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ABSTRACT

Deep neural networks (DNNs) often struggle with distribution shifts between
training and test environments, which can lead to poor performance, untrustwor-
thy predictions, or unexpected behaviors. In this work, we propose domain feature
perturbation (DFP), a novel approach that explicitly leverages domain information
to improve the out-of-distribution performance of DNNs. Specifically, we train a
domain classifier in conjunction with the main prediction model and perturb the
multi-layer representation of the latter with random noise modulated by the gra-
dient of the former. The domain classifier is designed to share the backbone with
the main model and is easy to implement with minimal extra model parameters
that can be discarded at inference time. Intuitively, our proposed method aims
to reduce the dependence of the main prediction model on domain-specific fea-
tures, such that the model can focus on domain-agnostic features that generalize
across different domains. We demonstrate the effectiveness of DFP on multiple
benchmarks for domain generalization.

1 INTRODUCTION

Deep neural networks (DNNs) have exhibited impressive performance in solving a wide variety of
real-world tasks. A crucial aspect of the success lies in their ability to learn from a large amount of
training data (Shinde & Shah, 2018). However, despite the widely held assumption that training and
test data are sampled from the same underlying probability distribution (Golden, 2020), real-world
data frequently exhibits deviations from the training data distribution. Consequently, a shift occurs
in the distribution between the training and test data. Such shifts are prevalent in diverse tasks,
examples include face recognition under varying lighting conditions or backgrounds (Adjabi et al.,
2020), medical image recognition with different imaging devices or acquisition protocols (Zhou
et al., 2022), and autonomous driving in different cities (Sun et al., 2020). In these cases, the
presence of out-of-distribution (OOD) data poses significant challenges to conventional supervised
learning methods, leading to inaccurate and unreliable predictions.

To address the challenges of OOD generalization, researchers have explored various techniques,
such as meta-learning (Bui et al., 2021), causal learning (Mahajan et al., 2021; Lv et al., 2022), con-
trastive learning (Kim et al., 2021), and disentangled representation learning (Zhang et al., 2022).
In particular, when given access to training data that is split into multiple domains and expected
to generalize to an unseen test domain, which is known as domain generalization, one can take
advantage of domain information (i.e. domain labels) to achieve better OOD performance. How-
ever, existing approaches to domain generalization have shown limited success in utilizing such
information (Gulrajani & Lopez-Paz, 2020; Ye et al., 2022), or rely on complex training procedures
that involve adversarial training (Ganin et al., 2016; Lee et al., 2019; Liu et al., 2021) or separate
auxiliary models (Liu et al., 2021; Bui et al., 2021; Zhang et al., 2022).

In this work, we propose a novel approach to leveraging domain information. Specifically, we
train a domain classifier in conjunction with the main prediction model and perturb the multi-layer
representation of the latter with noise modulated by the gradient of the former. The domain classifier
is designed to share the backbone with the main model, introducing minimal extra model parameters
that can be discarded at inference time. This technique aims to reduce the dependence of the main
prediction model on domain-specific features, such that the model can focus on domain-agnostic
features that generalize across different domains. The resulting method, named Domain Feature
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Figure 1: Overview of the training procedure of DFP. The two classification heads share a single
backbone network. The first backward pass generates the modulated perturbation, followed by a
second backward pass that updates the model parameters.

Perturbation (DFP), is easy to implement without major modifications to the model architecture
and shows significantly improved performance on multiple domain generalization benchmarks. We
summarize our main contributions as follows:

• We explicitly leverage domain information by training a domain classifier along with the
main model. We then compute the gradient of the domain classifier with respect to in-
termediate representations, the magnitude of which is utilized to identify domain-specific
features in a relatively simple manner.

• We propose to perturb intermediate representations with random noise modulated by the
aforementioned gradient magnitude. By doing so, domain-specific features are automat-
ically identified and randomized, effectively reducing the dependence of the main model
on these features. In addition, we propose a gradient similarity measure to evaluate such
regularization effect.

• We evaluate our method on multiple domain generalization benchmarks following a re-
cently proposed evaluation protocol (Ye et al., 2022) for a fair comparison with other meth-
ods. The experimental results demonstrate competitive or better performance compared to
state-of-the-art methods.

2 METHODS

In this section, we first detail the basic concepts crucial to our approach, including out-of-distribution
(OOD) generalization and diversity shift. Subsequently, we present our method in detail and define
gradient similarity for the purpose of evaluation. Figure 1 illustrates the overall framework of our
method.
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2.1 PRELIMINARIES

OOD generalization We begin by framing the general OOD generalization problem. Let X de-
note the input space and Y the target label space. We define a parametric model fθ : X → Y ,
mapping input features to labels with parameters θ. The loss function L : θ × (X × Y ) → R
quantifies the discrepancy between the predicted and true labels. Given a supervised learning task
with N training samples, {(xi, yi)}Ni=1, where xi ∈ X and yi ∈ Y , and sourced from the training
distribution Ptr(X,Y ), the objective of OOD generalization is to identify a model that generalizes
effectively to data from the test distribution Pte(X,Y ). However, without access to Pte(X,Y ) at
training time, the model is usually optimized to minimize the empirical risk on Ptr(X,Y ):

f̂θ = argmin
θ

EX,Y∼PtrL (fθ(X), Y ). (1)

In standard supervised learning, it’s typically assumed that both training and test samples are
i.i.d. samples from a shared distribution, denoted as Ptr(X,Y ) = Pte(X,Y ). However, in the
broader OOD context, training and test data may originate from different distributions, implying
Ptr(X,Y ) ̸= Pte(X,Y ). For domain generalization tasks in particular, the combined training and
test data are partitioned into k domains, represented as D = {Di}ki=1, with each domain stemming
from a unique distribution. During training, k − 1 of these domains form the training set, while the
remaining domain is held out for testing.

