Shallow Flow Matching for Coarse-to-Fine
Text-to-Speech Synthesis

Dong Yang!*, Yiyi Cai?, Yuki Saito!, Lixu Wang?, Hiroshi Saruwatari!
'The University of Tokyo, 2Independent Researcher, *Nanyang Technological University
*ydqukx©gmai1 .com

Abstract

We propose Shallow Flow Matching (SFM), a novel mechanism that enhances
flow matching (FM)-based text-to-speech (TTS) models within a coarse-to-fine
generation paradigm. Unlike conventional FM modules, which use the coarse
representations from the weak generator as conditions, SFM constructs intermediate
states along the FM paths from these representations. During training, we introduce
an orthogonal projection method to adaptively determine the temporal position
of these states, and apply a principled construction strategy based on a single-
segment piecewise flow. The SFM inference starts from the intermediate state
rather than pure noise, thereby focusing computation on the latter stages of the FM
paths. We integrate SFM into multiple TTS models with a lightweight SFM head.
Experiments demonstrate that SFM yields consistent gains in speech naturalness
across both objective and subjective evaluations, and significantly accelerates
inference when using adaptive-step ODE solvers. Demo and codes are available at
https://ydgmkkx.github.io/SFMDemo/|

1 Introduction

Text-to-speech (TTS) synthesis has advanced with generative algorithms in recent years, particularly
autoregressive (AR) [45] 25 22| 49| 138 |46]], diffusion [33 [12, 48|, 2| 24], and flow matching
(FM) [123L 113, 1154110% 130, [7, 142]] methods. TTS models typically contain a front-end for processing
contextual information and a back-end for speech synthesis. Due to the strong temporal alignment
between texts and speech, many diffusion- or FM-based TTS models adopt a coarse-to-fine generation
paradigm: a weak generator first produces coarse representations conditioned on the input context,
which are then refined by the diffusion or FM module into high-quality mel-spectrograms, and finally
converted into audio waveforms by a vocoder. There are two main approaches to the weak generator.
One [33, 13} 115 130] follows traditional TTS designs, where a non-autoregressive encoder and an
alignment module 35} [19] jointly generate coarse mel-spectrograms when aligning encoder outputs
with target mel-spectrograms. The other [2,819,131,51] employs an AR large language model (LLM)
as a context processor and weak generator to generate discrete speech tokens, which are transformed
into continuous mel-spectrograms by a diffusion or FM module.

FM has gained increasing attention due to its efficiency and high-quality generation in TTS. In
conventional coarse-to-fine FM-based TTS models, coarse representations are used as conditions
for the flow module. However, the generation still starts from pure noise, resulting in a suboptimal
allocation of modeling capacity. Since the coarse representations already encode a significant portion
of the overall semantic and acoustic structure, modeling the early stage from noise becomes redundant
and contributes little to the quality of the final output. To deal with this issue, DiffSinger [27] has
introduced a shallow diffusion mechanism on singing voice synthesis (SVS) and TTS. It uses a simple
mel-spectrogram decoder, with the diffusion module starting generation at a shallow step based on the
output of the decoder. Therefore, we extend the idea of shallow diffusion mechanism (with the name)

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://ydqmkkx.github.io/SFMDemo/

on FM and propose shallow flow matching (SFM) for coarse-to-fine TTS models. During training, we
construct intermediate states along the FM paths based on the coarse representations. To achieve this,
we employ an orthogonal projection method to adaptively determine the corresponding time, define a
principled construction approach, and formulate a single-segment piecewise flow. During inference,
the generation starts from the intermediate state, skipping the early stages and focusing computation
on the latter part of the flow. This leads to more stable generation and enhanced synthesis quality,
and accelerates inference when using adaptive-step ordinary differential equation (ODE) solvers.

We validate the proposed SFM method on multiple coarse-to-fine TTS models, covering two main-
stream FM architectures, U-Net [36] and DiT [32]]. Experimental results show that SFM consistently
improves the naturalness of synthesized speech, as measured by both pseudo-MOS metrics and
subjective evaluations. We also observe significant inference acceleration across various adaptive-step
ODE solvers.

2 Preliminaries

2.1 Flow matching

A time-dependent diffeomorphic map ¢, : [0,1] x RY — R describes the smooth and invertible
transformation of data points = € R? over time ¢ € [0, 1], then a flow is defined via the ODE with a
time-dependent vector field (VF) u; : [0,1] x RY — R%:

2= Bu(w), by (o) = wly(w0). M
VF w; induces a probability density path p; : [0,1] x R — Ry, which is a time-dependent
probability density function (PDF). From time 0 to time ¢, the PDF of « is transported from po (o)
to p;(x;) along u;. Chen et al. [6] proposed continuous normalizing flow (CNF) that models the
u; by a neural network vg(x;,t), where 0 are learnable parameters. A CNF reshapes a simple
prior distribution pg into a complicated distribution p;. Lipman et al. [26] further proposed flow
matching (FM), whose objective is Lent = By p, (a,)||ve (¢, 1) — us(ay)||*. Since appropriate
p; and w; are unknown, [26] constructed probability paths conditioned on data sample x; ~
q(x1). Specifically, let po(xo) = N (2|0, I), p1(x1) = q(x1), the conditional probability path is
pe(xi|xy) = N (2| py (1), 0¢(21)?I). The flow and VF are considered with the forms:

Buw) = oae (o). wlwin) = T @ (o) +), O

where g, : [0,1] x RY — R? is the time-dependent mean and o : [0, 1] x R? — R is the time-
dependent scalar standard deviation (std). f’ denotes the derivative with respect to time, [’ = % f.
Corresponding to the optimal transport (OT) displacement interpolant [29], the mean and std are:

ut(wl) = tﬂ:l, Ut(wl) =]- - (1 - Umin)ta (3)

where o,y 1s a sufficiently small value. Substituting Eq. into Eq. , the conditional flow and
VF take the form:

¢ (x0) = (1 —t)zo +t(x1 + Ominxo), U(Te|21) = (X1 + Ominxo) — Xo. @

Then, we can minimize the conditional flow matching (CFM) loss during training, which is proven
by [26] to be equivalent to minimizing the FM loss Lcrn = By p, (a,) [|ve (€1, 1) — wy (2] 21) ||

During inference, we use an ODE solver to solve the integral ©preq = o + fol ve(x¢, t) dt.

2.2 Classifier-free guidance

In FM-based generative models, a typical approach for controlling the generation process is to
incorporate the input condition ¢ during training and inference. To improve diversity and fidelity,
classifier-free guidance (CFG) [16] can be employed. During training, the condition ¢ is randomly
dropped, enabling the model to learn from both conditional and unconditional contexts. During
inference, a hyperparameter called the CFG strength 8 > 0 is introduced to control the trade-off:

Vg,CFG (wta t7 C) = Vo ($t7 ty C) + B(UG (wfn t7 C) - (’Ue(wh t)) (5)

Specifically, the FM module runs two forward passes at each time step, once with ¢ and once without.

2.3 Flow matching-based TTS models

Our backbone configurations involve three fully open-source TTS models.

Matcha-TTS: Matcha-TTS [30] is a non-AR FM-based TTS model that employs a conventional
encoder-decoder architecture. The Transformer-based [43]] encoder takes phonemes and speaker
IDs (for multi-speaker training) as input, producing hidden states and predicted phoneme-level
durations. The U-Net-based FM decoder receives the encoder’s outputs and speaker embeddings as
FM conditions and generates mel-spectrograms.

Because the encoder adopts the monotonic alignment search (MAS)-based alignment [[18 19} 33]]
for phoneme-spectrogram alignment, the encoder outputs are optimized towards the ground-truth
mel-spectrograms (via the prior loss in the paper), resulting in coarse mel-spectrograms.

CosyVoice: CosyVoice [8]] is a large zero-shot TTS model that consists of four components: the text
encoder, the speech tokenizer, the LLM, and the FM module. The speech tokenizer extracts discrete
speech tokens from mel-spectrograms of waveforms, while the text encoder processes textual inputs
and aligns text encodings with speech tokens. The LLM, a Transformer decoder-based model, takes
speaker embeddings, text encodings, and prompt speech tokens as input and generates target speech
tokens in an AR way. Subsequently, the FM module, conditioned on speaker embeddings, target
speech tokens, and masked mel-spectrograms, generates the target mel-spectrograms.

The FM module adopts an encoder-decoder structure. The Conformer-based [14] encoder encodes
the speech tokens generated by the LLM into hidden states and linearly projects them to the same
dimension as mel-spectrograms. These hidden states are then upsampled by a length regulator for
token-spectrogram alignment and fed into the U-Net-based decoder, along with other conditions, for
FM training and inference. Therefore, the upsampled hidden states can be explicitly supervised to
coarse mel-spectrograms.

In CosyVoice, the speech tokenizer, LLM, and flow modules are trained independently. Therefore,
in our experiments, we only train the flow module using speech tokens generated by the officially
pre-trained speech tokenizer, while employing the officially pre-trained LLM during inference.

StableTTS: StableTTS [1] is an open-source TTS model in which both the encoder and FM de-
coder leverage DiT blocks. Its encoder employs MAS-based alignment and outputs coarse mel-
spectrograms.

To assess the effectiveness of our method under different input types (text sequences and speech
tokens) within the DiT architecture, we further adapt StableTTS as the FM module of Cosy Voice.
The resulting backbone TTS model is referred to as Cosy Voice-DiT throughout our work.

3 Method

3.1 Theorems

Proofs of our theorems are provided in Appendix [A] Theorem 2]can be derived from PeRFlow [47]]
that divides CondOT paths into several windows and conducts piecewise reflow [28] in each window.

Theorem 1. For any random variable ., ~ N (t,,@1,02,I), where t,,, € [0,00) and o, € (0, 00),
we define a transformation that maps x,, onto the conditional OT (CondOT) paths. The output
distribution varies continuously with respect to t,, and o,, under the Wasserstein-2 metric.

