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Abstract

Linear Recurrent Neural Networks (linear RNNs) have emerged as competitive
alternatives to Transformers for sequence modeling, offering efficient training and
linear-time inference. However, existing architectures face a fundamental trade-
off between expressivity and efficiency, dictated by the structure of their state-
transition matrices. Diagonal matrices, used in models such as Mamba, GLA, or
mLSTM, yield fast runtime but have limited expressivity. To address this, recent
architectures such as DeltaNet and RWKV-7 adopted a diagonal plus rank—1 struc-
ture, which allows simultaneous token and channel mixing, improving associative
recall and, as recently shown, state-tracking when allowing state-transition ma-
trices to have negative eigenvalues. Building on the interpretation of DeltaNet’s
recurrence as performing one step of online gradient descent per token on an asso-
ciative recall loss, we introduce DeltaProduct, which instead takes multiple (ny)
steps per token. This naturally leads to diagonal plus rank—n;, state-transition ma-
trices, formed as products of n; generalized Householder transformations, pro-
viding a tunable mechanism to balance expressivity and efficiency. We provide a
detailed theoretical characterization of the state-tracking capability of DeltaProd-
uct in finite precision, showing how it improves by increasing ny. Our extensive
experiments demonstrate that DeltaProduct outperforms DeltaNet in both state-
tracking and language modeling, while also showing significantly improved length
extrapolation capabilities.

1 Introduction

The Transformer architecture [1] has revolutionized natural language processing through its self-
attention mechanism, enabling both parallel computation across the sequence length and effec-
tive context retrieval. Consequently, Transformers have largely replaced recurrent models like
LSTMs [2], which exhibit slower training and poorer retrieval performance. However, the quadratic
computational complexity of Transformers with sequence length presents challenges when deal-
ing with longer sequences. Linear RNNs have emerged as a promising solution that combines
parallel training across the sequence length with linear inference-time complexity. At the core of
these models are the state-transition matrices governing the recurrence, which fundamentally de-
termine the expressivity of a linear RNN [3]]. Early linear RNNs like S4 [4]] and LRU [3] used
token-independent state-transition matrices. For superior expressivity, current linear RNNs now ex-
clusively use token-dependent matrices. Among these Mamba [6} [7], GLA [8], and mLSTM [9]]
use diagonal state-transition matrices for efficient sequence processing. Newer architectures have
incorporated non-diagonal structures, often diagonal plus rank-1, enabling simultaneous mixing of
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information across both tokens and channels of the hidden state. This innovation has led to more ex-
pressive models such as (Gated) DeltaNet [10L[11], TTT-Linear [12]], RWKV-7 [13]], and Titans [14],
which demonstrate superior language modeling and in-context retrieval performance, often with
only a reasonable decrease in training efficiency.

Recent work has revealed a fundamental trade-off between training efficiency and expressivity of
linear RNNs, dictated by the structure of their state-transition matrices [3, 15 [16]. Models with
diagonal state-transition matrices, such as Mamba and GLA, are highly efficient to train but face
severe expressivity limitations - for instance, they cannot perform addition modulo 3 on sequences
of arbitrary length in finite precision [[16, Theorem 2]. Transformers also face similar limitations
[L7, [18]], since they can be seen as special linear RNNs with a state-transition matrix equal to the
identity, albeit with an infinite dimensional state [19]. DeltaNet partially overcomes these limitations
through generalized Householder matrices, achieving greater expressivity, though it still requires
multiple layers for some tasks. At the other extreme, linear RNNs with full state-transition matrices
offer maximal expressivity [20]], capable of recognizing any regular language with a single layer [3]],
but are prohibitively expensive to train.

To bridge this gap, we propose DeltaProduct, a method that balances expressivity and efficiency of
the recurrence computation. While DeltaNet’s recurrence performs a single gradient descent step
per token on the squared loss of a linear key-to-value mapping [10, 21]], DeltaProduct takes n,
gradient steps using additional keys and values, yielding state-transition matrices that are products
of nj, generalized Householder matrices. This connection between the number of optimization steps
and the matrix structure provides an elegant way to interpolate between diagonal and dense matrices:
increasing the number of gradient steps automatically increases the number of Householder matrices
in the product, providing a tunable mechanism to control the recurrence’s expressivity. DeltaProduct
enables precise control over the norm of state transition matrices, ensuring it remains < 1 to maintain
stability during training on long sequences. We contribute DeltaProduct to the flash-linear-attention
library [22], our experiment code is provided here.

Concretely, we make the following contributions:

* We propose (Gated) DeltaProduct, which generalizes (Gated) DeltaNet by using products of
generalized Householder transformations as state-transition matrices (Section ).

* We provide a detailed theoretical characterization of the expressivity of DeltaProduct in finite
precision and how it improves by increasing n, (Section.T). Notably, we prove that for any
np > 1, DeltaProduct with at most 4 layers (3 if n;, > 2) can solve any group word problem,
and Gated DeltaProduct with a finite number of layers can recognize any regular language.

e We empirically validate DeltaProduct’s superior performance across multiple domains: solv-
ing complex state-tracking tasks beyond DeltaNet’s capabilities (see Figure (1) and improving
language modeling performance with significantly enhanced length extrapolation (Section [3)),
which we study through analysis of the hidden state’s effective rank.

2 Background

Linear RNNs. Linear RNNs consist of stacked layers, each processing an input sequence of vectors

x1,...,x; € R (output of the previous layer) to produce an output sequence @1, ...,y € RP. We
write the forward pass of each layer placing emphasis on the linear recurrence (as in [[16])
H, = A(sci)Hi_l —|—B(IE1), 'gz ZdeC(Hi,ﬁfi) wheret € 1,...,t @))

H, € R™"*4 is the initial hidden state, A : Rl — R?*" maps the input to a state-transition matrix,
B : Rl — R"*4 controls the information added to the new hidden state, and dec : R™*% x


https://github.com/fla-org/flash-linear-attention/blob/main/fla/layers/gated_deltaproduct.py
https://github.com/automl/DeltaProduct

R! — RP determines the output of the recurrence. The functions A, B, and dec are learnable,
with dec typically containing a feedforward neural network. Different linear RNN variants are
distinguished by their specific implementations of these functions. For example, Mamba [6] [7],
GLA [8]), and mLSTM [9] use variations of a diagonal state-transition matrix A(x;). The linearity
of the recurrence allows it to be parallelized along the sequence length, either via a chunkwise
parallel form [8 23| [24] or using a parallel scan [6} [25H28]]. For a comparison of different linear
RNN architectures see Yang et al. [10, Table 4].

DeltaNet. We base our work on the DeltaNet architecture [29,30], which has recently seen renewed
interest through the work of Yang et al. [[10, [11] who demonstrate how to parallelize DeltaNet across
the sequence length on GPUs. The DeltaNet recurrence is parameterized as

A(z;) = I — Bikik] |, B(z;) = Bikiv,, dec(H;, x;) = ¥ (H, q;) )

where 3; € [0,1], q;,k; € R™ (with ||g;|| = ||k:|| = 1), v; € R? are outputs of learnable func-
tions of «;. A(x;) is a generalized Householder transformation [31]], which is symmetric and has
eigenvalues 1 (multiplicity n — 1) and 1 — (; (multiplicity 1). From a geometric perspective, (3;
determines the transformation type, interpolating between identity (5; = 0) and projection (8; = 1).
DeltaNet also has a natural interpretation from an online learning perspective [10], as each step of
its recurrence is one step of online gradient descent on a quadratic loss with step size [3;:

Li(H)=1/2|H k; —v;||3; Hi = Hi_y — 3iVL(H;i—1) = Hi_y — Biki(k] Hi_1 —v,)
DeltaNet: H; = (I — ﬂ,kzkj)Hl_l + ﬂ,k)z’l);r

State-Tracking and Word Problems. State-tracking is the ability of a model to keep track of
the state of a system while only observing the updates that are applied to it. It can be modeled as a
monoid word problem, which consists in mapping sequences x1, . . . , ¥+, with x; being an element of
a monoid G, into sequences 1, - . . , Y¢, Where y; = x; - x;_1 - - - x1 and - is the associative operation
of the monoid. Recognizing a regular language can be accomplished by solving the word problem
of a finite monoid associated to the language and will be the focus of this work. Problems where G
is also a group (group word problems) with finite elements, are notoriously hard to solve for both
Transformers and linear RNNs. Group word problems for the symmetric or permutation groups
are particularly important, since any group is isomorphic to a subgroup of a symmetric group. For
instance, if we denote with S, the group of permutations of n elements, parity corresponds to the Sy
word problem, which cannot be solved in finite precision by Transformers [17] and diagonal Linear
RNNss [[15]] with positive values, while the S5 word problem cannot be solved by these models even
when the precision can grow logarithmically with the sequence length, since both Transformers and
Linear RNNs belong to the TCY circuit complexity class while S5 is in NC! [3}[18,32]. In contrast,
with unconstrained, full state-transition matrices any regular language can be recognized in one layer
(see e.g. [13} Theorem 5.2]). However, training using full unstructured matrices is very inefficient and
also unstable without any control on the norm.

