

DISCO: DIVERSIFYING SAMPLE CONDENSATION FOR ACCELERATING MODEL EVALUATION

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

Evaluating modern machine learning models has become prohibitively expensive. Benchmarks such as LMMs-Eval and HELM demand thousands of GPU hours per model. Costly evaluation reduces inclusivity, slows the cycle of innovation, and worsens environmental impact. **To address the growing cost of standard evaluation, new methods focused on efficient evaluation have started to appear. The typical approach follows two steps.** First, select an anchor subset of data. Second, train a mapping from the accuracy on this subset to the final test result. The drawback is that anchor selection depends on clustering, which can be complex and sensitive to design choices. We argue that promoting diversity among samples is not essential; what matters is to select samples that *maximise diversity in model responses*. Our method, **Diversifying Sample Condensation (DISCO)**, selects the top-k samples with the greatest model disagreements. This uses greedy, sample-wise statistics rather than global clustering. The approach is conceptually simpler. From a theoretical view, inter-model disagreement provides an information-theoretically optimal rule for such greedy selection. **DISCO** shows empirical gains over prior methods, achieving state-of-the-art results in performance prediction across MMLU, Hellaswag, Winogrande, and ARC.

1 INTRODUCTION

Model evaluation is becoming increasingly costly. Models have grown in size, which makes each inference expensive. Recent scaling of test-time computation has further raised the cost per task. End-user requirements have also broadened, covering both the content of the output and its style (Wang et al., 2018; Liang et al., 2022; Kim et al., 2023; Zhang et al., 2024). As a result, evaluation on modern benchmarks often requires hundreds to thousands of GPU hours. For instance, LMMs-Eval can take between 30 and 1400 hours on $8 \times$ A100 GPUs (Zhang et al., 2024). HELM requires more than 4000 GPU hours (Liang et al., 2022).

Several efficient evaluation approaches have emerged. A common framework works in two parts: subset selection and performance prediction. The first part selects a static subset of anchor points from the evaluation dataset. The second part predicts full benchmark performance by extrapolating from accuracy on this subset. To select anchor points, existing methods often rely on clustering. Samples are grouped by the similarity of responses they induce in a set of reference models (Vivek et al., 2023; Polo et al., 2024). Variants of this framework include dynamic anchor selection (Hofmann et al., 2025), modified prediction models (Kipnis et al., 2024), and new benchmarks for method comparison (Zhang et al., 2025).

We seek to improve both parts of this framework. For subset selection, we argue that diversity among samples is not essential. What matters is **diversity in model responses**. We prove that inter-model disagreement is the most informative signal for estimating benchmark performance when the goal is

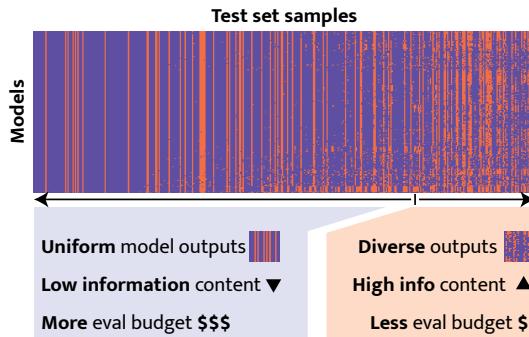


Figure 1: **Imbalance**. More evaluation budget is spent on less informative samples in test sets.

054 to differentiate and rank models (Proposition 1). Evaluation should therefore focus on samples that
 055 elicit varied responses (Figure 1). For performance prediction, we argue that existing methods add
 056 unnecessary complexity by estimating hidden model parameters before predicting test performance
 057 (Polo et al., 2024; Kipnis et al., 2024). We instead propose a direct route. Model signatures, defined as
 058 the concatenation of outputs on the selected subset, serve as inputs to simple predictors of benchmark
 059 performance. This framework is simpler, yet matches and surpasses more complex alternatives.

060 We validate these ideas through **Diversifying Sample Condensation (DISCO)**. DISCO selects a
 061 small, informative subset of evaluation samples by focusing on model disagreement. Disagreement
 062 is measured by predictive diversity scoring (PDS, Rubinstein et al. (2024)), originally proposed for
 063 out-of-distribution detection. A simple metamodel then predicts benchmark performance directly
 064 from the model signatures on this subset. We evaluate DISCO in both language and vision domains.
 065 On MMLU, for example, DISCO reduces evaluation cost by 99.3% (see § B.4) with only 1.07
 066 percentage points of error. Compared with prior methods such as Anchor Points (Vivek et al., 2023),
 067 TinyBenchmarks (Polo et al., 2024), and Metabench (Kipnis et al., 2024), DISCO achieves a stronger
 068 efficiency–precision trade-off.

069 2 RELATED WORK

070 We review prior work relevant to our approach. We first highlight the escalating cost of evaluation for
 071 contemporary large models and motivate the need for efficiency. We then survey prior attempts at
 072 efficient benchmarking, covering instance and task reduction techniques. Finally, we describe our
 073 novelty and contributions.

074 **Cost of evaluation.** The evaluation of modern large models is currently driven by increasingly
 075 sophisticated benchmarks assessing a wide array of capabilities, from the foundational GLUE (Wang
 076 et al., 2018) and the comprehensive HELM (Liang et al., 2022) to LMMs-Eval for multimodal models
 077 (Zhang et al., 2024), the diverse BIG-bench (Srivastava et al., 2022), Prometheus for measuring
 078 diverse LLM capabilities (Kim et al., 2023), and GAIA for general AI assistants (Mialon et al., 2023).
 079 This progress comes at an escalating cost: models have grown significantly in size, making each
 080 inference step more resource-intensive, while the scaling of test-time computations has dramatically
 081 increased the per-task evaluation costs. Furthermore, end-user requirements have diversified to
 082 encompass not only output content but also style and manner. Consequently, a single evaluation on
 083 modern benchmarks can demand hundreds to thousands of GPU hours. For examples, LMMs-Eval
 084 can require between 30 and 1400 hours on $8 \times$ A100 GPUs per model (Zhang et al., 2024; Polo et al.,
 085 2024), and HELM evaluations can exceed 4000 GPU hours per model (Liang et al., 2022; Polo et al.,
 086 2024).

087 **Label-efficient evaluation.** In the pre-LLM context, labelling a test set used to be a cost bottleneck
 088 for evaluation. In this context, the concept of “active testing” has been explored, where labelling
 089 budget is maximally assigned to information-rich samples (Majumdar & Niksic, 2017; Ji et al., 2021;
 090 Deng & Zheng, 2021; Kossen et al., 2021; Hu et al., 2023; Kossen et al., 2022; Huang et al., 2024;
 091 Fogliato et al., 2024). In our case, we are concerned with the *inference costs* of evaluation. As such,
 092 active testing approaches are not directly applicable, as they require a full inference over the test set
 093 to identify informative samples to label.

094 **Efficient benchmarking.** In the LLM era, benchmarks have diversified to measure multiple capa-
 095 bilities and styles of model behaviours. Researchers have proposed strategies to build an efficient
 096 benchmark in the first place (Perlitz et al., 2023; Rädsch et al., 2025). There were attempts to compress
 097 multiple benchmarks, measuring an array of capabilities of LLMs, into a single one by eliminating
 098 redundancies (Kipnis et al., 2024; Zhao et al., 2024; Yuan et al., 2025). Others have focused on
 099 selection of small, informative subsets, also known as “Anchor point” approaches (Vivek et al., 2023;
 100 Polo et al., 2024; Li et al., 2025; Gupta et al., 2025). Given an entire dataset, they compute a small
 101 subset of data points according to the *representativeness* criterion, determined through the correctness
 102 patterns of a large number of *source models*. Afterwards, the target model performance is estimated
 103 based on weighted accuracy computation on the selected subset. In particular, tinyBenchmarks (Polo
 104 et al., 2024) have adopted Item Response Theory (IRT) (Lord & Novick, 2008) to estimate model
 105 performance in a principled manner. Hofmann et al. (2025) proposed an IRT-based approach to
 106 LLM evaluation that selects anchor points dynamically for each model, guided by its predictions on
 107 previously chosen anchors. To address the growing number of methods for efficient LLM evaluation,

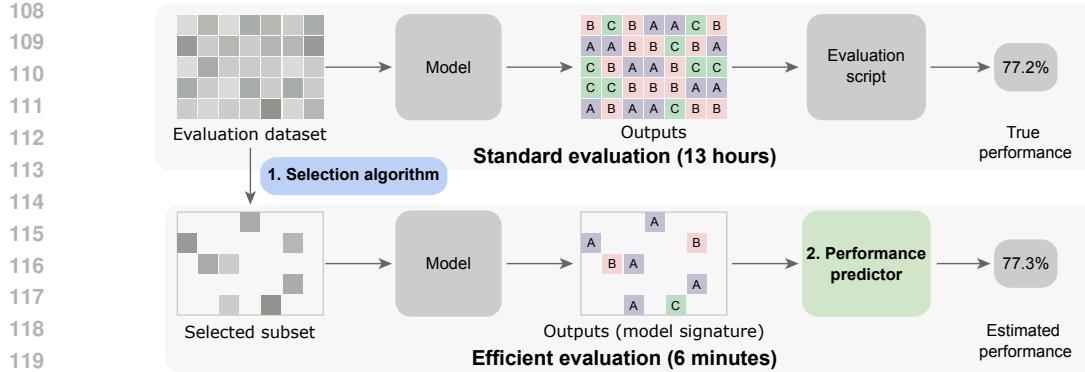


Figure 2: **Problem overview.** We aim at selecting a much smaller evaluation dataset than the original evaluation dataset, while keeping the estimated performances as close as possible. Figure 3 details the selection algorithm and the performance predictor.

Zhang et al. (2025) recently introduced a large-scale benchmark. In this work, we adopt approaches from the black-box model analysis techniques, explained below.

Our novelty and contribution. We differentiate our approach, Diversifying Sample Condensation (DISCO), from previous work in two aspects. (1) *model disagreement* (Rubinstein et al., 2024) is a simpler and more effective proxy for sample informativeness than *representativeness* (Vivek et al., 2023; Polo et al., 2024). (2) The application of metamodels on model signatures is a simpler and more effective approach than direct accuracy evaluation approaches (Vivek et al., 2023) or prior approaches that require estimating latent model parameters (Polo et al., 2024; Kipnis et al., 2024).

3 PROBLEM

Our task is the estimation of model performance on a benchmark. Let $f : \mathcal{X} \rightarrow \mathcal{Y}$ be a predictive model over a dataset $\mathcal{D} := \{(x_1, y_1), \dots, (x_N, y_N)\}$ sampled iid from some distribution. We are interested in estimating the model performance on the dataset $r(f, \mathcal{D})$. An example metric for model performance is accuracy: for a probabilistic classifier $f : \mathcal{X} \rightarrow [0, 1]^C$, accuracy is defined as $\frac{1}{N} \sum_i \mathbf{1}(\arg \max_c f_c(x_i) = y_i)$.

We are interested in estimating $r(f, \mathcal{D})$ in a cost-effective way. We seek ways to sample a subset of size $K \ll N$ from the original set \mathcal{D} to estimate $r(f, \mathcal{D})$. The overall problem is described in Figure 2. An integral ingredient for both prior works and ours is the set of *source models* $\mathcal{F} = \{f^1, \dots, f^M\}$, a held-out set of models whose ground-truth performances are known. We define the *target models* as the models whose performances we aim to estimate.