A= (1 - Umin)tm + Om, (6)
1= (1= omin)tm)2 — 02 iFA <1
T, = {\1/< (I = omin)tm)? — 07,@0 + Tin, lf <1 %
mem lfA Z 17
where @ ~ N (0, I), with corresponding T = min(t,,,, %) on the path.
Theorem 2. For arbitrary intermediate states on the CondOT paths:
mtm = (1 - tm)xo + tm(ml + UminxO)v tm, S (07 1)7 o ~ N(O, I), (8)

Figure 1: Inference process. Left: standard FM; Right: proposed SFM.

we can divide the paths into two segments at t,, and represent the flow and VF using piecewise
functions:

Ty = (1 - i)wo + iwtwr’ ift < tmv (9)
(1 o i:i:)mtm + i:iz (ml + Umian)a lft > tm7
1 _ .

wy — tml(wtm xo), zf t < tm, 10
= (@1 + Omin®o — @1,,,), L >t

3.2 Proposed methods on coarse-to-fine FM-based TTS

We define the mel-spectrogram of an audio waveform as X € RY*F where N is the number of
time frames and F' is the number of frequency bins (channels). Specifically, X" € R denotes the
n-th mel-spectrogram frame. We refer to the weak generator as g, (with learnable parameters w),
which receives text, speaker features, and other contextual information as the input condition C' and

outputs a coarse mel-spectrogram X 4. X 4 is supervised to match the target sample X 1, typically
using an L2 loss, though other loss functions may also be applied depending on the task:

Ecoarse:E||Xg_X1||2~ (11)

We introduce a lightweight SFM head h., with learnable parameters 1) (see details in Appendix ,
which takes the final hidden states H 4 from g, as input and outputs a scaled mel-spectrogram Xp,.
Note that X g s obtained by applying a linear projection to H g- In addition, h;, needs to predict a
time fp, € (0, 1) and an estimated variance &3 for Xp:

Hy X, =9,(C), Xhn,tn, 62 = hy(Hy). (12)
3.2.1 Orthogonal projection onto CondOT paths

Since the exact location of X, on the CondOT paths and the corresponding time ¢, are unknown,
we let the model adaptively determine t;, during training. To direct X, to the CondOT paths, we

find the orthogonal projection of X, onto X 1. According to Eq. (3)), the projection coefficient is ¢,
which corresponds to an intermediate state on the mean path (X 1). Then we estimate the time ¢p,

and the variance oi, and minimize the distance between X n and tp X via the loss £,
sg[X h] - X1
X1 X

where sg[-] (stop gradient) is used to simplify gradient propagation. o represents the noise scale of

tp, = max(0, E] D, oi= E||sg[Xh] —tn X1||?, L, = IEHXh —tn X1||?, (13)

X1 and can be interpreted as intrinsic noise. Given the large number of mel-spectrogram frames, we
omit the unbiased correction term in the estimation.

When X n ~ tp X1, we can assume that X h~N(ERX1, aiI) and utilize Theoremto construct
intermediate states on the CondOT paths:

- 1. ~ 1
A= max((l - Umin)th + Oh, 1)) Xh = 7Xh7 th = Kthv &}21 =

1 2
A ’

N

Xy, = \/maX((l — (1= omin)tn)? — 62,0) X0 + X, (15)

where X o ~ N(0, I). During the early stages of training, it is possible that A > 1. In such cases,
X, is unable to lie on the CondOT path with the external noise X g, resulting in deterministic model

behavior. The scaling factor % introduced in Theorem [1|rescales and guides X1, back onto the
CondOT paths until X can be incorporated. Then we calculate the losses for the two predicted
scalars:

Li=(tn —th)?, L, = (6} —53)° (16)

3.2.2 Single-segment piecewise flow

During training and inference, the flow starts from t1,. Therefore, we employ Theoremand focus
only on the second segment of the paths (t > t3):

tu ~U0,1], ts=S(tu), t=(1—1n)ts+ in, (17)
t—1t t—1t
X, - (1 _ J’) X: 4+ LT X 4 i Xo) (18)
—th 1—tn
=(1-1ts)X;, +ts(X1+ ominXo), (19)
1
Ut = = (Xl + O'minAXO - th)a (20)
1—1tp

where S is an arbitrary time scheduler for the randomly sampled .

Finally, combined with the CFM loss, the overall loss for the SFM framework is given by:
ACCFM = Et,pt(Xt)H,UB(Xtat) - Ut||23 KSFM = ACcoarse +£t +£0’ +£/J. +‘CCFM (21)

3.2.3 Inference with SFM strength

During inference, we observe that the adaptively determined ¢, tends to be small, which limits the
amount of prior information. To address this issue, we introduce a hyperparameter called SFM

strength o > 1, which scales up the #j, to encourage stronger guidance from X,

2
o . ot 4

R . ~ o - . B
A= max(a((l — Jmin)th + Uh), 1), Xy = ZXh, th = Kth, O'}QL = Edh, (22)

Substituting X p,, tp,, and oy, into Eq. yields X7 . We can obtain the predicted results X ,eq

by solving the integral X ,,cq = Xy, + fi vg(X¢,t) dt with an ODE solver. For each model

employing the SFM method, we determine the optimal « on the validation set. In most cases, the

optimal « is relatively small, resulting in A = 1. The scaling factor X has a theoretical upper bound
1

Of (l_amin)£h+é'h ’

We provide concise algorithm boxes in Appendix[C] using minimal notation for clarity and including

implementation details. An example of SFM inference is illustrated in Fig.[T]

4 Experimental setup

4.1 Datasets

We use LJ Speech [17]], VCTK [44]], and LibriTTS [50] in our experiments, where LJ Speech is
a single-speaker dataset and the others are multi-speaker datasets. For LJ Speech and VCTK, the
training, validation, and test sets are divided following the setting of Matcha-TTS, which follows
VITS’s settingsE] Each validation set contains 100 utterances, and each test set contains 500 utterances.

For LibriTTS, the train subsets are used as the training set. We construct the validation and test
sets with the dev-clean and test-clean subsets, respectively. We adopt the cross-sentence evaluation
approach in CosyVoice and F5-TTS: utterances from each subset are paired to form <prompt, target>
pairs, where the prompt utterance is used as the reference to TTS models and the transcript of the
target utterance serves as the text input. The prompt utterances are selected such that their durations
are rounded to between 3 and 4 seconds, while the duration of target utterances is between 4 and 10
seconds. We set the validation and test sets to contain 200 and 1000 utterances, respectively.

"https://github.com/jaywalnut310/vits/tree/main/filelists

https://github.com/jaywalnut310/vits/tree/main/filelists

Table 1: Training and inference configurations of TTS models. 3: CFG strength. {: 24,000
maximum frames.

Model Vocoder Dataset Epochs Batch Size Learning Rate Warmup GPUs 3 Solver
Matcha-TTS Vocos LJ Speech 800 128 4x1074 - 1 — Euler
Matcha-TTS Vocos VCTK 800 128 2x1074 - 2 — Euler
StableTTS Vocos VCTK 800 128 2x1074 10% 2 3 Dopri(5)
Cosy Voice HiFi-GAN LibriTTS 200 dynamict I1x10~* 10% 8 0.7 Euler
CosyVoice-DiT Vocos LibriTTS 200 256 1x10~4 10% 4 3 Dopri(5)

4.2 Model implementations

Since the SFM head (the architecture is shown in Appendix [B) receives hidden states as input for
richer contextual information, all length regulators in each model upsample the hidden states. Several
neural network layers smooth the upsampled hidden states, which are then used to generate coarse
mel-spectrograms and input to the SFM head as in Eq. (IZ). The coarse mel-spectrograms are
supervised using the target mel-spectrograms via Eq. (TT).

Matcha-TTS: We utilize Matcha-TTS with the officially pre-trained Vocos [39] as the vocoder. Since
the official implementation does not include smoothing layers for the encoder outputs, we designate
the final block of the six-block encoder to serve as smoothing layers.

StableTTS: Although StableTTS incorporates a reference encoder to extract speaker embeddings
and enables zero-shot TTS, we observe that the extracted speaker embeddings are unstable and lead
to unstable encoder outputs. This instability causes the simple SFM head to struggle with converging
and predicting accurate 5, and 67.. Therefore, we use ID-based speaker embeddings with random
initialization instead of the reference encoder. Both the encoder and decoder are configured with six
DiT blocks. The Vocos pre-trained in StableTTS is used as the vocoder.

CosyVoice: As discussed in Section[2.3] we only train the flow module of CosyVoice. We use the
officially pre-trained speech tokenizer and LLM to generate speech tokens for training and inference,
respectively. The pre-trained HiFi-GAN [20] in Cosy Voice is used as the vocoder. In the original
FM module, the encoder takes only speech tokens as input, while speaker embeddings and masked
mel-spectrograms are used as conditions for the FM decoder. However, under this configuration, we
find that the encoder fails to produce coarse mel-spectrograms with sufficient speaker features. To
address this, we concatenate the speech tokens, speaker embeddings, and masked mel-spectrograms,
and feed them jointly into the encoder. For ablation studies, we evaluate a variant (denoted as SFM-t)
with the SFM method in which the encoder takes only speech tokens as input.

CosyVoice-DiT: As discussed in Section we construct Cosy Voice-DiT using the encoder and
decoder of StableTTS, each of which contains six DiT blocks. The speech tokens are fed into the
encoder, while the speaker embeddings are incorporated into every DiT block via adalLN-Zero [32].
The Vocos pre-trained in StableTTS is used as the vocoder.

Baseline models: We adopt and train the original models as baseline models. Due to necessary
architectural modifications, no direct baseline is available for StableTTS and CosyVoice-DiT.

Ablated models: For each model, we construct an ablated version to enable a more direct comparison
with the SFM model, mainly including the addition of coarse loss and the SFM head. In the ablated
models, the SFM head only outputs the X1, as the condition for the FM module. Therefore, the only
difference between the ablated and SFM models is whether the SFM method is applied. This design
allows us to isolate and assess the effect of the proposed SFM method.

SFM-c: In our SFM method, the coarse mel-spectrograms are not used as FM conditions. For
ablation studies, we also evaluate a variant (denoted as SFM-c) that not only applies the SFM method
but also uses coarse mel-spectrograms as FM conditions.

4.3 Training and inference configurations

All training, inference, and objective evaluations are conducted on 96 GB Nvidia HI00 GPUs with
half precision (FP16). We follow the official configurations of each baseline as closely as possible,
and some key settings are summarized in Table[I] Specifically, a warmup parameter indicates that

Table 2: Adaptive-step ODE solvers used in our experiments. All of them are variants of the explicit
Runge—Kutta family.

Abbreviation Full Name Order
Heun(2) Adaptive Heun’s Method 2
Fehlberg(2) Runge—Kutta—Fehlberg Method 2
Bosh(3) Bogacki—Shampine Method 3
Dopri(5) Dormand—Prince Method 5

a learning rate scheduler is used. Because of our large batch sizes, we increase the constant or
peak learning rates based on the linear scaling rule, and then reduce them if gradient explosions are
observed. The presence of a CFG strength indicates the application of CFG.

4.4 Evaluations

4.4.1 Objective evaluation

We evaluate model performance using three pseudo-MOS prediction models: UTMOS [37], UT-
MOSV2 [3], and Distill-MOS [41]. Their average is defined as PMOS and is used for selecting the
optimal o in SFM methods. In addition, we report word error rate (WER) and speaker similarity
(SIM). For WER, we use Whisper-large-v3 [34]] as the speech recognition model to transcribe speech.
For SIM, we use WavLM-base-plus-sv [, 40ﬂ to extract speaker embeddings and compute the cosine
similarity between synthesized and ground-truth speech.

