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Abstract

In the context of real-world applications, lever-001
aging large language models (LLMs) for002
domain-specific tasks often faces two major003
challenges: domain-specific knowledge pri-004
vacy and constrained resources. To address005
these issues, we propose PDSS, a privacy-006
preserving framework for step-by-step distil-007
lation of LLMs. PDSS works on a server-008
client architecture, wherein client transmits009
perturbed prompts to the server’s LLM for ra-010
tionale generation. The generated rationales011
are then decoded by the client and used to012
enrich the training of task-specific small lan-013
guage model(SLM) within a multi-task learn-014
ing paradigm. PDSS introduces two privacy015
protection strategies: the Exponential Mecha-016
nism Strategy and the Encoder-Decoder Strat-017
egy, balancing prompt privacy and rationale us-018
ability. Experiments demonstrate the effective-019
ness of PDSS in various text generation tasks,020
enabling the training of task-specific SLM with021
enhanced performance while prioritizing data022
privacy protection.023

1 Introduction024

Large Language Models(LLMs), boasting billions025

of parameters and remarkable text generation abil-026

ities, have risen as a revolutionary force in artifi-027

cial intelligence. Prominent models, such as GPT-028

4 (OpenAI, 2023), LLaMA(Touvron et al., 2023),029

and Qwen(Bai et al., 2023), have garnered the atten-030

tion of researchers and practitioners alike, demon-031

strating unparalleled proficiency across numerous032

tasks. Nevertheless, the sheer size of these models033

presents significant obstacles for real-world deploy-034

ment, particularly in environments with limited035

resources. Meanwhile, as LLMs gain escalating036

popularity and widespread utilization, privacy con-037

cerns have moved to the forefront, especially when038

it comes to user data and model inference. In con-039

trast, Small Language Models(SLMs) often exhibit040

superior computational efficiency and faster con- 041

vergence rates, rendering them perfectly suited for 042

real-time applications or resource-constrained envi- 043

ronments. Nonetheless, SLMs also possess certain 044

drawbacks stemming from their performance lim- 045

itations. The question then arises: How can we 046

effectively combine the predictive prowess of LLMs 047

with the nimbleness of SLMs, all while adhering to 048

privacy requirements? 049

To address these challenges, we introduce PDSS, 050

a privacy-preserving framework for step-by-step 051

distillation of LLMs. In our envisioned setup, 052

there’s a high-powered server capable of deploy- 053

ing an LLM, paired with a client possessing more 054

limited computational resources running SLM. The 055

challenge lies in maintaining the privacy of client 056

data while leveraging the server’s LLM to aid in 057

training the client’s SLM for text generation tasks, 058

thereby elevating its performance. PDSS aims 059

to bridge this gap, enabling secure and efficient 060

knowledge transfer between LLM and SLM, and 061

ultimately enhancing the capabilities of the SLM 062

without compromising privacy. 063

As illustrated in Figure 1, within our framework, 064

the process works as follows. Initially, the client 065

transmits perturbed prompts to the server’s LLM, 066

which are protected by the PDSS prompt encoder 067

module, thus ensuring privacy protection. Sub- 068

sequently, the server’s LLM generates perturbed 069

rationales from these prompts through the Chain 070

of Thought (COT) approach (Wei et al., 2022) and 071

relays them back to the client. Upon receiving 072

these perturbed rationales, the client’s rationales 073

decoder module reconstructs them into their origi- 074

nal, aligned form corresponding to the raw prompt. 075

Ultimately, the client incorporates these rationales 076

as supplementary and enriching information for 077

training its Task-Specific SLM within a multi-task 078

learning paradigm (Wei et al., 2022; Hsieh et al., 079

2023; Zhang and Yang, 2021). These rationales 080

justify the predicted labels and serve as insightful 081
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guidance for training smaller and domain-specific082

