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Figure 1: Comparison of camera pose estimation and novel view synthesis with the state-of-the-art. Compared
to CF-3DGS [10] (bottom), our method (top) achieves more robust pose estimation and more photorealistic novel
view synthesis in challenging indoor scenes with textureless regions or abrupt camera motion. Each example
contains the camera trajectory estimation (left) and a sampled synthesized view (right).

Abstract

Recent advances in 3D Gaussian Splatting (3DGS) have enabled real-time, high-
fidelity view synthesis, but remain critically dependent on camera poses estimated
by Structure-from-Motion (SfM), which is notoriously unreliable in textureless
indoor environments. To eliminate this dependency, recent pose-free variants have
been proposed, yet they often fail under abrupt camera motion due to unstable
initialization and purely photometric objectives. In this work, we introduce Nope-
RoomGS, an optimization framework with no need for camera pose inputs, which
effectively addresses the textureless regions and abrupt camera motion in indoor
room environments through a local-to-global optimization paradigm for 3DGS
reconstruction. In the local stage, we propose a lightweight local neural geometric
representation to bootstrap a set of reliable local 3D Gaussians for separated short
video clips, regularized by multi-frame tracking constraints and foundation model
depth priors. This enables reliable initialization even in textureless regions or
under abrupt camera motions. In the global stage, we fuse local 3D Gaussians
into a unified 3DGS representation through an alternating optimization strategy
that jointly refines camera poses and Gaussian parameters, effectively mitigating
gradient interference between them. Furthermore, we decompose camera pose
optimization based on a piecewise planarity assumption, further enhancing robust-
ness under abrupt camera motion. Extensive experiments on Replica, ScanNet and
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Tanks & Temples demonstrate the state-of-the-art performance of our method in
both camera pose estimation and novel view synthesis.

1 Introduction

The reconstruction of 3D representations from images for photorealistic novel view synthesis is a
longstanding challenge in computer vision and graphics. It has broad applications in augmented
reality, virtual reality, and robotics. Recent advances in learning-based methods [35, 2, 49, 51, 25, 31]
have significantly improved rendering fidelity and generalization. However, the majority of these
approaches still rely on externally estimated camera poses, typically obtained via Structure-from-
Motion (SfM) pipelines [35, 49]. This dependency introduces a critical vulnerability: SfM is
notoriously unreliable in low-texture regions and under non-smooth camera motion [12, 13, 32],
where sparse or ambiguous feature matches lead to pose estimation failures. Such inaccuracies
corrupt reconstruction optimization, but also degrade synthesis quality [38, 18, 42, 7], entangling final
novel view synthesis quality with the success or failure of an external, heuristic-heavy preprocessing
step.

This misalignment has motivated efforts to re-
move SfM entirely and jointly optimize pose "o -
and scene representation [5, 31, 53, 62, 20,
10]. However, this joint optimization problem
presents a classic chicken-and-egg dilemma, re-
quiring careful algorithmic design. BARF [31]
addresses this by employing a progressive fre- 107
quency scheduling strategy, gradually increasing
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Figure 2: The distributions of low-texture regions
(A), camera trajectory curvature (B), and camera rota-
tion difference (C) vary significantly across different

novel view synthesis. To facilitate convergence,
their method incrementally grows 3D Gaussians
frame by frame as the camera moves, optimizing
each frame’s pose solely through photometric
error minimization.

Despite significant advancements, existing pose-
free methods often assume that the photomet-
ric error from visual textures alone can provide
strong and reliable gradients for accurate pose
optimization. However, this assumption fre-
quently breaks down in the presence of texture-

scenarios: Tanks & Temples [27], Replica [44], and
ScanNet [9]. The indoor datasets, Replica and ScanNet,
contain more textureless regions and exhibit more abrupt
camera motions than Tanks & Temples, which is gen-
erally texture-rich and captured under more controlled
conditions. To create more challenging scenarios, we
further mask textured regions and sample frames with
larger temporal steps on Tanks & Temples. Under these
settings, our method demonstrates strong robustness to
large textureless areas and sudden camera motions, while
Nope-NeRF [5] and CF-3DGS [10] show notable perfor-
mance drops (D, E).

less regions or abrupt camera, e.g., in indoor

environments. We evaluated several state-of-the-art methods on indoor datasets and observed notable
performance degradation (see Tab. 1 for details). Furthermore, when we artificially mask texture-rich
regions or increase the camera motion speed within the datasets originally used by these methods, we
observe similarly pronounced performance drops (Fig. 2). These findings empirically validate our
hypothesis regarding the limitations of the current approaches in indoor environments.

To overcome these limitations, we propose NopeRoomGS, a robust pose-free 3DGS framework
designed for scenarios where textureless regions and abrupt camera motion prevail, especially indoor
environments. Our method employs a local-to-global scheme to progressively build up the 3DGS.