4 SOLUTION

This section presents DISCO, our solution to the problem of efficient performance evaluation. DISCO is composed of two steps: (i) the dataset selection, where given an original dataset and an held-out set of source models, we identify a much smaller subset of samples; and (ii) the performance prediction, where given the model outputs on our DISCO selected evaluation set, we estimate the model performance on the original set.

4.1 DATASET SELECTION

At this stage, we require a score that quantifies each sample's informativeness for predicting performance on the full dataset. Using this score, we rank the samples and select a top- k subset that best preserves the dataset's information content.

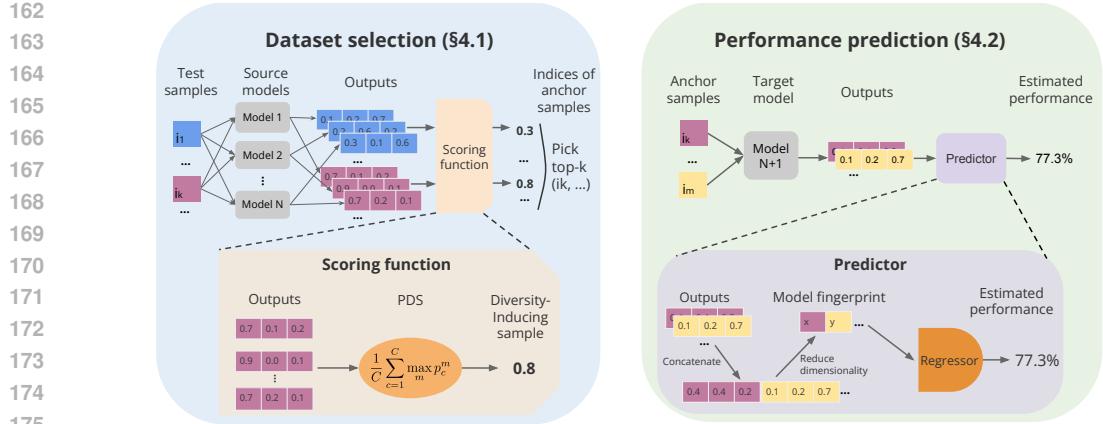


Figure 3: **DISCO** overview. First, we select a subset of an evaluation dataset with the most informative samples. Second, we predict the performance of unseen models from their outputs on the selected samples.

4.1.1 PRIOR SELECTION METHODS

We first review existing approaches for selecting representative data points in the evaluation set, referred to as anchor points.

Anchor-conf Vivek et al. (2023) choose K anchors $A = \{a_k\}_1^K \subset \{x_i\}_1^N$ that minimise the sum of distances between each data point and the closest anchor: $\min_A \sum_{i,k} d(e(x_i), e(a_k))$, where the $e(x)$ abbreviates the concatenated model likelihoods $e(x, y) := [f^1(x)_y, \dots, f^M(x)_y]$ for the input and ground-truth label (x, y) for the source models $\mathcal{F} = \{f^1, \dots, f^M\}$.

Anchor-corr (Polo et al., 2024) is nearly identical to *Anchor-conf*, except that the embedding uses correctness scores instead of likelihoods: $e(x, y) := \{s^1(x, y), \dots, s^M(x, y)\}$, where $s^m(x, y) := 1(\arg \max_c f^m(x)_c = y)$ encodes correctness of model f^m on sample x .

Anchor-IRT (Polo et al., 2024) uses the Item-Response Theory (IRT) to define a parametric model $\Pr(s_i^m = 1 \mid \theta^m, \alpha_i, \beta_i) = \text{sigmoid}(-\alpha_i^\top \theta^m + \beta_i)$. It predicts the correctness of a model f^m on a sample x_i with parameters $\theta^m \in \mathbb{R}^d$, $\alpha_i \in \mathbb{R}^d$, and $\beta_i \in \mathbb{R}$. Using observations of the sample-wise correctness of source models (x_i, y_i, s_i^m) , the parameters are inferred with an Expectation-Maximisation algorithm. Now, they continue the anchor selection based on the sample-wise embeddings $e(x_i) := (\alpha_i, \beta_i)$.

Best for validation Kipnis et al. (2024) finds an anchor set A through an iterative search. The algorithm first generates a large number of candidate anchor sets, $\{A_1, \dots, A_P\}$, by uniformly sampling from the full dataset \mathcal{D} . For each candidate set A_p , a simple scalar-to-scalar regression model, g_p , is trained on the source models \mathcal{F} . This model learns to map the performance on the subset, $r(f, A_p)$, to the known ground-truth performance on the full dataset, $r(f, \mathcal{D})$. Each trained regressor g_p is subsequently evaluated on a held-out validation set of models. The final anchor set A is selected as the candidate A_p whose corresponding regressor g_p yields the lowest prediction error (e.g., RMSE) on this validation set.

How DISCO differs. Unlike clustering, we use sample-wise statistic to determine samples with maximal information content. This greatly simplifies the sampling procedure. We exploit the **model diversity**, not **model confidence** or **correctness**. A set of models can be highly confident and diverse at the same time. We argue that inputs that induce model diversity are more useful for performance prediction.

4.1.2 DISCO SELECTION

We now present our selection method. In this part, we explain how we identify such samples in the test dataset. Our sample selection strategies are illustrated in Figure 3. The main approach in **Diversifying Sample Condensation (DISCO)** is to select a subset $\mathcal{D}_{\text{DISCO}}$ of the original evaluation

216 set \mathcal{D} by sampling the top- k samples based on disagreement score, such as PDS. This follows the
 217 intuition shown in Figure 1.

218 We start with an information-theoretic observation below.

219 **Proposition 1.** *Let $\mathcal{D} = \{(x_i, y_i)\}_i^N$ be a test set and $m \sim \text{Unif}\{1, \dots, M\}$ (A1) be the index of a
 220 uniformly chosen model. Let $f_c^m(x_i) \in [0, 1]$ be the predictive probability for class c of model f^m on
 221 input x_i . We write \hat{y}_i^m for the categorical random variable following $\text{Cat}(f_1^m(x_i), \dots, f_C^m(x_i))$. De-
 222 fine ensemble mean prediction to be $\bar{f}_c(x_i) := \mathbb{E}_m[f_c^m(x_i)]$ for each class c and define corresponding
 223 prediction random variable as \hat{y}_i following $\text{Cat}(\bar{f}_1(x_i), \dots, \bar{f}_C(x_i))$. Let $S(m) = S(f^m, \mathcal{D})$ denote
 224 a function of model m and dataset \mathcal{D} , such as model accuracy, that is injective with respect to m .
 225 Assume that the only randomness in \hat{y}^m comes from m (A2). Then,*

$$226 \text{MI}_{m, \hat{y}_i}(S(m); \hat{y}_i) = H(\hat{y}_i) - \mathbb{E}_m[H(\hat{y}_i^m)] = \text{JSD}(\hat{y}_i^1, \dots, \hat{y}_i^M).$$

227 where $H(\cdot)$ is entropy, $\text{MI}(\cdot)$ is mutual information, and $\text{JSD}(\cdot)$ is generalised Jensen-Shannon
 228 Divergence for multiple distributions (Fuglede & Topsøe, 2004).

229 See proof in Appendix G.

230 We conclude that the sample i conveying the greatest level of information for the prediction of $S(m)$
 231 (e.g. model accuracy) is the one with greatest $\text{JSD}(\hat{y}_i^1, \dots, \hat{y}_i^M)$. This generalised Jensen-Shannon
 232 divergence translates to the diversity of distributions (Fuglede & Topsøe, 2004). Based on the insight
 233 that model diversity matters for performance prediction, we also consider an alternative measure
 234 that measures the model diversity: predictive diversity score (PDS) (Rubinstein et al., 2024). It is
 235 more interpretable, as it is a continuous generalisation of the number of unique argmax category
 236 predictions among M source models:

$$237 \text{PDS}(\hat{y}_i^1, \dots, \hat{y}_i^M) := \frac{1}{C} \sum_c \max_m f_c^m(x_i). \quad (1)$$

238 PDS is related to JSD through the enveloping inequalities below:

239 **Proposition 2.** *Denoting $\text{PDS}_i := \text{PDS}(\hat{y}_i^1, \dots, \hat{y}_i^M)$, $\text{JSD}_i := \text{JSD}(\hat{y}_i^1, \dots, \hat{y}_i^M)$ for each sam-
 240 ple i , we have*

$$241 \frac{2}{M^2 \ln 2} (\text{PDS}_i - 1)^2 \leq \text{JSD}_i \leq \frac{M}{M-1} \log M \cdot (\text{PDS}_i - 1).$$

242 See proof in Appendix H.3.

243 In the experiments, we consider both JSD and PDS as criteria for sample selection.

244 4.2 PERFORMANCE PREDICTION

245 Once a subset of dataset samples A is selected, we use the responses of the target model f on A to
 246 estimate the true performance.

247 4.2.1 PRIOR PREDICTION METHODS

248 We first review existing approaches for estimating the true performance using predictions on anchor
 249 points $A = \{a_1, \dots, a_K\}$.

250 *Weighted sum* Vivek et al. (2023) estimates the true performance by directly computing the accuracy
 251 on the anchor set: $\text{WS}(f, A) := (1/K) \sum_k w_k s_k^m$, where w_k is the number of original training
 252 samples x_i assigned to the anchor a_k in the *Anchor-Corr* method.

253 *p-IRT* (Polo et al., 2024): makes adjustments to the vanilla accuracy on the anchor set by adding
 254 a correction term derived from the IRT in *Anchor-IRT* in: $\text{p-IRT}(f, A) := (1/K) \sum_{k \in A} s_k +$
 255 $1/(N - K) \sum_{k \notin A} \hat{p}_i$, where \hat{p}_i is the IRT estimation computed based on the parameters obtained in
 256 *Anchor-IRT*.

257 *gp-IRT* (Polo et al., 2024) is a mixture of the two approaches above: $\text{gp-IRT}(f, A) = \lambda \cdot \text{WS}(f, A) +$
 258 $(1 - \lambda) \cdot \text{p-IRT}(f, A)$ where $\lambda \in [0, 1]$.

ability-IRT Kipnis et al. (2024) is a two-stage method that uses the anchor set A as a diagnostic tool rather than just a miniature test. First, it uses a pre-calibrated IRT model to estimate a latent “ability” score, $\hat{\theta}^f$, from the target model’s pattern of correct and incorrect responses on A . Second, a pre-trained regressor, g , predicts the final performance S^f using both the simple anchor set accuracy \hat{S}_A^f and this more informative ability score $\hat{\theta}^f$ as input features. The final prediction is given by $S^f = g(\hat{S}_A^f, \hat{\theta}^f)$, leveraging a deeper measure of the model’s capability to improve the estimate.

How DISCO differs. Previous prediction methods rely on scalar summaries of performance, such as the (weighted or corrected) accuracy on the anchor set. In contrast, our approach leverages a much richer signal: the **model signature**, defined as the concatenation of the model’s raw outputs on the selected samples. By learning a direct mapping from the high-dimensional signature to the final performance, we bypass the complexities of psychometric modeling and demonstrate that a simpler, more direct approach can be more effective.