Diversity shift Distribution shifts between training and test data can be categorized into diversify
shift and correlation shift (Ye et al., 2022). Consider a training distribution Ptr(X,Y ) and a test
distribution Pte(X,Y ) with probability functions p and q, respectively. The labeling rule of the
data, f : X → Y , usually depends on a particular set of features Z1, whereas the rest of the features
Z2 are not causal to the prediction of Y . That is, while both Z1 and Z2 jointly determines the
input variable X , the target variable Y is determined by Z1 alone. The following property for every
z ∈ Z1 makes OOD generalization possible:

p(z) · q(z) ̸= 0 ∧ ∀y ∈ Y : p(y|z) = q(y|z). (2)

And the opposite property of z ∈ Z2 makes OOD generalization challenging:

p(z) · q(z) = 0 ∨ ∃y ∈ Y : p(y|z) ̸= q(y|z). (3)

Diversity shift further assumes that p(z) · q(z) = 0 for z ∈ Z2, meaning that the diversity of data is
embodied by unique features not shared by the different domains. The extent of diversity shift can
be measured by

Ddiv(p, q) :=
1

2

∫
S |p(z)− q(z)|dz. (4)

It is observed that many practical datasets for domain generalization exhibit significant diversity
shifts (Ye et al., 2022). Therefore, exploiting the property of diversity shift may improve OOD
generalization on such datasets.

2.2 DOMAIN FEATURE PERTURBATION

Given sufficient capacity, a parametric model, fθ, trained with the objective in Equation 1 is expected
to capture the causal features in Z1, which is desirable for OOD generalization. However, fθ may
also rely on the non-causal features in Z2 if they correlate with Y . While the dependency on non-
causal features can aid in i.i.d. generalization in the training environment, it is unlikely to generalize
to the unseen test environment, especially considering the non-overlapping supports of Z2 caused
by diversity shift (i.e. p(z) · q(z) = 0 for z ∈ Z2). Theoretically, one can reduce the dependence
on Z2 to achieve better OOD generalization. However, there is no guarantee that features from
Z1 and Z2 captured by fθ are well-separated, and identifying them is even more nontrivial. To
tackle this challenge, we observe that, compared to Z1, the non-overlapping supports of Z2 across
different domains make it particularly useful for domain classification. As such, we propose to
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train a domain classifier to differentiate among different training domains, and use its gradient to
approximately identify the features in Z2. Subsequently, we perturb the identified features with
noise, reducing the dependence of fθ on them in the training process. We refer to this approach as
domain feature perturbation (DFP).

Concretely, alongside the main classifier, we train a domain classifier to capture domain-specific fea-
tures. The two classifiers can be implemented with two output heads that share the same backbone,
and thus introduces negligible extra parameters. Let gθ : X → Yd denote the domain classifier,
where Yd is the set of training domain labels. The overall loss function is as follows:

L(θ) = EX,Y,Yd∼Ptr [αL (fθ(X), Y ) + (1− α)Ld (gθ(X), Yd)] , (5)

where L and Ld correspond respectively to the main classifier and the domain classifier, and α ∈
(0, 1) is a hyperparameter to weight the two losses. To utilize the gradient of the domain classifier,
the training process of DFP involves two forward passes and two backward passes in each iteration.
In the first forward pass and backward pass, we compute Ld, as well as its gradient with respect to
the intermediate representations of the backbone network, i.e.,

∇zLd =
∂Ld

∂z
, (6)

where z ∈ Rm represents the pre-activations of neurons. Let zi be the i-th element of z, and
ϵ a positive constant. The magnitude of ∇zLd then serves to modulate a random noise vector
n ∼ N (0,Σ), such that

Σ = diag
(
σ2
1 , σ

2
2 , . . . , σ

2
m

)
, and σi =

ϵ

∥∇zLd∥p

∣∣∣∣∂Ld

∂zi

∣∣∣∣ . (7)

In the second forward pass, DFP applies modulated noise n to z at each layer as z̃ = z + n, and
proceeds with the second backward pass to update model parameters. Note that in Equation 7, the
σi’s are normalized by the ℓp norm of∇zLd to keep the overall magnitude of Σ stable. In addition,
p is set to 2 throughout this paper unless otherwise specified. At test time, the domain classifier can
be discarded, and the inference of the main classifier can be done in a single forward pass.

The intuition behind Equation 7 is that the features in Z2 are predominantly utilized by the domain
classifier compared to those in Z1, and thus are more likely to have larger gradient magnitudes,
|∂Ld/∂zi|. By injecting noise with high variance to the features in Z2, we aim to diminish the
reliance of fθ on these features, thereby improving OOD generalization. The training procedure
with DFP is detailed in Algorithm 1.

