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ABSTRACT

Evaluating modern machine learning models has become prohibitively expensive.
Benchmarks such as LMMs-Eval and HELM demand thousands of GPU hours per
model. Costly evaluation reduces inclusivity, slows the cycle of innovation, and
worsens environmental impact. To address the growing cost of standard evaluation,
new methods focused on efficient evaluation have started to appear. The typical
approach follows two steps. First, select an anchor subset of data. Second, train a
mapping from the accuracy on this subset to the final test result. The drawback is
that anchor selection depends on clustering, which can be complex and sensitive to
design choices. We argue that promoting diversity among samples is not essential;
what matters is to select samples that maximise diversity in model responses. Our
method, Diversifying Sample Condensation (DISCO), selects the top-k samples
with the greatest model disagreements. This uses greedy, sample-wise statistics
rather than global clustering. The approach is conceptually simpler. From a theoret-
ical view, inter-model disagreement provides an information-theoretically optimal
rule for such greedy selection. DISCO shows empirical gains over prior meth-
ods, achieving state-of-the-art results in performance prediction across MMLU,
Hellaswag, Winogrande, and ARC.

1 INTRODUCTION

Test set samples
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Figure 1: Imbalance. More evaluation budget is spent
on less informative samples in test sets.

Model evaluation is becoming increasingly
costly. Models have grown in size, which makes
each inference expensive. Recent scaling of test-
time computation has further raised the cost per
task. End-user requirements have also broad-
ened, covering both the content of the output
and its style (Wang et al., 2018; Liang et al.,
2022; Kim et al., 2023; Zhang et al., 2024). As a
result, evaluation on modern benchmarks often
requires hundreds to thousands of GPU hours.
For instance, LMMs-Eval can take between 30
and 1400 hours on 8ˆA100 GPUs (Zhang et al.,
2024). HELM requires more than 4000 GPU
hours (Liang et al., 2022).

Several efficient evaluation approaches have emerged. A common framework works in two parts:
subset selection and performance prediction. The first part selects a static subset of anchor points from
the evaluation dataset. The second part predicts full benchmark performance by extrapolating from
accuracy on this subset. To select anchor points, existing methods often rely on clustering. Samples
are grouped by the similarity of responses they induce in a set of reference models (Vivek et al., 2023;
Polo et al., 2024). Variants of this framework include dynamic anchor selection (Hofmann et al.,
2025), modified prediction models (Kipnis et al., 2024), and new benchmarks for method comparison
(Zhang et al., 2025).

We seek to improve both parts of this framework. For subset selection, we argue that diversity among
samples is not essential. What matters is diversity in model responses. We prove that inter-model
disagreement is the most informative signal for estimating benchmark performance when the goal is
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to differentiate and rank models (Proposition 1). Evaluation should therefore focus on samples that
elicit varied responses (Figure 1). For performance prediction, we argue that existing methods add
unnecessary complexity by estimating hidden model parameters before predicting test performance
(Polo et al., 2024; Kipnis et al., 2024). We instead propose a direct route. Model signatures, defined as
the concatenation of outputs on the selected subset, serve as inputs to simple predictors of benchmark
performance. This framework is simpler, yet matches and surpasses more complex alternatives.

We validate these ideas through Diversifying Sample Condensation (DISCO). DISCO selects a
small, informative subset of evaluation samples by focusing on model disagreement. Disagreement
is measured by predictive diversity scoring (PDS, Rubinstein et al. (2024)), originally proposed for
out-of-distribution detection. A simple metamodel then predicts benchmark performance directly
from the model signatures on this subset. We evaluate DISCO in both language and vision domains.
On MMLU, for example, DISCO reduces evaluation cost by 99.3% (see § B.4) with only 1.07
percentage points of error. Compared with prior methods such as Anchor Points (Vivek et al., 2023),
TinyBenchmarks (Polo et al., 2024), and Metabench (Kipnis et al., 2024), DISCO achieves a stronger
efficiency–precision trade-off.

2 RELATED WORK

We review prior work relevant to our approach. We first highlight the escalating cost of evaluation for
contemporary large models and motivate the need for efficiency. We then survey prior attempts at
efficient benchmarking, covering instance and task reduction techniques. Finally, we describe our
novelty and contributions.

Cost of evaluation. The evaluation of modern large models is currently driven by increasingly
sophisticated benchmarks assessing a wide array of capabilities, from the foundational GLUE (Wang
et al., 2018) and the comprehensive HELM (Liang et al., 2022) to LMMs-Eval for multimodal models
(Zhang et al., 2024), the diverse BIG-bench (Srivastava et al., 2022), Prometheus for measuring
diverse LLM capabilities (Kim et al., 2023), and GAIA for general AI assistants (Mialon et al., 2023).
This progress comes at an escalating cost: models have grown significantly in size, making each
inference step more resource-intensive, while the scaling of test-time computations has dramatically
increased the per-task evaluation costs. Furthermore, end-user requirements have diversified to
encompass not only output content but also style and manner. Consequently, a single evaluation on
modern benchmarks can demand hundreds to thousands of GPU hours. For examples, LMMs-Eval
can require between 30 and 1400 hours on 8ˆA100 GPUs per model (Zhang et al., 2024; Polo et al.,
2024), and HELM evaluations can exceed 4000 GPU hours per model (Liang et al., 2022; Polo et al.,
2024).

Label-efficient evaluation. In the pre-LLM context, labelling a test set used to be a cost bottleneck
for evaluation. In this context, the concept of “active testing” has been explored, where labelling
budget is maximally assigned to information-rich samples (Majumdar & Niksic, 2017; Ji et al., 2021;
Deng & Zheng, 2021; Kossen et al., 2021; Hu et al., 2023; Kossen et al., 2022; Huang et al., 2024;
Fogliato et al., 2024). In our case, we are concerned with the inference costs of evaluation. As such,
active testing approaches are not directly applicable, as they require a full inference over the test set
to identify informative samples to label.

Efficient benchmarking. In the LLM era, benchmarks have diversified to measure multiple capa-
bilities and styles of model behaviours. Researchers have proposed strategies to build an efficient
benchmark in the first place (Perlitz et al., 2023; Rädsch et al., 2025). There were attempts to compress
multiple benchmarks, measuring an array of capabilities of LLMs, into a single one by eliminating
redundancies (Kipnis et al., 2024; Zhao et al., 2024; Yuan et al., 2025). Others have focused on
selection of small, informative subsets, also known as “Anchor point” approaches (Vivek et al., 2023;
Polo et al., 2024; Li et al., 2025; Gupta et al., 2025). Given an entire dataset, they compute a small
subset of data points according to the representativeness criterion, determined through the correctness
patterns of a large number of source models. Afterwards, the target model performance is estimated
based on weighted accuracy computation on the selected subset. In particular, tinyBenchmarks (Polo
et al., 2024) have adopted Item Response Theory (IRT) (Lord & Novick, 2008) to estimate model
performance in a principled manner. Hofmann et al. (2025) proposed an IRT-based approach to
LLM evaluation that selects anchor points dynamically for each model, guided by its predictions on
previously chosen anchors. To address the growing number of methods for efficient LLM evaluation,
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Figure 2: Problem overview. We aim at selecting a much smaller evaluation dataset than the original
evaluation dataset, while keeping the estimated performances as close as possible. Figure 3 details
the selection algorithm and the performance predictor.

Zhang et al. (2025) recently introduced a large-scale benchmark. In this work, we adopt approaches
from the black-box model analysis techniques, explained below.