4.4.2 Subjective evaluation

We conducted comparative MOS (CMOS) and similarity MOS (SMOS) tests to evaluate naturalness
and similarity, respectively. In each single test, we recruited 20 native English listeners on Proliﬁcﬂ
with £9 per hour.

CMOS: We use our proposed model with SEM as the reference system, and all other systems are
compared against it. For each system, five utterances are selected and paired with corresponding
utterances from the SFM model. Listeners are presented with utterance pairs and asked to rate the
naturalness difference on a 7-point scale ranging from —3 to +3. A score of +3 indicates that the
first utterance sounds much better than the second, while —3 indicates the opposite.

SMOS: SMOS tests are only conducted for cross-sentence evaluations to evaluate the similarity
between the ground-truth prompt utterance and the target utterance from different systems. Each
system provides five utterances with corresponding prompts. Listeners are presented with <prompt,
target> utterance pairs and asked to rate how similar the target sounds to the prompt on a 5-point
scale ranging from 1 to 5, where 1 indicates "not similar at all" and 5 indicates "extremely similar".

4.5 SFM strength selection

We determine the optimal SFM strength « on the corresponding validation sets. Starting from 1.0, we
increment « by 1.0 and objectively evaluate the generated speech to identify the value that yields the
highest PMOS. We then examine its neighbors at o = 0.5 for potential improvements. Finer-grained
search is avoided to prevent overfitting and ensure the robustness of the SFM method.

4.6 ODE solvers and speed analysis

For evaluations, we follow the official ODE solver settings of each model. For speed analysis with
adaptive-step ODE solvers, we use the odeint from torchdiffeq [4] with various solvers. The default
relative and absolute tolerances (1x10~7 and 1x10~?) are too strict, resulting in significantly longer
inference time. Therefore, we adopt the settings used in StableTTS: 1x 10~ for both tolerances. As

“https://huggingface.co/microsoft/wavlm-base-plus-sv
*https://www.prolific.com

https://huggingface.co/microsoft/wavlm-base-plus-sv
https://www.prolific.com

Table 3: Partial objective evaluation results on validation sets for o selection. Complete results
are provided in Appendix D} The highest value for each metric is highlighted in bold.

o fg Og ‘PMOST UTMOS1T UTMOSv27 Distill-MOST ‘ WER(%)| SIM?1
Matcha-TTS (SFM) trained on LJ Speech

1.0 0.099 0.092| 4.036 4.194 3.721 4.192 4.641 0.972
2.0 0.198 0.183| 4.158 4.305 3.834 4.337 3496 0973
2.5 0.248 0.229| 4.176 4276 3.872 4.381 3.556 0.972
3.0 0.297 0.275| 4.168 4.260 3.842 4.402 3496 0970
3.5 0347 0.320] 4.132 4.190 3.802 4.403 3.496 0.969
4.0 0.397 0.366| 4.107 4.137 3.763 4.421 3.556 0.966
5.0 0.496 0.458| 4.025 3.977 3.694 4.403 3376 0.960
6.0 0.520 0.480| 3.997 3.958 3.648 4.386 3315 0.958
7.0 0.520 0.480| 3.990 3.960 3.625 4.386 3315 0.958
8.0 0.520 0.480| 3.990 3.959 3.625 4.386 3315 0.958
9.0 0.520 0.480| 3.993 3.956 3.638 4.386 3315 0.958
10.0 0.520 0.480| 3.987 3.955 3.620 4.386 3315 0.958

shown in Table 2] we employ Huen(2), Fehlberg(2), Bosh(3), and Dopri(5) as adaptive-step solvers,
where the number in () denotes the order.

We adopt real-time factor (RTF) and number of function evaluations (NFE) as metrics for speed
evaluation, where RTF measures the ratio between the ODE solver inference time and the correspond-
ing audio duration, and NFE indicates how many times the solver queries the model. To reduce the
influence of runtime variance, we choose 100 utterances from each model’s validation set and run
each solver five times, reporting the average RTF. Note that the NFE is constant across runs.

5 Experimental results and analysis

5.1 Evaluation results

Due to page limitations, Table [3]and Table [5|only provide partial results, and complete results are
provided in Appendix [D]and [F respectively. Other minor analysis is provided in Appendix [E]

SFM strength selection: In Table 3(and the tables in Appendix@ fg and o4 are computed according
to Eq. 22] and the reported values represent their means over all utterances in the validation sets.
From these tables, it is evident that using values of o > 1.0 significantly improves both pseudo-MOS
scores and WER. The PMOS, which serves as the selection criterion, tends to increase initially
and then decrease as o grows. This observation suggests that the adaptively determined ¢ during
training is generally small. As a result, the intermediate state constructed at inference with a = 1.0
corresponds to an early position on the CondOT paths. When Gaussian noise X is added at this
stage, the resulting signal-to-noise ratio is low, making it difficult for the flow decoder to extract
sufficient information and weakening the guidance during early sampling steps.

According to Eq. (T3), X is supervised by the linearly down-scaled ¢, X 1. This allows us to apply
the « during inference to linearly scale up X, in Eq. thereby enhancing its guidance effect.
However, due to estimation errors, increasing « also leads to a growing distance between X, and
tnX 1. Meanwhile, the incorporated X decreases and results in a more deterministic sampling
process. These factors ultimately reduce generation quality.

Objective evaluations: As shown in Table 4] all SFM models outperform their corresponding
baseline and ablated models regarding pseudo-MOS scores. However, the results for WER and SIM
are more variable, with improvements observed in some cases but not in all. This suggests that there
is still room to improve the alignment quality of the SFM method.

Subjective evaluations: As shown in Table 4] SFM models achieve better performance in both
CMOS and SMOS tests compared to their corresponding baseline, ablated, and SFM variants. This
demonstrates that the SFM method efficiently improves the naturalness of synthesized speech.

CosyVoice (SFM-t): When only speech tokens are input into the encoder of the flow module,
CosyVoice (SFM-t) exhibits lower SIM and significantly worse SMOS performance. This is because
the CosyVoice tokenizer is pre-trained with an ASR objective to extract semantic tokens, which

Table 4: Evaluation results on test sets. * indicates statistically significant differences (p < 0.05)
compared with SFM models in subjective evaluations. The highest value for each metric is bolded.

System |[UTMOST UTMOSv27 Distill-MOST|WER| SIMT|CMOST SMOSt
Matcha-TTS trained on L] Speech

Ground truth 4.380 3.964 4.241 3.566 1.000|+0.22 -
Reconstructed | 4.085 3.739 4.208 3472 0.993|+0.12 -
Baseline 4.186 3.692 4282 3.308 0.971|-0.48 -
Ablated 4217 3.763 4311 3.355 0.972|-0.27 -
SFM (a=2.5) 4.257 3.848 4.386 3.413 0.972(0.00 -
Matcha-TTS trained on VCTK

Ground truth 3.999 3.562 3.986 1.534 1.000|+0.16 -
Reconstructed | 3.819 3.246 3.977 1.666 0.985|+0.08 -
Baseline 4.008 2.978 3.870 1.534 0.939]|-0.31* -
Ablated 4.026 2.997 3.872 1.613 0.941|—0.39* -
SFM (a=3.5) 4.106 3.105 3.898 0.952 0.937(0.00 -
StableTTS trained on VCTK

Ground truth 3.999 3.562 3.986 1.534 1.000|+0.48* —
Reconstructed | 3.360 2.908 3.855 1.719 0.972|4-0.04 -
Ablated 3.328 2.958 3.929 1.798 0.932|—0.34* -
SFM (a=3.0) 3.516 3.020 3.953 1.745 0.933(0.00 -
SFM-c (a=4.5)| 3.507 2.899 3.934 1.877 0.931|-0.37* -
CosyVoice trained on LibriTTS

Ground truth 4.136 3.262 4.345 3.180 1.000|+0.19 3.40
Reconstructed | 3.942 3.126 4.336 3.146 0.993|—-0.24 2.82*
Baseline 4.191 3.303 4.481 3.513 0.932]|—-0.21* 3.47
Ablated 4.183 3.369 4.487 3.578 0.932|—-0.14 3.58
SFM (a=2.0) 4.194 3.480 4.541 3.810 0.931(0.00 3.67
SFM-t (a=2.5)| 4.132 3.336 4.547 3987 0.914|—-0.09 2.66*
CosyVoice-DiT trained on LibriTTS

Ground truth 4.136 3.262 4.345 3.180 1.000(+0.23 3.31
Reconstructed | 3.322 2.855 4211 3.144 0.989|-0.12 2.86*
Ablated 3.499 3.086 4316 3.614 0.936|—0.31* 3.15
SFM (a=2.5) 3.751 3171 4.502 3.598 0.932(0.00 3.21
SFM-c (a=4.0)| 3.752 3.156 4.496 3.634 0.929|—-0.06 3.10

contain limited speaker-specific information. Although speaker-related features are employed as flow
conditions, they fail to guide the generated speech with sufficient speaker characteristics. This further
highlights the importance of early-stage flow inference, as errors introduced at the beginning are
difficult to correct in later sampling steps.

SFM-c: When using coarse mel-spectrograms as flow conditions, the adaptively determined ¢p, tends
to converge to 0 in models with U-Net-based architectures, rendering the SFM-c variant inapplicable
to these models. Models using DiT blocks, such as StableTTS (SFM-c) and CosyVoice-DiT (SFM-c),
perform worse in subjective evaluations than their corresponding SFM models. These results suggest
that, for our SFM method, using coarse mel-spectrograms as flow conditions not only fails to improve
performance but can also degrade synthesis quality or invalidate the method.

5.2 Acceleration of adaptive-step ODE solvers

Table 5] and the tables in Appendix [F]report only the mean RTF for clarity, as the standard deviations
across the five runs are all below 0.013. We also present the speedup rate in terms of RTF, measured
relative to the ablated model. From these tables, we observe that increasing «« improves the signal-
to-noise ratio of the initial state during flow inference, which stabilizes the ODE solving process.

Table 5: Partial RTF and NFE results for adaptive-step ODE solvers. Complete results are
provided in Appendix RTF denotes the mean RTF. Rate (%) denotes the relative speedup in terms
of RTF compared to the ablated model.