3 Related Work

Linear RNNs have recently been studied from two main perspectives: state-space models and causal
linear attention. State-space models, originating from continuous dynamical systems, inspired vari-
ants such as S4 [4], H4 [33]], and LRU [5] (see Tiezzi et al. [34] for a comprehensive survey). Models
like Mamba [6} [7] further enhance these by incorporating input-dependent gating mechanisms, sig-
nificantly improving language modeling performance. In parallel, Katharopoulos et al. [[19] showed
that causal linear attention Transformers can be reformulated as RNNs with linear sequence-length
scaling. Following this, Gated Linear Attention (GLA) [8] introduced gating mechanisms similar
to Mamba. Recent studies explored more expressive recurrences via non-diagonal transition ma-
trices, such as DeltaNet [10} 29, |35]], TTT-Linear [[12], RWKV-7 [13]], B'MOJO [36], and Titans
[14]. Additionally, Beck et al. [9] introduced xLSTM, combining linear and nonlinear RNN archi-
tectures inspired by LSTM [2]]. Another line of work explores recurrences in depth, which have been
shown to increase the expressivity and reasoning capabilities [37,38]]. For instance, concurrent work
explores how fixed-point iterations of a diagonal linear RNN can increase its expressivity turning
it non-linear at the fixed-point |39} 40]]. Unlike our approach, which enhances the expressivity by
increasing the complexity of the linear recurrence, their approach works by applying the same recur-
rence multiple times, effectively increasing the depth of the model without increasing the parameter
count. This approach is orthogonal to ours and the two can be potentially combined.



Products of structured matrices [41] have previously been used in the state-update of non-linear
RNNs — including (Givens) rotation matrices [42H44], Kronecker products [45], Householder reflec-
tions [46]—chosen for their orthogonal, norm-preserving properties that encourage long-term de-
pendency learning [47, 48]]. Recently, Biegun et al. [49] applied rotation matrices as state-transition
matrices in non-selective state-space models. In contrast, DeltaProduct uses a linear recurrence with
state-transition matrices adaptive to the current token, expressed as products of generalized House-
holder matrices.

State-Tracking. Recent work by Grazzi et al. [[16] demonstrates that expanding the eigenvalue
range of linear RNNSs’ state transition matrices from [0, 1] to [—1, 1] significantly enhances their
expressivity. They show how DeltaNet’s eigenvalue range can be extended from [0, 1] to [—1, 1],
simply by multiplying (3; by 2, allowing DeltaNet to perform reflections when 3; = 2, which enables
it to handle state-tracking tasks such as parity checking and, more generally, any group word problem
where each element of the input sequence corresponds to a permutation of at most two elements,
while for other tasks, DeltaNet requires multiple layers [[16, Theorem 2 and 6]. Their theoretical
results also cover the products of Householders used as state-transition matrices of DeltaProduct,
showing that they allow to solve any group word problem in one layer (Theorem 3) and recognize
any regular language (Theorem 4), when ny, is large enough and with a finite number of layers. Here,
we extend that work by providing experimental evidence of the benefit of larger nj and, leveraging
the analysis by Peng et al. [13]], more refined theoretical results on the expressivity, e.g. with a
greatly improved dependency on ny,. The recent RWKV-7 [13] uses a state transition matrix of the
form diag(w;) — ck¢(k; © a;) T, with ||k¢|| = 1, as, w; € [0,1]" and ¢ € {1, 2}, which provides
a potentially asymmetric rank-1 update in contrast to DeltaNet’s symmetric update, allowing it to
recognize any regular language with only 4 layers. However, the increased expressivity comes at the
cost of losing the guarantee on the stability of the recurrence. In contrast, (Gated) DeltaProduct has
a stable recurrence since the spectral norm of every state-transition matrix is always < 1.

4 DeltaProduct

While DeltaNet’s recurrence can be seen as performing one step of online gradient descent per
token, DeltaProduct builds upon DeltaNet by further refining the hidden state by taking multiple
steps per token. This naturally leads to a more expressive state-transition matrix formed as a product
of generalized Householder matrices, where each additional step expands the range of achievable
linear transformations. Formally, for each input token x; to the layer we generate nj, keys as k; ;
= (W) /||v(W;x;)||2, ny values as v; ; = Vjx;, and ny, betas as 5, ; = ¢(U;x;) where
W;,V;,Uj;, are learnable weight matrices specific to the j-th gradient step, ¢/ is a nonlinearity
(we pick SiLU as in DeltaNet), while ¢ is either the sigmoid or 2x the sigmoid to increase the
expressivity. Then, we compute n, gradient descent steps using the losses £; ;(H) = |H Tk; ; —
v; ;13/2,ie, forj=1...n,

H,j=H;; —(i;VLi;j(H;; )= (- 5i,jki,jk;|:j> H;; 1+ fi ki v,

1,79

where H; o = H;_, and H, ,,, = H;. Unrolling, we get H; = A(x;)H,_1 + B(x;) with

M h Nh 2

A(z;) = H (I —Bij kmkzj), B(z;) = Z( H (I—Bik kzkkjk)) Bi.;j ki,,jviT,j~ 3)
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Figure 2: Overview of state-transition matrices A(x;) in linear RNNs.



Hence, by taking multiple gradient descent steps per token, DeltaProduct’s state-transition matrices
are products of generalized Householder transformations, and by expanding such a product, A(x;)
takes the form of identity plus a matrix of rank at most n, as shown in Figure[2] As DeltaNet extends
to Gated DeltaNet by incorporating a forget gate [11]], DeltaProduct can similarly be extended to
Gated DeltaProduct by letting A(x;) = g; H?il(I —Bij ki k,T]) where the scalar gate g; € [0, 1]
is adopted from Mamba 2 [[7]] and B(x;) remains unchanged. This formulation enables DeltaProduct
to interpolate between generalized Householder (n;, = 1 as in DeltaNet) and dense matrices (of
norm < 1), since increasing n, can increase the rank of A(x;).

Expressivity of Householder products. While any state transition ma-
trix of DeltaNet can model a single Householder reflection (with 3; = 2),
DeltaProduct’s can model any orthogonal matrix. This is a consequence
of the Cartan-Dieudonné theorem, which establishes that any n x n or-
thogonal matrix can be expressed as a product of at most n reflections (as
illustrated in Figure |3|for n = 2). The Householder product exhibits inter-
esting properties in special cases. When all Householder keys are identical,
the product simplifies to a single Householder with a scaled beta parameter,
offering no additional expressivity (Prop. [[]1). Conversely, when the keys
are mutually orthogonal, the Householder product simplifies to an identity
plus a symmetric rank nj, matrix (Prop. [1}2). Only when the keys are non-
trivially linearly dependent can we obtain non-symmetric matrices, poten-
tially yielding complex eigenvalues (Prop. [I]3). An important consequence
of using Householder products is that it allows us to effectively bound the
norm of A(x;). This is because the norm of the product is upper bounded
by the product of the norms (each < 1), which ensures the stability of the
recurrence [[16, Prop. 1.1]. This bound would not be possible with the more
direct parametrization A(x;) = I — Zyi 155 k:”k:;'— ;» which also restricts
the matrix to be symmetric.

Figure 3: Two reflec-
tions produce a 2D
rotation: Reflecting x
across planes Hj and
H7 (with normals kg
and k) yields a rota-
tion by 26, where 6 is
the angle between the
planes.

4.1 State-Tracking Capabilities of (Gated) DeltaProduct

We present two theorems that characterize the state-tracking capabilities of DeltaProduct. Compared
to Grazzi et al. [[16, Theorem 3 and 4], we focus on results that hold for any n;, > 1. We defer proofs,
and more details to Appendix [B| where we also include results on dihedral groups (Theorem|/)) and
on finite subgroups of the orthogonal and special orthogonal groups (Theorem [)).

Theorem 1. For any n € N there exists a DeltaProduct model with one of the following configu-
rations that can solve the word problem of the symmetric group Sy,: (i) one layer with n;, = n—1
[16] Theorem 3] (ii) 3 layers with ny>1 (iii) 4 layers with np, = 1. The construction for (ii) and
(iii) requires that the MLP at the second last layer computes a lookup-table of size 2m x (n!)*™,
Sunction of the last 2m input tokens and the position modulo 2m with m = [(n—1)/ny].

Theorem 2. For any ny > 1 and any regular language, there exists a Gated DeltaProduct model
with a finite number of layers (dependent on the language) that recognizes it.

The proof for Theorem |I{uses the same idea as the construction for the theoretical results of Peng
et al. [13] for RWKV-7. Each element of \S,, can be mapped to a permutation matrix, but DeltaProd-
uct’s state transition matrices can only model permutations of up to n;, + 1 elements. Therefore, if
np + 1 < n, early layers decompose each product of m = [(n — 1)/n | consecutive permutations
into m simpler permutations, which are applied in the recurrence of the last layer but in a delayed
fashion. To get such a decomposition and account for the delay, the MLP at the second-last layer
computes a potentially large lookup table, function of the past 2m tokens and the position modulo
2m. To prove Theorem [2] we use the Krohn-Rhodes decomposition [50], similarly to Grazzi et al.
[16, Theorem 4], where each automaton is decomposed into multiple permutation-reset automata,
and model each using the same technique of Theorem [T} exploiting gates for the resets.

Comparison to other non-diagonal Linear RNNs. Table[I] provides a comparison of the expres-
sivity of different non-diagonal linear RNNs. (Gated) DeltaProduct with n;, > 1 has improved
expressivity compared to DeltaNet, and, up to 3 layers, even compared to RWKV-7. Moreover,
increasing ny, has clear benefits: reducing the number of layers or the size of the lookup table.
Since DeltaProduct can solve the S5 word problem, it is outside of the TC® complexity class, just
as RWKV-7. One might expect DeltaProduct to be able to model any useful state-transition matrix



Table 1: Expressivity of non-diagonal Linear RNNs shown through the formal language problems
they can solve in finite precision. S,,, Z,,, D, are the symmetric, cyclic and dihedral groups of order
n, while O(n),SO(n) are the orthogonal and special orthogonal group of order n. For S,,, “only
k-permutations” means that input sequences can contain only permutations of up to k elements. LS
is the size of the lookup table computed in the second-last layer’s MLP. || and |Q)| are the sizes
of the alphabet and set of states of a finite state automaton recognizing the regular language. Gated
variants’ state updates can also model constant (reser) transitions.