Our novelty and contribution. We differentiate our approach, Diversifying Sample Condensation
(DISCO), from previous work in two aspects. (1) model disagreement (Rubinstein et al., 2024) is a
simpler and more effective proxy for sample informativeness than representativeness (Vivek et al.,
2023; Polo et al., 2024). (2) The application of metamodels on model signatures is a simpler and
more effective approach than direct accuracy evaluation approaches (Vivek et al., 2023) or prior
approaches that require estimating latent model parameters (Polo et al., 2024; Kipnis et al., 2024).

3 PROBLEM

Our task is the estimation of model performance on a benchmark. Let f : X Ñ Y be a predictive
model over a dataset D :“ tpx1, y1q, . . . , pxN , yN qu sampled iid from some distribution. We are
interested in estimating the model performance on the dataset rpf,Dq. An example metric for model
performance is accuracy: for a probabilistic classifier f : X Ñ r0, 1sC , accuracy is defined as
1
N

ř

i 1 pargmaxc fcpxiq “ yiq.

We are interested in estimating rpf,Dq in a cost-effective way. We seek ways to sample a subset of
size K ! N from the original set D to estimate rpf,Dq. The overall problem is described in Figure 2.
An integral ingredient for both prior works and ours is the set of source models F “ tf1, . . . , fMu,
a held-out set of models whose ground-truth performances are known. We define the target models as
the models whose performances we aim to estimate.

4 SOLUTION

This section presents DISCO, our solution to the problem of efficient performance evaluation. DISCO
is composed of two steps: (i) the dataset selection, where given an original dataset and an held-
out set of source models, we identify a much smaller subset of samples; and (ii) the performance
prediction, where given the model outputs on our DISCO selected evaluation set, we estimate the
model performance on the original set.

4.1 DATASET SELECTION

At this stage, we require a score that quantifies each sample’s informativeness for predicting perfor-
mance on the full dataset. Using this score, we rank the samples and select a top-k subset that best
preserves the dataset’s information content.

3
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Figure 3: DISCO overview. First, we select a subset of an evaluation dataset with the most
informative samples. Second, we predict the performance of unseen models from their outputs on the
selected samples.

4.1.1 PRIOR SELECTION METHODS

We first review existing approaches for selecting representative data points in the evaluation set,
referred to as anchor points.

Anchor-conf Vivek et al. (2023) choose K anchors A “ takuK1 Ă txiu
N
1 that minimise the sum of

distances between each data point and the closest anchor: minA
ř

i,k d pepxiq, epakqq , where the
epxq abbreviates the concatenated model likelihoods epx, yq :“

“

f1pxqy, . . . , f
M pxqy

‰

for the input
and ground-truth label px, yq for the source models F “ tf1, . . . , fMu.

Anchor-corr (Polo et al., 2024) is nearly identical to Anchor-conf, except that the embedding uses
correctness scores instead of likelihoods: epx, yq :“ ts1px, yq, . . . , sM px, yqu, where smpx, yq :“
1pargmaxc f

mpxqc “ yq encodes correctness of model fm on sample x.

Anchor-IRT (Polo et al., 2024) uses the Item-Response Theory (IRT) to define a parametric model
Pr psmi “ 1 | θm, αi, βiq “ sigmoidp´αJ

i θ
m ` βiq. It predicts the correctness of a model fm on

a sample xi with parameters θm P Rd, αi P Rd, and βi P R. Using observations of the sample-
wise correctness of source models pxi, yi, s

m
i q, the parameters are inferred with an Expectation-

Maximisation algorithm. Now, they continue the anchor selection based on the sample-wise embed-
dings epxiq :“ pαi, βiq.

Best for validation Kipnis et al. (2024) finds an anchor set A through an iterative search. The algorithm
first generates a large number of candidate anchor sets, tA1, . . . , AP u, by uniformly sampling from
the full dataset D. For each candidate set Ap, a simple scalar-to-scalar regression model, gp, is
trained on the source models F . This model learns to map the performance on the subset, rpf,Apq,
to the known ground-truth performance on the full dataset, rpf,Dq. Each trained regressor gp is
subsequently evaluated on a held-out validation set of models. The final anchor set A is selected as
the candidate Ap whose corresponding regressor gp yields the lowest prediction error (e.g., RMSE)
on this validation set.

How DISCO differs. Unlike clustering, we use sample-wise statistic to determine samples with
maximal information content. This greatly simplifies the sampling procedure. We exploit the model
diversity, not model confidence or correctness. A set of models can be highly confident and diverse
at the same time. We argue that inputs that induce model diversity are more useful for performance
prediction.

4.1.2 DISCO SELECTION

We now present our selection method. In this part, we explain how we identify such samples in
the test dataset. Our sample selection strategies are illustrated in Figure 3. The main approach in
Diversifying Sample Condensation (DISCO) is to select a subset DDISCO of the original evaluation

4
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set D by sampling the top-k samples based on disagreement score, such as PDS. This follows the
intuition shown in Figure 1.

We start with an information-theoretic observation below.
Proposition 1. Let D “ tpxi, yiquNi be a test set and m „ Unift1, . . . ,Mu (A1) be the index of a
uniformly chosen model. Let fm

c pxiq P r0, 1s be the predictive probability for class c of model fm on
input xi. We write pymi for the categorical random variable following Catpfm

1 pxiq, . . . , f
m
C pxiqq. De-

fine ensemble mean prediction to be sfcpxiq :“ Emrfm
c pxiqs for each class c and define corresponding

prediction random variable as pyi following Catp sf1pxiq, . . . , sfCpxiqq. Let Spmq “ Spfm,Dq denote
a function of model m and dataset D, such as model accuracy, that is injective with respect to m.
Assume that the only randomness in pym comes from m (A2). Then,

MIm,pyi
pSpmq; pyiq “ Hppyiq ´ Em rH ppymi qs “ JSD

`

py1i , . . . , pyMi
˘

.

where Hp¨q is entropy, MIp¨q is mutual information, and JSDp¨q is generalised Jensen-Shannon
Divergence for multiple distributions (Fuglede & Topsoe, 2004).

See proof in Appendix G.

We conclude that the sample i conveying the greatest level of information for the prediction of Spmq

(e.g. model accuracy) is the one with greatest JSD
`

py1i , . . . , pyMi
˘

. This generalised Jensen-Shannon
divergence translates to the diversity of distributions (Fuglede & Topsoe, 2004). Based on the insight
that model diversity matters for performance prediction, we also consider an alternative measure
that measures the model diversity: predictive diversity score (PDS) (Rubinstein et al., 2024). It is
more interpretable, as it is a continuous generalisation of the number of unique argmax category
predictions among M source models:

PDS
`

py1i , . . . , pyMi
˘

:“
1

C

ÿ

c

max
m

fm
c pxiq. (1)

PDS is related to JSD through the enveloping inequalities below:
Proposition 2. Denoting PDSi :“ PDS

`

py1i , . . . , pyMi
˘

, JSDi :“ JSD
`

py1i , . . . , pyMi
˘

for each sam-
ple i, we have

2

M2 ln 2
pPDSi ´ 1q2 ď JSDi ď

M

M ´ 1
logM ¨ pPDSi ´ 1q.

See proof in Appendix H.3.

In the experiments, we consider both JSD and PDS as criteria for sample selection.

4.2 PERFORMANCE PREDICTION

Once a subset of dataset samples A is selected, we use the responses of the target model f on A to
estimate the true performance.