System \ Heun(2) Fehlberg(2) Bosh(3) Dopri(5)
|RTF| Ratef NFE||RTF| Rate? NFE||RTF| Ratet NFE||RTF| Ratef NFE|

Matcha-TTS trained on L] Speech

Baseline 0.407 -1.496 312.36|0.054 3.571 44.82|0.271 -0.370 223.95]0.142 2.069 120.10
Ablated 0.401 0.000 306.72|0.056 0.000 45.28|0.270 0.000 221.81]0.145 0.000 121.46
SFM (a=1.0)|0.361 9.858 277.56|0.053 4.171 44.08]0.225 16.924 186.23(0.132 9.100 111.14
SFM (a=2.0)|0.299 25.541 229.43]0.048 13.306 39.16|0.187 30.931 153.08|0.115 20.484 96.02
SFM (a=3.0)|0.249 37.931 191.49|0.043 22.749 34.88|0.157 41.895 129.02|0.100 30.753 84.20
SFM (a=4.0)|0.207 48.486 156.78|0.037 34.246 29.74|0.131 51.576 107.90|0.086 40.559 72.56
SFM (a=5.0)|0.157 60.825 120.07|0.027 50.968 22.14|0.110 59.266 90.74|0.076 47.605 63.74

As a result, fewer forward steps are required, and the overall inference time is significantly reduced.
Notably, this acceleration effect is limited to adaptive-step solvers, as fixed-step solvers perform a
predefined number of steps, and thus cannot leverage the improved stability of the initial stages to
reduce inference cost.

6 Related works

Our proposed SFM method extends the idea of the shallow diffusion mechanism. To the best of
our knowledge, while no prior work exactly matches our approach, several studies adopt similar
strategies or pursue similar objectives. As discussed in Section 3.1} ReRFlow [47]] applies piecewise
reflow to divided flow trajectories. PixelFlow also adopts piecewise flow for multi-scale resolution
generation. In our case, we utilize piecewise flow to divide the CondOT paths into two segments and
use only the last segment. In addition, shortcut models [11] employ a self-consistency mechanism to
construct shortcuts along the CondOT paths. Modifying flow matching [21]] samples from a Gaussian
distribution centered at a coarse output instead of the standard normal distribution, and further adopts
deterministic inference.

7 Limitations

This work applies only minimal modifications to the backbone TTS models and uses a simple SFM
head to demonstrate the effectiveness of our proposed SFM method. Therefore, there is considerable
room for improving the SFM framework and corresponding implementation. For example:

1. A more powerful SFM head could be used when the weak generator is unstable.

2. The flow conditions could be enhanced by incorporating text or speech token embeddings to better
align the final outputs with the input semantic features.

3. When applying SFM on Cosy Voice, we directly concatenate the speech tokens, speaker embed-
dings, and masked mel-spectrograms as the encoder input. This naive fusion strategy may negatively
affect cross-modal alignment and calls for a more elaborate integration approach.

8 Conclusion

We introduce a novel Shallow Flow Matching (SFM) method for coarse-to-fine TTS models. SFM
leverages coarse representations to construct intermediate states on the CondOT path, enabling
flow-based inference to produce more stable generation, more natural synthetic speech, and faster
inference when using adaptive-step ODE solvers.

SFM focuses on cases where the FM module serves as a refiner. Although it is validated on TTS tasks,
the underlying framework and theoretical foundation are general. It also holds potential for other
domains, such as speech denoising and enhancement, as well as image generation tasks like denoising
and super-resolution. Further exploration of its applications to these tasks remains a promising
direction for future work.

10

9 Acknowledgements

This research was supported by JST Moonshot Grant Number JPMIMS2237 and JST SPRING Grant
Number JPMJSP2108.

References

(1]
(2]

(3]

(4]
(51

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

StableTTS. https://github.com/KdaiP/StableTTS, 2024.

P. Anastassiou, J. Chen, J. Chen, Y. Chen, Z. Chen, Z. Chen, J. Cong, L. Deng, C. Ding, L. Gao,
M. Gong, P. Huang, Q. Huang, Z. Huang, Y. Huo, D. Jia, C. Li, F. Li, H. Li, J. Li, X. Li, X. Li,
L. Liu, S. Liu, S. Liu, X. Liu, Y. Liu, Z. Liu, L. Lu, J. Pan, X. Wang, Y. Wang, Y. Wang, Z. Wei,
J. Wu, C. Yao, Y. Yang, Y. Yi, J. Zhang, Q. Zhang, S. Zhang, W. Zhang, Y. Zhang, Z. Zhao,
D. Zhong, and X. Zhuang. Seed-tts: A family of high-quality versatile speech generation
models. arXiv preprint arXiv:2406.02430, 2024.

K. Baba, W. Nakata, Y. Saito, and H. Saruwatari. The t05 system for the VoiceMOS Challenge
2024: Transfer learning from deep image classifier to naturalness MOS prediction of high-
quality synthetic speech. In IEEE Spoken Language Technology Workshop (SLT), 2024.

R. T. Q. Chen. torchdiffeq. https://github.com/rtqichen/torchdiffeq, 2018.

S. Chen, C. Wang, Z. Chen, Y. Wu, S. Liu, Z. Chen, J. Li, N. Kanda, T. Yoshioka, X. Xiao, J. Wu,
L. Zhou, S. Ren, Y. Qian, Y. Qian, J. Wu, M. Zeng, X. Yu, and F. Wei. WavLM: Large-scale
self-supervised pre-training for full stack speech processing. IEEE Journal of Selected Topics
in Signal Processing, 16(6):1505-1518, 2022.

T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. Neural ordinary differential
equations. In Annual Conference on Neural Information Processing Systems (NeurIPS), pages
6572-6583, 2018.

Y. Chen, Z. Niu, Z. Ma, K. Deng, C. Wang, J. Zhao, K. Yu, and X. Chen. F5-TTS: A fairytaler
that fakes fluent and faithful speech with flow matching. arXiv preprint arXiv:2410.06885,
2024.

Z. Du, Q. Chen, S. Zhang, K. Hu, H. Lu, Y. Yang, H. Hu, S. Zheng, Y. Gu, Z. Ma, Z. Gao,
and Z. Yan. CosyVoice: A scalable multilingual zero-shot text-to-speech synthesizer based on
supervised semantic tokens. arXiv preprint arXiv:2407.05407, 2024.

Z.Du, Y. Wang, Q. Chen, X. Shi, X. Lv, T. Zhao, Z. Gao, Y. Yang, C. Gao, H. Wang, F. Yu,
H. Liu, Z. Sheng, Y. Gu, C. Deng, W. Wang, S. Zhang, Z. Yan, and J. Zhou. CosyVoice 2: Scal-
able streaming speech synthesis with large language models. arXiv preprint arXiv:2412.10117,
2024.

S. E. Eskimez, X. Wang, M. Thakker, C. Li, C. Tsai, Z. Xiao, H. Yang, Z. Zhu, M. Tang, X. Tan,
Y. Liu, S. Zhao, and N. Kanda. E2 TTS: embarrassingly easy fully non-autoregressive zero-shot
TTS. In IEEE Spoken Language Technology Workshop (SLT), 2024.

K. Frans, D. Hafner, S. Levine, and P. Abbeel. One step diffusion via shortcut models. In
International Conference on Learning Representations (ICLR), 2025.

Y. Gao, N. Morioka, Y. Zhang, and N. Chen. E3 TTS: easy end-to-end diffusion-based text to
speech. In IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), pages
1-8, 2023.

W. Guan, Q. Su, H. Zhou, S. Miao, X. Xie, L. Li, and Q. Hong. Reflow-tts: A rectified flow
model for high-fidelity text-to-speech. In IEEE International Conference on Acoustics, Speech
and Signal Processing, ICASSP, pages 10501-10505, 2024.

A. Gulati, J. Qin, C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han, S. Wang, Z. Zhang, Y. Wu,
and R. Pang. Conformer: Convolution-augmented transformer for speech recognition. In
Interspeech, pages 5036-5040, 2020.

11

https://github.com/KdaiP/StableTTS

[15] Y. Guo, C. Du, Z. Ma, X. Chen, and K. Yu. VoiceFlow: Efficient text-to-speech with rectified
flow matching. In IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 11121-11125, 2024.

[16] J. Ho and T. Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

[17] K. Ito and L. Johnson. The LJ Speech dataset. https://keithito.com/
LJ-Speech-Dataset/, 2017.

[18] J. Kim, S. Kim, J. Kong, and S. Yoon. Glow-tts: A generative flow for text-to-speech via
monotonic alignment search. In NeurIPS, 2020.

[19] J. Kim, J. Kong, and J. Son. Conditional variational autoencoder with adversarial learning for
end-to-end text-to-speech. In International Conference on Machine Learning (ICML), volume
139, pages 5530-5540, 2021.

[20] J. Kong, J. Kim, and J. Bae. HiFi-GAN: Generative adversarial networks for efficient and high
fidelity speech synthesis. In Annual Conference on Neural Information Processing Systems
(NeurIPS), 2020.

[21] R. Korostik, R. Nasretdinov, and A. Juki¢. Modifying flow matching for generative speech
enhancement. In IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2025.

[22] M. Lajszczak, G. Cambara, Y. Li, F. Beyhan, A. van Korlaar, F. Yang, A. Joly, A. Martin-
Cortinas, A. Abbas, A. Michalski, A. Moinet, S. Karlapati, E. Muszynska, H. Guo, B. Putrycz,
S. L. Gambino, K. Yoo, E. Sokolova, and T. Drugman. BASE TTS: lessons from building a
billion-parameter text-to-speech model on 100k hours of data. arXiv preprint arXiv:2402.08093,
2024.

[23] M. Le, A. Vyas, B. Shi, B. Karrer, L. Sari, R. Moritz, M. Williamson, V. Manohar, Y. Adi,
J. Mahadeokar, and W. Hsu. Voicebox: Text-guided multilingual universal speech generation at
scale. In NeurlIPS, 2023.

[24] K. Lee, D. W. Kim, J. Kim, and J. Cho. DiTTo-TTS: Efficient and scalable zero-shot text-to-
speech with diffusion transformer. In International Conference on Learning Representations
(ICLR), 2025.

[25] S. Liao, Y. Wang, T. Li, Y. Cheng, R. Zhang, R. Zhou, and Y. Xing. Fish-speech: Leveraging
large language models for advanced multilingual text-to-speech synthesis. arXiv preprint
arXiv:2411.01156, 2024.

[26] Y. Lipman, R. T. Q. Chen, H. Ben-Hamu, M. Nickel, and M. Le. Flow matching for generative
modeling. In International Conference on Learning Representations (ICLR), 2023.

[27] J. Liu, C. Li, Y. Ren, F. Chen, and Z. Zhao. Diffsinger: Singing voice synthesis via shallow
diffusion mechanism. In Proceedings of the AAAI Conference on Artificial Intelligence, pages
11020-11028, 2022.