4.2.2 DISCO PREDICTION

Given a smaller set of test dataset $\mathcal{D}_{\text{DISCO}}$, we estimate the performance of a model f as closely as possible to the true full test performance $r(f, \mathcal{D})$. We deliberately opt for simple approaches here, in order to make a point that simple is best; we also compare against a rather complex prior work and show that our simple method **outperforms it**. Our performance prediction framework is depicted in Figure 3.

Model signatures. We hypothesise that models with similar output patterns on $\mathcal{D}_{\text{DISCO}}$ will exhibit similar performance. To capture this pattern, we define a **model signature** as the concatenation of the model’s outputs on $\mathcal{D}_{\text{DISCO}}$: $f(\mathcal{D}_{\text{DISCO}}) := [f(x_1), \dots, f(x_L)]$.

Such function signature may have a large dimensionality, as it is the product of model output dimensionality (e.g. 1000 for ImageNet) and the number of selected samples $|\mathcal{D}_{\text{DISCO}}|$ (e.g. can go up to 50k for ImageNet validation set). To reduce the storage burden and improve generalizability, we consider applying a dimensionality reduction technique based on principal component analysis (PCA): $Q \circ f(\mathcal{D}_{\text{DISCO}})$.

KNN prediction. Built on the hypothesis that the similarities in function signature imply performance similarity, we consider the kNN predictor based on a held-out set of models \mathcal{F} . Given a function f to evaluate, we identify the K most similar models in \mathcal{F} using the Euclidean distance between their signatures after dimensionality reduction. We estimate f ’s performance by averaging the performances of the K most similar models.

Parametric mapping. We also consider a parametric prediction variant. A single parametric mapping R is trained for the prediction of model performance. As the training set, we use M model signatures $Q \circ f_1(\mathcal{D}_{\text{DISCO}}), \dots, Q \circ f_M(\mathcal{D}_{\text{DISCO}})$ for \mathcal{F} as the training set for the regression problem of training a mapping $R(\cdot)$ to let $R \circ Q \circ f_m(\mathcal{D}_{\text{DISCO}})$ approximate $\hat{r}(f, \mathcal{D})$. The predictor R can be implemented using a neural network, linear regression, or a Random Forest, for example.

5 EXPERIMENTS

In this section, we introduce the experimental setup (§5.1), present the main results of Diversifying Sample Condensation (DISCO) in language domain (§5.2), analyse contributing factors (§5.3), and demonstrate that the method is domain-agnostic and can also be successfully applied to the vision domain (§5.4).

5.1 SETUP

In this section we describe our experimental setup: used datasets, models, model splits, metrics, and evaluation protocol.

Datasets. We evaluate DISCO on four widely used language modeling benchmarks: MMLU (Hendrycks et al., 2021), HellaSwag (Zellers et al., 2019) Winogrande (Sakaguchi et al., 2021), and ARC (Clark et al., 2018). Details on the benchmarks can be seen in § A.

324 **Models.** Building on the TinyBenchmarks framework (Polo et al., 2024), we evaluate 424 large
 325 language models (LLMs) from Hugging Face’s Open LLM Leaderboard (Fourrier et al., 2024). The
 326 models cover GPT- (Radford et al., 2019), LLaMA- (Touvron et al., 2023), DeepSeek- (DeepSeek-AI
 327 et al., 2025), and BERT-style (Devlin et al., 2019) architectures, with model sizes ranging from 1.3
 328 billion to 72 billion parameters.

329 **Model split.** DISCO is based on a meta-model approach where a predictor is constructed based
 330 on the model signatures of a pool of source models \mathcal{F} and tested on a disjoint set of **target** models.
 331 This approach has traditionally been criticised for its dependency on the set of existing models:
 332 the **predictor** may fail to retain performance with unforeseen changes in future models. To address
 333 this concern, we introduce the *chronological split*, where the source models \mathcal{F} consist of models
 334 published before January 13, 2024 and the meta test set consists of models after the cutoff date. The
 335 train-test ratio is 9:1.

336 **Metrics.** We evaluate DISCO and baseline approaches using two complementary metrics. First, the
 337 Mean Absolute Error (*MAE*) of the model accuracies, reported as percentage points (%p), captures
 338 the absolute error of accuracy prediction. Second, to assess the consistency of the relative ordering
 339 of models, we report the Spearman rank correlation (*Rank*) in model ranking between the true and
 340 estimated model performances.

341 **Evaluation.** Following the overview of the solution to the efficient evaluation problem in § 4, our
 342 protocol for evaluating methods looks as follows:

343 *Training.*

- 345 • Input: source models \mathcal{F} , full test dataset \mathcal{D} , parameter K .
- 346 • Output: set of anchor datapoints A_K , predictor.

- 348 1. Evaluate source models \mathcal{F} on full test dataset \mathcal{D} .
- 349 2. Calculate performance $S_{\mathcal{F}}$ of source models on the full test dataset.
- 350 3. Use model outputs from the previous steps and optionally ground truth labels to select a set
 351 A_K of K anchor datapoints with respective selection method (PDS/JSD, IRT, etc) explained
 352 in § 4.1.
- 354 4. Train respective predictor (Random Forest, gp-IRT, ability-IRT, etc) explained in § 4.2.2 to
 355 predict $S_{\mathcal{F}}$ from outputs of source models \mathcal{F} on A_K .

356 *Testing:*

- 358 • Input: target model (or test set of target models), set of anchor points A_K , predictor, ground
 359 truth performance S of target model on \mathcal{D} .
- 360 • Output: performance of efficient evaluation method.

- 362 1. Evaluate target model on anchor points A_K .
- 364 2. Use predictor to estimate \hat{S} performance of the target model on \mathcal{D} from its outputs on A_K .
- 366 3. Calculate performance of efficient evaluation method based on S and \hat{S} .

368 **5.2 MAIN RESULTS**

370 Table 1 shows the main results. Uniform random sampling, together with direct evaluation with the
 371 corresponding annotated labels, yields 3.45%p MAE and .916 rank correlation at 100 samples. The
 372 approaches introduced in tinyBenchmarks Polo et al. (2024) improve over this baseline, confirming
 373 their findings.

374 We measure the efficacy of DISCO in two steps: adopt model-signature approach on top of uniform
 375 random sample selections first, and then consider sampling according to predictive diversity scoring
 376 (PDS). Even without PDS, on uniform random samples, model signatures are achieving 1.81%p MAE
 377 and .933 rank correlation with Random Forest (RF), reaching the state-of-the-art performance with
 simple and practical ingredients. When PDS is further considered for sample selection, to diversify

378	379	Approach	Selection	Prediction	MMLU (14k)		HS (10k)		WG (1.3k)		ARC (1.2k)	
					§4.1	§4.2	MAE↓	Rank↑	MAE↓	Rank↑	MAE↓	Rank↑
381	Baseline	Random	Direct eval.	gp-IRT	3.45	0.916	2.85	0.839	3.60	0.827	2.61	0.898
382	tinyBenchmarks	Random	gp-IRT	2.79	0.922	1.96	0.819	1.64	0.928	2.22	0.921	
		Anchor-IRT	gp-IRT	3.25	0.922	2.19	0.830	2.24	0.850	4.55	0.708	
		Anchor-corr	gp-IRT	2.08	0.927	1.27	0.937	1.95	0.918	2.18	0.948	
385	metaBench	Best for val.	ability-IRT	2.08†	0.904†	0.80†	0.974†	1.23†	0.947†	1.14†	0.971†	
386	Model signature	Random	Sig. + kNN	1.82	0.912	1.49	0.899	1.58	0.920	2.30	0.905	
			Sig. + RF	1.81	0.933	1.36	0.938	1.29	0.926	1.72	0.938	
389	DISCO (ours)	High PDS	Sig. + kNN	1.31	0.972	1.32	0.956	1.19	0.951	1.96	0.937	
			Sig. + RF	1.07	0.987	1.01	0.984	1.00	0.967	1.47	0.971	
		High JSD	Sig. + kNN	1.14	0.975	1.50	0.944	1.26	0.955	2.11	0.939	
391			Sig. + RF	1.30	0.987	0.86	0.972	1.09	0.973	1.75	0.938	

Table 1: **DISCO achieves state-of-the-art test-set compression by using model signatures combined with PDS for accurate performance prediction.** Compression of MMLU, HellaSwag (HS), Winogrande (WG) and ARC datasets by DISCO (ours), tinyBenchmarks, metaBench and other baselines. For each dataset, we reduce the test set to 100 data points (except for metaBench, see below), achieving inference cost reduction of 99.3% and 99.0%, on MMLU and HS, respectively. Sig. + RF/kNN stands for model signature with Random Forest/kNN prediction (§ 4.2.2). Mean absolute error (MAE) is the %p difference in accuracy, and Rank is the Spearman rank correlation between the true model ranking and the estimated model ranking.

† Results for metaBench are not directly comparable, as it requires more examples to converge: 150 datapoints for MMLU and ARC (+50%), 450 for HS (+350%), and 200 for WG (+100%). See § D for confidence intervals.

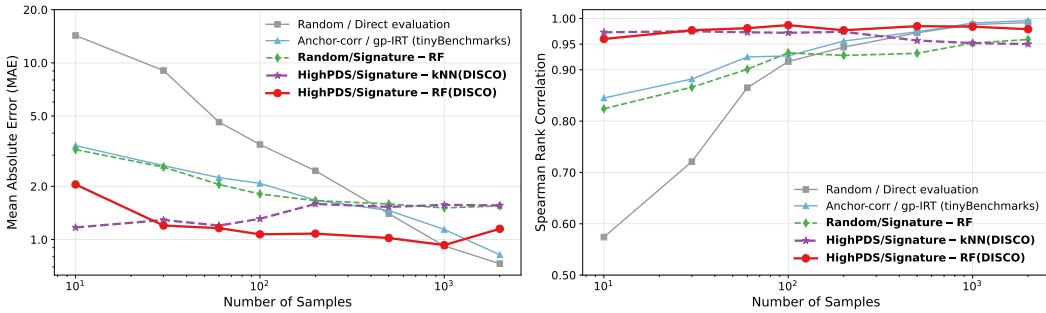


Figure 5: **MMLU performance estimation vs. compression rates.** Mean absolute error (MAE), measured in %p difference in accuracy, and the Spearman rank correlation between the true model ranking and the estimated model ranking are shown. At 100 samples, the results are identical to Table 1. **Main observations:** DISCO hits a better efficiency-precision trade-off across all range of compression rates. For extreme compression rate, kNN is a better choice than random forest (RF).

the model outputs, we achieve 1.07% MAE and .987 rank correlation (see § C for qualitative comparison of predicted ranks for DISCO vs direct evaluation), demonstrating a significant leap from the prior state of the art from tinyBenchmarks Polo et al. (2024) from ICML 2024.

To provide an understanding of the distributional comparison of the true model performances and the estimated performances, we show a scatter plot in Figure 4. As signified by the high Pearson’s correlation coefficient at .986, the estimated performances closely follow the true performances.