4.2.1 PRIOR PREDICTION METHODS

We first review existing approaches for estimating the true performance using predictions on anchor
points A “ ta1, . . . , aKu.

Weighted sum Vivek et al. (2023) estimates the true performance by directly computing the accuracy
on the anchor set: WSpf,Aq :“ p1{Kq

ř

k wk s
m
k , where wk is the number of original training

samples xi assigned to the anchor ak in the Anchor-Corr method.

p-IRT (Polo et al., 2024): makes adjustments to the vanilla accuracy on the anchor set by adding
a correction term derived from the IRT in Anchor-IRT in: p-IRTpf,Aq :“ p1{Kq

ř

kPA sk `

1{pN ´ Kq
ř

kRA pi, where p̂i is the IRT estimation computed based on the parameters obtained in
Anchor-IRT.

gp-IRT (Polo et al., 2024) is a mixture of the two approaches above: gp-IRTpf,Aq “ λ ¨WSpf,Aq`

p1 ´ λq ¨ p-IRTpf,Aq where λ P r0, 1s.

5
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ability-IRT Kipnis et al. (2024) is a two-stage method that uses the anchor set A as a diagnostic
tool rather than just a miniature test. First, it uses a pre-calibrated IRT model to estimate a latent
“ability” score, θ̂f , from the target model’s pattern of correct and incorrect responses on A. Second, a
pre-trained regressor, g, predicts the final performance Sf using both the simple anchor set accuracy
Ŝf
A and this more informative ability score θ̂f as input features. The final prediction is given by

Sf “ gpŜf
A, θ̂

f q, leveraging a deeper measure of the model’s capability to improve the estimate.

How DISCO differs. Previous prediction methods rely on scalar summaries of performance, such as
the (weighted or corrected) accuracy on the anchor set. In contrast, our approach leverages a much
richer signal: the model signature, defined as the concatenation of the model’s raw outputs on the
selected samples. By learning a direct mapping from the high-dimensional signature to the final
performance, we bypass the complexities of psychometric modeling and demonstrate that a simpler,
more direct approach can be more effective.

4.2.2 DISCO PREDICTION

Given a smaller set of test dataset DDISCO, we estimate the performance of a model f as closely as
possible to the true full test performance rpf,Dq. We deliberately opt for simple approaches here, in
order to make a point that simple is best; we also compare against a rather complex prior work and
show that our simple method outperforms it. Our performance prediction framework is depicted in
Figure 3.

Model signatures. We hypothesise that models with similar output patterns on DDISCO will exhibit
similar performance. To capture this pattern, we define a model signature as the concatenation of
the model’s outputs on DDISCO: fpDDISCOq :“ rfpx1q, . . . , fpxLqs.

Such function signature may have a large dimensionality, as it is the product of model output
dimensionality (e.g. 1000 for ImageNet) and the number of selected samples |DDISCO| (e.g. can go
up to 50k for ImageNet validation set). To reduce the storage burden and improve generalizability,
we consider applying a dimenionality reduction technique based on principal component analysis
(PCA): Q ˝ fpDDISCOq.

KNN prediction. Built on the hypothesis that the similarities in function signature imply performance
similarity, we consider the kNN predictor based on a held-out set of models F . Given a function
f to evaluate, we identify the K most similar models in F using the Euclidean distance between
their signatures after dimensionality reduction. We estimate f ’s performance by averaging the
performances of the K most similar models.

Parametric mapping. We also consider a parametric prediction variant. A single parametric mapping
R is trained for the prediction of model performance. As the training set, we use M model signatures
Q ˝ f1pDDISCOq, . . . Q ˝ fM pDDISCOq for F as the training set for the regression problem of training a
mapping Rp¨q to let R ˝ Q ˝ fmpDDISCOq approximate prpf,Dq. The predictor R can be implemented
using a neural network, linear regression, or a Random Forest, for example.

5 EXPERIMENTS

In this section, we introduce the experimental setup (§5.1), present the main results of Diversifying
Sample Condensation (DISCO) in language domain (§5.2), analyse contributing factors (§5.3), and
demonstrate that the method is domain-agnostic and can also be successfully applied to the vision
domain (§5.4).

5.1 SETUP

In this section we describe our experimental setup: used datasets, models, model splits, metrics, and
evaluation protocol.

Datasets. We evaluate DISCO on four widely used language modeling benchmarks: MMLU
(Hendrycks et al., 2021), HellaSwag (Zellers et al., 2019) Winogrande (Sakaguchi et al., 2021), and
ARC (Clark et al., 2018). Details on the benchmarks can be seen in § A.

6
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Models. Building on the TinyBenchmarks framework (Polo et al., 2024), we evaluate 424 large
language models (LLMs) from Hugging Face’s Open LLM Leaderboard (Fourrier et al., 2024). The
models cover GPT- (Radford et al., 2019), LLaMA- (Touvron et al., 2023), DeepSeek- (DeepSeek-AI
et al., 2025), and BERT-style (Devlin et al., 2019) architectures, with model sizes ranging from 1.3
billion to 72 billion parameters.

Model split. DISCO is based on a meta-model approach where a predictor is constructed based
on the model signatures of a pool of source models F and tested on a disjoint set of target models.
This approach has traditionally been criticised for its dependency on the set of existing models:
the predictor may fail to retain performance with unforeseen changes in future models. To address
this concern, we introduce the chronological split, where the source models F consist of models
published before January 13, 2024 and the meta test set consists of models after the cutoff date. The
train-test ratio is 9:1.

Metrics. We evaluate DISCO and baseline approaches using two complementary metrics. First, the
Mean Absolute Error (MAE) of the model accuracies, reported as percentage points (%p), captures
the absolute error of accuracy prediction. Second, to assess the consistency of the relative ordering
of models, we report the Spearman rank correlation (Rank) in model ranking between the true and
estimated model performances.

Evaluation. Following the overview of the solution to the efficient evaluation problem in § 4, our
protocol for evaluating methods looks as follows:

Training.

• Input: source models F , full test dataset D, parameter K.

• Output: set of anchor datapoints AK , predictor.

1. Evaluate source models F on full test dataset D.

2. Calculate performance SF of source models on the full test dataset.

3. Use model outputs from the previous steps and optionally ground truth labels to select a set
AK of K anchor datapoints with respective selection method (PDS/JSD, IRT, etc) explained
in § 4.1.

4. Train respective predictor (Random Forest, gp-IRT, ability-IRT, etc) explained in § 4.2.2 to
predict SF from outputs of source models F on AK .

Testing:

• Input: target model (or test set of target models), set of anchor points AK , predictor, ground
truth performance S of target model on D.

• Output: performance of efficient evaluation method.

1. Evaluate target model on anchor points AK .

2. Use predictor to estimate pS performance of the target model on D from its outputs on AK .

3. Calculate performance of efficient evaluation method based on S and pS.

5.2 MAIN RESULTS

Table 1 shows the main results. Uniform random sampling, together with direct evaluation with the
corresponding annotated labels, yields 3.45%p MAE and .916 rank correlation at 100 samples. The
approaches introduced in tinyBenchmarks Polo et al. (2024) improve over this baseline, confirming
their findings.