models.083

Within the PDSS framework, to achieve a084

balance between preserving the privacy of user085

prompts and enhancing the usability of rationales,086

we introduce two privacy protection strategies in-087

corporated into the the prompt encoder module088

and the rationales decoder module: the Exponen-089

tial Mechanism Strategy and the Encoder-Decoder090

Strategy. In the Exponential Mechanism Strategy,091

we utilize an exponential mechanism to obfuscate092

the prompts (Tong et al., 2023), followed by de-093

coding the perturbed rationales through In-Context094

Learning (ICL) (Dong et al., 2022). In the Encoder-095

Decoder strategy, we utilize an Encoder-Decoder096

SLM specifically designed to encode raw prompts097

into perturbed prompts and subsequently decode098

perturbed rationales back into their original form.099

To effectively train this unified Encoder-Decoder100

SLM, we utilize a multi-task learning paradigm101

(Zhang and Yang, 2021), encompassing both the102

encoding and decoding training processes.103

Our contributions are summarized as follows:104

• Privacy-Preserving Framework for LLM105

Distillation. We propose PDSS, a novel106

framework that facilitates secure and efficient107

knowledge transfer from LLM to SLM in108

resource-constrained environments while ad-109

hering to privacy requirements. PDSS ad-110

dresses the challenges posed by the massive111

size of LLMs for real-world deployment and112

the privacy concerns surrounding user data.113

By utilizing perturbed prompts and rationales,114

PDSS ensures data privacy while leveraging115

the predictive prowess of LLMs to enhance116

the performance of SLMs.117

• Innovative Privacy Protection Strategies.118

Within PDSS, we introduce two privacy pro-119

tection strategies: the Exponential Mechanism120

Strategy and the Encoder-Decoder Strategy.121

The former utilizes an exponential mechanism122

to obfuscate user prompts, while the latter em-123

ploys a specialized Encoder-Decoder SLM to124

encode and decode perturbed prompts and ra-125

tionales. These strategies effectively balance126

user privacy and the usability of rationales,127

allowing for secure and enhanced training of128

the client’s SLM without compromising on129

privacy concerns.130

• Empirical Evaluation and Enhanced Per-131

formance of Task-Specific SLM. Through 132

experiments on various text generation tasks, 133

PDSS demonstrates the effectiveness of its 134

framework in training task-specific SLM with 135

enhanced performance. By harnessing the ra- 136

tionales generated by the server-side LLM, 137

PDSS provides valuable task-specific knowl- 138

edge to the SLM, enabling them to achieve 139

significant improvements with the support of 140

the LLM while prioritizing data privacy pro- 141

tections. 142

Figure 1: Overview of our proposed PDSS workflow.

Figure 2: Privacy-Preserving Rationals Generation Ex-
ample.

2 Related Work 143

2.1 Chain of Thought in Large Language 144

Models 145

The Chain of Thought(COT) approach has recently 146

garnered significant attention in the realm of LLMs, 147

thanks primarily to its remarkable ability to en- 148

hance the reasoning capabilities of these models. 149
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This innovative concept was first introduced by150