Figure 5 shows the performance against varying degrees of the test set reduction. We observe that the ranking of estimated evaluation methodologies does not change much across a wide range of degrees of reduction. In particular, our DISCO is consistently the best method across all ranges of number of samples involved. For

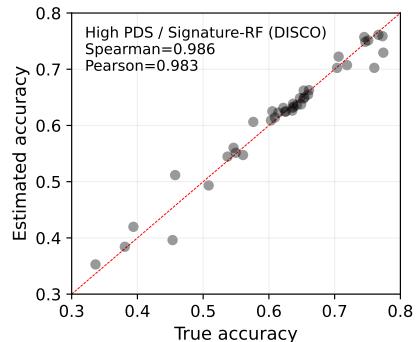


Figure 4: **True and estimated performance on MMLU.** Scatter plot of performances of 40 models.

432 the extreme rates of compression, at 10 samples, the non-
 433 parametric performance predictor of kNN yields better performance than the parametric Random
 434 Forest, suggesting that non-parametric approaches may be more suitable at extreme compression.
 435

436 5.3 FACTORS ANALYSIS

439 We analyse the impact of several design choices involved
 440 in our DISCO on MMLU dataset. See Table 2 for an
 441 overview.

442 **Model split.** In a recent benchmark for efficient LLM eval-
 443 uation Zhang et al. (2025), the authors observed that pre-
 444 diction performance drops sharply when test models out-
 445 perform training models. We extend this idea by replacing
 446 performance-based splits with chronological splits, train-
 447 ing on older models and testing on newer ones. This bet-
 448 ter reflects real-world usage, whereas performance-based
 449 splits create an artificial stress test.

450 For this purpose, we introduced the *chronological split* in
 451 §5.1. We examine the impact of this model splitting on the
 452 result. We observe that our DISCO is robust to the choice
 453 of splitting strategy. Chronological splitting yields a rank
 454 correlation of .987, which is nearly identical to the .986
 455 obtained with uniform splitting (Table 2 (a)).

456 **Stratification.** We measure the efficacy of the stratifica-
 457 tion strategy in (Polo et al., 2024) where equal numbers of
 458 anchor points are selected from each of 57 tasks in MMLU
 459 dataset (Table 2 (b)). We find that stratification (.978) is
 460 not effective when data points are sampled according to
 461 PDS (.987).

462 **Number of source models.** We analyse the sensitivity of
 463 DISCO to the number of source models $|\mathcal{F}|$ (Table 2 (c)).
 464 With only 100 models (.969 rank correlation), it already
 465 outperforms TinyBenchmarks, which uses all 382 available source models (.927 in Table 1). As the
 466 number of source models increases, rank correlation steadily improves, reaching a maximum of .987
 467 for $|\mathcal{F}| = 382$.

468 **Dimensionality reduction.** We compare PCA with different target dimensions to Uniform Mani-
 469 fold Approximation and Projection (UMAP) (McInnes et al., 2020) for dimensionality reduction
 470 (Table 2 (d)). We notice that dimensionality reduction helps reduce potential overfitting: without it
 471 (using all 3100 dimensions), the correlation is .918, while with PCA at 256 dimensions, it improves
 472 to .987. Overall, PCA outperforms UMAP and remains robust across a wide range of dimensions.

473 **Prediction model.** We compare consider a wide range of prediction models (Table 2 (e)). Random
 474 Forest achieves the highest rank correlation of .987, outperforming all other methods.

476 5.4 RESULTS FOR VISION DOMAIN

478 In this section, we give a quick overview of the DISCO applied to the vision domain. For detailed
 479 results, see § I.

481 **Setup.** We use ImageNet-1k (Russakovsky et al., 2015) with 1.28M images and 400 pretrained models
 482 from timm (Wightman, 2019), spanning convolutional (Krizhevsky et al., 2012) and transformer
 483 (Dosovitskiy et al., 2021) architectures (0.3M–300M parameters). Following the language domain,
 484 we adopt a *chronological split* with cutoff 5 April 2023 (88:12 train–test). Performance is evaluated
 485 using mean absolute error (MAE) and Spearman rank correlation. [See details on baselines for the](#)
[vision domain in § I.2.](#)

Split	Rank	Method	Dims	Rank
Chrono.	0.987	None	3100	0.918
Uniform	0.986	UMAP	64	0.982
(a) Model split		UMAP	128	0.970
		UMAP	256	0.970
Strat.	Rank	PCA	32	0.983
Yes	0.978	PCA	64	0.987
No	0.987	PCA	128	0.987
		PCA	256	0.987
		PCA	300	0.985
(b) Stratification		(d) Dim reduction		
		Method		Rank
$ \mathcal{F} $	Rank	kNN	0.971	
3	0.652	Rand. Forest	0.987	
10	0.787	2-layer MLP	0.959	
30	0.844	3-layer MLP	0.962	
100	0.969	Linear reg.	0.888	
300	0.975	Ridge reg.	0.918	
382	0.987	Lasso	0.908	
		Grad boosting	0.980	
(c) # Source models		(e) Prediction model		

Table 2: **Factor analysis for DISCO on MMLU.** Highlighted in bold are the default design choices for DISCO. All comparisons are based on 100 selected samples. [Added missing table \(d\).](#)

486 **Results.**

487 Our DISCO approach significantly compresses
 488 the ImageNet validation set by reducing it to just
 489 100 data points, achieving an inference cost re-
 490 duction of 99.8%. DISCO with uniform random
 491 sampling and random forest prediction on model
 492 signatures achieve 0.86% MAE and .944 rank
 493 correlation, surpassing the baseline. Using a pre-
 494 dictive diversity score (PDS) for data selection
 495 and a Random Forest for prediction, our method
 496 achieves a 0.63% MAE and .969 rank corre-
 497 lation, substantially outperforming the baseline
 498 (Table 3). The results demonstrate that DISCO
 499 is effective in both language and vision domains.

500 **DISCO (0.969/0.63) outperforms Lifelong**
 501 **Bench. (Prabhu et al., 2024) (0.838/2.06) and**
 502 **SSEPY (Fogliato et al., 2024) (0.762/3.05) in**
 503 **both rank correlation and MAE. The conclusion**
 504 **from language experiments holds: instead of**
 505 **selecting anchor points with wide coverage of**
 506 **sample difficulty, one should focus on selecting**
 507 **the points on which models typically disagree.**

509 **6 CONCLUSION**

511 Evaluating ML models is increasingly expensive
 512 due to larger models, datasets, and benchmarks.

513 It is especially true for general-purpose LLMs requiring broad evaluation.

514 We propose DISCO, which selects a small informative subset of the evaluation data and estimates
 515 model performance from predictions on it. DISCO cuts evaluation costs by over 99% with minimal
 516 error and consistently outperforms prior methods.

517 This enables practical use: efficient evaluation on limited compute, frequent performance tracking
 518 during training, and cheap end-user checks of deployed models.

520 **Limitations.** The main limitation of DISCO is robustness to distribution shifts in the model population.
 521 Shifts can arise from new architectures, training methods, or objectives, introducing patterns unseen
 522 during training and reducing estimator accuracy. Future work could address this with adaptive sample
 523 selection or periodic retraining on newer models (see details in § F).

524 **We also discuss unsuitable tasks for DISCO.** The main constraint is that DISCO requires predictive
 525 probabilities for several predefined answer choices for each question. These answer choices corre-
 526 spond to the classes in Proposition 1 in the original submission. That makes DISCO not suitable
 527 for open-ended generation tasks such as translation or summarization. Applying DISCO to such
 528 tasks would first require defining sets of correct and incorrect outputs. We leave such experiments for
 529 future work.

530 **REFERENCES**

531 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
 532 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
 533 *arXiv preprint arXiv:1803.05457*, 2018.

534 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
 535 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
 536 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
 537 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
 538 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fuli Luo, Guangbo Hao,
 539

Approach	Selection	Prediction	IN val (50k)	
			§4.1	§4.2
Lifelong Bench.	Random	Direct eval.	3.03	0.652
	Uniform	Weighted sum	2.06	0.838
	correctness	Weighted sum	3.05	0.762
SSEPY	Uniform	Sig. + kNN	1.72	0.808
	confidence	Sig. + RF	0.86	0.944
Model signature	Random	Sig. + kNN	1.68	0.819
		Sig. + RF	0.63	0.969
DISCO (ours)	High PDS			

Table 3: **DISCO compression of ImageNet validation dataset.** We evaluate the generalisation of our DISCO to the computer vision domain. We reduce the test set to 100 anchor points. The main metrics are mean absolute error (MAE), measured in %p difference in accuracy, and the Spearman rank correlation (Rank) between the true model ranking and the estimated model ranking. **Main observations:** (1) Same as for language experiments, model signature is an effective strategy for performance estimation. (2) Using PDS on top improves performance even more. **Added new baselines (Life-Long bench and SSEPY).**

540 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
 541 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
 542 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
 543 Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
 544 Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
 545 Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
 546 Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
 547 Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shengfeng Ye, Shiyu Wang,
 548 Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
 549 Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
 550 Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
 551 Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
 552 Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
 553 Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
 554 Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
 555 Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
 556 Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
 557 He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
 558 Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
 559 Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
 560 Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
 561 Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
 562 Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
 URL <https://arxiv.org/abs/2501.12948>.

Weijian Deng and Liang Zheng. Are labels always necessary for classifier accuracy evaluation? In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 15069–15078, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pp. 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL <https://aclanthology.org/N19-1423/>.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale, 2021. URL <https://arxiv.org/abs/2010.11929>.

578 Riccardo Fogliato, Pratik Patil, Mathew Monfort, and Pietro Perona. A framework for efficient model
579 evaluation through stratification, sampling, and estimation. In *European Conference on Computer
580 Vision*, pp. 140–158. Springer, 2024.

Clémentine Fourrier, Nathan Habib, Alina Lozovskaya, Konrad Szafer, and Thomas Wolf. Open LLM leaderboard v2. https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard. 2024.

B. Fuglede and F. Topsøe. Jensen-shannon divergence and hilbert space embedding. In *International Symposium on Information Theory, 2004. ISIT 2004. Proceedings.*, pp. 31–, 2004. doi: 10.1109/ISIT.2004.1365067

Vipul Gupta, Candace Ross, David Pantoja, Rebecca J. Passonneau, Megan Ung, and Adina Williams. Improving model evaluation using SMART filtering of benchmark datasets. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 4595–4615, Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.nacl-long.235. URL <https://aclanthology.org/2025.nacl-long.235/>.

594 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 595 Steinhardt. Measuring massive multitask language understanding. *Proceedings of the International*
 596 *Conference on Learning Representations (ICLR)*, 2021.

597

598 Valentin Hofmann, David Heineman, Ian Magnusson, Kyle Lo, Jesse Dodge, Maarten Sap, Pang Wei
 599 Koh, Chun Wang, Hannaneh Hajishirzi, and Noah A. Smith. Fluid language model benchmarking.
 600 In *Second Conference on Language Modeling*, 2025. URL <https://openreview.net/forum?id=mxcCg9YRqj>.

601

602 Zhengyu Hu, Jieyu Zhang, Yue Yu, Yuchen Zhuang, and Hui Xiong. How many validation labels do
 603 you need? exploring the design space of label-efficient model ranking. *ArXiv*, abs/2312.01619,
 604 2023. URL <https://api.semanticscholar.org/CorpusId:265610019>.

605

606 Yuheng Huang, Jiayang Song, Qiang Hu, Felix Juefei-Xu, and Lei Ma. Active testing of large
 607 language model via multi-stage sampling. *arXiv preprint arXiv:2408.03573*, 2024.