In the local stage, we introduce a lightweight local neural geometric representation that jointly
optimizes depth and camera pose on short, overlapping video clips extracted from the input sequence.
To recover the consistent geometry of each video clip, the optimization is supervised by multi-frame
tracking constraints derived from CoTracker [23], which remain effective even under abrupt camera



motion. Furthermore, to enhance robustness in textureless regions, we incorporate regularization
from a pretrained monocular depth foundation model [24]. This design enables reliable recovery
of local 3D geometry and camera poses under challenging conditions with textureless regions and
abrupt camera motion, thereby providing a stable initialization of local 3D Gaussians for subsequent
global fusion.

In the global stage, we progressively fuse these local 3D Gaussians into a unified global 3DGS
representation over entire video sequence. This fusion process is formulated as an optimization
problem, where the global 3DGS is supervised by a combination of photometric loss, depth alignment
loss, and pose constraints derived from piecewise planarity assumption, ensuring global geometric
consistency. Furthermore, we adopt an alternating optimization strategy that updates Gaussian
parameters and camera poses in turn, rather than jointly, to reduce gradient interference and enhance
convergence stability. This strategy improves the robustness of global reconstruction in challenging
scenarios with textureless regions and abrupt camera motion.

Our contributions are summarized as follows:

* We propose a pose-free 3DGS framework with a local-to-global scheme, which exhibits
strong robustness in textureless regions and under abrupt camera motion.

* In the local stage, we introduce a lightweight neural geometric representation that jointly
optimizes depth and camera pose over short video clips. It yields locally consistent geometry
and accurate poses, even in textureless regions and under abrupt camera motion, effectively
bootstrapping a set of local 3D Gaussians.

* In the global stage, we progressively fuse local 3D Gaussians into a unified global 3DGS
representation with alternative optimization strategy. To ensure stable convergence, we
supervise the model with the combination of photometric loss, depth alignment loss, and pose
constraints derived from piecewise planarity assumption. These components collectively
enforce structural consistency in the global reconstruction.

* Experiments on public datasets, including Replica [44] and ScanNet [9] and Tanks &
Temples [27], demonstrate that our method achieves state-of-the-art performance, with
particularly strong results in indoor scenes and competitive results in general scenarios.

2 Related Work

Novel view synthesis. Generating photorealistic images from novel viewpoints is a key challenge
in computer vision, which has been approached using diverse 3D representations. Among them,
Neural Radiance Fields (NeRFs) [35] have emerged as a leading method, with extensions tackling
challenges such as aliasing [2, 3, 4], surface reflectance [48, 1], sparse views [26, 37, 55, 60, 19]. In
parallel, explicit point-based or mesh-based representations have gained increasing attention for their
efficiency and interpretability [56, 65, 25, 34, 28, 64, 33]. In particular, 3DGS [25] demonstrates that
real-time, high-fidelity view synthesis can be achieved by representing scenes as sets of anisotropic
Gaussian primitives optimized through differentiable rendering. However, many of these methods
still rely on pre-computed camera poses. Although the camera pose estimation has been studied for
decades [36, 43, 58, 57,47, 16, 17, 50], it is still challenging to robustly estimate the camera poses
with low-cost sensors. Most recent novel view synthesis methods rely on Structure-from-Motion
tools like COLMAP [11, 43, 36, 46, 33], which limit their applicability in scenarios where obtaining
accurate camera poses is challenging, such as in low-texture environments or when only sparse or
unstructured image collections are available.

Radiance field without camera pose prior. Recent studies have integrated pose estimation
into NeRF training to remove dependence on pre-computed camera poses. Early methods, such
as i-NeRF [63], refined camera parameters by aligning keypoints to a pre-trained NeRF, while
NeRFmm [54] jointly optimized both the NeRF model and camera poses, albeit with limitations
to forward-facing scenes. BARF [31] addressed gradient inconsistency in positional encoding with
coarse-to-fine optimization, but still required initial pose estimates within 15°of the ground truth.

Nope-NeRF [5] leveraged monocular depth priors for both scene reconstruction and pose estimation.
Despite these advances, NeRF-based methods remain computationally intensive and face challenges
in achieving real-time rendering performance [40].

