablation zones
demonstrate marked deviation from the vendor models
in size and shape [6–8]. There is wide variability in
ablation zones even for the same power and duration
settings [6, 9, 10]. As a result, the treatment plan based on
the vendor model may significantly differ from the actual
treatment, potentially leading to incomplete thermal
destruction of tumors and failure to establish an adequate
margin.
Biophysical models that attempt to simulate ablation

zones by solving partial differential equations governing
the physical processes during MWA [11, 12] are limited in
their ability to account for patient-specific tissue proper-
ties, lack clinical validation, and are too computationally
demanding for clinical application. In a recent study
relating “antenna work” (power x duration) with ablation
zone volume, the authors noted the wide range of
volumes for similar work and emphasized the importance
of accounting for patient-specific characteristics [10].
In this work, we introduce a new, data-driven approach

for ablation prediction. We hypothesize that pre-
procedure computerized tomography (CT) scan inten-
sity features contain patient-specific characteristics that
can inform the ablation zone size and shape, and along
with the ablation settings, are predictive of the final
ablation zone extents. We treat the problem as that of
learning a deep-neural network-based parameterized
function that takes the pre-procedure CT, the position of
the applicator, and ablation power and duration as input
and predicts the post-procedure ablation zone as output.

Our goal is to predict the final ablation zone at the first
follow-up post-procedure scan.

Materials and methods
Data
The data was obtained as part of an institutional review
board approved (IRB/Privacy Board-A, protocol 17-353)1

retrospective study of patients who underwent MWA at
our institution between 01/2015 and 01/2019. Exclusion
criteria included the use of a probe other than NeuWave
PR (Ethicon US), multiple probes or multiple burns
performed at the same site, two or more adjacent sites
with overlapping ablation zones, or if background lung
parenchyma could not be differentiated from the ablation
zone, resulting in 113 unique ablations from 72 patients
(see Fig. 1). Pre-procedure and 1-month follow-up post-
procedure CT scans were processed. MWA power and
duration were obtained from radiology reports.

Pre-processing pipeline
Figure 2b, c provide an overview of the pre-processing
steps in our pipeline. The tumor and ablation zone were
manually segmented in the pre and follow-up scans,
respectively (Fig. 2b), by a radiologist with > 15 years of
experience [13]. Contours were drawn marking the
boundary of the tumor and ablation zone on axial CT
image slices in 3D Slicer software (v4.11.1) [14], and
further edited on coronal and sagittal views. As ablation
zones can have internal regions of high or low Hounsfield
units (HU), all pixels within the drawn boundary were
assumed to be part of the segmentation independent of
the HU. The applicator position was defined by the radio-
lucent tract visible in the ablation zone on the follow-up
scan (Fig. 2c).
For the vendor model, we used the vendor’s user

interface software (v3.1.0), which provided dimensions of
expected ablation ellipsoids for different powers (35W to
65W in 5W increments) and durations (1 to 10min in
1min increments). Ablation zone dimensions were line-
arly interpolated for power and duration in between these
specifications.
We applied a novel deformable image registration

methodology for ablation procedures, utilizing the free-
form deformation model based on B-spline transforma-
tion [15] to register the pre and follow-up scans (Fig. 2b).
An initial rigid registration was performed for coarse
alignment followed by a coarse-to-fine multi-resolution

1 Study was determined as low risk; the patient consent requirement was
waived.
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deformable registration where the result of each resolu-
tion acted as input to the next [16]. We constrained the
registration by focusing on the regions surrounding the
tumor and ablation zone and applied a rigidity penalty
on the tumor to avoid large tumor deformations. The
registration optimization used mutual information to
measure the similarity between images and restricted
excessive bending of the transform to avoid unnatural
deformations via regularization. We followed Klein et al
to set various registration parameters [17]. More details
on the registration methodology can be found in Sup-
plemental G. All registrations were performed using the
SimpleElastix image registration library (v0.9.1) [18, 19].
To enable comparison of ablation zones at different

positions/orientations across patients, we defined an
applicator-centric co-ordinate system (ACCS) [20], an
oblique 3D co-ordinate grid oriented along the applicator
and centered at the applicator tip (Fig. 2c) for all

computation. The ACCS grid size was set to
64 × 64 × 64mm3 with a sampling rate of 1 mm along
each dimension. Numpy (v1.21.2) [21], SciPy (v1.7.3) [22],
and NiBabel (v3.2.1) [23] Python libraries were used for
data processing.