608

609 Disi Ji, Robert L Logan, Padhraic Smyth, and Mark Steyvers. Active bayesian assessment of black-
 610 box classifiers. In *Proceedings of the AAAI Conference on Artificial Intelligence*, pp. 7935–7944,
 611 2021.

612

613 Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang, Shayne Longpre, Hwaran Lee, Sangdoo Yun,
 614 Seongjin Shin, Sungdong Kim, James Thorne, et al. Prometheus: Inducing fine-grained eval-
 615 uation capability in language models. In *The Twelfth International Conference on Learning*
 616 *Representations*, 2023.

617

618 Alex Kipnis, Konstantinos Voudouris, Luca M. Schulze Buschoff, and Eric Schulz. metabench – a
 619 sparse benchmark of reasoning and knowledge in large language models. In *unknown*, 2024. URL
 620 <https://api.semanticscholar.org/CorpusId:271269996>.

621

622 Jannik Kossen, Sebastian Farquhar, Y. Gal, and Tom Rainforth. Active testing: Sample-efficient
 623 model evaluation. In *International Conference on Machine Learning*, 2021. URL <https://arxiv.org/pdf/2103.05331.pdf>.

624

625 Jannik Kossen, Sebastian Farquhar, Yarin Gal, and Thomas Rainforth. Active surrogate estimators:
 626 An active learning approach to label-efficient model evaluation. *Advances in Neural Information*
 627 *Processing Systems*, 35:24557–24570, 2022.

628

629 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
 630 convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Wein-
 631 berger (eds.), *Advances in Neural Information Processing Systems*, volume 25. Curran Asso-
 632 ciates, Inc., 2012. URL https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

633

634 Yang Li, Jie Ma, Miguel Ballesteros, Yassine Benajiba, and Graham Horwood. Active evaluation ac-
 635 quisition for efficient LLM benchmarking, 2025. URL <https://openreview.net/forum?id=tKnPtyDt6H>.

636

637 Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
 638 Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al. Holistic evaluation of language
 639 models. *arXiv preprint arXiv:2211.09110*, 2022.

640

641 Frederic M Lord and Melvin R Novick. *Statistical theories of mental test scores*. IAP, 2008.

642

643 Rupak Majumdar and Filip Niksic. Why is random testing effective for partition tolerance bugs?
 644 *Proceedings of the ACM on Programming Languages*, 2(POPL):1–24, 2017.

645

646 Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
 647 projection for dimension reduction, 2020. URL <https://arxiv.org/abs/1802.03426>.

648

649 Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
 650 a benchmark for general ai assistants. In *The Twelfth International Conference on Learning*
 651 *Representations*, 2023.

648 Yotam Perlitz, Elron Bandel, Ariel Gera, Ofir Arviv, Liat Ein-Dor, Eyal Shnarch, Noam Slonim,
 649 Michal Shmueli-Scheuer, and Leshem Choshen. Efficient benchmarking of language models.
 650 *arXiv preprint arXiv:2308.11696*, 2023.

651

652 Felipe Maia Polo, Lucas Weber, Leshem Choshen, Yuekai Sun, Gongjun Xu, and Mikhail Yurochkin.
 653 tinybenchmarks: evaluating LLMs with fewer examples. In *Forty-first International Conference on*
 654 *Machine Learning*, 2024. URL <https://openreview.net/forum?id=qAml3FpfhG>.

655

656 Ameya Prabhu, Vishaal Udandarao, Philip Torr, Matthias Bethge, Adel Bibi, and Samuel Albanie.
 657 Efficient lifelong model evaluation in an era of rapid progress. In *The Thirty-eighth Annual*
 658 *Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=A7wC1CTkY1>.

659

660 Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
 661 models are unsupervised multitask learners. *OpenAI blog*, 2019.

662

663 Tim Rädsch, Leon Mayer, Simon Pavicic, A Emre Kavur, Marcel Knopp, Bariş Öztürk, Klaus
 664 Maier-Hein, Paul F Jaeger, Fabian Isensee, Annika Reinke, et al. Bridging vision language model
 665 (vlm) evaluation gaps with a framework for scalable and cost-effective benchmark generation.
 666 *arXiv preprint arXiv:2502.15563*, 2025.

667

668 Alexander Rubinstein, Luca Scimeca, Damien Teney, and Seong Joon Oh. Scalable ensemble
 669 diversification for ood generalization and detection. *arXiv preprint arXiv:2409.16797*, 2024.

670

671 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
 672 Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
 673 Imagenet large scale visual recognition challenge, 2015. URL <https://arxiv.org/abs/1409.0575>.

674

675 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
 676 adversarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106,
 677 2021.

678

679 Igal Sason. On reverse pinsker inequalities. *arXiv preprint arXiv:1503.07118*, 2015.

680

681 Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
 682 Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
 683 imitation game: Quantifying and extrapolating the capabilities of language models. *arXiv preprint*
 684 *arXiv:2206.04615*, 2022.

685

686 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 687 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
 688 Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
 689 models, 2023. URL <https://arxiv.org/abs/2302.13971>.

690

691 Rajan Vivek, Kawin Ethayarajh, Diyi Yang, and Douwe Kiela. Anchor points: Benchmarking models
 692 with much fewer examples. *arXiv preprint arXiv:2309.08638*, 2023.

693

694 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
 695 A multi-task benchmark and analysis platform for natural language understanding. *arXiv preprint*
 696 *arXiv:1804.07461*, 2018.

697

698 Ross Wightman. Pytorch image models. [https://github.com/rwightman/](https://github.com/rwightman/pytorch-image-models)
 699 *pytorch-image-models*, 2019.

700

701 Peiwen Yuan, Yueqi Zhang, Shaoxiong Feng, Yiwei Li, Xinglin Wang, Jiayi Shi, Chuyi Tan, Boyuan
 702 Pan, Yao Hu, and Kan Li. Beyond one-size-fits-all: Tailored benchmarks for efficient evaluation.
 703 *arXiv preprint arXiv:2502.13576*, 2025.

704

705 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
 706 really finish your sentence? In *Proceedings of the 57th Annual Meeting of the Association for*
 707 *Computational Linguistics*, 2019.

702 Guanhua Zhang, Florian E Dorner, and Moritz Hardt. How benchmark prediction from fewer data
703 misses the mark. *arXiv preprint arXiv:2506.07673*, 2025.
704

705 Kaichen Zhang, Bo Li, Peiyuan Zhang, Fanyi Pu, Joshua Adrian Cahyono, Kairui Hu, Shuai Liu,
706 Yuanhan Zhang, Jingkang Yang, Chunyuan Li, and Ziwei Liu. Lmms-eval: Reality check on
707 the evaluation of large multimodal models, 2024. URL <https://arxiv.org/abs/2407.12772>.
708

709 Hongyu Zhao, Ming Li, Lichao Sun, and Tianyi Zhou. Bento: Benchmark task reduction with
710 in-context transferability. *arXiv preprint arXiv:2410.13804*, 2024.
711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **DISCLAIMER FOR USE OF LLMs**
757758 We primarily used LLMs in coding co-pilot applications to facilitate experimentation and help with
759 plotting code for result presentation. LLMs were also used as writing tools to assist in refining the
760 paper. However, the final version was carefully reviewed and finalized by the authors. No LLMs
761 were used in ideation and experimental design.
762763 **A EXTENDED EXPERIMENTAL SETUP**
764765 **Datasets.** We evaluate DISCO on four widely used language modeling benchmarks:
766767

- 768 • Massive Multitask Language Understanding (MMLU) (Hendrycks et al., 2021) question-
769 answering dataset that covers 57 tasks about world knowledge and problem-solving ability.
- 770 • HellaSwag (Zellers et al., 2019) dataset that focuses on commonsense natural language
771 inference.
- 772 • Winogrande (Sakaguchi et al., 2021): dataset of 273 expert-crafted pronoun resolution
773 problems originally designed to be unsolvable for statistical models.
- 774 • (AI2 Reasoning Challenge (ARC)) (Clark et al., 2018): question-answering dataset that
775 contains only natural, grade-school science questions (authored for human tests) and requires
776 knowledge and reasoning.

777778 **B COMPUTATIONAL COSTS**
779780 We report the space–time complexity for the main stages of DISCO, as well as the cost of direct
781 evaluation of a target model. The numbers correspond to a single H100 GPU and are extrapolated
782 from evaluations of five diverse 32B LLMs on MMLU (standard deviation across 5 runs).
783784 **B.1 DISCO PIPELINE OVERVIEW**
785786 The DISCO pipeline consists of two stages: an **offline** stage (run once) and an **online** stage (run for
787 each new target model).
788789 **Offline Stage**
790791

- 792 • Evaluate M source models on the full test dataset ($M = 385$ in this experiment)
- 793 • Store source model outputs
- 794 • Select 100 anchor points that maximize PDS/JSD
- 795 • Concatenate outputs on anchor points to form model signatures
- 796 • Train a predictor to estimate model performance on the full test dataset from these signatures

797798 **Online Stage**
799800

- 801 • Evaluate one target model on the 100 anchor points
- 802 • Store target model outputs
- 803 • Concatenate to obtain the target model signature
- 804 • Run the predictor to estimate performance on the full test dataset

805806 For every target model, the anchor points and predictor trained offline are reused.
807808 **B.2 COST METRICS**
809

810 The majority of compute is required by the offline stage (3284 GPU-hours).

Metric	Value
Offline computation cost	3284.05 ± 592.90 GPU-hours
Outputs storage (offline)	86.54 MB
Signatures storage (offline)	400 KB
Online computation cost	0.07 ± 0.01 GPU-hours
Outputs storage (online)	224.78 KB
Signatures storage (online)	1 KB
Direct evaluation cost	8.53 ± 1.54 GPU-hours
Computation savings	8.46 ± 1.54 GPU-hours

B.3 BREAK-EVEN ANALYSIS: HOW MANY EVALUATIONS JUSTIFY DISCO SETUP?

DISCO breaks even at **389 evaluations**. Since each DISCO evaluation saves 8.46 GPU-hours per model (vs. 8.53 GPU-hours direct evaluation, minus 0.07 GPU-hours online DISCO cost), the break-even point is:

$$389 = \frac{3284}{8.46}.$$

In practice, hundreds of checkpoint evaluations naturally occur during model development. For example, a single OLMo-2-32B training run includes **753 checkpoints** on Hugging Face, already exceeding break-even.

In some cases, there is no need to evaluate source models at all if offline predictions are downloaded from platforms such as open-llm-leaderboard.

B.4 COMPARISON TO ALTERNATIVE APPROACHES

We briefly remind the pipelines of the compared methods:

- **Selection:** select a set of anchor points, i.e., a subset of the full test dataset based on different signals (random, IRT, model disagreement, etc.).
- **Prediction:** estimate model performance on the full test dataset from outputs on anchor points.

That is why we use “Selection” and “Prediction” columns to explain the difference between methods. See § 4.1 for details on selection methods, and § 4.2 for details on prediction methods.