We measure the efficacy of DISCO in two steps: adopt model-signature approach on top of uniform
random sample selections first, and then consider sampling according to predictive diversity scoring
(PDS). Even without PDS, on uniform random samples, model signatures are achieving 1.81%p MAE
and .933 rank correlation with Random Forest (RF), reaching the state-of-the-art performance with
simple and practical ingredients. When PDS is further considered for sample selection, to diversify

7
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Approach Selection Prediction MMLU (14k) HS (10k) WG (1.3k) ARC (1.2k)

§4.1 §4.2 MAEÓ RankÒ MAEÓ RankÒ MAEÓ RankÒ MAEÓ RankÒ

Baseline Random Direct eval. 3.45 0.916 2.85 0.839 3.60 0.827 2.61 0.898

tinyBenchmarks
Random gp-IRT 2.79 0.922 1.96 0.819 1.64 0.928 2.22 0.921

Anchor-IRT gp-IRT 3.25 0.922 2.19 0.830 2.24 0.850 4.55 0.708
Anchor-corr gp-IRT 2.08 0.927 1.27 0.937 1.95 0.918 2.18 0.948

metaBench Best for val. ability-IRT 2.08† 0.904† 0.80† 0.974† 1.23† 0.947† 1.14† 0.971†

Model signature Random Sig. + kNN 1.82 0.912 1.49 0.899 1.58 0.920 2.30 0.905
Sig. + RF 1.81 0.933 1.36 0.938 1.29 0.926 1.72 0.938

DISCO (ours)
High PDS Sig. + kNN 1.31 0.972 1.32 0.956 1.19 0.951 1.96 0.937

Sig. + RF 1.07 0.987 1.01 0.984 1.00 0.967 1.47 0.971

High JSD Sig. + kNN 1.14 0.975 1.50 0.944 1.26 0.955 2.11 0.939
Sig. + RF 1.30 0.987 0.86 0.972 1.09 0.973 1.75 0.938

Table 1: DISCO achieves state-of-the-art test-set compression by using model signatures combined with
PDS for accurate performance prediction. Compression of MMLU, HellaSwag (HS), Winogrande (WG)
and ARC datasets by DISCO (ours), tinyBenchmarks, metaBench and other baselines. For each dataset, we
reduce the test set to 100 data points (except for metaBench, see below), achieving inference cost reduction of
99.3% and 99.0%, on MMLU and HS, respectively. Sig. + RF/kNN stands for model signature with Random
Forest/kNN prediction (§ 4.2.2). Mean absolute error (MAE) is the %p difference in accuracy, and Rank is the
Spearman rank correlation between the true model ranking and the estimated model ranking.
† Results for metaBench are not directly comparable, as it requires more examples to converge: 150 datapoints
for MMLU and ARC (+50%), 450 for HS (+350%), and 200 for WG (+100%). See § D for confidence intervals.
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Figure 5: MMLU performance estimation vs. compression rates. Mean absolute error (MAE), measured in
%p difference in accuracy, and the Spearman rank correlation between the true model ranking and the estimated
model ranking are shown. At 100 samples, the results are identical to Table 1. Main observations: DISCO hits
a better efficiency-precision trade-off across all range of compression rates. For extreme compression rate, kNN
is a better choice than random forest (RF).

the model outputs, we achieve 1.07%p MAE and .987 rank correlation (see § C for qualitative
comparison of predicted ranks for DISCO vs direct evaluation), demonstrating a significant leap from
the prior state of the art from tinyBenchmarks Polo et al. (2024) from ICML 2024.
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Figure 4: True and estimated performance
on MMLU. Scatter plot of performances of
40 models.

To provide an understanding of the distributional compar-
ison of the true model performances and the estimated
performances, we show a scatter plot in Figure 4. As
signified by the high Pearson’s correlation coefficient at
.986, the estimated performances closely follow the true
performances.

Figure 5 shows the performance against varying degrees
of the test set reduction. We observe that the ranking
of estimated evaluation methodologies does not change
much across a wide range of degrees of reduction. In
particular, our DISCO is consistently the best method
across all ranges of number of samples involved. For
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the extreme rates of compression, at 10 samples, the non-
parametric performance predictor of kNN yields better performance than the parametric Random
Forest, suggesting that non-parametric approaches may be more suitable at extreme compression.

5.3 FACTORS ANALYSIS

Table 2: Factor analysis for DISCO on
MMLU. Highlighted in bold are the default
design choices for DISCO. All comparisons
are based on 100 selected samples. Added
missing table (d).

We analyse the impact of several design choices involved
in our DISCO on MMLU dataset. See Table 2 for an
overview.

Model split. In a recent benchmark for efficient LLM eval-
uation Zhang et al. (2025), the authors observed that pre-
diction performance drops sharply when test models out-
perform training models. We extend this idea by replacing
performance-based splits with chronological splits, train-
ing on older models and testing on newer ones. This bet-
ter reflects real-world usage, whereas performance-based
splits create an artificial stress test.

For this purpose, we introduced the chronological split in
§5.1. We examine the impact of this model splitting on the
result. We observe that our DISCO is robust to the choice
of splitting strategy. Chronological splitting yields a rank
correlation of .987, which is nearly identical to the .986
obtained with uniform splitting (Table 2 (a)).

Stratification. We measure the efficacy of the stratifica-
tion strategy in (Polo et al., 2024) where equal numbers of
anchor points are selected from each of 57 tasks in MMLU
dataset (Table 2 (b)). We find that stratification (.978) is
not effective when data points are sampled according to
PDS (.987).

Number of source models. We analyse the sensitivity of
DISCO to the number of source models |F | (Table 2 (c)).
With only 100 models (.969 rank correlation), it already
outperforms TinyBenchmarks, which uses all 382 available source models (.927 in Table 1). As the
number of source models increases, rank correlation steadily improves, reaching a maximum of .987
for |F | “ 382.

Dimensionality reduction. We compare PCA with different target dimensions to Uniform Mani-
fold Approximation and Projection (UMAP) (McInnes et al., 2020) for dimensionality reduction
(Table 2 (d)). We notice that dimensionality reduction helps reduce potential overfitting: without it
(using all 3100 dimensions), the correlation is .918, while with PCA at 256 dimensions, it improves
to .987. Overall, PCA outperforms UMAP and remains robust across a wide range of dimensions.

Prediction model. We compare consider a wide range of prediction models (Table 2 (e)). Random
Forest achieves the highest rank correlation of .987, outperforming all other methods.

5.4 RESULTS FOR VISION DOMAIN

In this section, we give a quick overview of the DISCO applied to the vision domain. For detailed
results, see § I.

Setup. We use ImageNet-1k (Russakovsky et al., 2015) with 1.28M images and 400 pretrained models
from timm (Wightman, 2019), spanning convolutional (Krizhevsky et al., 2012) and transformer
(Dosovitskiy et al., 2021) architectures (0.3M–300M parameters). Following the language domain,
we adopt a chronological split with cutoff 5 April 2023 (88:12 train–test). Performance is evaluated
using mean absolute error (MAE) and Spearman rank correlation. See details on baselines for the
vision domain in § I.2.
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Approach Selection Prediction IN val (50k)
§4.1 §4.2 MAEÓ RankÒ

Baseline Random Direct eval. 3.03 0.652

Lifelong Bench. Uniform Weighted 2.06 0.838correctness sum

SSEPY Uniform Weighted 3.05 0.762confidence sum

Model signature Random Sig. + kNN 1.72 0.808
Sig. + RF 0.86 0.944

DISCO (ours) High PDS Sig. + kNN 1.68 0.819
Sig. + RF 0.63 0.969

Table 3: DISCO compression of ImageNet validation
dataset. We evaluate the generalisation of our DISCO
to the computer vision domain. We reduce the test set to
100 anchor points. The main metrics are mean absolute
error (MAE), measured in %p difference in accuracy,
and the Spearman rank correlation (Rank) between the
true model ranking and the estimated model ranking.
Main observations: (1) Same as for language experi-
ments, model signature is an effective strategy for per-
formance estimation. (2) Using PDS on top improves
performance even more. Added new baselines (Life-
Long bench and SSEPY).