Layers (Gated) DeltaNet RWKYV-7 (Gated) DeltaProduct,,, -1

1 Sy only 2-permutations.” Sy, only 2-permutations Sy only (np, + 1)-permut.”
Finite subgroups of O(ns),
SO(np + 1) if ny, is even.®

2 Zn".Dy¢ Zn, Dn,

3 S, with LS 2m x (n!)Qm
where m = [(n — 1) /np].¢

4 Sy, with LS Sy with LS as DeltaNet. Reg.

2(n —1) x (n)*™ V4 Jang. with LS 2|Q|x (|[)%@ ¢

f(IQ|) Gated: Regular languages’ Gated: Regular languages’
“[16l Thm. 3]  °[16. Thm. 6] “Thm.[]] *Thm.[] [13 Thm.3] Thm.] &Thm.

since it can model updates of arbitrarily high rank when ny, is equal to the number of rows of the hid-
den state. This is because DeltaProduct’s state-transition matrices A(x;) satisfy the spectral norm
condition [|A(x;)|| = max, =1 [[A(x;)yll, < 1, ensuring a stable recurrence. RWKV-7 relaxes
this constraint and can represent matrices with higher spectral norms. In particular, copy matrices
— identity matrices where one column is replaced by another — with || A(z;)|| = v/2 (when ¢ = 2),
allowing RWKV-7 to recognize any regular language in just four layers. However, this may lead to
instability in the recurrence (see Appendix [B.6). We could enhance expressivity at the cost of stabil-
ity by replacing the Householder matrices in DeltaProduct with RWKV-7’s state transition matrices.
This modification enables us to prove a result analogous to Theorem |1} but for regular languages
rather than group word problems—see Appendix [B.4|for details. Specifically, this approach allows
the resulting linear RNN to recognize any regular language within a single layer, provided ny, is
sufficiently large.

Remark 1. For any regular language recognized by a finite-state automaton (FSA) having n states
there exists a one layer linear RNN using ny, = n products of RWKV-7 matrices as state-transition
matrices that can recognize it. This is because a linear RNN with unconstrained state-transition
matrices can recognize any regular language in a single layer [3) Theorem 5.2] by modeling FSA
evaluation through matrix-vector products [S1|]. Peng et al. [13} Lemma 3] further showed that any
transition matrix of an FSA with n states can be expressed as products of n matrices, each of which
is either a swap, copy, or the identity matrix, all of which are representable by an RWKV-7 matrix.

The above discussion oulines a trade-off between the expressivity of RWKV-7 matrices and the guar-
anteed stability of generalized Householders used in DeltaProduct. It is an open question whether
there exists a continuous parameterization of state-transition matrices which yields stable recur-
rences and still allows to recognize any regular language in a finite and fixed number of layers.

S Experiments

We evaluate DeltaProduct on state-tracking and standard language modeling to assess its expres-
sivity and efficiency. Throughout the experiments we use either the suffix [—1, 1] or [0, 1] after
each method, to denote the eigenvalue ranges of its state transition matrices. We present additional
experiments on languages of different levels of the Chomsky hierarchy [52]] in Appendix [C.2]

5.1 Implementation

We use the same macro architecture used by Gated DeltaNet. Since each step of (Gated) DeltaProd-
uct follows the same recurrence structure as (Gated) DeltaNet, we can reuse its implementation
written in Triton [53]], available through the FLASH-LINEAR-ATTENTION library [22], which uses
the chunk-wise parallel form for the recurrence.
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Figure 5: Accuracy on state-tracking tasks for permutation groups Ss, S4, As, and Ss, plot-
ted against sequence length (x-axis). (7op row) Varying the number of Householder products
ny, for a single layer DeltaProduct,, [—1,1]. (Bottom row) Varying the number of layers [ of
DeltaProduct; [—1, 1]/DeltaNet[—1, 1] (single Householder). Dashed vertical line at training con-
text length 128. Higher n;, improves extrapolation to longer sequences of permutations, e.g., S3 can
be learned with n;, = 2 with a single layer while three layers are required when keeping nj, = 1.

However, DeltaProduct differs by using n; keys, values and be- n: 1 W2 3
tas per token, resulting in a recurrence n; times longer than . . . .
DeltaNet’s. Therefore, we arrange keys (and similarly val- 40K 1
ues and betas) as [ki1,...,Kin,,k21,.,Kopp,---], while 2

for gating we construct the expanded sequence of gates as: 2 20K 1
l91,1,...,1,92,1,...,1,...] where each gate g; is followed by g

(np, —1) ones to match the number of keys and values, so that we § 0 -
use only one gate for each token. Once the recurrence is evalu- = ok BB W ol ]
ated, we keep only every ny-th element of the output, so that the =

output sequence retains the same length as the input sequence. E 2ok ]
Throughput. The training (and prefill time) required for the =

recurrence increases linearly with nj, since we use the same 0 L
chunk size for the chunkwise parallel form. In contrast, since Tr;i?lli(nxgl 18;;;2}1 iK};:tcthsxiie
we keep the embedding dimension fixed, the cost for the MLP

following the recurrence does not vary with n;. To remedy the
parameter-overhead introduced by the additional key and value
projections due to increased nj, we demonstrate the throughput
when matching parameters in Figure @] Matching parameters
simply by scaling the head dimension is unfavorable (bottom
subplot, n;, = 2) since head dimensions that are not a power
of 2 will get padded to the next power thereof, effectively giving up the remaining dimensions at
no reduction in runtime. See Appendix [C.3.2] for additional results on smaller models. Note that
if np, > 1, we could parallelize the recurrence to have a faster runtime also during autoregressive
generation. Note that the throughput results are obtained using an optimized Triton kernel imple-
mentation (developed by Songlin Yang and Yu Zhang, available in the flash-linear-attention library)
that achieves a 20% faster forward pass than DeltaNet’s kernel.

Figure 4: Training throughput
of parameter matched 1.3B
DeltaProduct,, on a HI100.
Matched via:  (Top) scaling
the number of heads, (Bottom)
scaling the head dimension.

5.2 State-Tracking

Setup. We evaluate DeltaProduct’s ability to capture complex state dynamics using group word
problems of increasing difficulty, specifically on the permutation groups Ss3, S, As, and S5, as
implemented by Merrill et al. [3]]. These tasks consist in tracking how a sequence of permutations
rearranges elements. An intuitive parallel is the shell game, where one needs to track the position of
a hidden object after each shuffle. We train on sequences of 128 permutations and measure extrapo-
lation up to 512. Throughout, we use the extended eigenvalue range, allowing eigenvalues in [—1, 1].
We find that DeltaProduct models fail to learn even the training context-length when restricted to



the standard eigenvalue range [0, 1], regardless of the number of Householder transformations ny, as
shown in Figure 12} See Appendix [C.T|for details on the experiments.

Single layer, varying ny,. Figure[5(top row) demonstrates the benefits of increasing the number of
Householders n;, per token for a single layer DeltaProduct. Grazzi et al. [16, Theorem 3] presents
a construction for permutations of n elements requiring n — 1 Householders and keys of size n.
In agreement, we find that for S5 achieving reliable performance beyond sequence lengths of 128
requires ny = 2, while S5 needs n;, = 4. Unexpectedly, Sy and A5 can extrapolate robustly using
only nj = 2 despite the theorem suggesting 3 and 4, respectively. This efficiency arises from their
isomorphism to subgroups of SO(3,R), i.e. the group of 3D rotations, [54, Ch. 1, Sec. 2.4] which
only require n, = 2 and keys of size 3 (see Theorem [). Specifically, Sy is isomorphic to the
rotation group of the cube (illustrated in Figure[6) and As to the rotation group of the dodecahedron.

See Appendix [C.I|for details on the isomorphisms.
E [ % ;m %

BAGE AEAG)

Figure 6: Rotating a cube permutes its di-
agonals according to the Sy group. This ex-
ample shows how a 90° rotation of the cube
leads to the 4-cycle (1 -2 — 3 —4 — 1).

To empirically validate whether DeltaProducts[—1, 1]
exploits the isomorphism of .S, to the rotation group
of the cube, we verified two hypotheses: whether
both Householders act as reflections (8;0 = 5;1 =
2) composing to form rotations (see Figure [3)), and
whether the keys are in a three-dimensional subspace.
By recording f3; 0 and ;1 values (representing the
first and second Householder in the product) across
all 24 permutations of Sy, we find that a single head
has indeed learned to use both Householder transfor-
mations as reflections where 8;0 = B;1 = 2, ef-
fectively creating rotation matrices as shown in Ap-
pendix This pattern is evident in Figure [7] (left), where this head predicts both j3; o and §; 1
approximately at 2, confirming that the model successfully learns to approximate rotations by com-
bining two reflections. Note that the eigenvalues of the Householder product become complex in
this case allowing it to perform rotations (Prop [I}3). To further verify whether the keys are in a
three-dimensional subspace, we apply Principal Component Analysis [S5] to the key vectors of this
head. The results in Figure [/| (right) demonstrate that three principal components account for over
95% of the variance in the key space. This finding strongly supports our theoretical understanding,
as it indicates that the model primarily operates in a three-dimensional subspace, which aligns with
the structure of SO(3, R).
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DeltaNet[—1,1] (i.e., n, = 1). While increasing ‘ __&E .
layers with n,, = 1 improves performance, it is _*°F— | £ os0}
less effective than increasing n;, and degrades length- 1.8 a— “ — : :

extrapolation performance. Specifically, to fit the
training context length, S3 required 3 layers, Sy

Permutation Index Num. Components

needed 6 layers, and Aj required 3. For S5, even 10
layers proved insufficient. This suggests that simply
adding depth is less effective in practice than increas-
ing ny, despite theoretical constructions showing that
Ss can be solved with just 2 layers (Theorem [7) and

Figure 7: (Left) Estimated [ values for
DeltaProductz[—1, 1] on all permutations
of Sy, clustering near 2 (reflection). (Right)
PCA of key vectors shows that the first
three components explain most of the vari-

any group word problem can be solved with 4 layers ance.