(Wei et al., 2022). Their research demonstrated151

that by prompting LLMs to produce a sequence of152

intermediary reasoning steps(rationales), the mod-153

els’ performance in handling intricate reasoning154

tasks could be notably boosted. This groundbreak-155

ing study opened the door for further explorations156

into COT. Since the introduction of COT, several157

studies have delved into its extensions and vari-158

ations. For example, (Kojima et al., 2022) pro-159

posed the use of zero-shot COT, where the model160

is prompted to generate reasoning steps(rationales)161

without relying on prior examples. COT has also162

been applied to various domains, including arith-163

metic reasoning(Cobbe et al., 2021), commonsense164

reasoning(Klein and Nabi, 2020).165

Nonetheless, despite the impressive feats166

achieved by LLMs, the adoption of LLMs in167

domain-specific applications with constrained re-168

sources poses a significant challenge(Fan et al.,169

2023) (Kang et al., 2023). Recent studies by (Hsieh170

et al., 2023) (Ho et al., 2022) (Li et al., 2023), have171

capitalized on the generated rationales as a form of172

insightful supervision to train smaller and domain-173

specific models. However, previous studies have174

not addressed the domain-specific data privacy is-175

sue that arises when LLMs and domain-specific176

smaller models are deployed across different par-177

ties. In our work, we endeavor to address this178

significant challenge.179

2.2 Privacy Preserving LLM Inference180

With the escalating popularity and widespread uti-181

lization of LLMs, privacy concerns have taken182

center stage, particularly regarding user data183

and model inference. Previous research ef-184

forts aimed at preserving privacy during LLM185

inference have predominantly focused on sev-186

eral key techniques, including differential pri-187

vacy(DP) (Dwork, 2006), fully homomorphic en-188

cryption(FHE) (Gentry, 2009), and secure multi-189

party computation(MPC) (Yao, 1986) protocols.190

Numerous studies have delved into the intrica-191

cies of LLM inference leveraging DP techniques.192

Notably, methods like SANTEXT+ (Yue et al.,193

2021), CUSTEXT+ (Chen et al., 2022), TextO-194

bfuscator (Zhou et al., 2023) and InferDPT (Tong195

et al., 2023) have harnessed differential privacy to196

sequentially replace sensitive words in the text with197

semantically similar alternatives from a predefined198

word adjacency list.199

FHE and MPC techniques have also garnered200

attention as viable methods for ensuring privacy 201

during LLM inference. For instance, CipherGPT 202

(Hou et al., 2023) proposes a secure matrix multipli- 203

cation and a novel protocol for securely computing 204

GELU within transformer architecture using FHE 205

and MPC protocols to facilitate secure two-party 206

GPT inference. Likewise, Puma (Dong et al., 2023) 207

has adopted FHE and MPC in its transformer ar- 208

chitecture for secure third-party LLM inference. 209

While FHE and MPC can be utilized for privacy- 210

preserving text generation tasks, their practical ap- 211

plications remain limited primarily due to signifi- 212

cant computational and communication overheads. 213

The advancements in privacy-preserving tech- 214

niques, such as differential privacy, FHE, and MPC, 215

offer promising solutions to mitigate privacy risks 216

associated with LLM inference. However, balanc- 217

ing privacy and efficiency remains a challenge that 218

requires further exploration and refinement. 219

3 The Proposed PDSS Framework 220

3.1 Overview 221

In this section, we introduce PDSS, an innova- 222

tive privacy-preserving framework specifically de- 223

signed for distilling step-by-step LLMs. The PDSS 224

framework can enhance the performance of SLMs 225

while maintaining privacy, leveraging the capabil- 226

ities of LLM. We illustrate the PDSS in Figure 1 227

and describe the associated training algorithm in 228

Algorithm 1. The workflow of PDSS is outlined as 229

follows: 230

1. In the client, Prompt Encoder Module per- 231

turbs these prompts before sending them to 232

the server-side LLM. 233

2. In the server, the server-side LLM gener- 234

ates perturbed rationales based on these per- 235

turbed prompts and sends them back to the 236

client. 237

3. In the client, Rationales Decoder Module 238

decodes the perturbed rationales. 239

4. In the client, Task-Specific SLM Training 240

Module employs both the original label data 241

and the filter rationales data for multi-task 242

learning. 243

3.2 Prompt Encoder Module 244

In the prompt encoder module, as illustrated in Fig- 245

ure 3, we propose two privacy protection strategies: 246
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1. Exponential Mechanism Encoder Strat-247

egy. In the first strategy, we utilize an ex-248

ponential mechanism (McSherry and Talwar,249

2007)(Tong et al., 2023), which satisfies the250

criteria for the ϵ−DP . This strategy works251

by replacing each token in the prompt with a252

semantically similar one sampled from either253

a predetermined adjacency list or a randomly254

generated adjacency list, based on exponential255

mechanism.256

The Definition of Exponential Mechanism257

(Tong et al., 2023). For a given scoring func-258

tion u : X × Y → R, a randomized mecha-259

nism M(X,u, Y ) is ϵ − DP compliant if it260

satisfies:261

Pr[y|x] ∝ exp(
ϵ · u(x, y)
2△ u

) (1)262

where the sensitivity△u is defined as:263

△u = max
x,x′∈X,y∈Y

|u(x, y)− u(x
′
, y)| (2)264

2. Encoder-Decoder Encoder Strategy. The265

tokens within a prompt differ significantly266

in terms of their importance and degree of267

privacy. Applying a uniform privacy bud-268

get ϵ across all tokens may not lead to the269

most optimal solution. To further optimize270

the privacy-utility balance, we propose an271

Encoder-Decoder strategy. This strategy is272

built upon the first exponential mechanism. In273

the Encoder-Decoder strategy, we utilize an274

Encoder-Decoder SLM specifically designed275

to encode raw prompts into perturbed prompts276

and subsequently decode perturbed rationales277

back into their original form. This strategy in-278

volves two training process: encoding training279

process and decoding training process. In this280

section, we mainly focus on encoding training281

process, as illustrated in Figure 3.282

Initially, an encoding training process is re-283

quired for the Encoder-Decoder SLM. For-284

mally, let’s denote a public dataset as P =285

{(pi, pϵi))}
N
i=1, where pi represents raw pri-286

vate prompt, pϵi represents perturbed prompt287

generated using the first exponential mecha-288

nism with a privacy budget of ϵ. In the en-289

coding training process, we train the Encoder-290

Decoder SLM: gϕ(pi) → pϵi . The details of291

encoding training process is illustrated in Al-292

gorithm 1.293

The Encoder objective can be formulated as 294

follows: 295

LEncoder(ϕ;P) = E(p,pϵ)∼PℓCE(gϕ(p), p
ϵ)

(3) 296

where ℓCE is the cross-entropy loss. 297

As illustrated in Figure 2, we can observe an ex- 298

emplary comparison between the original input and 299

its perturbed input in Step 1 and Step 2. This per- 300

turbed prompt serves as the new, privacy-enhanced 301

input for further processing. 302

By incorporating this perturbation mechanism, 303

we ensure that the privacy of the original prompt 304

is preserved. This approach not only satisfies the 305

privacy requirements but also enables effective data 306

utilization for downstream tasks, striking a balance 307

between privacy and utility. 308

Figure 3: Prompt Encoder Module.