Results.

Our DISCO approach significantly compresses
the ImageNet validation set by reducing it to just
100 data points, achieving an inference cost re-
duction of 99.8%. DISCO with uniform random
sampling and random forest prediction on model
signatures achieve 0.86%p MAE and .944 rank
correlation, surpassing the baseline. Using a pre-
dictive diversity score (PDS) for data selection
and a Random Forest for prediction, our method
achieves a 0.63%p MAE and .969 rank corre-
lation, substantially outperforming the baseline
(Table 3). The results demonstrate that DISCO
is effective in both language and vision domains.

DISCO (0.969{0.63) outperforms Lifelong
Bench. (Prabhu et al., 2024) (0.838{2.06) and
SSEPY (Fogliato et al., 2024) (0.762{3.05) in
both rank correlation and MAE. The conclusion
from language experiments holds: instead of
selecting anchor points with wide coverage of
sample difficulty, one should focus on selecting
the points on which models typically disagree.

6 CONCLUSION

Evaluating ML models is increasingly expensive
due to larger models, datasets, and benchmarks.
It is especially true for general-purpose LLMs requiring broad evaluation.

We propose DISCO, which selects a small informative subset of the evaluation data and estimates
model performance from predictions on it. DISCO cuts evaluation costs by over 99% with minimal
error and consistently outperforms prior methods.

This enables practical use: efficient evaluation on limited compute, frequent performance tracking
during training, and cheap end-user checks of deployed models.

Limitations. The main limitation of DISCO is robustness to distribution shifts in the model population.
Shifts can arise from new architectures, training methods, or objectives, introducing patterns unseen
during training and reducing estimator accuracy. Future work could address this with adaptive sample
selection or periodic retraining on newer models (see details in § F).

We also discuss unsuitable tasks for DISCO. The main constraint is that DISCO requires predictive
probabilities for several predefined answer choices for each question. These answer choices corre-
spond to the classes in Proposition 1 in the original submission. That makes DISCO not suitable
for open-ended generation tasks such as translation or summarization. Applying DISCO to such
tasks would first require defining sets of correct and incorrect outputs. We leave such experiments for
future work.
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DISCLAIMER FOR USE OF LLMS

We primarily used LLMs in coding co-pilot applications to facilitate experimentation and help with
plotting code for result presentation. LLMs were also used as writing tools to assist in refining the
paper. However, the final version was carefully reviewed and finalized by the authors. No LLMs
were used in ideation and experimental design.

A EXTENDED EXPERIMENTAL SETUP

Datasets. We evaluate DISCO on four widely used language modeling benchmarks:

• Massive Multitask Language Understanding (MMLU) (Hendrycks et al., 2021) question-
answering dataset that covers 57 tasks about world knowledge and problem-solving ability.

• HellaSwag (Zellers et al., 2019) dataset that focuses on commonsense natural language
inference.

• Winogrande (Sakaguchi et al., 2021): dataset of 273 expert-crafted pronoun resolution
problems originally designed to be unsolvable for statistical models.

• (AI2 Reasoning Challenge (ARC)) (Clark et al., 2018): question-answering dataset that
contains only natural, grade-school science questions (authored for human tests) and requires
knowledge and reasoning.

B COMPUTATIONAL COSTS

We report the space–time complexity for the main stages of DISCO, as well as the cost of direct
evaluation of a target model. The numbers correspond to a single H100 GPU and are extrapolated
from evaluations of five diverse 32B LLMs on MMLU (standard deviation across 5 runs).

B.1 DISCO PIPELINE OVERVIEW

The DISCO pipeline consists of two stages: an offline stage (run once) and an online stage (run for
each new target model).

Offline Stage

• Evaluate M source models on the full test dataset (M “ 385 in this experiment)

• Store source model outputs

• Select 100 anchor points that maximize PDS/JSD

• Concatenate outputs on anchor points to form model signatures

• Train a predictor to estimate model performance on the full test dataset from these signatures

Online Stage

• Evaluate one target model on the 100 anchor points

• Store target model outputs

• Concatenate to obtain the target model signature

• Run the predictor to estimate performance on the full test dataset

For every target model, the anchor points and predictor trained offline are reused.

B.2 COST METRICS

The majority of compute is required by the offline stage (3284 GPU-hours).
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Metric Value
Offline computation cost 3284.05 ˘ 592.90 GPU-hours
Outputs storage (offline) 86.54 MB
Signatures storage (offline) 400 KB
Online computation cost 0.07 ˘ 0.01 GPU-hours
Outputs storage (online) 224.78 KB
Signatures storage (online) 1 KB
Direct evaluation cost 8.53 ˘ 1.54 GPU-hours
Computation savings 8.46 ˘ 1.54 GPU-hours

B.3 BREAK-EVEN ANALYSIS: HOW MANY EVALUATIONS JUSTIFY DISCO SETUP?

DISCO breaks even at 389 evaluations. Since each DISCO evaluation saves 8.46 GPU-hours
per model (vs. 8.53 GPU-hours direct evaluation, minus 0.07 GPU-hours online DISCO cost), the
break-even point is:

389 “
3284

8.46
.

In practice, hundreds of checkpoint evaluations naturally occur during model development. For
example, a single OLMo-2-32B training run includes 753 checkpoints on Hugging Face, already
exceeding break-even.

In some cases, there is no need to evaluate source models at all if offline predictions are downloaded
from platforms such as open-llm-leaderboard.

B.4 COMPARISON TO ALTERNATIVE APPROACHES

We briefly remind the pipelines of the compared methods:

• Selection: select a set of anchor points, i.e., a subset of the full test dataset based on different
signals (random, IRT, model disagreement, etc.).

• Prediction: estimate model performance on the full test dataset from outputs on anchor
points.

That is why we use “Selection" and “Prediction" columns to explain the difference between methods.
See § 4.1 for details on selection methods, and § 4.2 for details on prediction methods.

Method Selection Prediction Offline (GPU-h) Online (GPU-s)
Baseline – (use all samples) Direct eval – 30739 ˘ 5514
Baseline Random Direct eval – 218 ˘ 39
tinyBenchmarks Random gp-IRT 3284 ˘ 592 219 ˘ 39
tinyBenchmarks Anchor-corr gp-IRT 3284 ˘ 592 219 ˘ 39
tinyBenchmarks Anchor-IRT gp-IRT 3284 ˘ 592 219 ˘ 39
DISCO High-PDS RF 3284 ˘ 592 218 ˘ 39
DISCO High-PDS KNN 3284 ˘ 592 218 ˘ 39

The differences in online cost across methods are negligible (e.g., 219 vs. 218 GPU-seconds). Offline
costs are equal up to rounding. Efficient evaluation methods allow to save p30739´218q

30739 ¨100% “ 99.3%
of evaluation cost in comparison to full evaluation.