Method	Selection	Prediction	Offline (GPU-h)	Online (GPU-s)
Baseline	– (use all samples)	Direct eval	–	30739 ± 5514
Baseline	Random	Direct eval	–	218 ± 39
tinyBenchmarks	Random	gp-IRT	3284 ± 592	219 ± 39
tinyBenchmarks	Anchor-corr	gp-IRT	3284 ± 592	219 ± 39
tinyBenchmarks	Anchor-IRT	gp-IRT	3284 ± 592	219 ± 39
DISCO	High-PDS	RF	3284 ± 592	218 ± 39
DISCO	High-PDS	KNN	3284 ± 592	218 ± 39

The differences in online cost across methods are negligible (e.g., 219 vs. 218 GPU-seconds). Offline costs are equal up to rounding. Efficient evaluation methods allow to save $\frac{(30739-218)}{30739} \cdot 100\% = 99.3\%$ of evaluation cost in comparison to full evaluation.

C QUALITATIVE MEANING OF RANK CORRELATION IMPROVEMENTS

To justify the additional computation required for DISCO relative to direct evaluation, we illustrate how the increase in rank correlation from 91.6 (direct evaluation) to 98.7 (DISCO) in Table 3 translates into qualitative improvements in model ranking.

864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917

Figure 6 includes scatter plots of true vs. predicted ranks (see Figure 6). The direct-evaluation predictor demonstrates noticeable spread around the diagonal, while DISCO’s predictions align almost perfectly with it, indicating substantially more reliable ranking.

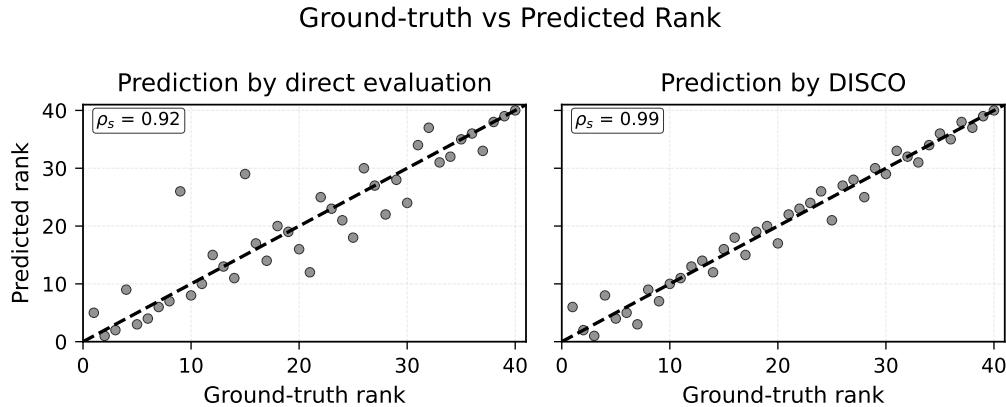


Figure 6: True vs. predicted rank comparison: direct evaluation vs. DISCO. ρ_s means Spearman rank correlation.

D ADDITIONAL EVALUATION RESULTS

D.1 REPORT CONFIDENCE INTERVALS

We report the standard deviation for the previously reported results on MMLU from Table 3, evaluated over one fixed chronological split and 5 independent runs.

We briefly remind the pipelines of the compared methods:

- **Selection:** select a set of anchor points, i.e., a subset of the full test dataset based on different signals (random, IRT, model disagreement, etc.).
- **Prediction:** estimate model performance on the full test dataset from outputs on anchor points.

That is why we use “Selection” and “Prediction” columns to explain the difference between methods. See § 4.1 for details on selection methods, and § 4.2 for details on prediction methods. MAE is mean absolute error; Rank is Spearman rank correlation.

Method	Selection	Prediction	MAE \downarrow	Rank \uparrow
Baseline	Random	Direct evaluation	3.45 ± 0.67	91.6 ± 2.6
tinyBenchmarks	Random	gp-IRT	2.79 ± 0.20	92.2 ± 2.3
tinyBenchmarks	Anchor-corr	gp-IRT	2.08 ± 0.20	92.7 ± 2.1
tinyBenchmarks	Anchor-IRT	gp-IRT	3.25 ± 0.49	92.2 ± 1.5
DISCO	High JSD	KNN	1.14 ± 0.00	97.5 ± 0.0
DISCO	High JSD	RF	1.30 ± 0.02	98.7 ± 0.1
DISCO	High PDS	KNN	1.31 ± 0.00	97.2 ± 0.0
DISCO	High PDS	RF	1.07 ± 0.04	98.7 ± 0.2

DISCO results are more stable than those of IRT and random sampling. This is because the only random component is Random Forest initialization. In contrast, IRT is trained using variational inference, where stochastic gradient optimization introduces additional randomness beyond model parameter initialization.

918 D.2 MULTIPLE TRAIN/TEST SPLIT FOR CHRONOLOGICAL EVALUATION
919920 To expand the number of chronological splits, we bootstrap 5 different train/test chronological
921 splits using the following protocol: for each run, we split models into 385 old and 40 new based on
922 timestamps, then bootstrap 346 source and 36 test models from these sets. Details on the chronological
923 split can be seen in § 5.1. Results for the new splits can be seen below.

925 Method	926 Selection	927 Prediction	928 MAE ↓	929 Rank ↑
925 Baseline	926 Random	927 Direct evaluation	928 2.85 ± 0.85	929 93.3 ± 3.0
925 tinyBenchmarks	926 Random	927 gp-IRT	928 2.42 ± 0.43	929 93.6 ± 2.5
925 tinyBenchmarks	926 Anchor-corr	927 gp-IRT	928 1.93 ± 0.31	929 92.9 ± 3.0
925 tinyBenchmarks	926 Anchor-IRT	927 gp-IRT	928 3.13 ± 0.33	929 90.2 ± 4.5
925 DISCO	926 High PDS	927 KNN	928 1.23 ± 0.09	929 97.0 ± 1.1
925 DISCO	926 High PDS	927 RF	928 1.25 ± 0.14	929 98.0 ± 0.6

933 Bootstrapped chronological splits slightly change the mean values (e.g., rank correlation from 98.6 to
934 98.0 and MAE from 1.06 to 1.25 for DISCO), but they do not alter the superiority of DISCO over
935 other baselines.

937 E SENSITIVITY OF DISCO TO MODEL CALIBRATION

940 To evaluate the sensitivity of DISCO to model calibration, we compared the Expected Calibration
941 Error (ECE) of target models with the Mean Absolute Error (MAE) between their true performance
942 and DISCO-predicted performance on MMLU. We observe a Pearson correlation of 0.49 between
943 MAE and ECE, indicating that better-calibrated models lead to more accurate performance (lower
944 MAE) predictions by DISCO.945 This phenomenon is explained by the information relationship between confidence and correctness.
946 For a perfectly calibrated model, the mapping between prediction confidence and correctness is deter-
947 ministic and monotonic, resulting in high mutual information. In contrast, for a highly miscalibrated
948 model (e.g., random guessing or uniformly confident but incorrect), prediction confidence becomes
949 statistically independent of correctness, leading to low mutual information. Consequently, the more
950 calibrated a model is, the more predictive its confidence patterns are of its true performance, and
951 therefore the more informative its signature is for DISCO performance.

952 The corresponding scatter plot is shown in Figure 7.

953
954 During this analysis, we observed that two factors are confounded in calibration metrics: (1) overall
955 confidence level, and (2) how well predictive uncertainty is reflected in confidence. To isolate the
956 effect of overall confidence, we compared MAE with mean prediction confidence separately. We find
957 a Pearson correlation of -0.47 between MAE and mean confidence, suggesting that overall model
958 confidence is the dominant component of ECE that influences DISCO performance.

959 Figure 8 presents the corresponding scatter plot.

962 F PERFORMANCE GAP EXPERIMENTS

964 In addition to source/target model splits discussed in § 5.3, we added experiments with a wider
965 performance gap between source and target models to identify potential failure modes for DISCO.
966 Inspired by (Zhang et al., 2025), we introduce a performance split with varying gaps. We sort all
967 models by their average performance and take the top-10% or top-30% (40 or 128 models) as target
968 models, while using the bottom-90% or bottom-50% (385 or 213 models) as source models. The
969 accuracy gap between the weakest target model and the strongest source model is 0.07%p or 8.18%p.

970 All model splits are summarized in Table 4.

971 Table 5 reports Spearman rank correlation.

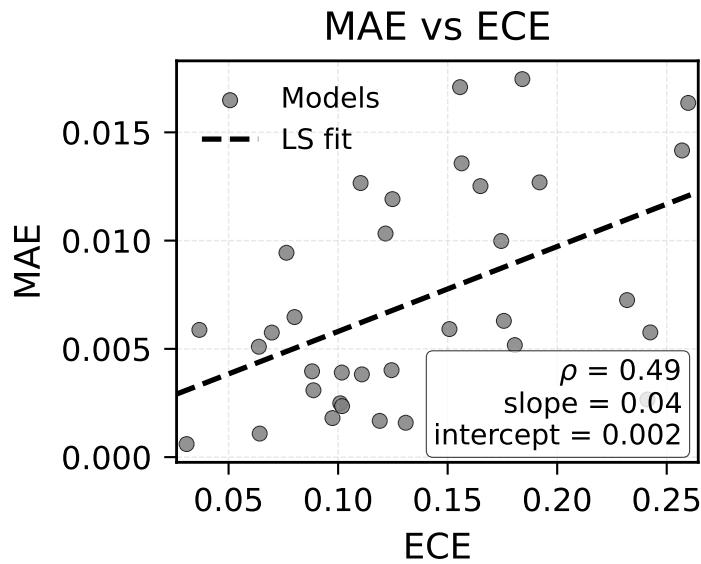


Figure 7: Correlation between DISCO prediction error (MAE) and Expected Calibration Error (ECE).

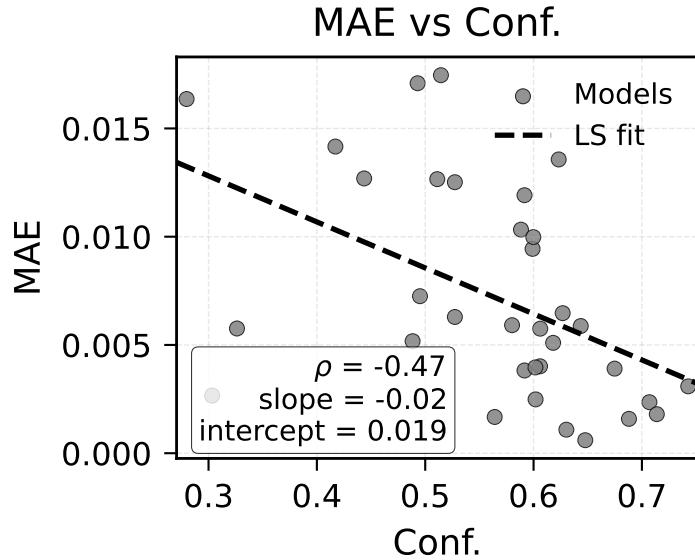


Figure 8: Correlation between DISCO prediction error (MAE) and mean model confidence.

	IID	Chron.	Performance w/o gap	Perf. w/ gap
Prelim. model sorting	–	By timestamp	By performance	By performance
Target models	Every 10th model	Top-10%	Top-10%	Top-30%
Source models	Everything else	Bottom-90%	Bottom-90%	Bottom-50%

Table 4: Source/target models splits.