Algorithm 1 Training procedure with domain feature perturbation (DFP)
Input: Main classifier fθ; Domain classifier gθ; Loss function L(θ); Training data Dtr;
Batch size B; Number of training epochs E.
Training:

1: for epoch e = 1, 2, ..., E do
2: for batch b = b1, b2, ... ⊂ Dtr with batch size B do
3: bi = {xi, yi, yd,i}
4: ŷd,i = gθ(xi) ▷ First forward
5: ∇zLd = ∂Ld(ŷd,i, yd,i)/∂z ▷ First backward
6: n ∼ N (0,Σ) ▷ Sample DFP as per Equation 7
7: ŷi = fθ(xi), ŷd,i = gθ(xi) with z̃ = z+ n ▷ Second forward with DFP
8: L(θ) = αL(ŷi, yi) + (1− α)Ld(ŷd,i, yd,i)

9: ∇θL(θ) = ∂L(θ)/∂θ ▷ Second backward
10: θ ← Optimizer (θ,∇θL(θ))
11: end for
12: end for
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2.3 GRADIENT SIMILARITY

As discussed in Section 2.2, a model trained with DFP is expected to focus more on the features in
Z1 than those in Z2. To examine if this is the case, one can compare the magnitudes of L’s gradients
with respect to the two sets of features, which again requires separating and identifying the features
in Z1 and Z2. To circumvent this requirement, we observe that, compared to Z2, a model relies on
Z1 should have similar gradients across different domains, since Z1 is domain-agnostic while Z2 is
domain-specific. Therefore, we propose a simple gradient similarity measure to evaluate how much
a model relies on domain-agnostic features. Specifically, given k different domains, D = {Di}ki=1,
we denote the mean absolute gradient of L with respect to z for each domain as

ηi =
1

|Di|
∑

(x.y)∈Di
Abs

(
∂L (fθ(x), y)

∂z

)
, (8)

then the gradient similarity on D is defined as

S(D) =
2
∑

1≤i<j≤k CosSim (ηi, ηj)

k(k − 1)
, where CosSim (µ, ν) =

µ · ν
∥µ∥∥ν∥

. (9)

Intuitively, Equation 9 calculates the cosine similarity between every possible pair of ηi and ηj that
are derived from two different domains, and averages the similarity values together.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

We evaluate our proposed methods on three domain generalization datasets: PACS (Li et al., 2017)
with 4 artistic styles and 7 categories, OfficeHome (Venkateswara et al., 2017) with 4 artistic styles
and 65 categories, and Terra Incognita (Beery et al., 2018) with 4 camera locations and 10 categories.
As noted by Ye et al. (2022), these datasets exhibit significant diversity shifts and thus are suitable
for our evaluation. Visual samples from the PACS dataset are provided in Appendix A.

For simplicity and fair comparison with existing work (Ye et al., 2022; Gulrajani & Lopez-Paz,
2020), we employ ResNet-18 (He et al., 2016) as the backbone architecture for all three datasets.
In addition, to further substantiate the effectiveness of our method, we also conduct experiments on
the PACS dataset using ResNet-50 as the backbone. There are three model selection strategies com-
monly used for domain generalization tasks: training-domain validation, test-domain validation, and
leave-one-domain-out validation. In our experiments, we adopt training-domain validation follow-
ing the evaluation protocol used by Ye et al. (2022), Gulrajani & Lopez-Paz (2020) and Wang et al.
(2022). All experiments are conducted using Pytorch on Tesla V100 GPUs.

3.2 DOMAIN GENERALIZATION

In this section, we present the test accuracy of various methods on the unseen test domains to eval-
uate their domain generalization performance. For the PACS dataset, we train the model for 7000
steps and perform eight rounds of random searching procedures for weight initialization, dataset
division, and hyperparameter combinations. For the OfficeHome and Terra Incognita datasets, we
train the model with 5100 steps and perform three rounds of random searching of the basic hy-
perparameters. For all datasets, we conduct three independent training runs to obtain the average
results. Appendix B provides more details about the search space. We also evaluate the sensitivity
of the proposed method to different loss weights (α, 1− α) in Appendix D.2, and we observe that a
higher weight for the main classifier works better in practice. As such, we primarily use loss weights
(α, 1− α) ∈ {(0.9, 0.1), (0.99, 0.01)} for other experiments.

PACS The PACS dataset comprises four training domain combinations
{(C,P, S), (A,P, S), (A,C, S), (A,C, P )} that correspond to four test domains {A,C, P, S}. We
set ϵ ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.2} for different domain combinations in the PACS dataset.
Appendix C.1 contains detailed accuracy results for various combinations of ϵ and (α, 1 − α). We
also vary the initial learning rate for the main and domain classifiers, as shown in Appendix C.2.
Table 1 presents the best results on the PACS dataset. Compared to empirical risk minimization
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(ERM), DFP improves the accuracy on every test domain, resulting in a 2.9% increase in the
average accuracy. It is worth noting that the improvement varies across different domains, and is
more significant on difficult domains such as A, C, and S.

Table 1: Test accuracies of ERM and DFP on PACS.
PACS A C P S Avg

ERM 77.9 ± 0.9 72.7 ± 0.3 95.8 ± 0.2 74.1 ± 0.4 80.1
DFP (Ours) 80.6 ± 0.9 75.8 ± 1.4 96.2 ± 0.3 79.3 ± 1.0 83.0 ↑ 2.9

To compare the performance of different model sizes, we also repeat the experiments on the PACS
dataset using Resnet-50 as the backbone. Note that the model is only trained for 2100 steps, and
the hyperparameters are not extensively tuned for this case. Detailed results are available in Ap-
pendix C.4, with the best results are highlighted in Table 2. Compared to ERM using the same
backbone, DFP improves the average test accuracy by 1.8%.

Table 2: Test accuracies of ERM and DFP with Resnet-50.
Method A C P S Avg

ERM 82.6 ± 1.1 79.7 ± 0.4 97.3 ± 0.2 74.7 ± 1.3 83.6
DFP (Ours) 84.7 ± 1.6 79.7 ± 1.2 97.0 ± 0.1 80.3 ± 0.8 85.4 ↑ 1.8

OfficeHome In line with PACS, the OfficeHome dataset also has four training domain combina-
tions, and four test domains {A,C, P,R}. We set the ϵ ∈ {0.1, 0.01, 0.001} and the loss weights
(α, 1 − α)=(0.9, 0.1) for the OfficeHome dataset. The complete results are presented in Ap-
pendix C.3. As shown in Table 3, our method can enhance the test accuracy of the OfficeHome
dataset by 1.4% when compared to the ERM. The basic test accuracies are not particularly high for
all test domains, and the increasing effect of DFP leads in less difference between test domains when
compared to the results of PACS.