(with a very wide MLP).

5.3 Language Modeling

Setup. We trained two model variants: DeltaProduct,,, [-1, 1] and Gated DeltaProduct,,, [—1, 1]
using the FineWeb dataset [57]]. We provide details about the training pipeline and hyperparameters
in Appendix [C.3.1] To assess length extrapolation, we measured the cross-entropy loss beyond
the training context length of 4096 tokens on CodeParrot [58] for coding, OpenThoughts-114k-
Math [59] for math, and TriviaQA [60] for knowledge retrieval. We evaluated the models using
language understanding, reasoning, and retrieval benchmarks from Im-eval-harness [61], with task
specifics in Appendix [C.3.3] Throughout our experiments we find that the training process remained
stable even as we increased n, (see Appendix[C.3.4).
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Figure 8: Length extrapolation results. Solid and dashed lines represent models with 8 and 12 heads
respectively. Note that DeltaProducts[—1, 1] with 8 heads (392M parameters) matches the parameter
count of DeltaNet (n;, = 1) with 12 heads (dotted line), while achieving significantly better length
extrapolation. For each index of the sequence, we report the moving average over 501 tokens as
suggested by Lin et al. [56].
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Figure 9: Effective rank of H; for 4 of 8 heads in layer 20/24 on trivia-qa sequences. Solid vertical
lines mark new question-answer pairs; dashed vertical line indicates 4096-token training context

length; colored lines show effective rank per head over the sequence.

Length extrapolation results. Remarkably, as shown in Figure 8] DeltaProduct’s length extrapola-
tion performance increases sharply when going from one to two Householders, and at n;, = 3, the
performance degradation is minimal across the sequence length. We hypothesize that DeltaProduct
achieves better length extrapolation by enhancing DeltaNet’s forgetting mechanism. While DeltaNet
requires n rank-1 updates to reset its state to zero, DeltaProduct can accelerate this forgetting process
by a factor of nj,. However, our experiments show that DeltaProducty[—1, 1] still performs better
with a forget gate, as demonstrated by its improved results when compared to the non-gated version

(see Appendix [C.3.3).

Analyzing state dynamics through effective rank. To test our hypoth-
esis towards a better forgetting mechanism, we compare how the infor-
mation density of the hidden state H; changes over time for (Gated)
DeltaProducts[—1,1] and (Gated) DeltaNet[—1,1]. We propose to mea-
sure the information density of H; using its effective rank [62] defined as
erank(H;) = exp(—Y_, pxlogpy), where p, = o/, |os| and o; is
the i-th singular value of H;, which satisfies 1 < erank(H;) < rank(H;).
Note that Parnichkun et al. [63]] also used the effective rank in the context of
linear RNNs, but measured on a different quantity: a linear operator associ- 2
ated to the recurrence. Similarly, Peng et al. [13]] conducted an interpretabil- 4
ity study on the hidden state of RWKV-7 using the average stable rank [64]]
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across layers. In Figure[J] we present the effective rank of DeltaProducts,
Gated DeltaProducts, Gated DeltaNet, and DeltaNet across a sequence of
tokens from the TriviaQA dataset, which consists of question-answer pairs
that test common knowledge. We observe that some heads of DeltaProduct
learn to update their state with new information at the beginning of sequence
(BOS) tokens and then decay over the rest of the sequence. In comparison,

Figure 10: Scaling
analysis w.r.t. (top)
final perplexity on
FineWeb,  (bottom)
Lambada and Im-eval
tasks.

a few heads of Gated DeltaNet and Gated DeltaProduct learn to reduce the

effective rank of the hidden state close to zero after each BOS token, while the other heads maintain
a very low effective rank throughout the sequence. In contrast, DeltaNet’s effective rank increases
substantially beyond the training context. We attribute DeltaNet’s inability to extrapolate to longer
sequences to this issue, as the training and extrapolation regimes differ, resulting in a distribution
shift. We present additional results for other layers and the CodeParrot dataset in Appendix [C.3.3}



Scaling Analysis. We test whether it is favorable to increase model size through Householder prod-
ucts as opposed to increasing model capacity through e.g., the head dimension. We adjust either the
head dimension in DeltaNet, or the number of Householder products (n) in DeltaProduct to reach
a given size. Figure [I0] (top) shows that DeltaProduct scales better in terms of training perplexity.
The results on Im-eval-harness tasks, in Figure [10| (bottom), reinforce our findings as DeltaProduct
maintains its performance advantage at the largest scale. In total, we test two methods to reach pa-
rameter equivalence at each model scale: scaling the number of heads or the head dimension. We
find that the latter shows more consistent scaling. Results for scaling the number of heads can be
found in Appendix [C.3.6] In Appendix we report additional results, including gated variants,
where we find that both DeltaProduct and Gated DeltaProduct on average outperform their baseline
counterparts (DeltaNet[—1, 1] and Gated DeltaNet[—1, 1]) across the considered language model-
ing benchmarks from Im-eval harness when we increase nj. Interestingly, DeltaProducts[—1, 1]
achieves comparable performance to Gated DeltaNet[—1, 1], despite lacking a forget gate.

6 Conclusion and Future Work

We present DeltaProduct, an extension of DeltaNet that uses products of Householder transfor-
mations as state-transition matrices. Our approach bridges the gap between structured and dense
matrices, with each recurrence step interpretable as multiple steps of gradient descent on an as-
sociative recall loss (compared to DeltaNet’s single step). The number of Householder matrices
(np) serves as a tunable parameter balancing expressivity and computational efficiency. Our ex-
periments demonstrate DeltaProduct’s superior performance over DeltaNet in state tracking, formal
language recognition, and language modeling, with particularly strong length extrapolation results.
DeltaProduct represents a promising step towards developing sequence models that are more capa-
ble while still remaining scalable. Limitation. The main limitation of DeltaProduct is its increased
computational cost, which scales linearly with nj, during training. Future Work. Future research
could explore more expressive and possibly stable matrix parameterizations or an adaptive version
of DeltaProduct determining the number of Householders per token similar to Graves [65] in or-
der to reduce computation. The additional parameters introduced with higher n;, could be reduced
through LoRA MLPs as done in RWKV-7 [13]. In addition, one could combine DeltaProduct with
fixed point RNNs [39] 40]. Our DeltaProduct implementation could be further optimized through
custom kernels as suggested in the recent works by Cirone and Salvi [66] or Beck et al. [67]. We also
identify promising applications for DeltaProduct in reasoning tasks, where the higher token counts
align well with the strength of linear RNNs. Given that state-tracking benefits reasoning tasks [39],
future work should examine how increasing nj, affects reasoning.
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Supplementary Material
The supplementary material is structured as follows:

Appendix [A] presents a proposition that provides special cases of the generalized Householder prod-
uct for specific choices of keys and betas and characterizes the spectrum of the product of two
generalized Householders.

Appendix [B| characterizes the expressivity of DeltaProduct.

* [B.2] demonstrates how DeltaProduct can solve any group word problem in a single layer
when ny, is sufficiently high, or alternatively using up to 4 layers when n, is limited.

. shows how DeltaProduct can recognize any regular language in a finite number of
layers using the Krohn-Rhodes decomposition.

. details the expressivity of a linear RNN with products of RWKV-7 state-transition
p y p
matrices.

* [B.5] demonstrates how DeltaNet can solve any dihedral group in 2 layers using a specific
construction.

* [B.6|discusses the tradeoff between expressivity and stability in linear RNNs.

Appendix [C] provides comprehensive details on our experiments and additional results.
We provide the code for our experiments at https://github.com/automl/DeltaProduct

Notation. Mathematical objects are typically styled as follows. Matrices: uppercase letters (e.g.,
A, H,6M). Vectors: lowercase letters (e.g., k, v, x). Standard sets: R for reals, C for complexes,
N for naturals. Common symbols and operations are denoted as follows. I: Identity matrix. T:
Transpose operator (e.g., k). ||v|| or ||v||2: Euclidean norm of a vector v. ||A||: the operator
norm for a matrix A. |- |: Absolute value for real scalars, or modulus for complex numbers. ®:
Element-wise (Hadamard) product. o(A), p(A): Spectrum (set of eigenvalues) and spectral radius
of matrix A. tr(A), det(A): Trace and determinant of matrix A. J;;: Kronecker delta (1 if i = 5, 0
otherwise). e; € {0, 1}" is the i-th element of the canonical basis of R".

A Spectral Properties and Simplifications of Householder Product Matrices

The following proposition characterizes conditions under which the product structure simplifies and
the spectrum is real, contrasting with the general case which allows for complex spectra. It provides
illustrative special cases for the more general Proposition 1 in Grazzi et al. [16].

Proposition 1. Let A € R"*"™ be a matrix defined as the product of ny, > 1 generalized House-
holder transformations: A = H;Zil H; where each H; = I — Bk, k;'—, with k; € R"™ being a unit
vector (||k;||, = 1) and B; € [0,2]. Let 0(A) C C denote the spectrum (set of eigenvalues) of A.
Then, all eigenvalues \ € o(A) satisfy |\| < 1 and the following hold.

1. (Identical Direction Vector) Let k € R™ be nonzero and k; = k/ ||\k|| for all j = 1..m. Then
H;-":l (I —B; k:kT) = I—B*kk" for some real scalar 3* depending on {B}L1. The product
collapses to a single effective transformation of the same form. Consequently, if A is formed
using only a single direction vector ki, it is symmetric and its spectrum is real.