3DGS without camera pose prior. Recent work such as CF-3DGS [10] first removes COLMAP
dependency by jointly optimizing poses and Gaussians under inter-frame photometric supervision,
making them susceptible to failure under large camera motion or textureless regions. In parallel,
a growing line of feed-forward, pose-free 3DGS methods [61, 22, 15, 8] propose generalizable
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Figure 3: The pipeline of NopeRoomGS. Our NopeRoomGS framework adopts a Local-to-Global
optimization scheme to address textureless regions and abrupt camera motion. In the local stage
(Sec. 3.1), a lightweight Local Neural Geometric Representation jointly optimizes depth and camera
pose for each clip, yielding consistent geometry and local 3D Gaussians. In the global stage (Sec. 3.2),
these are fused into a unified 3DGS via differentiable optimization with photometric, depth, and
pose constraints under the Piecewise Planarity Assumption. An Alternating Optimization strategy
mitigates gradient interference, ensuring stable and accurate reconstruction.

networks to predict Gaussians (and often poses) without per-scene optimization. NoPoSplat [61]
predicts 3D Gaussians directly in a canonical space, whereas SelfSplat [22] jointly learns camera
poses and scene geometry via self-supervised depth and photometric consistency. Although these
approaches remove the need for external SfM, they still face limitations when processing very large
image collections, where computational and memory costs grow sharply and maintaining stable
global pose/geometry estimates becomes challenging.

In contrast, we fully exploit 3D structural-consistency constraints and foundation-model priors with a
lightweight local neural geometric representation, and fuse the resulting local 3D Gaussians using
alternating optimization strategy of camera poses and 3D Gaussian parameters, which stabilizes ini-
tialization, reduces gradient interference, and yields globally consistent reconstructions in challenging
scenarios with textureless regions and abrupt camera motion.

3 Method
Given a sequence of N unposed images Z = {I; € REZ*XW>3}N  with known camera intrinsic, our

goal is to recover the camera poses 7 = {T; € SE(3)}}Y, and reconstruct a unified global 3DGS
representation G of the scene.

This task is fundamentally challenging because both accurate camera poses and reliable 3DGS
representation must be recovered simultaneously from unposed inputs. The explicit nature of the
3DGS representation, though beneficial for efficient rendering, makes this joint optimization highly
non-convex and sensitive to initialization [21, 6]. In particular, the problem is exacerbated in indoor
environments characterized by textureless surfaces and abrupt camera motion, where standard feature-
based methods fail and gradient descent is prone to local minima [14]. To improve robustness, we
adopt a local-to-global optimization scheme, as illustrated in Fig. 3. In the local stage (Sec. 3.1), we
introduce a learnable local neural geometric representation that jointly estimates depth and camera
pose within each video clip. This yields reliable scene structure and camera pose to bootstrap a
set of local 3D Gaussians as an initialization for global optimization, which is critical for stable
convergence [59]. In the global stage (Sec. 3.2), these local 3D Gaussians are progressively fused
into a unified global 3DGS representation. This fusion is formulated as a differentiable optimization
problem, supervised by a combination of photometric loss, depth alignment loss, and pose constraints
based on a piecewise planarity assumption. In addition, we adopt an alternating optimization strategy
to updates camera poses and Gaussian parameters in turn, rather than jointly [30], to mitigate gradient
interference and enhance convergence.

3.1 Local Stage

In the local stage, to address the challenging scenario with textureless regions and abrupt camera
motion, we propose a local neural geometric representation that jointly optimizes camera poses



and per-frame depth via gradient descent. The optimization is supervised by multi-frame tracking
constraints [23], which enhance geometric coherence under abrupt camera motion. Additionally, we
incorporate strong depth priors from a pretrained foundation model [24] to regularize the solution in
textureless regions. Unlike prior pairwise methods [10], our representation is shared across all frames
within a clip, enabling consistent geometric reasoning across different viewpoints.

Local neural geometric representation. To ensure consistent geometry under challenging conditions
such as textureless regions and abrupt camera motion, we parameterize the local scene structure using
a lightweight local neural geometric representation Fy, where 6 denotes learnable parameters. To
make this representation both robust and rapidly deployable, Fy is initialized from a fast monocular
depth estimator [41] and shared across all frames within a short video clip, enabling coherent geometry
over the video clip.

Given a short clip Z = {I; € REXWx31L  of length L, the local neural geometric representation
Fy takes as input a color image I; to predict the corresponding depth map Dy ;:

Dy = Fo(I;). (1

We denote the depth maps of the clip as Dy = {Dp,; € R¥*W}L | By sharing the network Fy
across the local video clip, consistent geometric cues can be learned during optimization. The
intuition of this optimization process is similar to the classic bundle adjustment, but our approach is
based on neural representations.

Joint optimization of local camera pose and depth. After obtaining the initial depth maps above,
we jointly optimize the local camera poses 7 = {T; € SE(3)}~; and the depth maps Dy by
enforcing geometric consistency across frames.