Model
Our model was a fully convolutional neural network
based on the U-Net [24] architecture (Fig. 2d and Sup-
plemental A). The U-net consists of (1) the encoder that
reduces the dimensionality of the input, aggregating
semantic information (what is in the image), (2) the
decoder that combines the encoded semantic information
with higher resolution spatial information from initial
encoding layers via skip connections (where in the image)
and up-samples them to the original size to produce
output. The first input channel was the 3D pre-CT scan.
The ablation power/duration is represented by the

Fig. 1 Flow diagram of number of participants and number excluded. Lung microwave ablation (MWA) and target registration error (TRE). Final cohort
for registration: 72 participants, 113 ablations; median IQR age: 57 (49–67); gender: 41 women, 31 men. Final cohort for training/validation (TRE ≤ 2mm):
40 participants, 52 ablations; median IQR age: 56 (49–65); gender: 20 women, 20 men
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Fig. 2 a Ablation zone volume variability for the same power (65 W) and duration (5 min) of ablation. b Segmentation of tumor in pre and ablation
zones in follow-up post scans, and deformable image registration between pre and post. c Applicator tract (tip/tails) on follow-up post scan (top) and
applicator-centric co-ordinate system for all data analysis (bottom). d Our neural network model
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dimensions of the vendor ellipsoid, which was hence used
as the 2nd input channel after placing at the applicator
position.

Training
The segmented ablation zones on follow-up scans were
used as ground truth for training since they are the clin-
ical standard for assessing lung ablation zones and treat-
ment margins [25, 26]. We utilized the sum of cross
entropy and the Dice co-efficient between the predicted
and ground truth as the loss function to train the network
[27]. We performed nested cross-validation [28] for
training and testing (Supplemental B): (1) In the outer
loop, we performed 7-fold cross-validation (CV) [29]
resulting in 7 train-test (TT) CV splits, where, in each
split, 6 folds were used for model training and the
remaining 7th fold (unseen during training) used for
testing. The results on the test folds from all the 7 TT
splits were averaged to compute the final test set perfor-
mance [29, 30]. (2) In the inner loop, the training data in
each TT split (6 folds) was further split into 5 train-
validation (TV) CV splits, where, in each TV split, the
model was trained on 4 folds and tuned on the remaining
5th validation fold held out during training. The purpose
of these further CV splits was to train different models on
each of the 5 TV splits of the training data from a single
TT split, which were then applied on the corresponding
TT split test fold and the results were ensembled by
averaging their softmax outputs. Hence, we trained 5
different models from the training data of each TT split,
resulting in a total of 7 × 5= 35 models on the whole
dataset. We followed Isensee et al for the training meth-
odology (Supplemental B; https://github.com/MIC-

DKFZ/nnUNet) [27, 31]. The code for pre-processing
and model training can be accessed at https://github.com/
tenres/Abl-Pred.

Statistics
Image registrations were evaluated using the target
registration error (TRE; Supplemental C) [32]. Volumes
and shapes of our prediction and vendor model were
compared with ground truth ablation zones using Bland-
Altman plots [33]. Paired and two sample t-tests were
used to test for differences between the ground truth and
vendor model. Levene’s test was used to test the differ-
ences in the limits of agreement (LOA) [34]. The degree
of overlap between prediction and ground truth was
computed using the Dice co-efficient [35], precision, and
recall [36] (Supplemental D). The mean and 95% con-
fidence intervals (CIs) were computed [29], which were
compared against that of the vendor model. Statsmodel
(v0.13.5) [37], and SciPy (v1.7.3) [22] Python libraries
were used for all analyses.

Results
After exclusions, there were 72 participants (median age
57 years, 47–69 (interquartile range, IQR); 41 women)
with 113 MWA procedures (Fig. 1). Cases with poor TRE
(> 2mm) were excluded from training/testing, resulting in
52 ablations from 40 patients (Fig. 1). Table 1 lists tumor,
cancer, and CT imaging details. There were 17 ablations
performed using the median power of 65 watts (range
20–65 watts), and duration of 5 min (range 1–10min),
and the variability in their ablation zone volumes (same
power/duration) is shown in Fig. 2a. The TRE on the final
52 cases is shown in Fig. 4a with a median of 0.88, IQR

Table 1 Data characteristics

Data characteristic Value

Tumor largest diameter Median= 9.0 mm; IQR= (7.0–10.2) mm

Tumor location (lung lobe, close to vs. away from pleura and close to

vs. away from large vessels (> 3 mm diameter). Closeness is defined as

within 5 mm).