Table 3: Test accuracies of ERM and DFP on OfficeHome.
OfficeHome A C P R Avg

ERM 54.8 ± 0.2 49.8 ± 0.4 72.3 ± 0.4 73.4 ± 0.1 62.6
DFP (Ours) 57.4 ± 0.9 51.0 ± 0.4 73.4 ± 0.1 74.3 ± 0.4 64.0 ↑ +1.4

Terra Incognita The Terra Incognita dataset also includes four training domain combinations, as
well as four test domain types {L100, L38, L43, L46}. And we set the combination of ϵ and the loss
weights (ϵ, α, 1 − α) ∈ {(0.1, 0.9, 0.1), (0.01, 0.9, 0.1), (0.01, 0.99, 0.01)} for the Terra Incognita
dataset. The complete results are presented in Appendix C.3. As shown in Table 4, our method
can enhance the test accuracy of the Terra Incognita dataset by 3.5% when compared to the ERM.
The Terra Incognita dataset contains images of wild animals captured by camera traps in a variety
of natural environments, simulating a real-world scenario. Despite the fact that DFP has improved
test accuracies across domains, the baseline and DFP results are not particularly impressive. These
results show that OOD generalization is more difficult in photos with more intricate and realistic
backgrounds, such as The Terra Incognita dataset.

Table 4: Test accuracies of ERM and DFP on Terra Incognita.
TerraIncognita L100 L38 L43 L46 Avg

ERM 44.4 ± 4.2 38.0 ± 2.8 50.5 ± 1.1 36.3 ± 0.1 42.3
DFP (Ours) 47.4 ± 1.9 39.7 ± 2.7 52.6 ± 0.0 37.2 ± 0.9 44.2 ↑ +1.9

Other comparisons Drawing on the findings from Ye et al. (2022), we conduct a comparative
analysis between our method and some state-of-the-art techniques. Table 5 presents these results,
indicating that our approach consistently surpasses several established methods. Additionally, Ta-
ble 5 includes our own results for ERM Vapnik (1999) and RSC Huang et al. (2020). ERM is a
standard baseline for comparisons in domain generalization (DG) challenges. Following benchmark
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Table 5: Test accuracy comparison with other methods. Results of the first block are taken from Ye
et al. (2022).

method
dataset PACS OfficeHome TerraIncognita Avg

CORALSun & Saenko (2016) 81.6 ± 0.6 63.8 ± 0.3 38.3 ± 0.7 61.23
MMDLi et al. (2018b) 81.7 ± 0.2 63.8 ± 0.1 38.3 ± 0.4 61.27
ERDGZhao et al. (2020) 80.5 ± 0.5 63 ± 0.4 41.3 ± 1.2 61.60
IGAKoyama & Yamaguchi (2020) 80.9 ± 0.4 63.6 ± 0.2 41.3 ±0.8 61.93
VRExKrueger et al. (2021) 81.8 ± 0.1 63.5 ± 0.1 40.7 ± 0.7 62.00
IRMArjovsky et al. (2019) 81.1 ± 0.3 63 ± 0.2 42 ± 1.8 62.03
SagNetNam et al. (2019) 81.6 ± 0.4 62.7 ± 0.4 42.3 ± 0.7 62.20
ERMVapnik (1999) 81.5 ± 0.0 63.3 ± 0.2 42.6 ± 0.9 62.47
RSCHuang et al. (2020) 82.8 ± 0.4 62.9 ± 0.4 43.6 ± 0.5 63.10

ERM (Our runs) 80.1 ± 0.2 62.6 ± 0.1 42.3 ± 1.1 62.03
RSC (Our runs) 82.0 ± 0.5 62.8 ± 0.1 44.4 ± 0.0 63.27
DFP (Ours) 83.0 ± 0.7 64.0 ± 0.3 44.2 ± 0.6 63.73

results, we also evaluate RSC, which outperforms many other techniques. RSC employs gradient
characteristics to mute feature representations with the highest gradient, compelling the model to
rely on other features for predictions. In contrast, our method aims to isolate domain-related fea-
tures and introduce perturbations to them.

3.3 GRADIENT SIMILARITY

To illustrate the effect of domain feature perturbation, we examine the similarity
computation on the PACS dataset. We define four training domain combinations
{(C,P, S), (A,P, S), (A,C, S), (A,C, P )} and their respective test domains {A,C, P, S}.
We employ the gradients’ absolute values to compute the cosine similarity across different dimen-
sions of hidden representations. Gradient similarities across domains may reflect feature similarities
they emphasize. For each training domain set, we independently assess the similarity. For the three
domains in each set, we determine the average gradient of hidden representations as described in
Section 2.3.

(a) Dtr = {C,P, S} (b) Dtr = {A,P, S}

(c) Dtr = {A,C, S} (d) Dtr = {A,C, P}

Figure 2: Gradient similarities at different layers of ERM and DFP.

As illustrated in Figure 2, we calculate the average gradient similarity for each layer subjected to
perturbation. To contrast the gradient similarities between DFP and ERM, we select the optimal pre-
trained model from each method and perform an additional training step. Evaluating each approach
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50 times, we determine the mean similarity value. The findings suggest that DFP can induce a
similar gradient change between different source domains.