[28] X. Liu, C. Gong, and Q. Liu. Flow straight and fast: Learning to generate and transfer data with
rectified flow. In International Conference on Learning Representations (ICLR), 2023.

[29] R. J. McCann. A convexity principle for interacting gases. Advances in Mathematics,
128(1):153-179, 1997.

[30] S. Mehta, R. Tu, J. Beskow, E. Székely, and G. E. Henter. Matcha-TTS: A fast TTS architecture
with conditional flow matching. In IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 11341-11345, 2024.

[31] L. Meng, L. Zhou, S. Liu, S. Chen, B. Han, S. Hu, Y. Liu, J. Li, S. Zhao, X. Wu, H. Meng,
and F. Wei. Autoregressive speech synthesis without vector quantization. arXiv preprint
arXiv:2407.08551, 2024.

12

https://keithito.com/LJ-Speech-Dataset/
https://keithito.com/LJ-Speech-Dataset/

[32] W. Peebles and S. Xie. Scalable diffusion models with transformers. In IEEE/CVF International
Conference on Computer Vision (ICCV), 2023.

[33] V. Popov, 1. Vovk, V. Gogoryan, T. Sadekova, and M. A. Kudinov. Grad-tts: A diffusion
probabilistic model for text-to-speech. In International Conference on Machine Learning
(ICML), volume 139, pages 8599-8608, 2021.

[34] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and 1. Sutskever. Robust speech
recognition via large-scale weak supervision. In International Conference on Machine Learning
(ICML), pages 28492-28518, 2023.

[35] Y.Ren, C. Hu, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T. Liu. FastSpeech 2: Fast and high-quality
end-to-end text to speech. In International Conference on Learning Representations (ICLR),
2021.

[36] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional networks for biomedical image
segmentation. In Medical Image Computing and Computer-Assisted Intervention (MICCAI),
2015.

[37] T. Saeki, D. Xin, W. Nakata, T. Koriyama, S. Takamichi, and H. Saruwatari. UTMOS: utokyo-
sarulab system for voicemos challenge 2022. In Interspeech, pages 4521-4525, 2022.

[38] S. Shikhar, M. I. Kurpath, S. S. Mullappilly, J. Lahoud, F. Khan, R. M. Anwer, S. Khan, and
H. Cholakkal. LLMVoX: Autoregressive streaming text-to-speech model for any LLM. arXiv
preprint arXiv:2503.04724, 2025.

[39] H. Siuzdak. Vocos: Closing the gap between time-domain and fourier-based neural vocoders for

high-quality audio synthesis. In International Conference on Learning Representations (ICLR),
2024.

[40] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur. X-Vectors: Robust DNN
embeddings for speaker recognition. In IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 5329-5333, 2018.

[41] B. Stahl and H. Gamper. Distillation and pruning for scalable self-supervised representation-
based speech quality assessment. arXiv preprint arXiv:2502.05356, 2025.

[42] X. Sun, R. Xiao, J. Mo, B. Wu, Q. Yu, and B. Wang. F5R-TTS: Improving flow-matching based
text-to-speech with group relative policy optimization. arXiv preprint arXiv:2504.02407, 2025.

[43] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. In Annual Conference on Neural Information Processing
Systems (NeurIPS), pages 5998-6008, 2017.

[44] C. Veaux, J. Yamagishi, and K. MacDonald. CSTR VCTK corpus: English multi-speaker corpus
for CSTR voice cloning toolkit. University of Edinburgh. The Centre for Speech Technology
Research (CSTR), 2017.

[45] C. Wang, S. Chen, Y. Wu, Z. Zhang, L. Zhou, S. Liu, Z. Chen, Y. Liu, H. Wang, J. Li, L. He,
S. Zhao, and F. Wei. Neural codec language models are zero-shot text to speech synthesizers.
arXiv preprint arXiv:2301.02111v1, 2023.

[46] X. Wang, M. Jiang, Z. Ma, Z. Zhang, S. Liu, L. Li, Z. Liang, Q. Zheng, R. Wang, X. Feng,
W. Bian, Z. Ye, S. Cheng, R. Yuan, Z. Zhao, X. Zhu, J. Pan, L. Xue, P. Zhu, Y. Chen, Z. Li,
X. Chen, L. Xie, Y. Guo, and W. Xue. Spark-TTS: An efficient llm-based text-to-speech model
with single-stream decoupled speech tokens. arXiv preprint arXiv:2503.01710, 2025.

[47] H. Yan, X. Liu, J. Pan, J. H. Liew, Q. Liu, and J. Feng. Perflow: Piecewise rectified flow as
universal plug-and-play accelerator. In Annual Conference on Neural Information Processing
Systems (NeurIPS), 2024.

[48] D. Yang, S. Liu, R. Huang, C. Weng, and H. Meng. Instructtts: Modelling expressive TTS in
discrete latent space with natural language style prompt. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 32:2913-2925, 2024.

13

[49] Z. Ye, X. Zhu, C. Chan, X. Wang, X. Tan, J. Lei, Y. Peng, H. Liu, Y. Jin, Z. Dai, H. Lin, J. Chen,
X. Du, L. Xue, Y. Chen, Z. Li, L. Xie, Q. Kong, Y. Guo, and W. Xue. Llasa: Scaling train-time

and inference-time compute for llama-based speech synthesis. arXiv preprint arXiv:2502.04128,
2024.

[50] H. Zen, V. Dang, R. Clark, Y. Zhang, R. J. Weiss, Y. Jia, Z. Chen, and Y. Wu. LibriTTS: A
corpus derived from LibriSpeech for text-to-speech. In Proc. Interspeech, pages 1526-1530,
2019.

[51] B. Zhang, C. Guo, G. Yang, H. Yu, H. Zhang, H. Lei, J. Mai, J. Yan, K. Yang, M. Yang,
P. Huang, R. Jin, S. Jiang, W. Cheng, Y. Li, Y. Xiao, Y. Zhou, Y. Zhang, Y. Lu, and Y. He.
Minimax-speech: Intrinsic zero-shot text-to-speech with a learnable speaker encoder. arXiv
preprint arXiv:2505.07916, 2025.

14

NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction are addressed in Sections 3]
and 5] of the main paper.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

15

Justification: The limitations are discussed in Appendix 2?.
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The main theoretical insights are discussed in Section [3|and detailed proofs
are given in Appendix [A]

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the implementation details to reproduce the results are given in Section 4}
and Appendix [B]and [C]
Guidelines:

16

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Although we use publicly available datasets and provide our code in supple-
mental material, our experiment involves multiple models whose environment settings need
to be found on their official GitHub pages.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All the experiment details are given in Section 4]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We apply t-tests on subjective evaluation results, and report the std in Ap-
pendix [F]
Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: We do not discuss the preliminary or failed experiments that didn’t make it
into the paper.

Guidelines:

18

0.

10.

11.

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Our work adheres to all the ethical guidelines outlined by NeurIPS.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The broader impacts are discussed in Appendix |G|
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

19

https://neurips.cc/public/EthicsGuidelines

Justification: Our work does not pose any explicit risks as we use public datasets, and
applying our proposed methods to other areas needs dedicated modifications.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All dataset details and original authorship are cited in Sections[2]and 4]
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release any new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

20

paperswithcode.com/datasets

15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We explain our subjective evaluation settings in Section] and provide screen-
shots in Appendix [H]

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: This study involves subjective evaluation tests. All participants took part with
informed consent, and the study was approved by the IRB of our institution.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We only use LLM for writing and editing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A Theorem Proofs

Theorem 1. For any random variable ., ~ N (t,,@1,02,I), where t,,, € [0,00) and o, € (0, 00),
we define a transformation that maps ., onto the CondOT paths. The output distribution varies
continuously with respect to t,, and o,, under the Wasserstein-2 metric.

A= (]- - Ulnin)tm + om, (23)

— — . 2 _ 52 :
L = {\/(1 (1 Umln)tm) O'm:lto + L, lf‘A < 1, (24)

XTm, fA>1,

where @ ~ N (0, I), with corresponding T = min(t,,,, &) on the path.

Proof. Since x,, ~ N (tyx1,02,1) and g ~ N (0, I) are independent, as a linear combination of
them, x also follows a Gaussian distribution with:

tm ifA<1
" {itm, A > 1. (25)
tym®1 = T, if A < 1,

r) = : 26
wlwr) {itmwl =7Tx, IfA>1, (26)
o(z,) = V= (= omn)in)? —of +of, =1 = (1= oma)r, fA<L 0

Tl =1 (o) =1 (1 - o), A > 1,

where p(-) denotes the mean and o (-) denotes the std.

Since p(x,) and o () satisfy Eq. (3)), . lies on the CondOT paths.

We denote the transformation as 7" : [0, 1] x (0,00) x R? x R? — R<, Since ¢y ~ N(0,I) and x;
is a sample from the dataset, the distribution of «, depends only on ¢,,, and o,,, conditioned on x; .
Therefore, we denote the distribution of x, as:

x, ~ N(p(x,), (mr)QI) Ty (tms om).- (28)

To verify that T, (t,,, 01,) is continuous in the Wasserstein-2 metric with respect to ¢,,, and o, we
use formula:

Wa (N (1, 51), Na(prs, 52)) V oy = b2 T (3 4 2 - 22122,/ 12). 29)
If our distributions are isotropic, we have:

Wo(Ni (1, 07T), No(pg, 051) = /[y — pa % + n(o1 — 02)2, (30)
where n is the dimension of the variables. We define § > 0 for proof.
For t,,
I. When ¢, 1 1=, then A < 1:

lim Wo (T, (tm — 0,0m), Ty (trmy o)) = lim /|61]2 + 2(0(1 — omin))2 (31)
6—0 6—0
=0, (32)

Um Wo(Te, (tm, om), Ty (tm + 9, 04,)) = lim \/||6:c1\|2 +n(0(1 — omin))? (33)
§—0 d—0
= 0. (34)

II. When t,,, = *"*" ,then A = 1:

22

lim W2((-9, Um)a T, (tma Um)) = (%I_I}}) \/”6331 H2 + n(5(1 - Umin))Q

§—0
= 0’
lim WZ(x maO-WL wl t +4, Um))
6—0
tm +0 Om
— i 2 o Im oy
5136 \/” BT Ll M S s -
III. When ¢,,, ,then A > 1:
Hm Wo(Tp, (b — 8, 0m)s Taey (tims 0m))
5—0

Om Im

t
=1 _m 2 .m0 ZMm)2
51—I>I(1)\/”A 51— v By L MG e p, Sl

Hm Wo(Tp, (b, 0m)s Ty (b + 0, 00m))
d—0

b + 0 Om Om

t
= 1li omo o mtE 2 Ymo o Ym N2
alﬁ%\/”[A Ao — om0y~ A0 — o)

For 0,,:

I. When o, <1 — (1 — 0min)tm, then A < 1:

Hm Wao(Tp, (tmy 0m — 6)y Ty (b, o)) = lim +/||0z1 |2 + n(0))2
§—0 6—0
=0,

Lim Wo(Tiz, (B 0)s T (B o+ 6)) = lim (/[]024 12 4 n(0))2
=0.