Lung lobe: LUL= 35%, RUL= 19%, LLL= 21%, RLL= 13%, RML= 12%; close

to vs. away from pleura= 33% vs. 67%; close to vs. away from large

vessels= 38% vs. 62%.

Cancer diagnosis Colon= 80%, Lung= 8%, Uterine LMS= 4%, Liver= 2%, Head and

neck= 2%, Esophagus= 2%, Pancreas= 2%.

Tumor type METS= 94%, Primary= 6%

Duration between pre/post imaging acquisition and ablation. Pre median: 35 days; IQR= (23–48)

Post median: 30 days; IQR= (24–35)

Pre/post CT median imaging parameters Pre: CT kVp= 120; tube current= 218 mA (IQR:150.75, 294.25); slice

thickness= 1.25 mm; x,y pixel spacing= 0.69 mm (IQR: 0.65–0.74)

Post: CT kVp= 120; tube current= 239.5 mA (IQR:170.0, 295.5); slice

thickness= 1.25 mm; x,y pixel spacing= 0.68 mm (IQR: 0.62–0.73)

LUL left upper lobe, LLL left lower lobe, RUL right upper lobe, RLL right lower lobe, RML right middle lobe, METS metastatic disease, kVp kilovoltage peak, IQR
interquartile range
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(0.50–1.31). The inference time of our algorithm was a
fraction of a second.

Bias and variability of volume and shape for our prediction
and vendor models
Bland-Altman plots comparing the volume and shape
characteristics of our prediction and vendor model against
the true ablation zone are shown in Fig. 3. The volume
bias (Fig. 3a) of our prediction (–780), was lower com-
pared to the vendor model (2410) and this difference was
significant (p < 0.001). Assuming differences from ground
truth to be normally distributed (y-axis), the bias of our
prediction was not different from the line of equality with
ground truth (0 bias) (p= 0.169); whereas, the vendor
model bias was significant, p < 0.001. The range in the
LOA of our model was smaller than the vendor model
and this difference was significant (p < 0.001). The
sphericity (Fig. 3b) and surface-to-volume ratio (Fig. 3c)
biases of our prediction were lower compared to the
vendor model (0.15 vs. 0.22 and –0.12 vs. –0.24,
p < 0.001). The volume and shape differences demonstrate
better agreement of our prediction with the true ablation
zone compared to vendor.

Dice score, precision, recall
We calculated the Dice scores of our prediction and
vendor model with the true ablation zones (Fig. 4b and
Table 2). The median Dice scores on the test set were
0.62 ± 0.12 (CI: 0.56–0.64) for our model compared with
0.56 ± 0.16 (CI: 0.49–0.59) for the vendor model,
demonstrating an 11% improvement over the vendor
model. The vendor model also showed a broader IQR
consistent with the large LOA range. We saw improved
precision of our model with median scores of 0.65 ± 0.22
(CI: 0.60–0.75) compared with 0.43 ± 0.23 (CI: 0.39–0.54)
for the vendor model (Fig. 4c and Table 2). The vendor
model demonstrated better recall with median scores of
0.89 ± 0.14 (CI: 0.79–0.89) compared with 0.70 ± 0.22
(CI: 0.60–0.73) for our model.

Effect of patient-specific local anatomy
To better understand the quantitative improvement in Dice
score, we evaluated our prediction and vendor model in
their ability to account for patient-specific local anatomy.
Several scenarios with two examples each are presented.

Heat-sink effects
Figure 5a demonstrates local heat-sink effects from adja-
cent vessels and airways that locally modulate the shape of
the ablation zone. Our prediction does not extend into the
vessels or airways, similar to the ground truth. In contrast,
the vendor model overestimates the ablation zone and
extends into the vessels as well as the background lung

parenchyma. Figure 5b demonstrates global heat-sink
effects on ablation zone size and shape. In example 1
(left), multiple small and medium-sized vessels (blue
arrows) are seen in the cross-section coming in and out of
the plane with a cumulative effect of decreasing the
overall ablation zone size. Our model closely follows the
true ablation zone whereas the vendor overestimates
the back and sides of the applicator. Notably, the effects of
vessels are not distributed symmetrically around the
needle. In example 2 (right), multiple vessels (blue arrows)
are now seen in the plane. Again, our prediction conforms
to the asymmetric narrowing and decreased size of the
ablation zone. Figure 4e demonstrates this effect quanti-
tatively, where our model has a higher Dice overlap with
true ablation compared to vendor when close to large
vessels that cause heat-sink effects, whereas is similar to
vendor when away from large vessels.