Specifically, for any pixel u; in the frame 4, we can get its correspondences {u;|j € N (u;)} in the
neighboring frames N '(u;) by using the quasi-dense off-the-shelf multi-frame tracking constraints
derived from CoTracker [23]. To enforce the geometric constraints for pose optimization, we first
unproject the pixel u; to get its 3D position p; in the current frame:

p; =7 () = Dpi(u,)K ™! (‘1) : @)

where K denotes the intrinsic matrix and Dy ;(u;) is its estimated depth value in Eq. 1. Then, we
map it to the nearby frames and enforce the geometric consistency by minimizing the projection
error:

2

; 3

E;roj = Z Hﬂ(Tjem_l(ui)) — Llj‘
JEN (u;)

where 7(-) denotes the pinhole camera projection function given the intrinsic matrix K, and T;.; €
SE(3) denotes the relative pose transformation from frame i to frame j.

To avoid the depth optimization deviate too far away from the realistic solution manifold, we
regularize its prediction with the output from a stronger but much heavier monocular depth foundation
model [24], striking a balance between performance and efficiency. This regularization is implemented
by a scale-and-shift-invariant regularization loss [41]:

Lig=p(Doi—aDi=p). @

where Dy ; is the output from local neural geometric representation Fy, and D; is the pseudo
ground-truth produced by the foundation model, and p(+) is a distance function (i.e., Huber loss).
The parameters « and 3 are obtained by solving a least-squares problem [41] to resolve the scale
ambiguity of monocular depth estimation.

The overall objective function in the local stage is thus:

T, Dy = arg min ‘Cp'roj + wlsi, ©)
T, Do

where L,,,.; and L,; are the summation of all the £}, ; and L respectively within the same clip,
and the weight w controls the regularization strength. Here, we slightly abuse the notation Dy, as we

optimize the parameter 6 practically.
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Figure 4: Qualitative comparison of novel view synthesis on Replica [44] dataset. Compared with
other cutting-edge counterparts, our method synthesizes more detailed textures under the pose-free
setting.

3.2 Global Stage

After obtaining the local camera poses 7 and depth maps Dy within each clip via Eq. 5, we
initialize local 3D Gaussians accordingly and progressively merge them into a unified global 3DGS
representation G.

Specifically, for each frame ¢ within a clip, we unproject its depth map Dy ; to the 3D space using
camera intrinsic K (Eq. 2) to get the point cloud P; and transform it using the estimated pose T'; to
the local frame of this clip. After finishing this process, we get a local point cloud for each clip. To
decrease the memory burden, we downsample the point cloud and initialize the local 3D Gaussians
with the downsampled point cloud. Then, the local 3D Gaussians are merged into a unified global
3DGS representation G according to the relative pose between the local frame and the global frame.
Thereafter, we optimize the global 3D Gaussian parameters as well as the camera pose based on
the input image 7 and estimated depth map Dy from the local stage. In the ensuing part, we will
elaborate on the objective function we used for optimization.

3.2.1 Objective Function

Photometric loss. Following the original 3DGS [25], we include the photometric loss terms in the
objective function:

Ll =7 1g(Ti) — Lill, + (1 =) Lp_ssm(Ig(Ts), 1) (6)

which is constituted by a L; term and a D-SSIM term [25]. Ig(T;) represents the rendered image
from the Gaussian Splatting G with the camera pose T;, I; is the i-th input image, and -y is the
hyperparameter to balance the two terms.

Depth alignment loss. With the photometric loss, the camera poses can be effectively corrected by
the regions with rich textures, as these regions can produce strong gradients if the poses are erroneous.
However, the indoor scenes are full of textureless areas, e.g., blank walls, which pose great challenges
to pose-free 3DGS. To enhance the robustness in textureless regions, we also add a depth alignment
term similar to Eq. 4:

Lhept = A(Do(T)) = Dy = B). ™

The difference is that we here use the optimized depth maps Dy ; from the local stage as the ground
truth to constrain the depth maps Dg(T;) rendered with camera pose T;.



Table 1: Camera pose estimation performance metrics comparison on Replica [44] dataset. All
baseline methods are trained with their official implementations and original configurations, and
evaluated following the same protocol to ensure fair and consistent comparison. The best results are
highlighted in bold.

Ours CF-3DGS [10] NoPoSplat [61] SelfSplat [22] Nope-NeRF [5] BAREF [2] NeRFmm [54]
RPE, | RPE,| ATE| RPE, RPE, ATE RPE, RPE, ATE RPE, RPE, ATE RPE, RPE, ATE RPE, RPE, ATE RPE, RPE, ATE