		IID	Chron.	Perf. w/o gap	Perf. w/ gap
1026	Direct eval on random subset	92.1 ± 1.3	91.6 ± 2.6	89.8 ± 5.9	87.4 ± 5.7
1027	DISCO	98.6 ± 0.3	98.7 ± 0.2	98.1 ± 0.2	89.2 ± 1.0
1028	Mean difference (DISCO – direct eval)	+6.5	+7.1	+8.7	+1.8
1029					
1030					
1031					

Table 5: DISCO benefit vs direct evaluation on random subset across various source/target models splits.

For a source/target split with a performance gap, the difference between DISCO and direct evaluation is 1.8%p, which is lower than for the IID split (6.5%p), the chronological split (7.1%p), or the performance split without a gap (8.7%p).

While this scenario can be seen as a failure mode for DISCO, we believe that such a source/target performance gap does not happen in practice. Instead, the accuracies of source and target models are often mixed. There are two main reasons for that. First, when practitioners develop new models, their early versions are often worse than the best previously evaluated models. Second, it takes time before new models consistently outperform older ones. Infrequent extra evaluations can allow practitioners to always keep the performance gap low. That makes the performance split with a gap less realistic than other splits. **We thus conclude that DISCO does not break when the source and target model distributions differ, but only when the difference is unrealistically substantial.**

G MUTUAL INFORMATION AND JENSEN-SHANNON DIVERGENCE

In this section, we show that Mutual Information is equivalent to JSD in our setting. We present the setup and assumptions, then prove the proposition.

G.0.1 SETUP.

Let $m \sim \text{Unif}\{1, \dots, M\}$ be the index of a uniformly chosen model. Given m , the prediction on datapoint i has categorical law $P_{\hat{Y}_i|m}$. Define the ensemble mean distribution

$$P_{\hat{Y}_i} = \mathbb{E}_{m \sim \text{Unif}[M]} \left[P_{\hat{Y}_i|m} \right] = \frac{1}{M} \sum_{m=1}^M P_{\hat{Y}_i|m}.$$

Let $S(m)$ denote any statistic that is a deterministic function of m computed on \mathcal{D} (e.g. accuracy on \mathcal{D}).

G.0.2 ASSUMPTIONS.

Assumption A1 (Uniform prior). *The model index is uniformly distributed: $m \sim \text{Unif}\{1, \dots, M\}$.*

Assumption A2 (Deterministic predictions). *Conditional on m , each prediction \hat{Y}_i is fully determined by m (or more generally, any residual randomness is independent across i and independent of m).*

G.0.3 PROPOSITION.

Proposition 3. *Under Assumptions A2–A1, if $S(m)$ is injective, then*

$$\text{MI}_{m, \hat{Y}}(S(m); \hat{Y}_i) = \mathcal{H}_{\hat{Y}_i}(P_{\hat{Y}_i}) - \mathbb{E}_{m \sim \text{Unif}[M]} \left[\mathcal{H}_{\hat{Y}_i}(P_{\hat{Y}_i|m}) \right] =: \text{JSD}(\{P_{\hat{Y}_i|m}\}_{m=1}^M).$$

Proof. By Assumption A2 and since $S(m)$ is a deterministic function of m , we have the Markov chain

$$\hat{Y}_i \longleftrightarrow m \longleftrightarrow S(m).$$

If S is injective, then m is recoverable from $S(m)$, hence

$$I(S(m); \hat{Y}_i) = I(m; \hat{Y}_i).$$

1080 By the definition of mutual information,
 1081

$$1082 I(m; \hat{Y}_i) = \mathcal{H}_{\hat{Y}_i}(P_{\hat{Y}_i}) - \mathbb{E}_m[\mathcal{H}_{\hat{Y}_i}(P_{\hat{Y}_i|m})].$$

1084 *Marginal distribution (using Assumption A1):*
 1085

$$1086 P_{\hat{Y}_i} = \sum_{m=1}^M \Pr(m) P_{\hat{Y}_i|m} = \frac{1}{M} \sum_{m=1}^M P_{\hat{Y}_i|m}.$$

1088 Thus $\mathcal{H}_{\hat{Y}_i}(P_{\hat{Y}_i})$ is the entropy of the mixture distribution.
 1089

1090 *Conditional entropy (using Assumption A1):*
 1091

$$1092 \mathbb{E}_m[\mathcal{H}_{\hat{Y}_i}(P_{\hat{Y}_i|m})] = \frac{1}{M} \sum_{m=1}^M \mathcal{H}_{\hat{Y}_i}(P_{\hat{Y}_i|m}).$$

1095 *Combine:*
 1096

$$1097 I(m; \hat{Y}_i) = \mathcal{H}_{\hat{Y}_i}(P_{\hat{Y}_i}) - \frac{1}{M} \sum_{m=1}^M \mathcal{H}_{\hat{Y}_i}(P_{\hat{Y}_i|m}) =: \text{JSD}(\{P_{\hat{Y}_i|m}\}_{m=1}^M).$$

1099 \square

1100 H BOUNDS FOR JENSEN-SHANNON DIVERGENCE (JSD) VIA PREDICTIVE 1101 DIVERSITY SCORE (PDS)

1104 In this section, we show that JSD is bounded quadratically below and linearly above by PDS. We first
 1105 relate JSD to total variation (§ H.1), then show total variation is monotone in PDS (§ H.2), and then
 1106 combine these results in § H.3.

1107

1108 H.1 BOUNDS FOR JSD VIA TOTAL VARIATION (TV)

1110 We begin by showing that JSD is bounded quadratically below and linearly above by total variation.
 1111 We first introduce the setup with required definitions (§ H.1.1), then prove the proposition (§ H.1.2).

1112

1113 H.1.1 SETUP.

1114 Let $\{P_{\hat{Y}_i|m}\}_{m=1}^M$ be distributions on K classes. Define the mixture
 1115

$$1116 \bar{P} = \frac{1}{M} \sum_{m=1}^M P_{\hat{Y}_i|m}.$$

1119 **Definition 1** (Jensen–Shannon divergence).

$$1121 \text{JSD}(\{P_{\hat{Y}_i|m}\}) = \frac{1}{M} \sum_{m=1}^M D_{\text{KL}}(P_{\hat{Y}_i|m} \parallel \bar{P}) = \mathcal{H}(\bar{P}) - \frac{1}{M} \sum_{m=1}^M \mathcal{H}(P_{\hat{Y}_i|m}).$$

1123 **Definition 2** (Total variation). *For distributions P, Q on the same support,*

$$1125 \text{TV}(P, Q) = \frac{1}{2} \|P - Q\|_1.$$

1127 H.1.2 PROPOSITION.

1128 Now, we show that JSD is bounded quadratically below and linearly above by total variation.

1129 **Proposition 4** (JSD–TV sandwich bounds). *For any $M \geq 2$ distributions $\{P_{\hat{Y}_i|m}\}_{m=1}^M$ with mixture
 1130 \bar{P} ,*

$$1132 \frac{2}{\ln 2} \cdot \frac{1}{M} \sum_{m=1}^M \text{TV}(P_{\hat{Y}_i|m}, \bar{P})^2 \leq \text{JSD}(\{P_{\hat{Y}_i|m}\}_{m=1}^M) \leq \frac{M}{M-1} \log M \cdot \frac{1}{M} \sum_{m=1}^M \text{TV}(P_{\hat{Y}_i|m}, \bar{P}).$$

1134 *Proof. Lower bound.* By Pinsker's inequality (e.g. Equation 1 in (Sason, 2015)),
 1135

$$1136 D_{\text{KL}}(P\|Q) \geq \frac{2}{\ln 2} \text{TV}(P, Q)^2.$$

1138 Substituting $Q = \bar{P}$ and averaging over m yields the lower bound.

1139 *Upper bound.* Fix m . Write

$$1141 \bar{P} = \alpha P_{\hat{Y}_i|m} + (1 - \alpha)\zeta, \quad \alpha = \frac{1}{M}, \quad \zeta = \frac{1}{M-1} \sum_{s \neq m} P_{\hat{Y}_i|s}.$$

1143 Define $t(i) = \zeta(i)/P_{\hat{Y}_i|m}(i)$ when $P_{\hat{Y}_i|m}(i) > 0$ (set $t(i) = +\infty$ if $P_{\hat{Y}_i|m}(i) = 0, \zeta(i) > 0$). Then
 1144 $\mathbb{E}_{P_{\hat{Y}_i|m}}[t] = 1$ and

$$1146 D_{\text{KL}}(P_{\hat{Y}_i|m}\|\bar{P}) = \mathbb{E}_{P_{\hat{Y}_i|m}}[-\log(\alpha + (1 - \alpha)t)].$$

1147 Let $f(u) = -\log(\alpha + (1 - \alpha)u)$, $u \geq 0$. Then f is convex, decreasing, with $f(1) = 0$, $f(0) =$
 1148 $\log(1/\alpha) = \log M$. By convexity,

$$1150 f(u) \leq (1 - u)f(0) = (1 - u)\log M.$$

1151 Thus,

$$1153 D_{\text{KL}}(P_{\hat{Y}_i|m}\|\bar{P}) \leq \log M \cdot \mathbb{E}_{P_{\hat{Y}_i|m}}[(1 - t)] \leq \log M \cdot \mathbb{E}_{P_{\hat{Y}_i|m}}[(1 - t)_+].$$

1154 Now

$$1156 \mathbb{E}_{P_{\hat{Y}_i|m}}[(1 - t)_+] = \sum_i P_{\hat{Y}_i|m}(i) \max\{0, 1 - \zeta(i)/P_{\hat{Y}_i|m}(i)\} = \sum_i (P_{\hat{Y}_i|m}(i) - \zeta(i))_+.$$

1158 By the balance-of-deviations identity (§ 1),

$$1160 \sum_i (P_{\hat{Y}_i|m}(i) - \zeta(i))_+ = \text{TV}(P_{\hat{Y}_i|m}, \zeta).$$

1162 Finally, since $\bar{P} = \alpha P_{\hat{Y}_i|m} + (1 - \alpha)\zeta$, one has

$$1164 \text{TV}(P_{\hat{Y}_i|m}, \zeta) = \frac{M}{M-1} \text{TV}(P_{\hat{Y}_i|m}, \bar{P}).$$

1166 Combining yields

$$1167 D_{\text{KL}}(P_{\hat{Y}_i|m}\|\bar{P}) \leq \frac{M}{M-1} \log M \cdot \text{TV}(P_{\hat{Y}_i|m}, \bar{P}).$$

1169 Averaging over m gives the upper bound. \square

1170 **Remark 1.** The lower bound is quadratic in total variation, the upper bound linear. Thus, JSD
 1171 interpolates between quadratic growth near equality and linear growth in worst-case separation.

1173 H.2 BOUNDS FOR TOTAL VARIATION VIA PREDICTIVE DIVERSITY SCORE

1174 We next show that total variation is monotone in PDS. We introduce the setup with definitions and
 1175 lemmas (§ H.2.1), then prove the proposition (§ H.2.2).