Borders
Figure 5c demonstrates the effects of fissures, and faint
radio-dense lines demarcated by blue arrows on post
images. Our prediction follows the fissure, whereas the
vendor model extends beyond. Figure 5d shows the effect
of chest-wall boundaries, which our prediction adheres to
closely, whereas the vendor model extends beyond the
boundary in example 2. Figure 6a shows mediastinal
borders where our prediction adheres to the local border
whereas the vendor underestimates (example 1) or over-
estimates (example 2) the ablation zone.

Ablation shape
The overall shape of the ablation zone is affected by lung
anatomy. Figure 6b example 1 shows asymmetric narrow-
ing of the ablation zone to which our model adheres closely
but which the vendor model overestimates. In example 2,
the ablation zone appears rotated relative to the vendor
model, possibly due to the adjacent vascular structures,
which our model is able to predict. Figure 6c example
1 shows our prediction narrowing only at the rear end of
the ablation, similar to ground truth observation. More
examples in 3D are provided in Supplemental H.

Failures
We also identified categories of scenarios in which our
model consistently failed to predict the ablation zone.
Figure 6c example 2 and Fig. 5c example 2 (green arrow)
show cases where the ablation zone contains a large
cavity, which our model excludes. In Fig. 6d example 1,
our prediction extends too far and wide along the back of
the probe. A close review of intra-procedure ablation
images revealed that the lung was torqued and com-
pressed intra-operatively during applicator positioning.
Example 2 shows confounding background anatomy
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where our model incorrectly extends beyond the ablation
zone (towards the left), adhering to scars that have an
ablation border-like appearance.

Discussion
We have presented a data-driven deep-learning model to
predict lung ablation zones as they appear on the follow-up
scan based on pre-procedure imaging and ablation

Fig. 3 Bland-Altman plots comparing the volumes and shapes of our prediction and vendor model with ground truth. A comparison of volumes is
shown in a, sphericity in b, and surface-to-volume ratio in c. The bias (mean difference) is shown by the solid line and the limits of agreement (1.96 SD of
the difference on either side of the bias) are shown by dotted lines in each case. Note the range of values along the axes is different for different plots to
ensure optimal visualization at different scales
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parameters. Compared with existing vendor models, we
demonstrated higher Dice scores, decreased volume
variability, and decreased bias in volume and shape from
true ablation. Our model is also able to better account for
the effects of patient-specific local anatomy on the ablation
zone including heat-sink effects, organ/lobes boundaries,
and variations in the shape of the ablation zone. Moreover,
we note that the improvement in Dice’s performance is
likely an underestimate (see Supplemental E).
Clinically, the tradeoff between precision and recall is

significant. A bias towards over-estimating the ablation
zone increases recall but may cause the operator to under-
treat the tumor, leading to local recurrence. Whereas a
bias towards under-estimating the ablation zone can
increase precision but may result in overly aggressive
treatment and potential complications (Supplemental F).

The low precision and high recall of the vendor model
show a striking mismatch that translates clinically to over-
estimation of the ablation zone, incomplete treatment,
and high local recurrence. Our model showed no bias, a
marked improvement in precision at the cost of some
decrease in recall, potentially averting tumor under-
treatment, local recurrence, and repeat procedures.
Depending on location and proximity to critical struc-
tures, one could tune the threshold to modulate the
precision-recall tradeoff.
Our approach offers several advantages over biophysical

ablation modeling. We directly incorporate patient-
specific observed data via CT scans whereas biophysical
models depend on multiple tissue properties that are
impractical to measure [11, 38]. We directly optimize the
likelihood of the observed ablation zones on follow-up

Table 2 Dice scores, precision, and recall for our model and the vendor model

Method Dice Precision Recall

Ours 0.60 ± 0.12 (0.56–0.64) 0.67 ± 0.22 (0.60–0.75) 0.66 ± 0.22 (0.60–0.73)

Vendor 0.54 ± 0.16 (0.49–0.59) 0.46 ± 0.23 (0.39–0.54) 0.84 ± 0.14 (0.79–0.89)

In each cell, the top row shows the mean and standard deviation and the bottom row shows the 95% confidence interval. The method with the higher score in each
column is shown in boldface