C QUALITATIVE MEANING OF RANK CORRELATION IMPROVEMENTS

To justify the additional computation required for DISCO relative to direct evaluation, we illustrate
how the increase in rank correlation from 91.6 (direct evaluation) to 98.7 (DISCO) in Table 3
translates into qualitative improvements in model ranking.
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Figure 6 includes scatter plots of true vs. predicted ranks (see Figure 6). The direct-evaluation
predictor demonstrates noticeable spread around the diagonal, while DISCO’s predictions align
almost perfectly with it, indicating substantially more reliable ranking.
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Figure 6: True vs. predicted rank comparison: direct evaluation vs. DISCO. ρs means Spearman rank
correlation.

D ADDITIONAL EVALUATION RESULTS

D.1 REPORT CONFIDENCE INTERVALS

We report the standard deviation for the previously reported results on MMLU from Table 3, evaluated
over one fixed chronological split and 5 independent runs.

We briefly remind the pipelines of the compared methods:

• Selection: select a set of anchor points, i.e., a subset of the full test dataset based on different
signals (random, IRT, model disagreement, etc.).

• Prediction: estimate model performance on the full test dataset from outputs on anchor
points.

That is why we use “Selection" and “Prediction" columns to explain the difference between methods.
See § 4.1 for details on selection methods, and § 4.2 for details on prediction methods. MAE is mean
absolute error; Rank is Spearman rank correlation.

Method Selection Prediction MAE Ó Rank Ò

Baseline Random Direct evaluation 3.45 ˘ 0.67 91.6 ˘ 2.6
tinyBenchmarks Random gp-IRT 2.79 ˘ 0.20 92.2 ˘ 2.3
tinyBenchmarks Anchor-corr gp-IRT 2.08 ˘ 0.20 92.7 ˘ 2.1
tinyBenchmarks Anchor-IRT gp-IRT 3.25 ˘ 0.49 92.2 ˘ 1.5
DISCO High JSD KNN 1.14 ˘ 0.00 97.5 ˘ 0.0
DISCO High JSD RF 1.30 ˘ 0.02 98.7 ˘ 0.1
DISCO High PDS KNN 1.31 ˘ 0.00 97.2 ˘ 0.0
DISCO High PDS RF 1.07 ˘ 0.04 98.7 ˘ 0.2

DISCO results are more stable than those of IRT and random sampling. This is because the only
random component is Random Forest initialization. In contrast, IRT is trained using variational
inference, where stochastic gradient optimization introduces additional randomness beyond model
parameter initialization.
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D.2 MULTIPLE TRAIN/TEST SPLIT FOR CHRONOLOGICAL EVALUATION

To expand the number of chronological splits, we bootstrap 5 different train/test chronological
splits using the following protocol: for each run, we split models into 385 old and 40 new based on
timestamps, then bootstrap 346 source and 36 test models from these sets. Details on the chronological
split can be seen in § 5.1. Results for the new splits can be seen below.

Method Selection Prediction MAE Ó Rank Ò

Baseline Random Direct evaluation 2.85 ˘ 0.85 93.3 ˘ 3.0

tinyBenchmarks Random gp-IRT 2.42 ˘ 0.43 93.6 ˘ 2.5
tinyBenchmarks Anchor-corr gp-IRT 1.93 ˘ 0.31 92.9 ˘ 3.0
tinyBenchmarks Anchor-IRT gp-IRT 3.13 ˘ 0.33 90.2 ˘ 4.5
DISCO High PDS KNN 1.23 ˘ 0.09 97.0 ˘ 1.1
DISCO High PDS RF 1.25 ˘ 0.14 98.0 ˘ 0.6

Bootstrapped chronological splits slightly change the mean values (e.g., rank correlation from 98.6 to
98.0 and MAE from 1.06 to 1.25 for DISCO), but they do not alter the superiority of DISCO over
other baselines.

E SENSITIVITY OF DISCO TO MODEL CALIBRATION

To evaluate the sensitivity of DISCO to model calibration, we compared the Expected Calibration
Error (ECE) of target models with the Mean Absolute Error (MAE) between their true performance
and DISCO-predicted performance on MMLU. We observe a Pearson correlation of 0.49 between
MAE and ECE, indicating that better-calibrated models lead to more accurate performance (lower
MAE) predictions by DISCO.

This phenomenon is explained by the information relationship between confidence and correctness.
For a perfectly calibrated model, the mapping between prediction confidence and correctness is deter-
ministic and monotonic, resulting in high mutual information. In contrast, for a highly miscalibrated
model (e.g., random guessing or uniformly confident but incorrect), prediction confidence becomes
statistically independent of correctness, leading to low mutual information. Consequently, the more
calibrated a model is, the more predictive its confidence patterns are of its true performance, and
therefore the more informative its signature is for DISCO performance prediction.

The corresponding scatter plot is shown in Figure 7.

During this analysis, we observed that two factors are confounded in calibration metrics: (1) overall
confidence level, and (2) how well predictive uncertainty is reflected in confidence. To isolate the
effect of overall confidence, we compared MAE with mean prediction confidence separately. We find
a Pearson correlation of ´0.47 between MAE and mean confidence, suggesting that overall model
confidence is the dominant component of ECE that influences DISCO performance.

Figure 8 presents the corresponding scatter plot.

F PERFORMANCE GAP EXPERIMENTS

In addition to source/target model splits discussed in § 5.3, we added experiments with a wider
performance gap between source and target models to identify potential failure modes for DISCO.
Inspired by (Zhang et al., 2025), we introduce a performance split with varying gaps. We sort all
models by their average performance and take the top-10% or top-30% (40 or 128 models) as target
models, while using the bottom-90% or bottom-50% (385 or 213 models) as source models. The
accuracy gap between the weakest target model and the strongest source model is 0.07%p or 8.18%p.

All model splits are summarized in Table 4.

Table 5 reports Spearman rank correlation.
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Figure 7: Correlation between DISCO prediction error (MAE) and Expected Calibration Error (ECE).
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Figure 8: Correlation between DISCO prediction error (MAE) and mean model confidence.

IID Chron. Performance w/o gap Perf. w/ gap
Prelim. model sorting – By timestamp By performance By performance
Target models Every 10th model Top-10% Top-10% Top-30%
Source models Everything else Bottom-90% Bottom-90% Bottom-50%

Table 4: Source/target models splits.
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IID Chron. Perf. w/o gap Perf. w/ gap
Direct eval on random subset 92.1 ˘ 1.3 91.6 ˘ 2.6 89.8 ˘ 5.9 87.4 ˘ 5.7
DISCO 98.6 ˘ 0.3 98.7 ˘ 0.2 98.1 ˘ 0.2 89.2 ˘ 1.0

Mean difference (DISCO – direct eval) +6.5 +7.1 +8.7 +1.8

Table 5: DISCO benefit vs direct evaluation on random subset across various source/target models
splits.

For a source/target split with a performance gap, the difference between DISCO and direct evaluation
is 1.8%p, which is lower than for the IID split (6.5%p), the chronological split (7.1%p), or the
performance split without a gap (8.7%p).

While this scenario can be seen as a failure mode for DISCO, we believe that such a source/target
performance gap does not happen in practice. Instead, the accuracies of source and target models are
often mixed. There are two main reasons for that. First, when practitioners develop new models, their
early versions are often worse than the best previously evaluated models. Second, it takes time before
new models consistently outperform older ones. Infrequent extra evaluations can allow practitioners
to always keep the performance gap low. That makes the performance split with a gap less realistic
than other splits. We thus conclude that DISCO does not break when the source and target
model distributions differ, but only when the difference is unrealistically substantial.