3.3 Generating Perturbed Rationales from 309

LLM 310

When the server-side LLM receives the perturbed 311

prompt, we leverage the Chain-of-Thought (CoT) 312

prompting technique introduced by (Wei et al., 313

2022) to generate rationales from the LLM using 314

this perturbed prompt. These generated rationales, 315

which are also perturbed, are then transmitted to 316

the client. For instance, as illustrated in Figure 2, 317

given a perturbed prompt in the Step 2, the LLM 318

generates perturbed rationales in the Step 3. 319

3.4 Rationales Decoder Module 320

Once the client receives the perturbed rationales 321

from the server-side LLM, it must initiate a "de- 322

coder" process within the rationales decoder mod- 323

ule to decode the rationales. In rationales decoder 324

module, as illustrated in Figure 4, we also pro- 325

pose two strategies correspond to the two protec- 326

tion strategy of the prompt encoder module: 327

1. Exponential Mechanism Decoder Strategy. 328

In the first decoding strategy, which corre- 329

sponds to Exponential Mechanism Encoder 330

strategy. Here, we utilize In-Context Learn- 331

ing(ICL) (Dong et al., 2022) (Tong et al., 332

2023) with the SLM to decode the perturbed 333
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rationales. we can input a sample xi =334

(p, pp, rp)i into the SLM to prompt the gener-335

ation of rationales, where p represents raw pri-336

vate prompt, pp represents perturbed prompt337

and rp represents perturbed rationales gener-338

ated from LLM. (pp, rp)i can be viewed as339

an example for SLM in ICL. This allows the340

SLM to generate rationales ri that are aligned341

with the original, unperturbed prompt.342

2. Encoder-Decoder Decoder Strategy. In the343

second decoding strategy, which corresponds344

to Encoder-Decoder Encoder strategy. The345

rationales decoder module also use the same346

the Encoder-Decoder SLM with Section 3.2.347

Initially, a decoding training process is re-348

quired for the Encoder-Decoder SLM. For-349

mally, let’s denote a public dataset as R =350

{(xi, ri))}Ni=1, where xi represents an in-351

put, where xi = (p, pp, rp)i , p represents352

raw private prompt, pp represents perturbed353

prompt generated from Encoder-Decoder354

SLM, rp represents perturbed rationales gen-355

erated from LLM. ri represents the raw ratio-356

nale of raw prompt p generated from LLM.357

In the decoding training process, we train the358

Encoder-Decoder SLM: gϕ(xi)→ ri. The de-359

tails of decoding training process is illustrated360

in Algorithm 1.361

The Decoder objective can be formulated as362

follows:363

LDecoder(ϕ;R) = E(x,r)∼RℓCE(gϕ(x), r)

(4)364

where LDecoder is the rational decoder loss,365

and ℓCE is the cross-entropy loss.366

Subsequently, once the decoding training pro-367

cess of Encoder-Decoder SLM is finished,368

we can input a sample xi = (p, pp, rp)i into369

the SLM, where rp represents perturbed ratio-370

nales generated from LLM. This allows the371

SLM to generate rationales ri that are aligned372

with the original, unperturbed prompt.373

We approach the training of the Encoder-374

Decoder SLM as a multi-task learning prob-375

lem encompassing both the encoding and de-376

coding training processes. The multi-task377

learning objective can be formulated as fol-378

lows:379

L1 = αLEncoder + (1− α)LDecoder (5)380

where α is the hyperparameters that control 381

the weight of encoder and decoder loss. 382

As illustrated in Figure 2, we can observe an 383

exemplary comparison between the perturbed ra- 384

tionales from LLM and its decoded rationales from 385

SLM in Step 3 and Step 4. It’s worth noting that al- 386

though the SLM has the ability to generate aligned 387

rationales independently, the quality often falls 388

short due to its limited capabilities. By leverag- 389

ing the perturbed rationales, we effectively transfer 390

the powerful capabilities of the server-side LLM 391

to enhance the Encoder-Decoder SLM, thereby im- 392

proving the overall quality of the generated ratio- 393

nales. 394

Figure 4: Rationales Decoder Module.

Algorithm 1 PDSS
Input:

1: T : total number of rounds;
2: P: encoding training datasets;
3: R: decoding training datasets;
4: D: task-Spec training datasets;
5: ηϕ: learning rate of Encoder-Decoder SLM;
6: ηω: learning rate of Task-Specific SLM.

Output: gϕ, fω.
7: ▷ Multi-Task Training for Encoder-Decoder

SLM based on Public Datasets P andR.
8: for each epoch t ∈ [T ] do
9: ϕt+1 ← ϕt − ηϕ ▽L1.