office0 0.231  0.153 0.011 1.168 7.282 0.043 1.456 7.456 0.053 1.073 7.654 0.074 1.231 5462 0.042 1.561 6.273 0.052 1.467 6.834 0.060
officel  0.020 0.045 0.001 1.171 6.288 0.078 1.325 5.946 0.067 0.946 8.678 0.064 1.416 7.922 0.056 1.462 5.234 0.048 1432 7.236 0.054
office2  0.404  0.260 0.027 0.816 1.668 0.044 1.874 7.764 0.053 1.554 6.832 0.074 1.273 5234 0.047 1.073 6.235 0.055 1.346 6.892 0.023
office3  0.056  0.062 0.003 1.489 5994 0.093 2.113 7.235 0.067 2.038 8245 0.056 1.156 6.002 0.052 1.119 7.345 0.056 1.489 7.231 0.054
office4 0.083  0.126 0.003 1.086 6.901 0.048 1.932 7.567 0.072 1.807 7.113 0.054 0.923 6.231 0.037 1.223 5.987 0.041 1.946 6.923 0.045
room0  0.051  0.055 0.003 1201 6.545 0.044 1.834 6.593 0.046 1.504 7.832 0.074 1.023 5432 0.013 1.327 6.432 0.052 1.835 7.235 0.033
rooml 0.230 0.175 0.012 1.088 6.961 0.056 2.325 5.745 0.043 2.164 6.883 0.095 0.875 6.256 0.025 1.045 5.436 0.043 1322 6.923 0.072
room2 0.111  0.128 0.008 1.177 5584 0.064 1.325 8.385 0.084 1.164 7.224 0.083 1.231 5467 0.036 1.032 5.467 0.023 1.347 6.342 0.043

mean  0.148  0.126 0.009 1.150 5.903 0.059 1.773 7.086 0.061 1.531 7.56 0.072 1.141 6.001 0.039 1.230 6.051 0.046 1.523 6.962 0.048

Scenes

Pose constraint based on piecewise planarity assumption. The camera motion could be abrupt
in indoor scenes. To further improve the robustness against abrupt camera motion, we propose a
cross-frame geometric constraint based on a piecewise planarity assumption.

We assume each point x,, in the scene lies on a infinitesimal piecewise plane defined by n xp+0; =0,
where n; is the surface normal and J; is the displacement coefficient. The normal and the displacement
coefficient are calculated from the rendered depth map of 3DGS G, using 4 surrounding pixels (left,
right, upper, lower).

Given two consecutive frames, I; and I;; with a relative pose estimation T; ;11 = [R;—i41 |
t;—+1] between, the plane parameters in frame 4, denoted as (n;, d;), can be transformed to frame
1+ 1by

ﬁi+1 = Ri—>i+1nia (8)
5i+1 =0; — n;rtiﬁzﬁrla ©)

to get the transformed plane parameters (41, 0;41).

We then enforce consistency between the transformed plane parameters (11,11, d;41) and the directly
estimated values (n;y1,d;11) in the frame ¢ + 1, using the following loss function:

| 2
Ll =N\, Hl — fl¢T+1nz'+1||; + s ) Oi1 = 5i+1H2’ 1o

plane

where )\, and \s are the regularization parameters that control the relative importance of normal and
offset consistency, respectively. This loss function ensures that the geometries in consecutive frames
are coherently aligned and decomposes the supervision to rotational and translational components of
the camera poses. We found that, by adjusting A,, and A5, we can achieve more robust pose estimation
in indoor environments. To further enhance robustness, we also extract the edge map based on input
frame, which is used as a mask to restrict this constraint only to planar regions, while avoiding its
effect on the plane edges. Further detail can be found in the supplementary materials.

Overall global optimization. By combining the objective functions mentioned above, the overall
optimization process is formulated by summing over all the frames:

L

T,G = arg min Z )‘Plaﬂeﬁ]i)lane + )‘rgbﬁﬁgb + Adeplh‘cflepth’ (11)
T,G i=1

where the weights Apjane, Areb, and Ageprn balance different terms.

3.2.2 Alternating Optimization Strategy

Although Eq. 11 defines a unified objective over both the global camera poses 7 and the 3D
Gaussian parameters G, jointly optimizing them often results in unstable convergence due to gradient
interference between the two parameter spaces [21, 6, 14]. To mitigate this issue, we adopt an
alternating optimization strategy, updating camera poses and 3D Gaussian parameters in turn. This
decoupled scheme improves convergence stability and preserves global consistency, as validated
by our ablation studies in Sec. 4.4. Further implementation details, including the gradient update
formulation for camera pose parameters, are provided in the supplementary material.



Table 2: Novel view synthesis performance metrics comparison on Replica [44] dataset. For fair
comparison, each baseline is trained using its publicly released code and original hyperparameter
settings, and evaluated under the same protocol. The best results are highlighted in bold.