2. (Orthogonal Vectors) If the direction vectors {k;};, form an orthonormal set (i.e., k;'— k =
0j1; this requires ny, < n), then the factors H; commute, and the product simplifies to A =
I— Z;”il ﬂ]kjkz]T This matrix A is symmetric, and its spectrum is purely real: o(A) =
{1—51,...,1 = By, } U{1 (multiplicity n — ny)}. When B; = 2 forall j € {1,...,n;} then
A is known as a block reflector [I68]].

3. (Complex Spectrum via Non-orthogonal Directions) For nj, = 2, A has complex eigenvalues
if two consecutive direction vectors, e.g. k1, ko satisfy 0 < |k k| < 1 and their coefficients
B1, B2 exceed a threshold *(0) < 2 dependent on the angle 0 between them. Conversely, if
0< By <1or0< By <1, these eigenvalues from the 2D span are guaranteed to be real.

Proof. 1dentical Direction Vector If m = 1, then the statement is trivially satisfied with 5* = /3.
Suppose the statement is true for m > 1, i.e., H;nzl (I —Bkk")=1I—p kkT. Multiplying by
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Figure 11: Visualization of complex eigenvalues of (I —B1k1k{ )(I—[2kakg ) with cos ) = k| k.

Complex region in red, real in white.

(I—Bumi1 kkT) produces (I kkT)(I—Bpi1kk") = I— [0+ B0 —B" By Kk
Hence, by induction, the product of any number of such factors remains of the form I — f*kk'.
Since the resulting matrix A = I — 3*kk" (where k = k1) is symmetric, its eigenvalues are real.

Orthogonal Vectors Assume {kj ?21 is an orthonormal set (k:;rkl = 01, np, < n). Let P; =

k; k; Then P;P, = §;P;. The factors H; = I — 3; P; commute because P; P, = 0 for
j # 1. The product simplifies via induction to A = I — >°"", 3;P;. This matrix is symmetric. Its
eigenvalues are (1 —f3;) forl = 1,...,ny (eigenvector k;) and 1 with multiplicity n — nj, (subspace
orthogonal to all k). The spectrum is real.

Complex Spectrum via Non-orthogonal Directions and Real Subcase Let k1, k2 span a 2D sub-
space S C R™ with cos § = k; ks such that 0 < |cos 6| < 1. The product A = HoH acts as the
identity on St (preserving n — 2 eigenvalues at 1) and non-trivially on S. The restriction Ag of A
to S has trace tr(Ag) = 2 — 31 — B2 + (132 cos? 0 and determinant det(Ag) = (1 — f1)(1 — B2).
The discriminant of its characteristic equation is D = [tr(Ag)]? —4 det(Ag). Complex eigenvalues
arise if D < 0.

To find the explicit bounds, we expand the inequality D < 0:
(2= 1 — B2+ P1B2cos® 0)* —4(1 — B1)(1 — B2) <0

Rearranging this expression as a quadratic in z = cos? # yields:

(B1B2)?a® +2(2 — B1 — Ba)B1Bax + (B1 — B2)? <0

This inequality holds if and only if 2 = cos? @ lies strictly between the two roots of the correspond-
ing equation. Solving for the roots gives the explicit bounds for complex eigenvalues:

—1- —1)2 - —1)2
(VB VB2 — 1) < cosf < (VB =1+ VB2 — 1)
B1B2 B152
This inequality is only satisfiable when (1, 82 € (1, 2]. For the special case of two standard reflec-

tions where 3; = 32 = 2, the condition simplifies to 0 < cos? § < 1, confirming that the product of
any two distinct reflections is a rotation.

Conversely, we show that if at least one coefficient 5; € [0, 1], the eigenvalues are real as D > 0.
We analyze this by cases:

* Case 1: One coefficient is in [0, 1], the other is in (1, 2]. Without loss of generality, let 5, € [0, 1]
and B2 € (1,2]. This implies (1 — 81) > 0 and (1 — 32) < 0, so their product det(Ag) < 0.
The term —4 det(Ag) is therefore non-negative. Since [tr(Ag)]? > 0, their sum D must be
non-negative.

+ Case 2: Both coefficients are in [0, 1]. By the AM-GM inequality on the non-negative terms
(1 —p1) and (1 — B2), we have (1 — B1) + (1 — B2) > 24/(1 — B1)(1 — B2) = 24/det(Ag).
Since tr(Ag) includes an additional non-negative term (31 32 cos? 6, it also holds that tr(Ag) >
2,/det(Ag). Squaring both sides gives [tr(Ag)]? > 4det(Ag), ensuring D > 0.

This analysis confirms that complex eigenvalues, which enable rotations, can only arise if and only
if both 8; > 1 and 82 > 1. When at least one 3; < 1, real eigenvalues restrict the transformations
in that subspace to scaling or reflection. This clear distinction in behavior, dictated by the /3 values
and 0, is illustrated in Figure
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B Expressivity of DeltaProduct

In this section, we characterize the expressivity of (Gated) DeltaProduct in solving group word
problems and recognizing regular languages, in support of Section 4.1l The results hold in finite
precision (since our constructions require a finite number of values), and take inspiration from Peng
et al. 13| Appendix D] and [16]. We begin by stating and discussing our key assumptions in Ap-
pendix[B.I] We then present our main results for group word problems in Appendix[B.2] followed by
our findings for regular languages in Appendix In Appendix we examine a result specific
to dihedral groups. Finally, we explore the fundamental tradeoff between expressivity and stability
of the recurrence in Appendix

B.1 Assumptions

We consider a (Gated) DeltaProduct model where each layer is structured as

H;, = A(xz;)H;_; + B(x,), y; = dec(H;, x;) wherei € 1,...,t

Np Nhp Nh
Alx;) =g H (I — Bij ki,jkzj)a B(x;) = Z( H (I = Bi kzkk;rk>) Bij ki,jUZj7
i=1 J=1 k=j41

where g; is only present in the gated variant and there is only one head per layer. If H heads are

considered, head j will run the recurrence H. f = AJ(xz;)H;_1 + B’(x;), (with different learnable
parameters from all other heads) and all the states will be passed to the decoder to get the output as
gi = dec((H}, ..., H?), x;).

Each layer receives the outputs of all previous layers. We assume that the output of all layers is
passed as input to all following layers: this can be achieved by using the residual connections (which
would be inside dec) and by placing the output of different layers onto separate subspaces.

Task-dependent initial state. We assume that the initial state H( can be set appropriately depend-
ing on the task and is of rank at most n,.

Arbitrary decoder and state transition functions. We also assume that for every i, j, g; € [0,1],
Bij €10,2],k;; € R ||k; ;|| = 1 and v;; € R are arbitrary continuous functions of ;. The
function dec can also be arbitrary (continuous). Since in all our setups the possible values of x;
and H; are finite, this implies that the functions dec, A, B can model an arbitrary function of their
discrete domain of interest, with the only restriction coming from the structural assumption of the
output spaces of A (product of nj, Householders) and B (rank ny). This assumption can always be
fulfilled in practice if dec is a sufficiently wide MLP (see the next section for practical concerns)
and, in the case of A, B, which generally do not contain MLPs, by setting the dimension of x;
sufficiently large, which can be achieved by adjusting the embedding layer or the dimensionality of
the output of dec. Note that the width of the MLP will grow with the complexity of the function to
be approximated, which in our case depends on the complexity of the problem.

B.1.1 Practical Considerations

Beginning of sequence token. Alternatively, the assumption on H| (task-dependent with rank at
most 1) can be replaced by using a beginning of sequence token x; = $ and setting Hy = 0, as
done in practice, so that H; = B($) is a learnable matrix of rank at most n;, which acts as the H)
in our constructions.

Decoder implementation. In our implementation, dec is the same as in Gated DeltaNet:
dec((H},... H), 2;) = MLP(RMSnorm(z; + o;)),
H
0r = WiRMSnom(HY) ), af = v(Wjzy)/|lo(Wia,)|
j=1
where W], W/ are two learned matrices, 1) = SiLU, RMSnorm(z) = a ©x/y/€ + d~1 S a2

corresponds (when ¢ = 0) to a projection onto an axis aligned ellipse where a € R? is learnable
and determines the lengths of the axis and € > 0 is a small value set to avoid numerical errors.
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Meanwhile, MLP is a two layer MLP. This structure can be limiting. For instance, when H’ tJ e R4,
then b; = (H})"q; € R and if by >> ¢, then [RMSNorm(b;)| ~ 1, which means that after
RMSNorm we are left with effectively only 2 possible values, while our constructions might require
more: as many as the number of possible states. Indeed, for all our constructions to work in practice,
we would need a sufficiently large ¢, so that the output of RMSnorm can retain some magnitude
information. Since in our constructions the number of states is finite, with € > 0 and an appropriate
value for g] we are guaranteed that the map H 7+ RMSnorm((H?)Tq}), and consequently (by
appropriately setting W7) the map from states and inputs x4, to the 1nput of the MLP, is injective,
which we show in the next lemma. Hence, thanks to the MLP, the decoder can approximate any
continuous function of (Hy, ;) even after the bottlenecks caused by the scalar product with g and
the RMSnorm.

Lemma 1. Ler S C R be a finite set of values. Define dmin = Mily yes o4y [T — Y| and omax =
max, yes |2 —yl. Let b= (b,b%,...,b%) T and set ¢ = b/ ||b||. If b satisfies b > % + 1, then the
mapping f : S* — R given by f(H) = RMSnorm(H " q) is injective.

Proof. The mapping f is a composition f = g3 o g o g1, where the component functions are:

d
; x
H) = Zhibzv g2(x) = ol g3(x) = RMSnorm(z),
where H = (hy,...,hq)". The overall mapping is injective if each component is injective.