G MUTUAL INFORMATION AND JENSEN-SHANNON DIVERGENCE

In this section, we show that Mutual Information is equivalent to JSD in our setting. We present the
setup and assumptions, then prove the proposition.

G.0.1 SETUP.

Let m „ Unift1, . . . ,Mu be the index of a uniformly chosen model. Given m, the prediction on
datapoint i has categorical law P

pYi|m. Define the ensemble mean distribution

P
pYi

“ Em„UnifrMs

”

P
pYi|m

ı

“
1

M

M
ÿ

m“1

P
pYi|m.

Let Spmq denote any statistic that is a deterministic function of m computed on D (e.g. accuracy on
D).

G.0.2 ASSUMPTIONS.

Assumption A1 (Uniform prior). The model index is uniformly distributed: m „ Unift1, . . . ,Mu.

Assumption A2 (Deterministic predictions). Conditional on m, each prediction pYi is fully determined
by m (or more generally, any residual randomness is independent across i and independent of m).

G.0.3 PROPOSITION.

Proposition 3. Under Assumptions A2–A1, if Spmq is injective, then

MIm, pY

´

Spmq ; pYi

¯

“ H
pYi

´

P
pYi

¯

´ Em„UnifrMs

”

H
pYi

´

P
pYi|m

¯ı

“: JSD
`

tP
pYi|muMm“1

˘

.

Proof. By Assumption A2 and since Spmq is a deterministic function of m, we have the Markov
chain

pYi ÐÑ m ÐÑ Spmq.

If S is injective, then m is recoverable from Spmq, hence

I
`

Spmq; pYi

˘

“ I
`

m; pYi

˘

.
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By the definition of mutual information,

Ipm; pYiq “ H
pYi

´

P
pYi

¯

´ Em

”

H
pYi

´

P
pYi|m

¯ı

.

Marginal distribution (using Assumption A1):

P
pYi

“

M
ÿ

m“1

PrpmqP
pYi|m “ 1

M

M
ÿ

m“1

P
pYi|m.

Thus H
pYi

pP
pYi

q is the entropy of the mixture distribution.

Conditional entropy (using Assumption A1):

Em

“

H
pYi

pP
pYi|mq

‰

“ 1
M

M
ÿ

m“1

H
pYi

pP
pYi|mq.

Combine:

Ipm; pYiq “ H
pYi

pP
pYi

q ´ 1
M

M
ÿ

m“1

H
pYi

pP
pYi|mq “: JSD

`

tP
pYi|muMm“1

˘

.

H BOUNDS FOR JENSEN-SHANNON DIVERGENCE (JSD) VIA PREDICTIVE
DIVERSITY SCORE (PDS)

In this section, we show that JSD is bounded quadratically below and linearly above by PDS. We first
relate JSD to total variation (§ H.1), then show total variation is monotone in PDS (§ H.2), and then
combine these results in § H.3.

H.1 BOUNDS FOR JSD VIA TOTAL VARIATION (TV)

We begin by showing that JSD is bounded quadratically below and linearly above by total variation.
We first introduce the setup with required definitions (§ H.1.1), then prove the proposition (§ H.1.2).

H.1.1 SETUP.

Let tP
pYi|muMm“1 be distributions on K classes. Define the mixture

P̄ “
1

M

M
ÿ

m“1

P
pYi|m.

Definition 1 (Jensen–Shannon divergence).

JSD
`

tP
pYi|mu

˘

“
1

M

M
ÿ

m“1

DKLpP
pYi|m}P̄ q “ HpP̄ q ´ 1

M

M
ÿ

m“1

HpP
pYi|mq.

Definition 2 (Total variation). For distributions P,Q on the same support,

TVpP,Qq “ 1
2}P ´ Q}1.

H.1.2 PROPOSITION.

Now, we show that JSD is bounded quadratically below and linearly above by total variation.
Proposition 4 (JSD–TV sandwich bounds). For any M ě 2 distributions tP

pYi|muMm“1 with mixture
P̄ ,

2

ln 2
¨
1

M

M
ÿ

m“1

TVpP
pYi|m, P̄ q2 ď JSD

`

tP
pYi|muMm“1

˘

ď
M

M ´ 1
logM ¨

1

M

M
ÿ

m“1

TVpP
pYi|m, P̄ q.
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Proof. Lower bound. By Pinsker’s inequality (e.g. Equation 1 in (Sason, 2015)),

DKLpP }Qq ě
2

ln 2
TVpP,Qq2.

Substituting Q “ P̄ and averaging over m yields the lower bound.

Upper bound. Fix m. Write

P̄ “ αP
pYi|m ` p1 ´ αqζ, α “ 1

M , ζ “ 1
M´1

ÿ

s‰m

P
pYi|s.

Define tpiq “ ζpiq{P
pYi|mpiq when P

pYi|mpiq ą 0 (set tpiq “ `8 if P
pYi|mpiq “ 0, ζpiq ą 0). Then

EP
xYi|m

rts “ 1 and

DKLpP
pYi|m}P̄ q “ EP

xYi|m

“

´ log
`

α ` p1 ´ αqt
˘‰

.

Let fpuq “ ´ logpα ` p1 ´ αquq, u ě 0. Then f is convex, decreasing, with fp1q “ 0, fp0q “

logp1{αq “ logM . By convexity,

fpuq ď p1 ´ uqfp0q “ p1 ´ uq logM.

Thus,
DKLpP

pYi|m}P̄ q ď logM ¨ EP
xYi|m

“

p1 ´ tq
‰

ď logM ¨ EP
xYi|m

“

p1 ´ tq`

‰

.

Now

EP
xYi|m

rp1 ´ tq`s “
ÿ

i

P
pYi|mpiqmaxt0, 1 ´ ζpiq{P

pYi|mpiqu “
ÿ

i

pP
pYi|mpiq ´ ζpiqq`.

By the balance-of-deviations identity (§ 1),
ÿ

i

pP
pYi|mpiq ´ ζpiqq` “ TVpP

pYi|m, ζq.

Finally, since P̄ “ αP
pYi|m ` p1 ´ αqζ, one has

TVpP
pYi|m, ζq “ M

M´1 TVpP
pYi|m, P̄ q.

Combining yields
DKLpP

pYi|m}P̄ q ď M
M´1 logM ¨ TVpP

pYi|m, P̄ q.

Averaging over m gives the upper bound.

Remark 1. The lower bound is quadratic in total variation, the upper bound linear. Thus, JSD
interpolates between quadratic growth near equality and linear growth in worst-case separation.

H.2 BOUNDS FOR TOTAL VARIATION VIA PREDICTIVE DIVERSITY SCORE

We next show that total variation is monotone in PDS. We introduce the setup with definitions and
lemmas (§ H.2.1), then prove the proposition (§ H.2.2).

H.2.1 SETUP.

Fix a class c. Let Xm “ P
pYi|mpcq and µ “ P̄ pcq. Define:

Definition 3 (Envelope and spread, per class).

Ec “ max
m

Xm ´ µ, Uc “
1

2M

M
ÿ

m“1

|Xm ´ µ|.

Definition 4 (Predictive Diversity Score).

PDS
`

tP
pYi|mu

˘

“

K
ÿ

c“1

max
m

P
pYi|mpcq.
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Lemma 1 (Balance-of-deviations identity). For any a1, . . . , aM with
ř

m am “ 0, writing a` “

maxt0, au,
M
ÿ

m“1

pamq` “

M
ÿ

m“1

pamq´ “ 1
2

M
ÿ

m“1

|am|.