10: end for
11: ▷ Generated pp using the updated Encoder.
12: pp = SLMEncoder(p).
13: ▷ Generated perturbed rationales from LLM

on the server.
14: rp = LLM(pp).
15: ▷ Decoded perturbed rationales using the up-

dated Encoder-Decoder SLM.
16: r = SLMDecoder(r

p).
17: ▷ Multi-Task Training for Task-Specific SLM

based on Datasets D.
18: for each epoch t ∈ [T ] do
19: ωt+1 ← ωt − ηω ▽L2.
20: end for
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3.5 Task-Specific SLM Training Module395

In our work, we undertake the training of the396

client’s Task-Specific SLM tailored for text gen-397

eration tasks. Initially, we elaborate on the preva-398

lent framework for learning task-specific models.399

Leveraging this established framework, we en-400

hance it by integrating rationales produced from401

the rationales decoder module into the training pro-402

cess. Formally, let’s denote a dataset as D =403

{(xi, (yi, ri))}Ni=1, where xi represents an input,404

yi represents the associated expected output label,405

and ri is the corresponding desired rationale.406

We conceptualize learning with rationales as a407

multi-task learning problem, as illustrated in Fig-408

ure 5. Specifically, we train the model fω(xi) →409

(yi, ri) to accomplish not just the prediction of task410

labels but also the generation of the corresponding411

rationales based on textual inputs. This multi-task412

training ensures that our model not only produces413

accurate predictions but also provides insightful414

justifications for its decisions. By doing so, we415

enhance the transparency and explainability of the416

model. The multi-task learning objective can be417

formulated as follows:418

L2 = βLLabel + (1− β)LRationale (6)419

where LLabel is the label prediction loss:420

LLabel(ω;D) = E(x,y)∼DℓCE(fω(x), y) (7)421

and LRationale is the rationale generation loss:422

LRationale(ω;D) = E(x,r)∼DℓCE(fω(x), r) (8)423

where ℓCE is the cross-entropy loss, fω(.) is the424

Task-Specific SLM model, and β is the hyperpa-425

rameters that control the weight of label prediction426

loss and rationale generation loss.427

Figure 5: Task-Specific SLM Training Module.

4 Experiments428

4.1 Setup429

We have established a scenario to evaluate the per-430

formance of the PDSS framework across a range431

of text generation tasks. This setup involves a432

client-server architecture, where the client holds 433

two downstream SLMs :an Encoder-Decoder SLM, 434

which specializes in encoder-decoder functionali- 435

ties and a Task-Specific SLM, tailored for specific 436

tasks. On the server-side, we host a LLM for 437

more general and powerful text generation capabil- 438

ities. Specifically, we have chosen Qwen-14B(Bai 439

et al., 2023) as LLM, while both SLMs are Qwen- 440

0.5B(Bai et al., 2023). Table 1 outlines the detailed 441

configurations of both the LLM and the SLMs. 442

Datasets and Evaluation Metrics. We con- 443

duct a comprehensive evaluation of PDSS on 444

4 QA datasets. Specifically, we include Com- 445

monsenseQA(CQA) (Talmor et al., 2018), Open- 446

BookQA(OBQA) (Mihaylov et al., 2018), BoolQ 447

(Clark et al., 2019), ARC-E(Clark et al., 2018). For 448

these datasets, we primarily use Accuracy as the 449

evaluation metric. 450

Baselines. Since we incorporate two distinct 451

strategies in the prompt encoder module and ratio- 452

nales decoder module, we denote PDSS method 453

with the Exponential Mechanism Strategy as PDSS- 454

EM and PDSS method with the Encoder-Decoder 455

Strategy as PDSS-ED. We conduct a comparative 456

analysis to evaluate the performance of our PDSS 457

framework, which comprises both PDSS-EM and 458

PDSS-ED. 459

These baselines included: 460

• FewShot-LLM, which represents the few-shot 461

capabilities of LLM on the server; 462

• FewShot-SLM, which represents the few-shot 463

performance of SLM on the client; 464

• Standalone, where the client independently 465

fine-tunes its local model using its own private 466

dataset; 467

• DSS(Hsieh et al., 2023), where the client fine- 468

tunes its local model by distilling step-by-step 469

LLM method without privacy-preserving. 470

4.2 Overall Performance Evaluation 471

In this section, we undertake a comprehensive anal- 472

ysis of the task performance of PDSS. We assess 473

both the PDSS-EM and PDSS-ED methods against 474

other baselines on Task-Specific SLM across vari- 475

ous privacy budgets, denoted by ϵ. 476

The results, as presented in Table 2, clearly il- 477

lustrate that both PDSS-EM and PDSS-ED exhibit 478

significantly better performance when compared 479

to FewShot-SLM and Standalone methods. With 480
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Setting Server Client Client
Model Type LLM Encoder-Decoder SLM Task-Specific SLM
Model Name Qwen-14B Qwen-0.5B Qwen-0.5B