3.4 ABLATION STUDIES

In this section, we present two ablation studies focusing on: (1) a comparison with random per-
turbations and (2) the optimal position for noise injection. All experiments utilize the ResNet-18
architecture. For both studies, trials are conducted on the PACS dataset with a fixed initial learning
rate of lr=5e-5 and a training duration of 7000 steps. In each of the three independent training
iterations, we perform eight rounds of random hyperparameter search.

Random perturbation To evaluate the effectiveness of noise modulation, we train a base-
line model with random noise. Experiments using random perturbations are conducted at
the same insertion position as DFP. We set the random noise n ∼ N (0, σ2) with σ ∈
{0.001, 0.005, 0.01, 0.05, 0.1, 0.2}. Table 6 displays the best results of random perturbations. Ap-
pendix D.3 shows the detailed results. The average accuracy of random perturbations is 81.3%, and
the results suggest that our proposed method outperforms random perturbations by 1.7%, which is
lower than DFP.

Table 6: Test accuracies of ERM with random perturbations.
A C P S Avg

best 79.6 ± 0.5 75.3 ± 0.9 95.4 ± 0.2 74.8 ± 0.7 81.3

Noise injection point We compare the effect of two different noise injection points, pre-activation
and activation. We set the ϵ ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.2} and the loss weights (α, 1− α) ∈
{(0.9, 0.1), (0.99, 0.01)}. The Appendix D.1 presents more detailed results for various combina-
tions of ϵ and (α, 1− α). Table 7 shows the best results, and there is no notable difference between
the two cases.

Table 7: Test accuracies of DFP with different injection points.
A C P S Avg

pre-act 80.6 ± 0.9 74.7 ± 0.6 95.9 ± 0.4 77.7 ± 0.8 82.2
after-act 79.9 ± 0.4 76.0 ± 1.0 96.0 ± 0.3 77.2 ± 0.9 82.2

4 RELATED WORK

In this section, we review existing approaches to domain generalization, and discuss their connec-
tions to our work.

Data augmentation Data augmentation is a prevalent technique to enhance data diversity in vari-
ous machine learning tasks (Shorten & Khoshgoftaar, 2019; Yan et al., 2020). In the context of do-
main generalization, existing methods often emphasize feature-level augmentation (Li et al., 2021).
Mixstyle (Zhou et al., 2021) generates new styles by blending feature statistics from two instances
with random convex weights. Xu et al. (2021) employs Fourier-based data augmentation, consoli-
dating information from multiple source domains. Other approaches, including domain randomiza-
tion (Tobin et al., 2017; Huang et al., 2021; Fan et al., 2022), introduce perturbations to data statistics
to simulate diverse visual styles. We note that DFP is loosely related to domain randomization in
that it also aims to randomize domain-specific features. Nevertheless, the perturbations introduced
by DFP are applied to intermediate representations, and are automatically generated with a domain
classifier.

Invariant learning Another potential challenge for OOD generalization is the tendency of DNNs
to overly specialize in extracting features that are useful for the training data. As such, several
strategies have been developed to cultivate robust representations. These include invariant rep-
resentation (Parascandolo et al., 2020), meta-learning (Zhang et al., 2020; Li et al., 2018a; Bui
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et al., 2021), transfer learning (Blanchard et al., 2021), representation disentanglement (Zhang et al.,
2022), model calibration (Wald et al., 2021), and causal learning (Mahajan et al., 2021; Lv et al.,
2022). Contrary to learning invariant representation, Shi et al. (2021) and Rame et al. (2022) focus
on gradient invariance during training. While DFP does not explicitly learn invariant representation,
its carefully crafted perturbation encourages more dependence on invariant representation as dis-
cussed in Section 2.2. This distinction makes DFP potentially better suited for multitask learning,
which requires the extraction of diverse features.

In addition to data augmentation and invariant learning, more general regularization techniques have
been explored to tackle the OOD challenge, including ensemble learning (Arpit et al., 2022; Segu
et al., 2023; Li et al., 2022), sharpness-aware optimization (Cha et al., 2021), adversarial train-
ing (Ganin et al., 2016; Lee et al., 2019; Yi et al., 2021; Wang et al., 2022), and several oth-
ers (Sagawa et al., 2019; Kim et al., 2021; Chen et al., 2022). Notably, among the adversarial
training-based approaches, some also apply perturbations to intermediate representations (Sankara-
narayanan et al., 2018; You et al., 2019). Compared to these approaches, DFP generate the pertur-
bations without adversarial training, resulting in a simpler and more stable training procedure.

5 CONCLUSION

In this work, we proposed a novel approach to domain generalization, named domain feature per-
turbation (DFP). DFP incorporates a domain classifier to produce perturbations for domain-specific
features, aiming to reduce the dependence of the model on such features. Furthermore, we conducted
extensive experiments on multiple domain generalization datasets, demonstrating the effectiveness
of DFP, as well as competitive or better OOD performance than state-of-the-art methods.

Our method has several limitations. First, DFP relies on two forward and backward passes in each
training iteration, rendering it slower at training time than simple approaches such as empirical
risk minimization. Second, using the gradient of the domain classifier, we can only approximately
identify domain-specific features, making the regularization effect of DFP less precise. Therefore,
future research might present methods for the more efficient and precise extraction of these features.
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A ILLUSTRATION OF DATASETS

Datasets We evaluate the efficacy of our approach across three representative datasets
for tasks involving OOD generalization: PACS (Li et al., 2017) with 4 domains,
{photos, art, cartoons, sketches} and 7 classes; OfficeHome (Venkateswara et al., 2017) with 4
domains {art, clipart, product, real} and 65 classes; Terra Incognita (Beery et al., 2018) with four
of the camera locations {L100, L38, L43, L46} and 10 classes. According to the Ye et al. (2022),
these datasets are characterized by substantial diversity shifts, aligning with our objective of lever-
aging domain-specific information. Figure 3 shows the illustration of images in the PACS dataset,
with 4 domains and 7 classes. We also evaluate the cosine-similarity of images between domains in
the PACS dataset, and Figure 4 shows the results.