Proof. Decompose a “ a` ´ a´, |a| “ a` ` a´. Summing and using
ř

m am “ 0 gives
ÿ

m

am,` ´
ÿ

m

am,´ “ 0 ñ
ÿ

m

am,` “
ÿ

m

am,´.

Then
ÿ

m

|am| “
ÿ

m

pam,` ` am,´q “ 2
ÿ

m

am,`.

Applying Lemma 1 with am “ Xm ´ µ yields

Uc “ 1
M

ÿ

m:Xmąµ

pXm ´ µq.

H.2.2 PROPOSITION.

Now, we show that total variation is monotone in PDS.

Proposition 5 (Spread–envelope bounds). Use notation from Appendix H.2.1. For each class c, if at
most z models satisfy Xm ą µ, then

1

M
Ec ď Uc ď

z

M
Ec.

Aggregating over classes,
1

M
E ď U ď

z

M
E,

where

E “

K
ÿ

c“1

Ec, U “

K
ÿ

c“1

Uc “ 1
M

M
ÿ

m“1

TVpP
pYi|m, P̄ q.

Proof. If Ec “ 0, then Xm “ µ for all m so Uc “ 0. Otherwise, let m‹ “ argmaxm Xm. Then

Uc “ 1
M

ÿ

m:Xmąµ

pXm ´ µq ě 1
M pXm‹ ´ µq “ 1

MEc.

For the upper bound, each positive term is at most Ec, and there are at most z such terms, hence

Uc ď z
MEc.

Summing over classes gives the aggregated bound.

H.3 FINAL SANDWICH INEQUALITY

Finally, we combine results from § H.1.1 and § H.2 to show that JSD is bounded quadratically below
and linearly above by PDS.

Proposition 6 (JSD–PDS sandwich). Use notation from Proposition 1.

2

M2 ln 2
pPDS

`

tPpYi|m
u
˘

´ 1q2 ď JSD
`

tP
pYi|mu

˘

ď
M

M ´ 1
logM ¨ pPDS

`

tPpYi|m
u
˘

´ 1q.

Proof. From Theorem 4,

JSD ě 2
ln 2 U

2, JSD ď M
M´1 logM ¨ U.
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Define

E :“
K
ÿ

c“1

Ec, U :“
K
ÿ

c“1

Uc.

By the definitions,

U “

K
ÿ

c“1

1

2M

M
ÿ

m“1

|P
pYi|mpcq ´ P̄ pcq| :“

1

2M

M
ÿ

m“1

}P
pYi|m ´ P̄ }1 :“

1

M

M
ÿ

m“1

TVpP
pYi|m, P̄ q,

where P̄ “ P
pYi

“ 1
M

řM
m“1 P pYi|m, and

E “

K
ÿ

c“1

´

max
m

P
pYi|mpcq ´ P̄ pcq

¯

“ PDS ´ 1.

From Proposition 5,
1
M pPDS ´ 1q ď U ď z

M pPDS ´ 1q.

Combining and noticing that 1 ď z ď M yields the quadratic lower bound and linear upper bound in
pPDS ´ 1q.

I VISION RESULTS

We introduce the setup (§I.1), describe baselines (§I.2), and present results (§I.3).

I.1 SETUP

Dataset. We use ImageNet-1k (Russakovsky et al., 2015) with 1.28 million images. Models. We
consider 400 models from timm (Wightman, 2019) that are pretrained on ImageNet. The models
cover convolutional (Krizhevsky et al., 2012) and transformer (Dosovitskiy et al., 2021) architectures.
Model sizes range from 0.3M to 300M parameters.

Model Split. As in the language domain (§ 5.1), we use the chronological split. The cutoff date is 5
April 2023. The train-test ratio of models is 88:12.

Metrics. We use mean absolute error (MAE) and Spearman rank correlation between the true and
predicted performances.

Evaluation. Evaluation protocol follows the one in § 5.1

I.2 ABOUT BASELINES FOR VISION DOMAIN

Our work is not the first to propose efficient evaluation in the vision domain. The two closest methods
are Lifelong Benchmark (Prabhu et al., 2024) (NeurIPS 2024) and SSEPY (Fogliato et al., 2024)
(ECCV 2024). They propose efficient evaluation methods for visual models, using a similar two-stage
framework for efficient evaluation in the language domain (see § 4 / Figure 2 of our submission):

1. Select “important/representative” anchor points.
2. Estimate model performance based on model outputs on the anchor points.

In (Prabhu et al., 2024), mean correctness scores across source models are used to measure sample
difficulty, and anchor points are selected by sampling every k-th datapoint after sorting them by
difficulty (where k “

#all datapoints
#anchor points ). Final performance is predicted as a weighted sum of correctness

scores predicted for each test datapoint. Predicted correctness scores are binary values indicating
relative position (after sorting by difficulty) to the hardest anchor point the target model got right. In
(Fogliato et al., 2024), confidence scores of the target model are used to measure sample difficulty.
Then samples are clustered by difficulty with K-Means, and anchor points are selected as the
centroids of the clusters. Final performance is predicted as a weighted sum of anchor correctness
scores. Weights for the weighted sum are determined based on the corresponding cluster sizes using
Horvitz-Thompson estimator.
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Figure 10: ImageNet performance estimation vs. compression rates. Mean absolute error (MAE),
measured in %p difference in accuracy, and the Spearman rank correlation between the true model
ranking and the estimated model ranking are shown. At 100 samples, the results are identical to
Table 3. Main observations: Same as for language experiments DISCO hits a better efficiency-
precision trade-off across all range of compression rates.

The main message of our paper is that for selecting anchor points for efficient evaluation, it is better to
select diversity-inducing data points (DISCO) than to make a good coverage of sample difficulty
(prior work). In § 5.2, we have shown that our approach beats prior approaches in the language
domain.

Likewise, in the vision domain, the existing approaches (Prabhu et al., 2024; Fogliato et al., 2024)
focus on a good coverage of sample difficulty rather than on maximizing per-sample information by
seeking diversity-inducing data points. We test empirically in Table 3 whether the same conclusion
holds in the vision domain by comparing DISCO to (Prabhu et al., 2024; Fogliato et al., 2024). As
in Table 3 of the submission, MAE is the mean absolute error, and Rank indicates Spearman’s rank
correlation.

We computed the results for these baselines ourselves, as the papers do not contain results on
ImageNet. For fair comparison, we use the same setup as described in § I.1.

I.3 MAIN RESULTS

Table 3 shows the main results. See § 5.4 for their overview.

We evaluate the effectiveness of DISCO in two stages. First, we apply the model-signature approach
using uniform random sampling. Then, we enhance it by selecting samples based on predictive
diversity score (PDS). The results follow a similar trend to the language domain. With uniform
random sampling, model signatures combined with Random Forest achieve 0.86%p MAE and a
rank correlation of .944, significantly outperforming the naive baseline. Incorporating PDS further
improves performance, reaching 0.63%p MAE and a rank correlation of .969.
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Figure 9: True and estimated accuracy
on ImageNet for 50 models.

To illustrate how well the estimated performances align
with the true values, we present a scatter plot in Figure 9.
The high Pearson correlation coefficient of .970 indicates
a strong agreement between the two.

Figure 10 shows performance across varying levels of test
set reduction. The relative ranking of evaluation methods
remains largely stable, except for the kNN predictor, which
degrades as the number of anchor points increases. No-
tably, DISCO consistently outperforms all baselines, even
under extreme compression with as few as 10 samples.
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