Parameters(Billion) 14 0.5 0.5

Table 1: LLM and SLMs Setting of PDSS.

an increase in the privacy budget ϵ, both the per-481

formance of PDSS-EM and PDSS-ED have risen482

notably. Furthermore, PDSS-ED demonstrates no-483

tably superior performance compared to PDSS-EM484

under the same privacy budget ϵ . Specifically,485

under a privacy budget of ϵ = 3, PDSS-EM sur-486

passes the Standalone method by 3.4% and 17% in487

the CQA and OBQA datasets, respectively, while488

PDSS-ED outperforms it by 5.2% and 22.4%. Sim-489

ilarly, when the privacy budget is increased to490

ϵ = 10, PDSS-EM exceeds the Standalone ap-491

proach by 6.3% and 21.6% within the CQA and492

OBQA datasets, respectively, and PDSS-ED beats493

it by 7.2% and 28.6%. Remarkably, across all494

datasets evaluated, when the privacy budget is set495

to ϵ = 10, PDSS achieves comparable performance496

to DSS, highlighting its efficacy and versatility in497

balancing privacy and utility.498

Method CQA OBQA BoolQ ARC-E
FewShot-LLM 80.9 82.8 85.2 80.3
FewShot-SLM 25.7 28.6 59.7 40.7

Standalone 55.7 43.4 78.4 50.3
DSS 59.3 55.1 80.5 57.6

PDSS-EM(ϵ = 1) 57.7 49.2 80.1 52.3
PDSS-EM(ϵ = 3) 57.6 50.8 79 52.6
PDSS-EM(ϵ = 5) 58.8 53.2 80 55.3
PDSS-EM(ϵ = 10) 59.2 52.8 80.2 56.2
PDSS-ED(ϵ = 1) 58.2 50.8 80.3 56.4
PDSS-ED(ϵ = 3) 58.6 53.1 80.2 56.5
PDSS-ED(ϵ = 5) 58.3 53.4 80.4 56.3
PDSS-ED(ϵ = 10) 59.7 55.8 80.7 57.9

Table 2: We compare the performance of Task-Specific
SLM trained with PDSS-EM and PDSS-ED across dif-
ferent privacy budgets ϵ against the Task-Specific SLM
trained using baseline methods.

4.3 Reducing Training Data Evaluation499

In this section, we conduct an in-depth analysis to500

explore the influence of training data size on model501

performance. We compare the PDSS method with502

the Standalone approach, varying the amount of503

Task Method 25% 50% 75% 100%

CQA
PDSS-EM 49 53.5 56.7 57.6
PDSS-ED 54.2 54.6 56.1 58.6
Standalone - - - 55.7

OBQA
PDSS-EM 34.8 42.2 45.6 50.8
PDSS-ED 41.4 43.6 50.6 53.1
Standalone - - - 44.2

BoolQ
PDSS-EM 63 74 78.7 79
PDSS-ED 72.8 77.6 79.1 80.2
Standalone - - - 78.4

ARC-E
PDSS-EM 45.3 52.2 53.1 53.8
PDSS-ED 48 49.7 55.9 56.5
Standalone - - - 50.3

Table 3: We compare the performance of Task-Specific
SLM trained with PDSS-EM(ϵ = 3) and PDSS-ED(ϵ =
3) against Standalone, across a range of dataset sizes
from 25% to 100%. The ’-’ indicates a method does not
apply to the corresponding dataset sizes.

training data used. Table 3 provides a clear illustra- 504

tion of how PDSS(with ϵ = 3) consistently outper- 505

forms the Standalone method. 506

Remarkably, PDSS achieves superior perfor- 507

mance even with significantly fewer training sam- 508

ples compared to Standalone. More specifically, 509

when trained on merely 75% of the complete CQA, 510

OBQA, and BoolQ datasets, both PDSS-EM and 511

PDSS-ED surpasses the performance of Standalone 512

fine-tuning that has been trained on the entirety of 513

these datasets. Likewise, by using only 50% of 514

the full ARC-E dataset, PDSS-EM exceeds the re- 515

sults achieved by Standalone fine-tuning on the 516

complete dataset. Furthermore, PDSS-ED exhibits 517

significantly better performance than PDSS-EM 518

across various dataset sizes (ranging from 25% to 519

100%). The results indicate that PDSS is capa- 520

ble of extracting more valuable information from 521

smaller datasets, making it a promising approach 522

in data-scarce environments. 523

4.4 Perturbed Rationales Evaluation 524

In this section, we focus on analyzing the quality 525

of the perturbed rationales(rp) generated from the 526
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perturbed prompt of LLM based on PDSS-EM and527