1. Injectivity of g;: Intuitively, g; encodes the vector H as a scalar as a number in base b, where
each h; acts as a “digit” drawn from the finite set S. By choosing b sufficiently large relative to
the spread of S (captured by dax/dmin), We ensure that different vectors produce distinct scalars.
To prove this formally, we show that for any non-zero difference vector A = (Aq,...,Ay)" =
H, — H,, the difference ¢, (H;) — ¢1(H2) = Z?Zl A;b* is also non-zero. This is true since
b is by definition greater than Cauchy polynomial upper bound for the roots of the polynomial
P(b) = Zle A;bt. For an elementary proof, let & = max{i | A; # 0}. The magnitude of the
highest-order term is lower-bounded by:
|ARDE| = |AR[bY > Spind®
The magnitude of the sum of lower-order terms is upper-bounded as

ZA b < Z |Ab" < Zémdx = Smax (bk_b) < Gmin(b* — 1),

where we used the trlangle 1nequa11ty and the assumption on b, which implies dynax < dmin(b — 1).
Comparing the bounds, we see that

|Akbk‘ 2 5min > 5m1n b - b

ZAbl

Since the magnitude of the highest-order term is strictly greater than that of the sum of all other
terms, their sum cannot be zero. Thus, g; is injective.

2. Injectivity of g2 and g3: The function go is a linear scaling by the non-zero constant 1/ | b||
and is therefore injective. For g3(z) = RMSnorm(z), its derivative is strictly positive for € > 0,
meaning gs is strictly monotonic and also injective.

Since g1, g2, and g3 are all injective, their composition f is also injective. [

When the state is one-hot, i.e. Ht] = e; € {0,1}%, with 1 < i < d (i-th element of the canonical
basis), an alternative to the above construction is to replicate the recurrence onto d heads, where the

j-th head has WJ = q/ = e;j, so that, assuming that in the RMSnorm a = = (Vd,...,v/d)T

e = 0, we get o, = H; = e;. This is the strategy used in Peng et al. [[13| Appendix D] However
for some problems using the one-hot encoding states e, . . . e, is not very efficient. For instance, to
solve the S,, word problem one would need n!-dimensional one-hot vectors as states, while in our
Theorem [I| we use n-dimensional vectors. Moreover, learning multiple identical heads is redundant
and indeed we observe that in our synthetic experiments, the model is learning to use only one head
to solve the tasks (see Section[5.2).
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B.2 Group Word Problems

The next theorem establishes that DeltaProduct can solve the word problem for the symmetric group
Sy, which implies that it can also solve any group word problem, since for every group G there exists
n such that G is isomorphic to a subgroup of .5,,.

Theorem 3 (Restatement of Theorem [I)). For any n € N there exists a DeltaProduct model with
one of the following configurations that can solve the word problem of the symmetric group Sy,: (i)
one layer with np, = n—1 [I6| Theorem 3] (ii) 3 layers with ny>1 (iii) 4 layers with np=1. The
construction for (ii) and (iii) requires that the MLP at the second last layer computes a lookup-
table of size 2m x (n!)?™, function of the last 2m input tokens and the position modulo 2m with

m = [(n=1)/m].

Proof. One way to solve the group word problem for the symmetric group S,, is to map each element
of the group g € S, to the corresponding permutation matrix P, € {0, 1}" and then for each input

sequence z1, ..., with x; € S,, compute each element of the output sequence y1, ..., y: as
T
Yi=; w121 = (P, -+ Ppyug), wo=(1,...,n) ,
where ¢ is a surjective map from vectors in {1, ..., n}" to the n! elements of S,,, which we consider
integers for simplicity, i.e. z;,y; € {1,...,n!}.

(i). Since a permutation of n elements is a series of at most n — 1 swaps of 2 elements, if nj, = n—1,
then we can solve the problem with a 1-layer DeltaProduct by setting Hy = wg, dec(H,;, x;) =
¢(H;), B(xz;) = 0 (v;; = 0), A(z;) = P,,. The latter is achieved by setting for the j-th element

in the product [T, (I — B; jki jk;)), either §; ; = 2 and k; ; = (ex — e,)/v/2 with e; being
the i-th element of the canonical basis of R™ (swap element at index & with the one at index p), or

Bi,; = 0 (identity).

(ii) and (iii). If n;, < n — 1, then the state transition matrix is not sufficiently expressive to represent
all permutations of n elements. However, we can use additional layers to overcome this issue as
follows. We divide the input sequence into blocks of m elements: we factorize the position ¢ €
{1,...t} into i = Im + i where [ > 0 is the index of the previous block and i € {1,...,m}
is the position within the current block (index [ + 1). First, consider the case when [ > 1 Let
P =P . P, be the product of the permutations of the previous block. Since P,

TA—1)ym+m * T-1)ym+1
is a permutation matrix of n elements, we can factor it into Pl = G, - - - G,;1 where we recall that
m = [(n—1)/ny] andeachof Gy 1, ..., G}, is a product of n;, generalized Householder matrices
and thus can be a state-transition matrix of our model. We fix one factorization for each possible
permutation matrix and we set Py = Gy, - - - Go,1, With G ; = I to handle the case when [ = 0.

Now let x; be the input of the last layer. if a; contains enough information about previous tokens
(as we specify later), we can set the recurrence and decoder of the last layer as

H,=G,;H, dec(Hi,mi):gﬁ(Pmu-P Gl7m~~~Gl’;+1Hi).

Tim+1

current block previous block

where Ho = uo, B(z;) = 0, A(z;) = G, ;, using the construction at point (i) since G ; is a
product of at most n, Householers. Note that H; contains the product of the input permutations
only up to token x(;_1),, and a partial computation of previous block of permutations P,. Hence,
the decoder completes the computation by applying two additional components: (1) the remaining
transformations G Lit1 through G| ,,, needed to complete 151, and (2) the actual permutations from
the current partial block Py, ., through P, . The delay in the recurrence is necessary, since to
compute even the first matrix of the factorization for a block of m elements of the input sequence,
all the elements in such a block need to be processed.

We can check that this ends up computing the correct output y; by substituting the expression for
H; and unrolling the recurrence as follows.

dec(H;, x;) = ¢(P, Gim GG _1;m - Gi—11...Gom ... Go,1Hyp).

( Im4i xzm+1
= ¢(lem+; e 'lem“Pzqu cee 150“0)~
=¢(Pay o Poyis Poiy i Prgsymin - Pry - Poy Poug).
= ¢(Py, -+ Py uo) = yi,
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Note that to compute A(z;) = G, ; and dec(H;, z;), z; should contain i = i mod m and the last

m + ¢ (in general the last 2m) tokens, corresponding to the current and previous blocks. Hence, the
layers before the last one are dedicated to compute at each time-step ¢ a lookup table for the possible
values of (¢ mod 2m, x;, ..., %;—2m+1) Whose output will be included in the input of the last layer
;. The first layers (two layers if nj, = 1, one if nj, > 1) can provide i mod 2m by using Lemmal[2]
with d = 2m. Finally, the second to last layer can output any function of the last 2m tokens and the
position modulo 2mn through Lemma 3| with d = 2m and a; = x;, by using i mod 2m from the first
layer(s). O]

Lemma 2. The following DeltaProduct configurations can count modulo d € N. (i) 2 layers each
with one head and ny, = 1 [16] Theorem 6]. (ii) 1 layer with one head and ny, > 2.

Proof. For (i), we can use the same construction as in [16, Theorem 6], where the first layer does
counting modulo 2 and the second layer computes addition modulo d. In this case, since we just
want to count modulo d we can ignore input tokens and add 1 modulo d at each time-step. For (ii),
note that if nj, > 2, we can set, for any time-step ¢, B(x;) = 0 and the state transition matrix A(x;)
equal to a 2D rotation with an angle of 27 /d by appropriately setting two keys, say k; 1, k¢ 2, setting
Be.1, B2 = 2 (while for the other Householders we set 5; ; = 0). Then, we can count modulo d by
setting Hy in the span of k; 1, k12 and dec appropriately to map the d values that H; can take to
the correspondent element in {1, ..., d}. O

Lemma 3. A DeltaProduct layer with ny, = 1, receiving in its input at time-step t the tuple (t mod

d,a;) (t > 1) where a; € D C R with D being a discrete set of values, can implement any function
of (t mod d, at—gy1, - .., at), where for simplicity we set a; = a ¢ D fori € {2 —d,...,0}.

Proof. Lett =t mod d+ 1 Set Hy = 0 € R? and the recurrence update as
H, = (I — eze] ) H;_1 + ejar,

where e; is the i-th element of the canonical basis of R?. This can be implemented by setting Ben =

1, ki1 = ez, v = ag and By j, ke j,ve ; = 0. With this choice, H; contains a¢—q41,. .., a:. The
result follows since dec can be an arbitrary continuous function of both H; and x; and the latter
contains ¢ mod d. O]

Finally, the next results concern finite subgroups of the orthogonal and special orthogonal groups.

Theorem 4. Let G be a group isomorphic either to a subgroup of O(n), or to a subgroup of SO(n+
1) if n is even, then if ny, = n, there exists a DeltaProduct model that solves the group word problem

for G.

Proof. From the assumption we can map each element g € G to an orthogonal matrix G4. For the
word problem for G, each element of the input sequence belongs to G: x; € G for every 1.

If G, € O(n), then, since nj, = n and every orthogonal n x n matrix can be written as the product
of at most n Householder matrices, we can set Hy = I € R"*" and A(z;) = G,,, B(z;) =0
and dec(Hy, z;) = ¢(H;) with ¢ : O(n) — G bijective (which exists due to the isomorphism).
The Householder product structure enables A(x;) to represent general orthogonal matrices G,
including rotations.