B HYPER-PARAMETER SEARCH SPACE

General hyperparameters We set the initial learning rate to lr=5e-5 for all datasets. We also
set the dropout rate for the main object classifier to zero. Table 8 shows other basic hyperparameter
values for ERM and RSC.

DFP hyperparameters The major noise-related hyperparameter for our proposed Domain Feature
Perturbation (DFP) approach for domain generalization is ϵ, which regulates the standard deviation
σ = [|∇zld|/∥∇zld∥p] ·ϵ with p=∞. Furthermore, the loss weights α and 1−α are flexible in order
to manage the performance of the two classifiers. We experiment with numerous ϵ and (α, 1 − α)
combinations for different datasets. Table 9 depicts the grid search space of these hyper-parameters.
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Figure 3: Illustration of images in the PACS dataset.

Table 8: Basic hyper-parameters of experiments.
Parameter Value

learning rate 5e-5

weight decay 10uniform(−6,−2)

resnet dropout 0

data augmentation true

batch size default = 32, 2uniform(3,5.5)

rsc f drop factor default = 1/3, 1uniform(0,0.5)

rsc b drop factor default = 1/3, 1uniform(0,0.5)

Table 9: DFP hyper-parameters grid search space.
Parameter Value

ϵ [0.2,0.1,0.05,0.01,0.005,0.001]

(α, 1− α) [(0.99,0.01), (0.9,0.1)]

p [∞,1,2]

Model selection method We use the training-domain validation method to select the model. We
divide each training domain into training and validation subsets for the training-domain validation
technique. We train models with the training subsets and select the model with the highest accuracy
based on the union of the validation subsets. This technique implies that the distributions of the
training and test cases are similar.
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Figure 4: Cosine similarity of images between different domains in the PACS dataset.

C MORE RESULTS OF DFP

C.1 DIFFERENT PERTURBATION LEVELS

All of the results in this section are based on the Resnet-18 structure and are tested on the PACS
dataset. Table 10 displays the complete results of several hyperparameter combinations in DFP.

Table 10: Test accuracies of DFP with resnet-18.
(α, 1− α) ϵ A C P S Avg
(0.9,0.1) 0.2 78.3 ± 0.6 72.8 ± 0.6 95.5 ± 0.4 76.5 ± 1.0
(0.99,0.01) 0.2 77.6 ± 1.1 74.4 ± 0.5 95.5 ± 0.1 72.8 ± 1.2
(0.9,0.1) 0.1 77.4 ± 0.1 73.6 ± 0.2 95.6 ± 0.1 76.4 ± 0.7
(0.99,0.01) 0.1 78.3 ± 0.6 74.2 ± 2.3 95.9 ± 0.4 76.7 ± 1.2
(0.9,0.1) 0.05 80.6 ± 0.9 72.2 ± 2.2 95.0 ± 0.3 74.6 ± 0.8
(0.99,0.01) 0.05 75.9 ± 1.0 74.7±0.6 94.9 ± 0.2 77.7 ± 0.8
(0.9,0.1) 0.01 79.3 ± 1.5 72.4 ± 1.0 95.2 ± 0.6 72.4 ± 1.3
(0.99,0.01) 0.01 76.6 ± 1.8 72.9 ± 0.1 95.7 ± 0.5 70.9 ± 1.5
(0.9,0.1) 0.005 77.0 ± 0.5 72.5± 0.2 95.6 ± 0.4 75.6± 1.2
(0.99,0.01) 0.005 78.7 ± 1.8 74.2 ± 0.8 95.7 ± 0.2 76.2 ± 1.5
(0.9,0.1) 0.001 79.0 ± 1.4 73.7 ± 0.2 95.7± 0.4 77.3 ± 1.4
(0.99,0.01) 0.001 75.4 ± 0.9 73.3 ± 0.6 95.6 ±0.3 77.0 ± 1.0
(0.9,0.1) 0.0005 78.0 ± 0.8 70.8 ± 1.0 95.4 ± 0.2 73.6± 0.9
(0.99,0.01) 0.0005 77.4 ± 0.6 73.7 ± 0.8 95.7 ± 0.3 77.7 ± 1.1

best 80.6 ± 0.9 74.7±0.6 95.9 ± 0.4 77.7 ± 0.8 82.2

C.2 DIFFERENT LEARNING RATES

We train the model with the Resnet-18 structure and test it on the PACS dataset. We keep the main
classifier’s initial learning rate at 5e-5 and experiment with alternative learning rate settings for the
domain classifier. The entire results of different learning rates of the domain classifier in DFP are
shown in Table 11 and Table 12.
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Table 11: Test accuracies of DFP with different learning rates (1e−4).
(α, 1− α) ϵ A C P S Avg
(0.9,0.1) 0.1 78.1 ± 1.4 73.0 ± 2.3 95.4 ± 0.2 75.2 ± 0.9
(0.99,0.01) 0.1 76.3 ± 1.1 73.4 ± 1.9 95.7 ± 0.2 75.3 ± 1.7
(0.9,0.1) 0.05 80.1 ± 0.5 74.1 ± 0.7 95.3 ± 0.1 76.5 ± 0.1
(0.99,0.01) 0.05 76.7 ± 1.0 72.1 ± 1.5 95.3 ± 0.3 75.4 ± 0.9
(0.9,0.1) 0.01 80.0 ± 0.3 73.7 ± 0.2 95.5 ± 0.2 76.6 ± 0.8
(0.99,0.01) 0.01 78.2 ± 0.6 73.2 ± 0.5 95.6 ± 0.5 75.6 ± 0.4
(0.9,0.1) 0.005 76.4 ± 1.4 73.4 ± 0.5 95.3 ± 0.4 76.9 ± 1.3
(0.99,0.01) 0.005 78.2 ± 0.7 74.3 ± 0.7 95.5 ± 0.1 77.2 ± 0.5
(0.9,0.1) 0.001 78.8 ± 1.3 74.5 ± 0.6 95.6 ± 0.4 75.8 ± 0.4
(0.99,0.01) 0.001 78.8 ± 0.8 74.0 ± 0.7 96.2 ± 0.3 74.8 ± 2.5