Ours CF-3DGS [10] NoPoSplat [61] SelfSplat [22] Nope-NeRF [5] BARF [2] NeRFmm [54]
PSNR1 SSIMT LPIPS| PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

office0  34.32 0.92 0.09 2850 0.87 028 1734 057 047 1650 056 035 2826 085 051 2523 078 048 2352 058 049
officel  31.78 0.92 010 29.11 085 0.8 1852 041 041 1811 059 040 2735 0.69 040 2638 063 053 2533 061 053
office2  30.77 0.91 011 2497 078 029 1854 056 034 1597 045 043 2677 076 035 2652 073 043 2328 061 054
office3  32.37 0.90 012 2370 075 025 1584 054 043 2170 057 045 2601 074 041 2637 061 041 2525 078 045
office4  32.12 0.90 0.09 2749 078 028 1893 059 035 1549 056 038 27.64 084 026 2648 072 036 2408 070 043
room0  33.21 0.89 0.06 2260 068 038 1996 047 045 18.63 054 047 2533 072 038 2553 0.64 032 2293 048 051
rooml 3213 0.87 0.08 2450 074 035 2392 053 046 2215 048 043 2942 080 038 2554 056 054 2540 0.69 043
room2  30.40 0.88 0.10 2534 074 034 2208 055 036 2342 055 048 2896 061 047 2483 053 060 2416 043 040

mean 32.14 0.90 0.09 2540 077 029 1939 052 041 1890 0.54 042 2746 075 040 2586 065 046 2424 061 047

Scenes

4 Experiment

4.1 Experimental Setup

Datasets. We evaluate our method on three public datasets: Replica [44], ScanNet [9], and Tanks
& Temples [27], covering both synthetic and real-world scenes. The Replica [44] dataset offers
high-fidelity synthetic indoor scenes with precise ground-truth camera poses. Its large textureless
regions and complex camera trajectories make it well-suited for evaluating camera pose estimation
and novel view synthesis. The ScanNet [9] dataset consists of real-world RGB-D indoor scenes
captured in unconstrained environments, presenting challenges such as sensor noise and motion blur.
Tanks & Temples [27] dataset contains texture-rich scenes with relatively controlled camera motions.
Most previous methods are evaluated on this dataset. We include it to test the generalizability of our
method.

Metrics. Following prior works [10, 5], we evaluate our method on two key tasks: camera pose
estimation and novel view synthesis. For camera pose estimation, we use standard visual odometry
metrics [29, 45], including Absolute Trajectory Error (ATE) and rotational Relative Pose Error (RPE,.)
and translational Relative Pose Error (RPE;). For novel view synthesis, we use standard image quality
metrics: Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM) [52], and Learned
Perceptual Image Patch Similarity (LPIPS) [66].

Implementation Details. Our method is implemented using PyTorch [39], building on the opti-
mization settings from 3DGS [25] with necessary adjustments. A key feature is synchronizing new
frame additions with point densification intervals to ensure steady scene expansion. For detailed
information, please refer to the supplementary materials.

4.2 Replica

In this subsection, we conduct a comparative analysis of our method against several established
baselines, including NoPoSplat [61], SelfSplat [22], CF-3DGS [10], Nope-NeRF [5], BARF [2] and
NeRFmm [54], all of which are widely recognized for their contributions to camera pose estimation
and novel view synthesis.

For camera pose estimation, the optimized camera poses are aligned with Procrustes Analysis, as
described in prior works [5, 54], and compared against the ground-truth poses from training views.
Quantitative results are summarized in Tab. 1, where our method achieves performance superior to
current state-of-the-art approaches.

For novel view synthesis, we adopt the Table 3: L .
evaluation protocol of CF-3DGS [10] and Table 3¢ Camera pose cstimarion and novel view syn-
NeRme [54] The Optimized 3DGS model, €S1S periormance metriCs comparison on SCaniNe

ined exclusivel h .. . Sk dataset. For fair comparison, each baseline is trained
traine exclusively on the training views, 1S ept using its publicly released code and original hyperparam-
fixed, while the camera poses of the test views

Lalliet > eter settings, and evaluated under the same evaluation
are refined by minimizing the photometric recon-  protocol. The best results are highlighted in bold.

struction error between synthesized and ground- “emoss RPE, | RPE, | ATE, PSNR{ SSIMT  LPIPS |
truth images. As reported in Tab. 2, our method NeRFmm[54] 1153 0963 0123 1550 059 0.53

. . 2
consistently outperforms all baselines. More- — Nowrekrs 0761 oess 00w 211 oer o

o H < : 3 3 SelfSplat [22] 0.984 0.932 0.231 18.28 0.52 0.45
over, the qualltathC COmpa.rlSOnS mn Flg 4 hlgh_ NoPoSplat [61] 1.167 0.875 0.124 17.28 0.54 0.67

light that our Synthesized images preserve finer CF-3DGS [10] 0.653 0.684 0.040 23.26 0.68 0.24
details and exhibit sharper textures than those —_= 0575 0524 0020 253 0 0 o
produced by existing methods.