If instead G, € SO(n+ 1), since n is even in this case then we can still write G4 as a product of an
even number (at most n since n + 1 is odd) of Householder matrices of dimensionn + 1 x n + 1.
This is because the determinant of G is +1, which is only possible if it is a product of an even
number of Householder matrices, each having determinant —1. Thus, we can set A(z;) = G, €
R+ B(z,) = 0. Now if we let G = G, G, _, - - - G4, and set Hy = diag(1,...,1,0) €
R(+1)x(n+1) (we are only allowed a rank n matrix), then H; = G H, will have all the first n
columns equal to G and the last set to zero. However, the last column can be found as a function of
the others since it must be the unique unit vector orthogonal to all other columns of G and for which

det(G) = +1. Therefore, there exists a bijective functon from states to elements of the group,
which can be implemented in dec. O
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B.3 Regular Languages

This section details how Gated DeltaProduct networks can recognize any regular language in a finite
number of layers. The core idea is to show that Gated DeltaProduct can simulate any Finite State
Automaton (FSA), since FSAs are the computational models that define regular languages. The
proof proceeds in two main steps: First, we leverage the Krohn-Rhodes theorem, a fundamental
result in automata theory, which states that any FSA can be decomposed into a cascade of simpler
FSAs known as permutation-reset automata. These simpler automata only perform two types of
operations: permuting their states or resetting all states to a single state. Second, we demonstrate in
Lemma [4] that Gated DeltaProduct is well-equipped to simulate these permutation-reset automata.
The “DeltaProduct” mechanism, using products of Householder transformations, naturally handles
permutations, while the “Gated” aspect allows for the reset operations by nullifying the previous
state’s influence and setting a new one. By simulating these building blocks and cascading them,
Gated DeltaProduct can thus simulate any FSA and, consequently, recognize any regular language.

Definition 1 (Finite state automaton (FSA)). A finite state automaton (FSA) is a tuple
(%,Q,q0,9, F), where X is a finite set called alphabet, Q) is the finite set of states, qo € Q is
the initial state, for every w € ¥, 6, : QQ — Q is a state transition function and F' C Q) is the set of
accepting states.

Definition 2 (Permutation-reset automaton). An FSA is permutation-reset if for every w € %, 0y, is
either bijective or constant.

Definition 3 (Regular language). A regular language is a set of sequences L such that there exists
an FSA that accepts it, i.e. such that L C ¥*, where X" is the set of sequences with elements in %,
and that for every word w = wyws ... wy € X*

5w(q0) = 5’11’1, o 5wt71 0---0 6101 (qo) cF «— welL. 4)

Notably, the computation of any FSA can be also done using only matrix and vector multiplications.
Indeed, if we let @ = {1,...,n} (for simplicity), then we can map each state g to the one hot vector
e, (element of the canonical basis of R™) and each transition ¢, to the matrix M,, € {0, 1}™*™ with
element at row ¢ and column ¢’ being 1 if and only if 6(¢’) = ¢. This way, by setting r € {0, 1}"
suchthatr, = 1if ¢ € F'and r, = 0 otherwise, we have that for every word w = wywy ... w, € ¥*

r M, My, - Mye, =1+ weL. (5)

We observe that if §,, is bijective and changes k states, then the corresponding M, is a permutation
matrix that can be written as a product of k£ — 1 Householder matrices, each corresponding to a swap
of two elements. Moreover, if §,, is a reset (constant), i.e. if d,,(¢) = g for every ¢ € @, then
M, e, = ez. As we will see, constant transitions can be modeled by setting the gate to zero. We
are now ready to state our main result.

Theorem 5 (Restatement of Theorem 2). For any regular language L and any ny, € N, there exists
a Gated DeltaProduct model with a finite number of layers that recognizes the language, i.e., for
every word w € ¥* outputs 1 if w € L and 0 otherwise.

Proof. Using the landmark theorem by Krohn and Rhodes [S0] we can decompose the FSA corre-
sponding to the regular language L into a cascade of permutation-reset FSA. We can use a group
of at most 4 consecutive layers to represent each automaton in the cascade via Lemmaf] Then, we
can combine the different FSA in the cascade in a feedforward manner using the same construction
as the one in the proof of [[16} Theorem 3], where the input of each FSA is the output concatenated
with the input of the previous FSA in the cascade. O

Lemma 4. For any permutation-reset FSA with |Q| = n and |3| = s, where each bijective state-
transition function 0., changes at most k states, there exists a Gated DeltaProduct model with the
following configuration that can implement it, i.e., for any word w = w1, ..., w; € X in input, it
can output the corresponding sequence of states q1, . . . , q: of the FSA. (i) one layer withn, = k—1.
(ii) 3 layers with ny, > 1. (iii) 4 layers with ny, = 1. The construction for (ii) and (iii) requires that
the MLP at the second last layer computes a lookup-table of size 2m x s*™, function of the last 2m
input tokens and the position modulo 2m withm = [(k — 1)/np].

Proof. We use the matrix vector multiply construction to implement the FSA. For every time-step ¢
we set 2; = w; as the input to the model. The proof follows a path similar to the one of Theorem 3]
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(where more details are provided), where in addition to modeling permutations, the state-transition
matrix uses the gate to model constant transitions.

(). Set Hy = e4,. When d,,, is bijective, by assumption it changes at most k states. Thus, by
setting nj, = k — 1 we can represent the corresponding M,,, matrix using A(w;) with gate g; = 1
(product of k — 1 generalized Householder matrices), and thus we set B(w;) = 0. If instead d,,, is
constant, i.e., 6;(¢) = ¢ and M,,e, = eg for every ¢ € @, then we can set the gate g; = 0 so that
A(w;) = 0 and B(w;) = k; = e;. Finally, we set dec(H;,z;) = H, (1,...,n)" to retrieve the
correct state at step ¢ (for simplicity Q = {1,...,n}).

(ii) and (iii). If n, < k — 1, then the state transition matrix is not sufficiently expressive to represent
all permutations of k£ elements. However, we can use additional layers to overcome this issue.

We factorize the position i € {1,...t} into i = Im + i for integers [ > 0 and i € {1,...,m}.
First, consider the case when [ > 1. The product M; = My, _, ., ... My,_,,,, ., is either
a permutation matrix of k elements or, if for some ¢ d,,, is constant, then there exists g such that
Me, = q for every ¢ € Q. Therefore, we factor M; into M; = G, --- G;,1 where each of
G 1,...,G} n is either a product of n;, generalized Householder matrices or G; e, = ez for
every ¢ € (), which can be modeled setting the gate to zero as in point (i). We fix one factorization
for each possible permutation matrix. In the last layer and with enough information in its input x;
about past tokens, we can thus set Hy = ej and

H; =G ;H; i, dec(H;,x;)=(M,, ; Mim1Gim- G Hi) (1,...,n)"

The case when [ = 0 is handled by setting My = Gy, - - - Go,1 with Gy ; = I. Note that both
M, ; and dec(H}, x;) are functions of 7 = i mod m and the last m + ¢ (in general the last 2m)
tokens. Hence, the layers before the last are dedicated to output at each time-step ¢ a lookup table
for the possible values of (¢ mod 2m, w;, . .., w;—am+1). The first layers 2 if np, = 1, 1if ny > 1)
can provide ¢ mod 2m by using Lemma [2] with d = 2m. Finally, the second last layer can output
any function of the last 2m tokens and the position modulo 2m through Lemma 3| with d = 2m and
as = wy, by using ¢ mod 2m from the first layer(s).

B.4 Regular language recognition through products of RWKYV-7 matrices

To enhance the expressivity at the cost of stability, we can replace the product of Householder
matrices of DeltaProduct with a product of RWKV-7 matrices, i.e. for each layer set

np
Az;) = [ [ (diag(ws ;) — cks (ki ; © @i ), (6)
j=1
where w; j, a; j, k;; are computed from x; such that a, ;,w;; € [0,1]", ||k; ;|| = 1 and

¢ € {1,2}. Even without using gates, the resulting model will be capable of recognizing regu-
lar languages effectively as the following theorem shows.

Theorem 6. For any regular language recognized by a finite-state automaton (FSA) with n € N
states, there exists a linear RNN using products of RWKV-7 matrices as state-transition matrices (as
in ([6) with ¢ = 2) with one of the following configurations that can recognize it: (i) one layer with
np, = n (i) 3 layers with ny, > 1 (iii) 4 layers with ny, = 1 [l3| Theorem 3]. The construction for (ii)
and (iii) requires that the MLP at the second last layer computes a lookup-table of size 2m x (n!)?™,
Sunction of the last 2m input tokens and the position modulo 2m with m = [n/ny].

Proof. The computation of an FSA with n states can be done using matrix-vector multiplications as
shown in (E]) where the n X n state transition matrices M, have elements in {0, 1} and a single
one in each column. Peng et al. [[13, Lemma 3] prove that any of those matrices can be expressed
as products of n matrices, each of which is either a swap (identity with two columns swapped),
copy (identity with one row copied onto another), or the identity matrix and can be modeled by a
single RWKV-7 matrix. The proof for (ii) and (iii) follows similarly to Theorem [I|but now tackling
all state transition matrices, while Theorem |l could handle only permutations since a generalized
Householders matrix cannot be a copy matrix. O
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B.5 Dihedral Groups

In Grazzi et al. [16, Theorem 6] it is shown that with 2 layers and the extended eigenvalue range,
DeltaNet can compute addition modulo m, which corresponds to solving the group word problem
for the cyclic group Z,,, for any m € N. We extend this result and prove that, under identical as-
sumptions, DeltaNet (DeltaProduct with n;, = 1) can solve the group word problem for the dihedral
group D,,, for any m € N. The dihedral group D,, represents the symmetries (both rotations and
reflections) of a regular m-sided polygon. As a notable example, Ds is isomorphic to the symmetric
group Ss.

The linear RNN construction used in this result can be implemented using a 2-layer DeltaNet Model
with two heads in the first layer. In the first layer, the linear RNN will compute parity for rotations
and reflections separately, i.e. it will record if the number of past rotations (reflections) is even or
odd. The recurrent state of the second layer will have 2m possible values (same as the order of
D,,) and each will be decoded differently based on the parity of reflections. The parity of rotations,
combined with the group element, determines which reflection matrix to use as the state transition
matrix of the second layer.