PDSS-ED methods and compare them with the528

rationales(r) generated from raw prompt of the529

LLM. To evaluate the similarity between rp and r,530

we use TokenRatio metric. A higher TokenRatio531

indicates a greater degree of similarity between the532

perturbed and original rationales. For more details533

about TokenRatio, please refer to Appendix C.534

As shown in Table 4, with an increase in the535

privacy budget ϵ and a corresponding decrease in536

perturbation, both the TokenRatio of PDSS-EM537

and PDSS-ED have risen notably. Furthermore,538

in most of tasks, the TokenRatio of PDSS-ED is539

higher than that of PDSS-EM in the same level of540

privacy budget ϵ. The experimental results confirm541

that the TokenRatio observed in the perturbed ratio-542

nales produced by both PDSS-EM and PDSS-ED,543

positively correlate with the privacy budget ϵ. This544

suggests that as the privacy constraints are relaxed545

(higher ϵ values), the perturbed rationales become546

more similar to the original rationales. This find-547

ing is significant as it demonstrates the trade-off548

between privacy protection and the utility of the549

generated rationales.550

Method CQA OBQA BoolQ ARC-E
PDSS-EM(ϵ = 1) 19.8 26.2 26.6 24.6
PDSS-EM(ϵ = 3) 29.2 37.2 35.5 33.9
PDSS-EM(ϵ = 5) 48.8 59.6 55.2 53.9
PDSS-EM(ϵ = 10) 69.7 72 74.6 68.2
PDSS-ED(ϵ = 1) 26.7 33.1 29.7 31
PDSS-ED(ϵ = 3) 33.1 40.9 40.4 42.9
PDSS-ED(ϵ = 5) 49.6 61 57.5 63.5
PDSS-ED(ϵ = 10) 57.2 68.3 68 74.2

Table 4: We conduct a comparative analysis to assess
the perturbed rationales produced by PDSS-EM and
PDSS-ED methods against the original, unperturbed
(raw) rationales that are directly generated from the raw
prompt of the LLM.

4.5 Decoded Rationales Evaluation551

In this section, we delve into the quality analysis of552

the decoded rationales produced by the rationales553

decoder module based on PDSS-EM and PDSS-554

ED methods. We compare these decoded rationales555

against those generated directly from raw prompt556

of the LLM. We utilize the TokenRatio metric to557

assess their similarities.558

As shown in Table 5, in contrast to FewShot-559

SLM, it becomes apparent that the decoded ratio-560

nales’ quality based on PDSS-EM and PDSS-ED 561

methods isn’t solely reliant on the locally decoded 562

SLM. The perturbed rationales crafted by the LLM 563

indeed fulfill their intended purpose. When juxta- 564

posed with Table 4, it’s clear that at comparable ϵ 565

levels, the TokenRatio for the decoded rationales 566

surpass those of the perturbed rationales in the 567

PDSS-EM and PDSS-ED methods. This under- 568

scores the effectiveness of the rationales decoder 569

module in the PDSS-EM and PDSS-ED methods. 570

Furthermore, with the increase of the privacy bud- 571

get ϵ, the TokenRatio for the decoded rationales 572

generated by both PDSS-EM and PDSS-ED have 573

increased significantly. This suggests that as the 574

privacy constraints are relaxed (higher ϵ values), 575

the decoded rationales become more similar to the 576

original rationales. For more details about compar- 577

ative analysis of perturbed rationales and decoded 578

rationales, please refer to Appendix D. 579

Method CQA OBQA BoolQ ARC-E
FewShot-SLM 43.3 43.4 51.9 42.6

PDSS-EM(ϵ = 1) 38.3 37.1 38.4 41.5
PDSS-EM(ϵ = 3) 41.9 41.3 41.7 45.6
PDSS-EM(ϵ = 5) 53.1 54 55 58.3

PDSS-EM(ϵ = 10) 71.1 63 73.6 70.4
PDSS-ED(ϵ = 1) 57.2 53.4 45.2 57.5
PDSS-ED(ϵ = 3) 59 55.1 48 59.4
PDSS-ED(ϵ = 5) 59.8 59.5 55.7 65.5

PDSS-ED(ϵ = 10) 62 62.3 63.4 70.1

Table 5: We conduct a comparative analysis to assess the
decoded rationales produced by PDSS-EM and PDSS-
ED methods against the original, unperturbed (raw) ra-
tionales that are directly generated from the raw prompt
of the LLM.