Fig. 4 Boxplots of various performance metrics, where each box extends from the lower to the upper quartile values with the median shown in orange.
Reading counterclockwise: a Target registration error for the final 52 cases. b Dice scores, c precision, and d recall quantify the overlap between
prediction and ground truth. Notches around the median represent the 95% confidence interval. The median Dice score, precision, and recall were 0.62,
0.65, and 0.70 for our model compared with 0.56, 0.43, and 0.89 for the vendor model. e Quantitative demonstration of the ability of our model and the
inability of the vendor model to account for heat-sink effects. The boxplots on the left show Dice overlap with ground truth for ablations close (within
5 mm) to large vessels (> 3 mm diameter), and those on the right show Dice for ablations away from large vessels. Our model’s Dice are shown in green
and vendor model’s in red
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Fig. 5 a–d demonstrate predicted ablation zones in various anatomical scenarios with 2 examples of each (left and right of midline). Our prediction
(green), vendor model (red), and true ablation (yellow) are overlaid on both the pre-scan with tumor (left) and the follow-up post scan with ablation zone
(right) in each example
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Fig. 6 a–d demonstrate additional challenging anatomical scenarios for ablation prediction with 2 examples of each on either side of the midline. Our
prediction (green), vendor model (red), and true ablation (yellow) are overlaid on both the pre-scan with tumor (left) and the follow-up post-scan with
ablation zone (right) in each example. Some failure cases of our method are also shown in c (right example) and d

Keshavamurthy et al. European Radiology Page 10 of 12



CT [29], the standard time point for treatment verifica-
tion, therefore incorporating post-ablation processes such
as tissue contraction and healing [39, 40]. Whereas bio-
physical models lack such feedback and only model
thermal dose and ensuing cell death. Our algorithm is
faster (inference takes a fraction of a second) making it
suitable for clinical implementation [11].
There are several limitations of this work. Our dataset is

small, which limits the ability of our current model to gen-
eralize to uncommon ablation zones. This can be overcome
with more data. The model does not include intra-operative
changes that likely account for multiple failed cases discussed
before. The model also assumes the accurate position of the
applicator, which can be difficult to ascertain from follow-up
imaging in some cases. The model is trained to predict the
ablation zone on the one-month follow-up scan, which cor-
relates with necrotic tissue [41]. Moreover, the one-month
follow-up scan has been shown to be a clinically relevant
surrogate for necrosis in studies that correlate ablation zone
margin with clinical outcomes [4, 39, 40] and hence is a
clinically relevant endpoint for prediction. Notably, common
sources of noise on early post-procedure imaging such as
hemorrhage, edema, and pneumothorax resolve by the stan-
dard of care one-month follow-up scan.We exclude ablations
with multiple burns or multiple applicators, which limits the
generalizability of the model. However, given enough input
data, we believe the model will be able to accommodate all
these factors as well. Our model does not directly incorporate
histology information and it is possible that histology may
affect heat. We note however that histology has been shown
to be encoded in CT data and therefore may be indirectly
encoded in the current model [42]. Incorporating additional
relevant, non-imaging input data may be considered in
future work.
Our method has several important potential clinical appli-

cations [43, 44]. Pre-procedure planning with our model can
be used to establish applicator trajectory, power, and duration.
These could be tuned to optimize the margin with the goal of
decreasing local recurrence and is safer and cost-effective
compared to intra-operative biopsy for margin control [45].
Further studies are needed to establish margin assessment
using our tool. The model can be used to identify “weak
points” in the ablation that may require additional treatment.
The rapidity of prediction allows for real-time clinical tuning
by the operator. By pre-defining a minimum ablation margin
around the nodule, our model can predict a set of “optimal
solutions” from which the operator can select. Finally, our
approach can be applied more broadly to other organs and
other treatment modalities.
In conclusion, we have presented a patient-specific data-

driven deep-learning approach to predict the post-procedure
lung ablation zone. The work demonstrates a novel applica-
tion of deep learning for a common yet unresolved clinical

problem with improvement over the current standards and
the best results to date to our knowledge. We anticipate
generalizations of our approach to have broad applications to
treatment planning and prediction in oncology.

Abbreviations
ACCS Applicator-centric co-ordinate system
CI Confidence interval
CT Computerized tomography
CV Cross validation
HU Hounsfield unit
IQR Interquartile range
kVp Kilovoltage peak
LLL Left lower lobe
LOA Limits of agreement
LUL Left upper lobe
METS Metastatic disease
MWA Microwave lung ablation
RLL Right lower lobe
RML Right middle lobe
RUL Right upper lobe
TRE Target registration error
TT Train-test
TV Train-validation
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