best 80.1 ± 0.1 74.5 ± 0.6 96.2± 0.3 77.2 ± 0.5 82

Table 12: Test accuracies of DFP with different learning rates (1e−5).
(α, 1− α) ϵ A C P S Avg
(0.9,0.1) 0.1 76.4 ± 0.4 74.4 ± 0.6 95.5 ± 0.4 75.7 ± 1.2
(0.99,0.01) 0.1 77.8 ± 1.2 75.5 ± 0.2 95.3 ± 0.3 77.8 ± 0.9
(0.9,0.1) 0.05 77.5 ± 1.3 73.5 ± 1.1 95.1 ± 0.3 77.2 ± 0.3
(0.99,0.01) 0.05 77.2 ± 0.4 74.7 ± 1.0 95.2 ± 0.1 75.3 ± 0.7
(0.9,0.1) 0.01 77.5 ± 1.4 74.1 ± 0.8 94.2 ± 0.6 74.1 ± 1.2
(0.99,0.01) 0.01 76.9 ± 1.3 75.8 ± 1.4 95.0 ± 0.4 76.4 ± 1.5
(0.9,0.1) 0.005 78.9 ± 1.3 73.5 ± 0.9 95.2 ± 0.1 76.2 ± 1.6
(0.99,0.01) 0.005 78.5 ± 0.9 74.5 ± 1.1 95.7 ± 0.3 78.3 ± 1.2
(0.9,0.1) 0.001 76.3 ± 0.9 72.1 ± 0.9 96.1 ± 0.3 75.7 ± 0.3
(0.99,0.01) 0.001 75.7 ± 1.9 74.9 ± 0.5 95.6 ± 0.5 76.8 ± 0.2

best 78.9 ± 1.3 75.8 ± 1.4 96.1± 0.3 78.3 ± 1.2 82.275

C.3 DIFFERENT DATASETS

The OfficeHome dataset has four training domain combinations
{(C,P,R), (A,P,R), (A,C,R), (A,C, P )}, and four test domain {A,C, P,R}.
The Terra Incognita dataset also includes four training domain combinations
{(L38, L43, L46), (L100, L43, L46), (L100, L38, L46), (L100, L38, L43)}, as well as four
test domain types {(L38, L43, L46), (L100, L38, L43)}. Table 13 displays the outcomes of the
OfficeHome dataset with various hyperparameter combinations. Table 14 illustrates the Terra
Incognita dataset results with various hyperparameter combinations.

Table 13: Test accuracies of DFP on OfficeHome.
(α, 1− α) ϵ A C P S Avg
(0.9,0.1) 0.1 57.4 ± 0.9 50.1 ± 0.4 73.4 ± 0.1 74.3 ± 0.4
(0.9,0.1) 0.01 56.3 ± 0.2 50.2 ± 0.4 73.0 ± 0.3 74.3 ± 0.4
(0.9,0.1) 0.001 56.0 ± 0.1 51.0 ± 0.4 72.9 ± 0.3 74.1 ± 0.2

best 57.4 ± 0.9 51.0 ± 0.4 73.4 ± 0.1 74.3 ± 0.4 64.0

Table 14: Test accuracies of DFP on Terra Incognita.
(α, 1− α) ϵ A C P S Avg
(0.9,0.1) 0.1 45.3 ± 4.1 36.4 ± 1.5 52.6 ± 0.0 33.6 ± 1.1
(0.9,0.1) 0.01 44.4 ± 4.2 36.7 ± 2.6 50.5 ± 1.1 36.8 ± 0.1
(0.99,0.01) 0.01 47.4 ± 1.9 39.7 ± 2.7 51.2 ± 0.4 37.2 ± 0.9

best 47.4 ± 1.9 39.7 ± 2.7 52.6 ± 0.0 37.2 ± 0.9 44.2

C.4 DIFFERENT MODEL ARCHITECTURES

Table 15 displays results based on the Resnet-50 structure with various hyperparameter combina-
tions. We test the model on the PACS dataset.
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Table 15: Test accuracies of ERM and DFP with Resnet-50.
(α, 1− α) ϵ A C P S Avg

ERM 82.6 ± 1.1 79.7 ± 0.4 97.3 ± 0.2 74.7 ± 1.3 83.575

0.001 84.3 ± 0.9 76.9 ± 0.3 97.0 ± 0.3 75.5 ± 1.0
0.005 82.0 ± 1.3 78.2 ± 0.8 96.8 ± 0.2 74.1 ± 2.4

(0.9, 0.1) 0.01 81.5 ± 0.8 77.9 ± 0.9 96.5 ± 0.1 80.3 ± 0.8
0.05 84.1 ± 1.2 79.6 ± 0.4 96.6 ± 0.4 77.8 ± 0.3
0.1 84.7 ± 1.6 79.6 ± 0.3 96.7 ± 0.2 74.1 ± 3.1