II. When 6,,, = 1 — (1 — Oin)i, then A = 1:

lim WQ(T (msOm — 5)7Tw1 (tmvam)) - hm HO"BIHQ -I-TL())2

6—0
= 07
lim Wo (T, (tmy 0m)s Tay by 0m + 9))
6—0
= \/II a2 + o — 220y
§—0 1+(5 1+6

L. When 0, > 1 — (1 — 0ymin)tm, then A > 1:

23

(35)
(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)
(47)

(43)
(49)

(50)
D

(52)

(53)
(54)

lim WQ((ms>OTm _5)7T:731 (tmao'm))
6—0

Om —0 Oom

2 M2
_(%IL%\/HA 5 m” tlx =5)

thQ((m,O'm T (tm70'm+5))

Om Om—+90

2 _mo 2
%lﬂ%\/”A A+5}m1H trly ~ATs)

Thus, Ty, (tm, om) is continuous with respect to ¢,,, and o, in the Wasserstein-2 metric.

24

(55)

(56)
(57)
(58)

(59)
(60)

Theorem 2. For arbitrary intermediate states on the conditional OT (CondOT) paths:
@y, = (1 —tm)@o + tm(T1 + Omin®o), tm € (0,1), 29 ~ N (0, 1), (61)

we can divide the paths into two segments at t,, and represent the flow and VF using piecewise
functions:

1- -+ £ ift < tm,

o T g (©2)
(1 1— t:nn)"Etm + 1 (-’El + O'mm:BO) lft Z tma
1 .
L - t < tm,

u; = tml(‘”t @), YL <t (63)
T—t, (:I:l + Omin®o — wtm)7 lft Z tm

In the first segment (¢ < t,,) of the two-segment piecewise flow, the paths start from xo with x; , as
the target. In the second segment (¢ > ¢,,), the paths start from x,,, and move towards the target
(%1 + Omino)-

Proof. Substituting Eq. (61)) into Eq. (62) and Eq. (63)), we derive the following:
I. Whent < t,,:

t t
== —)wo+ —m, (64)
tm 2%
t
= (1 - T)mO + T(l - tm)mO + t(xl + O'mian) (65)
= (1 —=t)xo + t(T1 + Omino), (66)
1
w = (@, — o) (67)
1
= T(tmwo + tm(wl + UminwO)) (68)
= (1 + OminTo) — To- (69)
II. When t > t,,

t—1m t—1tm

=(1- —)Xy, + T (1 + Omin®o) (70)
1-1¢ t—1tm
(t).’Bo + tm(xl + UminwO) + 1—¢ (ml + O'minxO) (71)
=(1—-t)zo + t(wl + OminTo), (72)
1
U = 7 (@1 + Omin®o — T4, (73)
bm

R (Z1 + OminTo) — To — m(% + OminTo) (74)
= (1 + OminTo) — To- (75)
Therefore, the piecewise flow and VF above satisfy Eq. (@). O

25

B SFM head

Xh’ fh! log&,f

A
(I dmel +2 h
Linear
I
4 X dpigden
Dropout e
I
LayerNorm
I
RelLU
| 4 X dhidgen
[Conv1d] A
! 4xd idden
Dropout e
I
LayerNorm
I
RelLU
I 4 X dpjgden
[Conv1d] A
L 0 dhidden)

Hidden States H,,

Figure 2: SFM head architecture.

As shown in Fig.[2] we use a simple and lightweight SFM head, whose architecture is derived from
the duration predictor of VITSﬂ and Matcha-TTS | The kernel size and padding of the two Conv1d
layers are set to 3 and 1, respectively.

The output of the SFM head can be split into X he th, and log &%L, with shapes [batch, mel,
sequence], [batch, 1, sequencel, and [batch, 1, sequence], respectively. Since fh >0,
we apply a Sigmoid activation to it and compute the mean over the frames axis, resulting in an output
of shape [batch, 1]. As described in Appendix [C} the SFM head predicts log 67, instead of 63.
log 63 is also averaged across frames to produce an output of shape [batch, 1.

*https://github.com/jaywalnut310/vits/blob/2e561ba58618d021b5b8323d3765880f 7e0ectdb/
models.py#L98

>https://github.com/shivammehta25/Matcha-TTS/blob/108906c603fad5055f2649b3fd71d2bbdf222eac/
matcha/models/components/text_encoder.py#L70

26

https://github.com/jaywalnut310/vits/blob/2e561ba58618d021b5b8323d3765880f7e0ecfdb/models.py#L98
https://github.com/jaywalnut310/vits/blob/2e561ba58618d021b5b8323d3765880f7e0ecfdb/models.py#L98
https://github.com/shivammehta25/Matcha-TTS/blob/108906c603fad5055f2649b3fd71d2bbdf222eac/matcha/models/components/text_encoder.py#L70
https://github.com/shivammehta25/Matcha-TTS/blob/108906c603fad5055f2649b3fd71d2bbdf222eac/matcha/models/components/text_encoder.py#L70

C Algorithms

In the practical implementation, we apply several detailed modifications and tricks:

1. The SFM-head h.;, predicts log 63 instead of 67 directly to ensure numerical stability and positive
outputs.

2. Due to the L parse, the tp, obtained from X, are generally larger than 0 during training. Therefore,
we remove the constraint ¢, > 0 in Equation[[3]

3. We also modify the placement of the £, for implementation convenience. Compared to the
formulation in Equation this modification results in a scaled version of the original loss by a
constant factor of <.

Algorithm 1 Training procedure of SFM

Input: the training set (X, C).

1: repeat
2: Sample (X1, C) from (X,C);
3: Generate coarse representations
Hy, X4 + g.,(C)
Xh7 ih, IOgOA',ZI — h,l/,(Hg)
4: Compute coarse loss

‘Ccoarse = EHXg - X1||2
5: Project onto CondOT paths
591X n] - X1

t E
h [XX,

} . o} EllsglXn] - tn X0

6: Construct the intermediate state

A + max((1 — omin)tn + on, 1)

1 1 1
Xh%ZXh, th%gth, O—%%EJ%’
X0~ N(0,I)

Xp \/max((l — (1 = omin)tn)? —02,0) X o + X4,

Ly = (th —tn)?, Lo = (logép —logop)?, L, =E[|Xpn—thX1|]?
Apply FM

~

EU,1), t e S(t)
Xt < (1 —t)Xh+t<X1 +UminX0)

1
Ui — (X1 + ominXo — Xn)
11—t

t< (1—tn)t+1tn
Lorm = El|vg(X ¢, t) — Uyl
8: Apply gradient descent to minimize Lspy
ESFM = Ecoarse + ‘Ct + ‘CG' + Eu + ACCFM

9: until convergence

27

Algorithm 2 Inference procedure of SFM

Input: Condition C.

1: Generate coarse representations
Hg, X4 < gu(C)

Xh,tn,log o, « hy(Hg)
o3 <+ exp(log o)
2: Construct the intermediate state with SFM strength
A + max(a((1 — own)th + on), 1)
®

(0% «Q (6%
Xn— —Xp, th< —th, 0L —0o
h A h h Ah h AQh

Xy ~N(0,1)

X, ¢ /max((L — (1~ ouin)tn)? — 03.0) X0 + X,

3: Use an ODE solver to solve the integral

1
Xpred:Xh+/ ’Ue(Xt,t)dt

th

28

D Complete results of o selection

We provide complete results in optimal « selection for all models in this section, including Table [6]
Table [7} Table 8] and Table [}

Table 6: Objective evaluation results on validation sets for « selection (Matcha-TTS).

a ty &g |PMOST UTMOSt UTMOSv2! Distill-MOST| WER(%)) SIM{t
Matcha-TTS (SFM) trained on LJ Speech

1.0 0.099 0.092| 4.036 4.194 3.721 4.192 4.641 0.972
2.0 0.198 0.183| 4.158 4.305 3.834 4.337 3496 0973
2.5 0.248 0.229| 4.176 4.276 3.872 4.381 3556 0.972
3.0 0.297 0.275| 4.168 4.260 3.842 4.402 3496 0.970
3.5 0.347 0.320| 4.132 4.190 3.802 4.403 3496 0.969
4.0 0.397 0.366| 4.107 4.137 3.763 4.421 3.556 0.966
5.0 0.496 0.458| 4.025 3.977 3.694 4.403 3376 0.960
6.0 0.520 0.480| 3.997 3.958 3.648 4.386 3315 0958
7.0 0.520 0.480| 3.990 3.960 3.625 4.386 3315 0958
8.0 0.520 0.480| 3.990 3.959 3.625 4.386 3315 0958
9.0 0.520 0.480| 3.993 3.956 3.638 4.386 3315 0958
10.0 0.520 0.480| 3.987 3.955 3.620 4.386 3315 0958
Matcha-TTS (SFM) trained on VCTK

1.0 0.100 0.078| 3.462 3.876 2.723 3.787 4898 0923
2.0 0.201 0.155| 3.647 4.061 2.988 3.891 2.177 0.940
2.5 0.251 0.194| 3.652 4.045 3.007 3.904 2.041 0.940
3.0 0.301 0.233| 3.678 4.079 3.041 3.914 1.497 0939
3.5 0.351 0.272| 3.679 4.074 3.053 3.910 1.224 0.936
4.0 0.401 0.311| 3.660 4.079 3.001 3.900 1.088 0.934
5.0 0.502 0.389| 3.615 4.059 2.916 3.869 1.088 0.929
6.0 0.564 0.436| 3.555 4.084 2.757 3.824 1.224 0923
7.0 0.564 0.436| 3.554 4.084 2.752 3.824 1.224 0923
8.0 0.564 0.436| 3.563 4.084 2.782 3.824 1.224 0.923
9.0 0.564 0.436| 3.559 4.082 2.770 3.825 1.224 0.923
10.0 0.564 0.436| 3.546 4.083 2.730 3.824 1.224 0.923

29

Table 7: Objective evaluation results on validation sets for « selection (StableTTS).