1177 H.2.1 SETUP.

1179 Fix a class c . Let $X_m = P_{\hat{Y}_i|m}(c)$ and $\mu = \bar{P}(c)$. Define:

1180 **Definition 3** (Envelope and spread, per class).

$$1182 E_c = \max_m X_m - \mu, \quad U_c = \frac{1}{2M} \sum_{m=1}^M |X_m - \mu|.$$

1185 **Definition 4** (Predictive Diversity Score).

$$1187 \text{PDS}(\{P_{\hat{Y}_i|m}\}) = \sum_{c=1}^K \max_m P_{\hat{Y}_i|m}(c).$$

1188
 1189 **Lemma 1** (Balance-of-deviations identity). *For any a_1, \dots, a_M with $\sum_m a_m = 0$, writing $a_+ = \max\{0, a\}$,*

1190
 1191
$$\sum_{m=1}^M (a_m)_+ = \sum_{m=1}^M (a_m)_- = \frac{1}{2} \sum_{m=1}^M |a_m|.$$

 1192

1193
 1194 *Proof.* Decompose $a = a_+ - a_-$, $|a| = a_+ + a_-$. Summing and using $\sum_m a_m = 0$ gives

1195
 1196
$$\sum_m a_{m,+} - \sum_m a_{m,-} = 0 \quad \Rightarrow \quad \sum_m a_{m,+} = \sum_m a_{m,-}.$$

 1197

1198 Then

1199
 1200
$$\sum_m |a_m| = \sum_m (a_{m,+} + a_{m,-}) = 2 \sum_m a_{m,+}.$$

□

1201
 1202 Applying Lemma 1 with $a_m = X_m - \mu$ yields

1203
 1204
$$U_c = \frac{1}{M} \sum_{m: X_m > \mu} (X_m - \mu).$$

 1205

1206 H.2.2 PROPOSITION.

1207
 1208 Now, we show that total variation is monotone in PDS.

1209
 1210 **Proposition 5** (Spread–envelope bounds). *Use notation from Appendix H.2.1. For each class c , if at
 1211 most z models satisfy $X_m > \mu$, then*

1212
 1213
$$\frac{1}{M} E_c \leq U_c \leq \frac{z}{M} E_c.$$

 1214

1215 Aggregating over classes,

1216
 1217
$$\frac{1}{M} E \leq U \leq \frac{z}{M} E,$$

1218 where

1219
 1220
$$E = \sum_{c=1}^K E_c, \quad U = \sum_{c=1}^K U_c = \frac{1}{M} \sum_{m=1}^M \text{TV}(P_{\hat{Y}_i|m}, \bar{P}).$$

 1221

1222
 1223 *Proof.* If $E_c = 0$, then $X_m = \mu$ for all m so $U_c = 0$. Otherwise, let $m^* = \arg \max_m X_m$. Then

1224
 1225
$$U_c = \frac{1}{M} \sum_{m: X_m > \mu} (X_m - \mu) \geq \frac{1}{M} (X_{m^*} - \mu) = \frac{1}{M} E_c.$$

 1226

1227 For the upper bound, each positive term is at most E_c , and there are at most z such terms, hence

1228
 1229
$$U_c \leq \frac{z}{M} E_c.$$

1230 Summing over classes gives the aggregated bound. □

1231 H.3 FINAL SANDWICH INEQUALITY

1232
 1233 Finally, we combine results from § H.1.1 and § H.2 to show that JSD is bounded quadratically below
 1234 and linearly above by PDS.

1235
 1236 **Proposition 6** (JSD–PDS sandwich). *Use notation from Proposition 1.*

1237
 1238
$$\frac{2}{M^2 \ln 2} (\text{PDS}(\{P_{Y_i|m}\}) - 1)^2 \leq \text{JSD}(\{P_{\hat{Y}_i|m}\}) \leq \frac{M}{M-1} \log M \cdot (\text{PDS}(\{P_{Y_i|m}\}) - 1).$$

 1239

1240
 1241 *Proof.* From Theorem 4,

1242
 1243
$$\text{JSD} \geq \frac{2}{\ln 2} U^2, \quad \text{JSD} \leq \frac{M}{M-1} \log M \cdot U.$$

1242 Define

$$1243 \quad E := \sum_{c=1}^K E_c, \quad U := \sum_{c=1}^K U_c.$$

1246 By the definitions,

$$1247 \quad U = \sum_{c=1}^K \frac{1}{2M} \sum_{m=1}^M |P_{\hat{Y}_i|m}(c) - \bar{P}(c)| := \frac{1}{2M} \sum_{m=1}^M \|P_{\hat{Y}_i|m} - \bar{P}\|_1 := \frac{1}{M} \sum_{m=1}^M \text{TV}(P_{\hat{Y}_i|m}, \bar{P}),$$

1250 where $\bar{P} = P_{\hat{Y}_i} = \frac{1}{M} \sum_{m=1}^M P_{\hat{Y}_i|m}$, and

$$1253 \quad E = \sum_{c=1}^K \left(\max_m P_{\hat{Y}_i|m}(c) - \bar{P}(c) \right) = \text{PDS} - 1.$$

1255 From Proposition 5,

$$1257 \quad \frac{1}{M}(\text{PDS} - 1) \leq U \leq \frac{z}{M}(\text{PDS} - 1).$$

1258 Combining and noticing that $1 \leq z \leq M$ yields the quadratic lower bound and linear upper bound in
1259 $(\text{PDS} - 1)$. \square

1261 I VISION RESULTS

1263 We introduce the setup (§I.1), describe baselines (§I.2), and present results (§I.3).

1265 I.1 SETUP

1267 **Dataset.** We use ImageNet-1k (Russakovsky et al., 2015) with 1.28 million images. **Models.** We
1268 consider 400 models from `timm` (Wightman, 2019) that are pretrained on ImageNet. The models
1269 cover convolutional (Krizhevsky et al., 2012) and transformer (Dosovitskiy et al., 2021) architectures.
1270 Model sizes range from 0.3M to 300M parameters.

1271 **Model Split.** As in the language domain (§ 5.1), we use the *chronological split*. The cutoff date is 5
1272 April 2023. The train-test ratio of models is 88:12.

1273 **Metrics.** We use mean absolute error (MAE) and Spearman rank correlation between the true and
1274 predicted performances.

1276 **Evaluation.** Evaluation protocol follows the one in § 5.1

1278 I.2 ABOUT BASELINES FOR VISION DOMAIN

1279 Our work is not the first to propose efficient evaluation in the vision domain. The two closest methods
1280 are Lifelong Benchmark (Prabhu et al., 2024) (NeurIPS 2024) and SSEPY (Fogliato et al., 2024)
1281 (ECCV 2024). They propose efficient evaluation methods for visual models, using a similar two-stage
1282 framework for efficient evaluation in the language domain (see § 4 / Figure 2 of our submission):

- 1284 1. Select “important/representative” anchor points.
- 1285 2. Estimate model performance based on model outputs on the anchor points.

1287 In (Prabhu et al., 2024), mean correctness scores across source models are used to measure sample
1288 difficulty, and anchor points are selected by sampling every k -th datapoint after sorting them by
1289 difficulty (where $k = \frac{\#\text{all datapoints}}{\#\text{anchor points}}$). Final performance is predicted as a weighted sum of correctness
1290 scores predicted for each test datapoint. Predicted correctness scores are binary values indicating
1291 relative position (after sorting by difficulty) to the hardest anchor point the target model got right. In
1292 (Fogliato et al., 2024), confidence scores of the target model are used to measure sample difficulty.
1293 Then samples are clustered by difficulty with K-Means, and anchor points are selected as the
1294 centroids of the clusters. Final performance is predicted as a weighted sum of anchor correctness
1295 scores. Weights for the weighted sum are determined based on the corresponding cluster sizes using
1296 Horvitz-Thompson estimator.

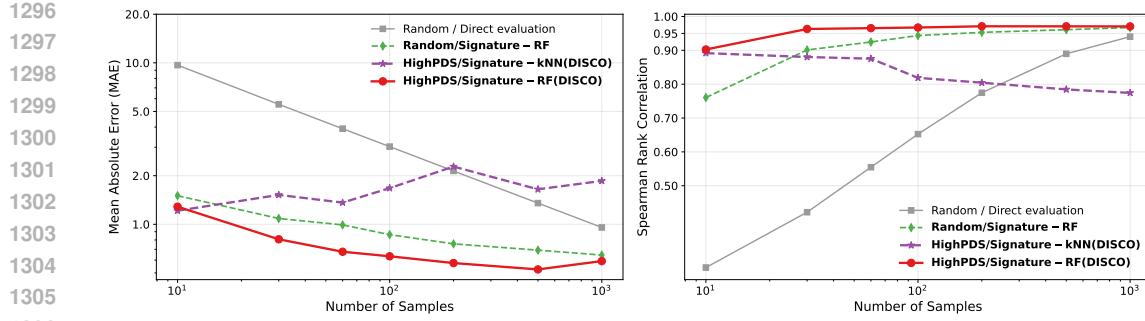


Figure 10: **ImageNet performance estimation vs. compression rates.** Mean absolute error (MAE), measured in %p difference in accuracy, and the Spearman rank correlation between the true model ranking and the estimated model ranking are shown. At 100 samples, the results are identical to Table 3. **Main observations:** Same as for language experiments DISCO hits a better efficiency-precision trade-off across all range of compression rates.

The main message of our paper is that for selecting anchor points for efficient evaluation, it is better to select **diversity-inducing data points** (DISCO) than to **make a good coverage of sample difficulty** (prior work). In § 5.2, we have shown that our approach beats prior approaches in the language domain.

Likewise, in the vision domain, the existing approaches (Prabhu et al., 2024; Fogliato et al., 2024) focus on a good coverage of sample difficulty rather than on maximizing per-sample information by seeking diversity-inducing data points. We test empirically in Table 3 whether the same conclusion holds in the vision domain by comparing DISCO to (Prabhu et al., 2024; Fogliato et al., 2024). As in Table 3 of the submission, MAE is the mean absolute error, and Rank indicates Spearman’s rank correlation.

We computed the results for these baselines ourselves, as the papers do not contain results on ImageNet. For fair comparison, we use the same setup as described in § I.1.

I.3 MAIN RESULTS

Table 3 shows the main results. See § 5.4 for their overview.

We evaluate the effectiveness of DISCO in two stages. First, we apply the model-signature approach using uniform random sampling. Then, we enhance it by selecting samples based on predictive diversity score (PDS). The results follow a similar trend to the language domain. With uniform random sampling, model signatures combined with Random Forest achieve 0.86%p MAE and a rank correlation of .944, significantly outperforming the naive baseline. Incorporating PDS further improves performance, reaching 0.63%p MAE and a rank correlation of .969.

To illustrate how well the estimated performances align with the true values, we present a scatter plot in Figure 9. The high Pearson correlation coefficient of .970 indicates a strong agreement between the two.

Figure 10 shows performance across varying levels of test set reduction. The relative ranking of evaluation methods remains largely stable, except for the kNN predictor, which degrades as the number of anchor points increases. Notably, DISCO consistently outperforms all baselines, even under extreme compression with as few as 10 samples.

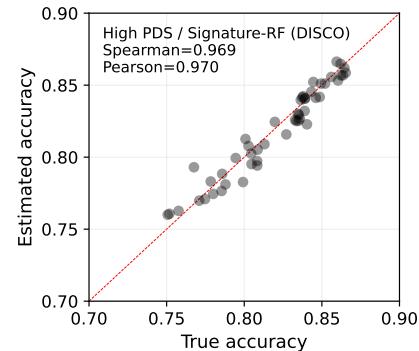


Figure 9: **True and estimated accuracy on ImageNet** for 50 models.