0.001 82.8 ± 0.8 79.5 ± 0.4 97.0 ± 0.1 79.9 ± 1.1
0.005 80.2 ± 1.2 75.5 ± 1.0 96.7 ± 0.2 77.6 ± 0.5

(0.99, 0.01) 0.01 82.7 ± 0.5 77.4 ± 1.2 96.6 ± 0.2 78.0 ± 0.3
0.05 83.4 ± 0.8 79.7 ± 1.2 96.8 ± 0.1 76.8 ± 1.7
0.1 84.0 ± 0.5 79.1 ± 0.4 96.8 ± 0.2 74.8 ± 2.3

best 84.7 ± 1.6 79.7 ± 1.2 97.0 ± 0.1 80.3 ± 0.8 85.425

D MORE RESULTS OF ABLATION STUDIES

D.1 NOISE INJECTION POINT

Table 16 shows the outcomes with different positions for adding the perturbations. The results are
based on ResNet-18 model and the PACS dataset.

Table 16: Test accuracies of ERM with random perturbation.
(α, 1− α) ϵ A C P S Avg

0.2 78.5 ± 0.7 72.6 ± 0.9 95.6 ± 0.0 72.6 ± 1.8
0.1 76.5 ± 1.0 70.9 ± 1.3 94.9 ± 0.4 75.4 ± 0.5

(0.9, 0.1) 0.05 78.1 ± 0.2 73.5 ± 0.9 95.2 ± 0.7 77.2 ± 0.9
0.01 78.5 ± 1.1 73.3 ± 1.4 95.3 ± 0.2 76.8 ± 1.4
0.005 77.4 ± 0.9 73.5 ± 0.8 95.1 ± 0.4 75.4 ± 0.7
0.001 76.5 ± 0.1 71.4 ± 1.2 94.9 ± 0.5 75.5 ± 0.6

0.2 74.5 ± 0.9 72.6 ± 0.3 95.8 ± 0.3 74.8 ± 0.6
0.1 78.5 ± 0.9 76.0 ± 1.0 95.3 ± 0.2 73.0 ± 3.3

(0.99, 0.01) 0.05 78.1 ± 1.2 73.7 ± 1.1 95.3 ± 0.5 75.4 ± 0.2
0.01 76.0 ± 0.5 75.6 ± 1.0 95.8 ± 0.2 76.3 ± 1.0
0.005 79.8 ± 1.0 72.8 ± 0.7 95.4 ± 0.1 73.0 ± 2.7
0.001 79.9 ± 0.4 73.4 ± 2.1 96.0 ± 0.3 74.1 ± 2.2

best 79.9 ± 0.4 76.0 ± 1.0 96.0 ± 0.3 77.2 ± 0.9 82.3

D.2 SENSITIVITY ANALYSIS

To scrutinize the sensitivity of our proposed approach to different loss weights, we conduct
experiments on the PACS dataset, maintaining consistent parameters such as the initial learn-
ing rate lr=5e-5 and a training duration of 7000 steps. In addition, we run one random
search of basic hyperparameters for each of the five independent training series. We set
the random noise n ∼ N (0, σ2) with σ = 0.05. And the loss weights (α, 1 − α) ∈
{(0.5, 0.5), (0.6, 0.4), (0.7, 0.3), (0.8, 0.2), (0.9, 0.1), (0.99, 0.01)}. The results are shown in Ta-
ble 17 and Figure 5.According to the results, we primarily utilize loss weights (α, 1 − α) ∈
{(0.9, 0.1), (0.99, 0.01)} for other investigations.

Table 17: Test accuracies of DFP with different loss weights.
ϵ (α, 1− α) A C P S Avg

(0.99, 0.01) 79.1 ± 0.8 73.9 ± 0.5 95.5 ± 0.4 75.2 ± 1.4 80.9
(0.9, 0.1) 77.4 ± 0.6 72.1 ± 0.8 95.4 ± 0.1 77.1 ± 0.9 80.5

0.05 (0.8, 0.2) 77.7 ± 0.6 73.4 ± 0.8 95.5 ± 0.2 74.1 ± 0.9 80.2
(0.7, 0.3) 77.6 ± 0.9 71.4 ± 1.2 95.5 ± 0.2 73.1 ± 1.3 79.4
(0.6, 0.4) 78.3 ± 0.7 70.7 ± 0.6 95.3 ± 0.3 74.3 ± 0.9 79.5
(0.5, 0.5) 76.6 ± 0.7 70.0 ± 1.1 95.9 ± 0.3 75.3 ± 1.0 79.7
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Figure 5: Accuracy results of different loss weights.

D.3 RANDOM PERTURBATIONS

We set the random noise n ∼ N (µ, σ2) with σ ∈ [0.001, 0.005, 0.01, 0.05, 0.1, 0.2]. And the results
are shown in Table 18.

Table 18: Test accuracies of ERM with random perturbations.
ϵ A C P S Avg
0.001 74.4 ± 0.3 74.3 ± 0.3 95.4 ± 0.2 74.7 ± 1.2
0.005 75.6 ± 1.3 75.3 ± 0.9 95.4 ± 0.5 72.6 ± 1.5
0.01 76.5 ± 1.3 73.0 ± 1.2 95.1 ± 0.1 74.8 ± 0.7
0.05 77.4 ± 1.2 72.5 ± 1.2 95.3 ± 0.1 74.2 ± 1.8
0.1 79.6 ± 0.5 67.8 ± 0.5 91.6 ± 0.6 62.7 ± 2.0
0.2 70.6 ± 0.2 53.8 ± 0.8 83.6 ± 0.9 46.4 ± 5.3

best 79.6 ± 0.5 75.3 ± 0.9 95.4 ± 0.2 74.8 ± 0.7 81.3
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