a i, &, |PMOSt UTMOSt UTMOSv2} Distill-lMOST| WER(%)| SIM{

StableTTS (SFM) trained on VCTK

1.0 0.153 0.098| 3.281 3.184 2.782 3.877 8.707 0910
2.0 0.306 0.197| 3.441 3.403 2.981 3.938 2.041 0.931
2.5 0.382 0.246| 3.476 3.469 3.013 3.945 1.361 0.933
3.0 0.459 0.295| 3.486 3.522 3.001 3.936 1.224 0.933
3.5 0.535 0.345| 3.475 3.543 2.959 3.923 1.224 0.933
4.0 0.603 0.388| 3.437 3.547 2.857 3.906 1.361 0.933
5.0 0.609 0.391| 3.435 3.560 2.829 3914 1.361 0.933
6.0 0.609 0.391| 3.434 3.561 2.825 3.915 1.361 0.933
7.0 0.609 0.391| 3.431 3.558 2.819 3.915 1.361 0.933
8.0 0.609 0.391| 3.434 3.559 2.828 3.915 1.361 0.933
9.0 0.609 0.391| 3.435 3.560 2.832 3914 1.361 0.933
10.0 0.609 0.391| 3.433 3.560 2.824 3914 1.361 0.933
StableTTS (SFM-c) trained on VCTK

1.0 0.111 0.067| 3.261 3.165 2.759 3.859 1.224 0918
2.0 0.222 0.134| 3.313 3.260 2.787 3.893 1.633 0.922
3.0 0.333 0.201| 3.403 3.375 2913 3.923 1.497 0.927
3.5 0.388 0.235| 3.424 3419 2916 3.936 1.361 0.928
4.0 0.444 0.268| 3.427 3.462 2.889 3.931 1.088 0.930
4.5 0.499 0.302| 3.449 3.495 2.924 3.929 1.088 0.931
5.0 0.555 0.335| 3.408 3.510 2.799 3.913 1.361 0.931
6.0 0.624 0.376| 3.377 3.553 2.672 3.906 1.224 0934
7.0 0.624 0.376| 3.389 3.554 2.707 3.906 1.224 0934
8.0 0.624 0.376| 3.398 3.554 2.734 3.907 1.224 0934
9.0 0.624 0.376| 3.387 3.553 2.702 3.907 1.224 0.934
10.0 0.624 0.376| 3.378 3.554 2.674 3.906 1.224 0934

Table 8: Objective evaluation results on validation sets for « selection (CosyVoice).

a ty &g |PMOST UTMOSt UTMOSv2! Distill-MOST| WER(%)) SIM?t

CosyVoice (SFM) trained on LibriTTS

1.0 0.152 0.126| 3.721 3.729 3.102 4.333 8.902 0.923
1.5 0.228 0.189| 4.019 4.113 3.449 4.494 4810 0932
2.0 0.303 0.253| 4.087 4.180 3.530 4.553 4.499 0.931
2.5 0.379 0.316| 4.080 4.165 3.516 4.558 4.475 0.928
3.0 0455 0.379| 4.019 4.119 3.409 4.527 4.523 0.922
4.0 0.546 0.454| 3917 4.075 3.235 4.440 4427 0916
5.0 0.546 0.454| 3.911 4.081 3.209 4.444 4.475 0.916
6.0 0.546 0.454| 3.904 4.070 3.199 4.443 4.523 0.916
7.0 0.546 0.454| 3.905 4.070 3.201 4.442 4.475 0.916
8.0 0.546 0.454| 3912 4.075 3.220 4.440 4427 0916
9.0 0.546 0.454| 3919 4.077 3.239 4.441 4.475 0.916
10.0 0.546 0.454| 3.911 4.081 3.207 4.444 4.475 0.916
CosyVoice (SFM-t) trained on LibriTTS

1.0 0.088 0.152| 3.567 3.501 2.957 4.242 14.932 0917
1.5 0.132 0.228| 3.872 3.932 3.267 4.417 6.102 0.928
2.0 0.176 0.304| 4.000 4.089 3.392 4.520 4882 0924
2.5 0.219 0.380| 4.005 4.078 3.395 4.543 4.834 0911
3.0 0.263 0.456| 3.877 3.940 3213 4.477 4.355 0.896
4.0 0.349 0.605| 3.395 3.498 2.599 4.087 4.355 0.868
5.0 0.364 0.635| 3.251 3.375 2.421 3.955 4379 0.865
6.0 0.364 0.636| 3.260 3.376 2.441 3.963 4.331 0.865
7.0 0.364 0.636| 3.261 3.380 2.450 3.953 4.355 0.864
8.0 0.364 0.636| 3.271 3.379 2.470 3.963 4.403 0.865
9.0 0.364 0.636| 3.271 3.377 2.478 3.958 4.427 0.865
10.0 0.364 0.636| 3.255 3.375 2.433 3.955 4379 0.865

30

Table 9: Objective evaluation results on validation sets for « selection (Cosy Voice-DiT).

a ty &g |PMOST UTMOSt UTMOSv2t Distill-MOST| WER(%)) SIM{t
CosyVoice-DiT (SFM) trained on LibriTTS

1.0 0.143 0.120| 3.405 3.077 2.880 4.257 8.423 0.924
2.0 0.286 0.239| 3.750 3.569 3.189 4.493 4.499 0.934
2.5 0.358 0.299| 3.823 3.694 3.247 4.529 4.331 0.933
3.0 0429 0.359| 3.810 3.720 3.184 4.528 4212 0929
3.5 0.501 0.419| 3.780 3.758 3.089 4.493 4.068 0925
4.0 0.545 0.455| 3.721 3.750 2.968 4.444 4.092 0922
5.0 0.545 0.455| 3.722 3.750 2.972 4.444 4.092 0922
6.0 0.545 0.455| 3.720 3.749 2.967 4.444 4.092 0922
7.0 0.545 0.455| 3.723 3.751 2.973 4.445 4.092 0922
8.0 0.545 0.455| 3.718 3.750 2.959 4.444 4.092 0922
9.0 0.545 0.455| 3.724 3.750 2.979 4.444 4.092 0922
10.0 0.545 0.455| 3.719 3.750 2.964 4.444 4.092 0922
CosyVoice-DiT (SFM-c) trained on LibriTTS

1.0 0.106 0.082| 3.419 3.154 2.943 4.161 4.666 0933
2.0 0.212 0.164| 3.655 3.408 3.146 4.409 4379 0.937
3.0 0.317 0.246| 3.766 3.573 3.217 4.509 4307 0936
3.5 0.370 0.287| 3.799 3.640 3.230 4.526 4.283 0.934
4.0 0.423 0.329| 3.815 3.696 3.227 4.522 4.283 0.933
4.5 0476 0.370| 3.814 3.739 3.180 4.521 4.331 0.931
5.0 0.529 0411| 3.794 3.789 3.080 4.513 4.164 0.929
6.0 0.563 0.437| 3.780 3.795 3.056 4.488 4116 0.927
7.0 0.563 0.437| 3.767 3.794 3.021 4.488 4.140 0927
8.0 0.563 0.437| 3.770 3.795 3.029 4.488 4.140 0927
9.0 0.563 0.437| 3.767 3.792 3.019 4.488 4.116 0.927
10.0 0.563 0.437| 3.776 3.794 3.047 4.488 4.164 0927

E Minor analysis of evaluation results

Interestingly, the Matcha-TTS (SFM) model trained on VCTK achieves a much lower WER than the
ground-truth and vocoder-reconstructed speech. Since VCTK is a reading-style corpus, we observe
that speakers occasionally exhibit disfluencies such as stammering or slurring. The synthesized
speech, being generated from clean transcripts, avoids such inconsistencies.

For models trained on LibriTTS, vocoder-reconstructed speech performs significantly worse in SMOS
tests. Since we adopt cross-sentence evaluations [8 [7]], the prompt and target utterances are from the
same speaker but are not necessarily adjacent, often resulting in prosodic mismatches. In contrast,
CosyVoice LLM can imitate the prompt’s prosody, and the generated speech tokens align well with
the prompt. Ground truth still performs competitively, likely due to its superior speech quality.

Reconstructed speech also performs poorly in CMOS tests. As LibriTTS is from audiobooks, which
often feature expressive and emotional delivery. We observe that listeners tend to perceive such
utterances as unnatural when heard in isolation. While flow matching-based models are capable of
generating high-quality speech, prosody becomes the dominant factor in listener ratings. Ground-truth
speech can outperform synthesized speech in CMOS due to its better sound quality.

31

F RTF and NFE with using adaptive-step ODE solvers

In this section, we provide not only the RTFs for ODE solver inference in Table[I0] but also the
RTFs for the full model inference in Table [T1] These comparisons reveal that the ODE solver
inference dominates the overall inference time. When using adaptive-step ODE solvers, the inference
acceleration of our SFM methods is significant.

Table 10: RTF and NFE results for adaptive-step ODE solvers (solver inference). RTF denotes the
mean of RTF. Rate (%) denotes the relative speedup in terms of RTF compared to the ablated model.

System

Heun(2)

Fehlberg(2)

Bosh(3)

Dopri(5)

|RTF| Rate? NFE||RTF| Ratet NFE||RTF| Ratet NFE||RTF| Ratel NFE|

Matcha-TTS trained on L] Speech

Baseline

Ablated

SFM (a=1.0)
SFM (a=2.0)
SFM (a=3.0)
SFM (a=4.0)
SFM (a=5.0)

0.407
0.401
0.361
0.299
0.249
0.207
0.157

-1.496
0.000
9.858

25.541

37.931

48.486
60.825

312.36
306.72
271.56
229.43
191.49
156.78
120.07

0.054
0.056
0.053
0.048
0.043
0.037
0.027

3.571
0.000
4.171
13.306
22.749
34.246
50.968

44.82
45.28
44.08
39.16
34.88
29.74
22.14

0.271
0.270
0.225
0.187
0.157
0.131
0.110

-0.370

0.000
16.924
30.931
41.895
51.576
59.266

223.95
221.81
186.23
153.08
129.02
107.90

90.74

0.142
0.145
0.132
0.115
0.100
0.086
0.076

2.069
0.000
9.100
20.484
30.753
40.559
47.605

120.10
121.46
111.14
96.02
84.20
72.56
63.74

Matcha-TTS trained on VCTK

Baseline

Ablated

SEM (a=1.0)
SFM (a=2.0)
SFM («=3.0)
SEM («=4.0)
SEM (a=5.0)

0.972
0.952

-2.101
0.000
0.950 0.210
0.771 18.998
0.626 34.271
0.519 45.449
0.407 57.242

318.42
313.18
312.26
253.66
205.49
170.63
133.78

0.139
0.131
0.123
0.111
0.100
0.093
0.073

-6.107
0.000
6.269

15.463

23.635

29.503

44.413

49.00
45.52
42.60
38.28
34.50
31.96
25.10

0.681
0.690
0.690
0.558
0.436
0.350
0.279

1.304
0.000
0.030
19.071
36.844
49.257
59.547

243.40
245.69
244.43
196.58
153.86
123.80

99.05

0.365
0.371
0.371
0.318
0.265
0.231
0.195

1.617
0.000
0.111
14.356
28.626
37.846
47.454

133.92
134.76
134.00
114.08
95.48
83.48
70.28

StableTTS trained on VCTK

Ablated

SEM (a=1.0)
SFM (a=2.0)
SFM («=3.0)
SFM (a=4.0)
SEM (a=5.0)