5 Conclusions 580

We introduced PDSS, a privacy-preserving frame- 581

work for LLM distillation, addressing domain- 582

specific knowledge privacy and resource con- 583

straints. PDSS employs a server-client architec- 584

ture with prompt encoding, rationale generating, 585

rationale decoding, and task-specific SLM training, 586

bridging the gap between LLM and SLM while 587

maintaining data privacy. Experiments on various 588

text generation tasks demonstrate PDSS’s ability 589

to enhance SLM performance with LLM support 590

while prioritizing data privacy. 591
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Limitations592

Our current study faces limitations due to compu-593

tational and storage constraints, which hinder our594

ability to experiment with larger model sizes. Addi-595

tionally, our evaluation of PDSS has been restricted596

to the Qwen model architecture, leaving the possi-597

bility that PDSS may need to be further explored598

in other model architectures. We intend to tackle599

these issues in future research endeavors.600
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A Rationales Generation through COT737

We utilize the rationales data generated by server-738

side LLM through chain-of-thought (CoT)(Wei739

et al., 2022)(Hsieh et al., 2023) technique to en-740

hance the performance of the client’s task-specific741

SLM. These rationales justify the predicted labels742

and serve as insightful guidance for training smaller743

and domain-specific models. Consider the follow-744

ing example: when asked “Question:A beaver is745

know for building prowess, their supplies come746

from where? Answer Choices: (a) british columbia747

(b) body of water (c) wooded area (d) pay debts (e)748

zoo”. Utilizing the chain-of-thought (CoT) tech-749

nique, the LLM can generate intermediate ratio-750

nales like, "The answer must be the place where751

beavers get their supplies. Of the above choices,752

only wooded areas have the supplies that beavers 753

need.” Such rationales bridge the gap between 754

the input and the final answer, often encapsulat- 755

ing valuable task-related knowledge. This knowl- 756

edge would traditionally require extensive data for 757

smaller and task-specific models to acquire. There- 758

fore, we harness these rationales as enriched train- 759

ing material for small language models, employing 760

a multi-task training paradigm that encompasses 761

both label prediction task and rationale prediction 762

task. 763

B More on Experimental Details 764

B.1 Hyperparameter Settings 765

SLM Parameters. During the training process 766

for both the Encoder-Decoder SLM and the Task- 767

Specific SLM, we specifically configured the pa- 768

rameters. We set the batch size to 32 and employed 769

the AdamW optimizer. The maximum number of 770

training steps ranged from 400 to 1500. Addition- 771

ally, we assigned the values of 0.5 to both α and β. 772

Furthermore, the learning rates for ηϕ and ηω were 773

established at 5e-5. 774

B.2 Data Splitting 775

For the datasets CQA/OBQA/BoolQ//ARC-E/, all 776

splits (training, validation, and test) were down- 777

loaded from HuggingFace (Lhoest et al., 2021). 778

During the training of the Encoder-Decoder SLM, 779

we randomly divided the training data into two 780

equal parts. One part was designated as the public 781

dataset, while the other part was allocated as the 782

private dataset for the client. 783

B.3 Dataset Licenses 784

For the datasets CQA/OBQA/BoolQ//ARC-E/ 785

were downloaded from HuggingFace(Lhoest et al., 786

2021) and under Apache License, Version 2.0. 787

B.4 Machine Configuration 788

The experiments were conducted on machines 789

equipped with 4 Nvidia V100 32G. 790

C The Definition of TokenRatio Metric 791

TokenRatio(r′
, r). This metric calculates the 792

unique words(u) in r
′

and counts how many of 793

these words are also present in r, denoted as i. The 794

TokenRatio is then calculated as i divided by the 795

total number of unique words in r
′

(||u||). 796
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Figure 6: Comparative Analysis of Perturbed Rationales and Decoded Rationales.

D Comparative Analysis of Perturbed797

Rationales and Decoded Rationales798

As shown in Figure 6, we conduct a comparison799

of the quality between the perturbed rationales and800

the decoded rationales, employing both the PDSS-801

EM and PDSS-ED methods across various privacy802

budgets denoted by ϵ. For clarity, we designate803

the perturbed rationales generated using the PDSS-804

EM and PDSS-ED methods as P-PDSS-EM and805

P-PDSS-ED, respectively. Similarly, the decoded806

rationales derived from these methods are denoted807

as D-PDSS-EM and D-PDSS-ED. It’s clear that at808

comparable ϵ levels, the TokenRatio for decoded809

rationales consistently surpasses that of perturbed810

rationales in most tasks, when utilizing the PDSS-811

EM and PDSS-ED methods. This finding under-812

scores the remarkable effectiveness of the ratio-813

nales decoder module within both the PDSS-EM814

and PDSS-ED frameworks.815
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