4.3 ScanNet

To further validate the effectiveness of our method in realistic and unconstrained environments,
we evaluate it on ScanNet [9] dataset, which consists of real-world indoor scenes. Compared to
Replica [44] dataset, ScanNet [9] dataset introduces additional challenges such as sensor noise, clut-
tered layouts, and motion blur, making it a more demanding benchmark for pose and reconstruction
quality. We follow the evaluation protocol of [10, 5] to assess both camera pose estimation accuracy
and novel view synthesis quality. As shown in Tab. 3, our method consistently achieves superior
results across all evaluation metrics.

4.4 Tanks & Temples

While Replica [44] and ScanNet [9] datasets pro-

vide indoor scenes, we further evaluate the gen- Table 4: Camera pose estimation and novel view

. o synthesis performance metrics comparison on Tanks &
eralization ability and robustness of our method Temples [27] dataset. All baseline methods are trained

on Tanks & Temples ,[27] dataset, ,Wthh CON-  yith their official implementations and original config-
sists of photogrammetric reconstructions of both  yragions, and evaluated following the same protocol to

ideOI‘ and 0}ltd00f scenes with Fexture varia- ensure fair and consistent comparison. The best results
tions. Following standard evaluation protocols are highlighted in bold.

established in [10, 5], we assess both camera Methods RPE, | RPE.| ATE] PSNRT SSIM?T LPIPS |
pose estimation accuracy and novel view synthe- — NeRFmm(s4] 1735 0477 0123 2250 059 054
sis quality. As reported in Tab. 4, our method — NepeNekris) 0080 003 0006 2634 074 039
performs competitively with state-of-the-art ap-  Xomgpucion 153 o8 o1 2015 0% 0w
proaches across nearly all metrics. Qualitative ~_CF3PGSUOI 0041 006 0004 3128 095 00

Ours 0.034 0.043 0.003 31.68 0.94 0.07

results are presented in Fig. 5.

4.5 Ablation Study

In this section, we analyze the effectiveness
of different key components proposed in our
pipeline through systematic ablation studies.

Effectiveness of local neural geometric repre-
sentation. To evaluate the contribution of the
local neural geometric representation (LNGR),
we conduct an ablation study where LNGR is  Figure 5: Qualitative results of novel view synthesis
removed and replaced with a naive initialization on Tanks & Temples [27] dataset. Our NopeRoomGS
strategy: the camera pose of each frame is ini- produces more realistic rendering results than other base-
tialized using that of the previous frame, and lines.

depth is directly estimated from a monocular

foundation model [24] without LNGR refinement.

As shown in Tab. 5 (row "w/o LNGR") and Fig. 6, this configuration causes a noticeable drop in both
pose accuracy and rendering quality, which underscores the essential role of LNGR Fj in handling
challenging indoor scenarios with textureless regions and abrupt camera motion. As described in
Sec. 3.1, by jointly optimizing depth and pose across short video clips, Fy produces consistent and
robust local scene geometry and camera pose. These outputs provide reliable initializations for
local 3D Gaussians, which in turn supply high-quality geometry and pose priors for the subsequent
global optimization stage. Such strong initializations are crucial for ensuring stable convergence and
achieving high reconstruction fidelity.

Effectiveness of piecewise planarity assump-

tion. To assess the impact of the piecewise Table 5: Ablation study on Replica [44] dataset. A
planarity assumption (PPA), we ablate the PPA ~ comparison of our fu'll pipeline ans:l variants w1thout
constraint from the global optimization stage Local Neural Geometric Representation (LNGR), Piece-
and replace it with pairwise depth consistency wise Planarity Assumption (PPA), Alternating Optimiza-

. L . tion Strategy (AOS), and Depth Alignment Loss (DAL)
loss computed via reprojection between adjacent (described in Eq. 7), respectively.
frames. Methods  RPE;| RPE,| ATE| PSNR{ SSIM{ LPIPS |
As shown in Tab. 5 (row "w/o PPA") and Fig. 6,  ours 0148 0.026 0009 3214 090 009
this substitution results in a decline in both cam- ~ WoLooR 1932 428 000 o 0% o
era pose accuracy and novel view synthesis qual- ~ woAOS 0205 0189 0019 2828 089 015
ity, thereby substantiating the efficacy of PPA woDAL 01 1% 00 3142 0% OM
in guiding global optimization. As detailed in

Sec. 3.2.1, PPA improves camera pose estimation in textureless regions by introducing geometry-

— A —
CF-3DGS Ours GT




20 25 30 35 ' 10 13 20 25 30 33 ' 10 15 20 25 30 . ' 10 15 20 25 30 35 ' 10 15 20 25 30 35
Ours w/o Local Neural Geometric w/o Piecewise Planarity w/o Alternating Optimization w/o Depth Alignment
Representation Assumption

Figure 6: Ablation study for camera pose estimation and novel view synthesis on Replica [44] dataset. We
compare our full pipeline with the variants without local neural geometric representations, piecewise planarity
assumption, alternating optimization strategy, and depth alignment loss as described in Eq. 7, respectively. The
3D trajectories are projected onto the XY plane of the coordinate system.

aware supervision, and stabilizes optimization under abrupt camera motion by decomposing the
supervision signal into rotational (normal alignment) and translational (offset consistency) compo-
nents, which contributes to the robustness of the overall reconstruction process.