2.153 0.000
1.212 43.694
0.982 54.386
0.789 63.346
0.592 72.497
0.586 72.792

712.06
397.26
316.00
254.74
192.34
189.30

0.394
0.261
0.232
0.205
0.169
0.173

0.000 1
33.707
41.301
48.081
57.149
56.096

33.96
88.36
76.48
67.44
53.84
53.64

1.270
0.790
0.697
0.611
0.542
0.538

0.000
37.823
45.123
51.930
57.305
57.674

434.74
269.32
231.82
204.64
181.72
178.90

0.998
0.690
0.613
0.564
0.489
0.505

0.000
30.849
38.593
43.473
51.003
49.377

346.12
232.60
208.72
190.60
166.12
169.48

CosyVoice tra
Baseline

Ablated

SFM (a=1.0)
SFM (a=2.0)
SEM («=3.0)
SFM (a=4.0)
SFM (a=5.0)

2416
2.532
1.745
1.426
1.110
0.963
0.960

4.581

0.000
31.093
43.667
56.182
61.967
62.096

ined on LibriTTS

390.06
395.25
275.92
218.17
173.28
149.95
149.90

0.358
0.369
0.283
0.250
0.219
0.186
0.185

2.981

0.000
23.449
32.196
40.682
49.642
49.875

58.62
5891
45.68
39.63
34.85
29.98
29.96

1.894
2.175
1.454
1.211
1.001
0.887
0.888

12.920

0.000
33.143
44.326
53.952
59.217
59.190

327.25
346.90
232.67
192.97
158.57
142.15
141.79

1.294
1.397
1.061
0.917
0.787
0.720
0.727

7.373

0.000
24.069
34.395
43.679
48.469
47.990

215.06
223.37
170.57
146.30
126.53
116.09
116.15

CosyVoice-DiT trained on LibriTTS

Ablated

SFM (a=1.0)
SFM (a=2.0)
SFM (a=3.0)
SFM (a=4.0)
SFM (a=5.0)

1.170 0.000
0.621 46.934
0.503 56.980
0.391 66.558
0.300 74.320
0.302 74.212

834.46
421.90
335.96
267.38
205.89
205.67

0.188
0.125
0.108
0.092
0.073
0.074

0.000 1
33.704
42.475
51.292
61.121
60.825

37.56
86.84
75.28
63.82
51.72
51.74

0.699
0.396
0.336
0.295
0.259
0.258

0.000
43.324
51.894
57.811
62.958
63.061

514.30
277.72
237.88
207.58
182.17
182.23

0.539
0.337
0.286
0.257
0.229
0.229

0.000
37.591
46.910
52.252
57.595
57.523

403.36
234.70
207.94
184.24
163.48
163.06

32

Table 11: RTF results when using adaptive-step ODE solvers (model inference). RTF denotes the
mean of RTF. Rate (%) denotes the relative speedup compared to the ablated model.

System

| Heun(2)

Fehlberg(2)

Bosh(3)

Dopri(5)

|RTF] Ratef|RTF| Rate?|RTF,

Rate? |RTF| Rate?

Matcha-TTS trained on LJ Speech

Baseline
Ablated

SFM (a=1.0)
SFM (a=2.0)
SFM (a=3.0)
SFM (a=4.0)
SFM (a=5.0)

0.409 -1.489
0.403 0.000
0.363 9.809
0.300 25.430
0.251 37.773
0.208 48.282

0.159 60.578

0.055
0.057
0.055
0.050
0.045
0.038
0.029

3.509
0.000
4.017
12.866
22.063
33.261
49.541

0.273
0.272
0.226
0.188
0.159
0.133
0.112

-0.368

0.000
16.814
30.735
41.639
51.268
58.914

0.143
0.146
0.133
0.117
0.102
0.088
0.077

2.055
0.000
8.976
20.230
30.399
40.104
47.076

Matcha-TTS trained on VCTK

Baseline
Ablated

SFM (a=1.0)
SFM (a=2.0)
SFM (a=3.0)
SFM (a=4.0)
SFM (a=5.0)

0.975
0.955
0.953 0.211
0.775 18.925
0.629 34.141
0.523 45.274
0.411 57.021

-2.094
0.000

0.142
0.135
0.127
0.115
0.104
0.096
0.077

-5.185
0.000
6.111

15.046

23.000
28.711
43.209

0.684
0.694
0.693
0.562
0.439
0.354
0.283

1.441
0.000
0.036
18.971
36.651
48.998
59.235

0.369
0.375
0.374
0.321
0.268
0.234
0.199

1.600
0.000
0.116
14.213
28.349
37.481
46.993

StableTTsS trained on VCTK

Ablated

SFM (a=1.0)
SFM (a=2.0)
SFM («=3.0)
SFM (a=4.0)
SFM («=5.0)

2.157 0.000
1.216 43.622
0.986 54.294
0.793 63.242
0.596 72.380
0.589 72.674

0.398
0.265
0.235
0.208
0.172
0.177

0.000
33.396
40.912
47.643
56.640
55.598

1.274
0.793
0.701
0.614
0.546
0.541

0.000
37.716
44.992
51.781
57.146
57.513

1.001
0.694
0.616
0.568
0.492
0.509

0.000
30.730
38.447
43.315
50.821
49.200

CosyVoice tra
Baseline

Ablated

SFM (a=1.0)
SFM («=2.0)
SFM (a=3.0)
SFM (a=4.0)
SFM (a=5.0)

2417 4.580
2.533 0.000
1.746 31.076
1.428 43.644
1.111 56.155
0.964 61.937
0.961 62.066

ined on LibriTTS

0.359
0.370
0.284
0.252
0.220
0.187
0.186

2973

0.000
23.353
32.070
40.536
49.471
49.705

1.895
2.176
1.455
1.212
1.003
0.888
0.889

12.914

0.000
33.124
44.301
53.922
59.184
59.157

1.295
1.398
1.062
0.918
0.788
0.721
0.728

7.368

0.000
24.035
34.360
43.638
48.424
47.946

CosyVoice-DiT trained on LibriTTS

Ablated

SFM (a=1.0)
SFM (a=2.0)
SFM (a=3.0)
SFM (a=4.0)
SFM (a=5.0)

1.171 0.000
0.622 46.870
0.505 56.903
0.393 66.472
0.302 74.225
0.303 74.116

0.190 0.000
0.126 33.406
0.110 42.113
0.093 50.872
0.075 60.633
0.075 60.336

0.700
0.397
0.338
0.296
0.260
0.260

0.000
43.221
51.779
57.683
62.820
62.924

0.541
0.338
0.288
0.259
0.230
0.230

0.000
37.472
46.775
52.102
57.432
57.360

33

G Broader impacts

Our proposed SFM method contributes to the development of more efficient and natural text-to-speech
(TTS) systems. By reducing the computational cost of flow-based inference when using adaptive-step
ODE solvers, the method can lower the energy consumption of TTS systems and facilitate real-time
speech synthesis. Furthermore, the general design of SFM has the potential to be extended to other
generative tasks beyond speech synthesis.

However, as with many generative speech technologies, our method may be misused in malicious
applications such as voice spoofing or deepfake audio generation. While our approach improves
synthesis quality and efficiency, it may inadvertently aid the creation of more realistic synthetic
voices that are difficult to distinguish from human speech. We encourage future work to explore
complementary safeguards, such as synthetic speech detection or watermarking, to mitigate these
risks and promote the responsible use of TTS technology.

H MOS tests screenshot

Synthetic Speech Quality Evaluation

Welcome to our experiment, which aims to evaluate the comparative naturalness of speech generated by our Text-to-Speech synthesis systems.
In each question, you will listen to two audio samples.
Please use headphones for the best experience and focus on assessing which audio sounds more natural to you.

Rating criteria:

+3: Audio A is much better than Audio B.
+2: Audio A is better than Audio B.

+1: Audio A is slightly better than Audio B.
0: Audio A and Audio B are about the same.
-1: Audio B is slightly better than Audio A.
-2: Audio B is better than Audio A.

-3: Audio B is much better than Audio A.

Your feedback is crucial for us to improve our Text-to-Speech synthesis system. Thank you for your participation!

Type:

CMOsS

Question 1

P 0:00/0:08 eom——)

» 0:00/0:08 e————)

O +3: Ais much better than B

O +2: Ais better than B

+1: Ais slightly better than B
0: A and B are about the same
O -1: Bis slightly better than A

(B is better than A

: Bis much better than A

Figure 3: CMOS test screenshot.

34

Synthetic Speech Similarity Evaluation

Welcome to our experiment, which aims to evaluate the similarity between synthesized speech and reference speech.

In each question, you will listen to two audio samples: A is the reference speech, B is generated by our TTS system.

Please use headphones for the best experience and focus on assessing how similar the two audios sound to you in terms of speaker identity, prosody,
and overall acoustic characteristics.

Rating criteria:
* 5: Extremely similar
e 4: Similar
* 3: Moderately similar
* 2: Slightly similar

 1: Not similar at all

Your feedback is crucial for us to improve our TTS system. Thank you for your participation!

Type:
SMOS

Question 1

p 0:00/0:02 c———)

> 0:00/0:06 e O i

o

5: B is extremely similar to A
4: Bis similar to A

3: B is moderately similar to A
2: Bis slightly similar to A

1: Bis not similar to A at all

O OO

o

Figure 4: SMOS test screenshot.

35

	Introduction
	Preliminaries
	Flow matching
	Classifier-free guidance
	Flow matching-based TTS models

	Method
	Theorems
	Proposed methods on coarse-to-fine FM-based TTS
	Orthogonal projection onto CondOT paths
	Single-segment piecewise flow
	Inference with SFM strength

	Experimental setup
	Datasets
	Model implementations
	Training and inference configurations
	Evaluations
	Objective evaluation
	Subjective evaluation

	SFM strength selection
	ODE solvers and speed analysis

	Experimental results and analysis
	Evaluation results
	Acceleration of adaptive-step ODE solvers

	Related works
	Limitations
	Conclusion
	Acknowledgements
	Theorem Proofs
	SFM head
	Algorithms
	Complete results of bold0mu mumu program@epstopdf selection
	Minor analysis of evaluation results
	RTF and NFE with using adaptive-step ODE solvers
	Broader impacts
	MOS tests screenshot