Effectiveness of alternating optimization strategy. To evaluate the impact of our incremental and
Alternating Optimization Strategy (AOS), we replace it with a joint global optimization method. As
shown in Tab. 5 (row "w/o AOS") and Fig. 6, this substitution leads to a drop in both camera pose
accuracy and novel view synthesis quality, highlighting the effectiveness of our proposed design.
Given the same reliable initialization, alternating optimization plays a critical role in achieving stable
convergence and higher reconstruction quality by mitigating interference between camera pose and
3D Gaussian parameters updates.

Effectiveness of depth alignment loss. To assess the effectiveness of the Depth Alignment Loss
(DAL) in Eq. 7, we replace the optimized depth from the local stage with monocular predictions from
a pretrained foundation model [24] to supervise the depth rendered from the global 3DGS stage. As
shown in Tab. 5 (row "w/o DAL") and Fig. 6, this leads to degraded camera pose accuracy and novel
view synthesis quality. These results highlight the importance of depth alignment supervision and
demonstrate the effectiveness of our local neural geometric representation in recovering consistent
scene geometry.

5 Conclusion and Limitation

In this work, we propose NopeRoomGS, a fully pose-free (i.e., no pose priors) 3D Gaussian Splatting
framework that progressively recovers both camera poses and 3DGS representation via a local-to-
global optimization paradigm. In the local stage, we introduce a lightweight local neural geometric
representation that is jointly optimized on short video clips under supervision from multi-frame
tracking and foundation-model depth priors, thereby enabling accurate reconstruction in textureless
regions and under abrupt camera motion. In the global stage, we fuse the resulting local 3D Gaussians
into a unified 3DGS representation through alternating optimization, ensuring geometric consistency
under challenging conditions. Extensive experiments on public datasets demonstrate that our method
achieves state-of-the-art performance in both camera pose estimation and novel view synthesis,
extending the applicability of 3DGS to real-world, unconstrained environments.

Despite the improved robustness in indoor scenarios and better handling of complex camera motion,
several limitations remain. First, the local stage introduces additional computational overhead
compared with vanilla 3DGS. Second, even with local-to-global optimization and multiple loss
constraints, the method can fail under extremely rapid camera motion or severely sparse inputs. We
aim to address these issues in future work.

Societal Impact. This technology can benefit AR/VR, robotics, digital content creation, telepresence,
and cultural heritage preservation. However, its computational demands may contribute to a higher
carbon footprint.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly describe our two main contributions: (1)
A local-to-global optimization framework for pose-free 3DGS, and (2) A neural geometric
representation that enhances robustness under textureless regions and abrupt motion. These
are consistently supported by our experiments and analysis.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper did talk about the limitations of the work in the last section
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

 The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

e The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: This work is primarily empirical, focus on the application, and does not present
any formal theorems or theoretical analysis requiring assumptions or proofs.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The architecture details, training settings, dataset splits, and evaluation metrics
are all clearly described in the main text and appendix. These provide sufficient information
for reproducing the experimental results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Although no code is released, it includes detailed instructions, data preparation,
training, and evaluation. These are sufficient to faithfully reproduce the main experimental
results and we will open source upon the paper acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All training details, including optimizer choice, learning rate, batch size, and
data splits, are described in paper and Appendix to ensure reproducibility and clarity.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The experimental results in the paper are not accompanied by any statistical
significance tests, as prior work in this area typically only reports aggregate results without
such analysis. To ensure comparability and clarity, we follow the reporting conventions in
the related literature.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides detailed information on the compute infrastructure used.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics and ensured that the
work complies with all guidelines, including data usage, model deployment considerations,
and societal impact awareness.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This work may enable more robust 3D reconstruction in low-texture or dynamic
environments, which could benefit AR/VR applications and autonomous systems. We
discuss this at the end of this paper.

Guidelines:
* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve models or data with high risk of misuse. It focuses
on standard scene reconstruction tasks without releasing generative or language models, or
using scraped or sensitive data.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We use existing datasets and code under their respective licenses.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We introduce a new framework.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The research does not involve crowdsourcing or any form of human subject
participation.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve any human subjects, personal data, or crowd-
sourced data. All experiments are conducted on publicly available datasets and simulated
environments.

Guidelines: The paper does not involve any human subjects or crowdsourced data, and thus
does not require IRB or equivalent approval.

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The research does not involve the use of large language models (LLMs) as
part of the core methodology, nor are they used as important, original, or non-standard
components in the work.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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