Theorem 7 (Dihedral group word problems with reflections). For any m € N, consider the group
word problem of the dihedral group D,,. There exist DeltaProduct models with the following con-
figurations that can solve it. (ii) Two layers with ny, = 1 and at least two heads in the first layer and
one in the second layer. (ii) One layer with ny, > 2.

Proof. The elements of the dihedral group D,,, can be divided into m rotations R = {rg,...,rm—1}
and m reflections S = {sg, ..., Sm—1}. The identity is ro. To be able to solve the corresponding
word problem, we would like to map sequences of group elements 1, ..., x; with x; € R U S into
sequences ¥1, ...,y Withy; = x; - x;_1 - - - 1 and - is the group operation, that for dihedral groups
is defined as

T Tj =Titjmodms Ti'Sj = Sitjmodm, Si'7Tj=Si—jmodms Si*5j="Ti—jmodm- (7)

Note that a product of two rotations is commutative, while the product of two reflections or a reflec-
tion with a rotation is not. Indeed for m > 3 D,,, is not an abelian group.

(i) The constructions of the two layers of DeltaProduct with n;, = 1 builds upon the one for the
cyclic group Z,, outlined in [[16, Theorem 6]. The first layer functions as a pre-processor, calculating
auxiliary information from the input sequence. Specifically, for each time step ¢, it determines two
parities: the parity of the total number of reflections and the parity of the total number of rotations
in the sequence 1, . . ., xy. This information is then passed to the second layer.

The second layer is responsible for computing the cumulative group product. It uses a 2D hidden
state to geometrically model the group elements and their compositions. The core challenge lies
in modeling the group operations, i.e. rotations and reflections, using only a reflection as state-
transition matrices (rotation matrices cannot be represented with ny = 1). To address this, the
state representation in the second layer must encode more than just the previous group product. It
is designed to also incorporate the rotation parity computed by the first layer. This is achieved by
maintaining two distinct sets of m state vectors each and two distinct sets of 2m reflection matrices
each to represent the group elements. The choice of which set to use is determined by the rotation
parity. Moreover, the reflection parity is also used but only in the decoder. This design allows a
single, unified update mechanism, based solely on geometric reflections, to correctly implement all
four of the distinct multiplication rules defined in (7).

We define rotation by and reflection matrices as

Rotation: R(a) = (ggj((g; —Cgisfggy) Reflection:  H (a) = (S?ﬁéj} _Sicré(s?i )>, (8)

where R(«) is a rotation by an angle of «, while H («) is a reflection by a line having an angle of
a/2 with the line passing from the origin and the point (1, 0). Note that both R and H are periodic
with period 27. Moreover, let o,y € R, the following are standard identities of products of matrix
representations of 2D rotations and reflections.

R(a)R(v) = R(a+7), H(a)H(y)=R(a—7),

R()H(y), = H(a+7) H(y)R(a)=H(y—a). ®
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For the first layer we use the following diagonal recurrence which indicates in the first (second)
coordinate whether the number of rotations (reflections) is even (0) or odd (1).

RV =0, A" =a(z)oh +b), y" =dec (b, ) = (1, hi, his).

a(x) . -1 ifx; €R a(x) . -1 ifzx; €8
YY1 ifz e S Y271 ifzeRr

1 ifa; R (1 ifz eS8
b(xi)l_{o ifz; €S b(‘“b_{o ifz; € R

This recurrence can be implemented also by DeltaProduct with n, = 1 using 2 heads each with
scalar hidden states: one for the rotations and the other for the reflections. For the second layer, we
have instead the following constructions, which selects the appropriate reflection based on the parity
of the rotations and uses the parity of the reflections for dec.

Y =(1.0)T, B =AP MR,y = dec® (R, y),

A(2) (y) = H(Q(ylv y2))’

dec (h,y) = {TZ L 0 , i*= argmax max(c; h,d] h)
Sm—i= ifys=1 i€f0,...,m—1}
where y = (y1,2,y3) € RUS x {0,1} x {0,1} and § : RUS x {0,1} — R determines the
angle of the reflection and is defined for all i € {0,...,m — 1} as

1—2 1+2 -2 242
O(r;1) = Mv 9(r;,0) = M7 O(si1) = =T 9(s;,0) = M
m m m m
Moreover, C = {cq,...,cm—1}and D = {dy, . ..,d,,_1} are two sets of states and are defined as

do=hy) = (1,0)7, ¢y = H(r/m)dy,
d; = R(2ir/m)dy, ¢; = R(—2ir/m)cy foralli € {0,...,m —1}.

From our choice of dy = (1,0) " and ¢( and from -@), for any & € R we have
R(a)dy = H(a)dp, and
R(a)cy = R(a)H (n/m)dy = R(a)R(w/m)dy = R(a+ 7/m +7/m — 7 /m)dy
= H(a+ 2r/m)H (r/m)dy = H(a + 27 /m)cy.

Moreover, from our choice of 8, d; and c¢;, using the identities above and the the fact that R is a
periodic function with period 27 we have that

d; = R(2im/m)dy = R(2imw/m)H (w/m)cy = H(0(r;,0))co

¢, = R(—2ir/m)cy = R(—2im/m)H (1 /m)dy = H(6(r;,1))dy
dp—i = R(—2in/m)dy = H(—2in/m)dy = H(6(s;,1))do
Crn—i = R(—|—2i7r/m)c0 = H((2+ 2i)7/m)co = H(0(s;,0))co

forevery i € {0, ... — 1}. Therefore, we can write

H0(0, 1), = R0, 1) 00 0 = B2+ /)0 = s
H (6(r;,0))e: = B(6(r;.0) ~ 00, )dy = R(i + §)n/m)do = disymoa im0
H (0(s;,1))ds = R0(s;,1) = 0(sy-i, ))do = R(=2(i+ )7/ m)do = d-i- o
H (6(s1.0))e: = R(O(5;,0) ~ 0(sn—s. 0))e = R+ )7/ m)eo = ei—moa

foreveryi,j € {0,...,m—1}. We proceed to verify that the output of the second layer is computed
correctly: satisfying the product rule for the dihedral group in (7), i.e., we want to verify that
Ti+j mod m if yt( )1 =TTt =Tj
Y@ = | Sitimodm ify§ )1 =TT =8 (11)
Si—j mod m lfyt 1= 8i, Xt =Ty

(2)

Ti—j mod m ]fyt 1= 8i, Ty = S5
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Where we set y(() ) = ro. First note that when yt € S, then yt(?)) = 1 and when y§2) € R, then

yglg) = 0. We consider two cases.

Case 1. If yt( )1 = r; and hence yg )1 3 = 0, then using we obtain

. a
d; = Ci+j mod m if 24 :’/‘j,th) =1

H(0(rj,1)) 2 =
H&T',O cz—dz mod m ifz =T, =0
hiz) _ A(Q)(y(l))hf_)l _ (0(r;,0)) +j mod t =T yf( 2=
H(0(sj,1))di =d—i—jmodm ifzs=s;1y5=1
H(0(s;,0))

: (1)
Sj70 Ci = C—j—jmodm ifz; = S Y2 = 0

This, together with the definition of dec® implies that

: (1) _
Titimodm I Xy =1, 0
P = dec® (R, y(V) = Trtamedm BT (12)
Si+j mod m ifo, = i Y3 =1

Case 2. If instead yﬁ)l = s; and hence yﬁ)m = 1, then using we obtain

H(0(r),1))dm_; = c] imodm iz =r5yy =1
B = A@) (yW)R®), = H(0(r;,0))em— J —imodm If Tt *Tﬂ’y% =0
H(0(s5,1))dm—i = di—jmoam ifxy=s595 =1
H(0(s5,0))Cm—i = Ci—jmodm ifzy _S]’yt(,Q) =0
2)

This, together with the definition of dec! implies that

(1) _
Si—imodm If Xy =1, 1
R Rk T a3
Tijmodm 1l Ty= S Y3 = 0

Note that and imply (TI). Setting the output of the linear RNN equal to the output of the
second layer concludes the proof.

(ii) It follows from Theorem since D,,, is a finite subgroup of O(2), the group of 2D orthogonal
transformations: rotations and reflections. O

B.6 Stability vs. Expressivity of Linear RNNs

In this section, we discuss the tradeoff between expressivity and stability of a linear RNN recurrence
H,=A,H, | + B;, where A; = A(z;), B; = B(x;). We say that such a recurrence is stable if

IM € [0,00) such that || [] As|| <M VieN, (14)

j=1

where ||-|| is the spectral norm. This property is true if and only if p(]_[;:1 A;) <1 where p(M) is
the spectral radius of M, i.e. the maximum modulus of its eigenvalues. When this property is not
satisfied, the norm of the state will diverge. An effective way to satisfy with M = 11is to enforce
||A;]| < 1 for every i, since the norm of the product is less than or equal to the product of the norms
(due to the submultiplicativity property). However, this restriction excludes some boolean matrices
which are useful for recognizing regular languages. Indeed, in the construction shown in (@), all
matrices involved are n x n with entries taking values in {0, 1} and having only a single one in each
column. This class of matrices B satisfies with M = \/n because it is closed under matrix
multiplication, i.e. VB, B’ € B, we have BB’ € B, and maxpgcg || B|| = v/n, which is achieved
by matrices with ones only in one row. In particular, all matrices in 53 that are not permutations have
spectral norm greater than one and therefore cannot be expressed if we enforce ||4;|| < 1.

The (Gated) DeltaProduct state transition matrix A; = [[;"", ai(I — Bikik; ) satisfies || A;]| < 1
since g; € [0,1], 5; € [0,2], and ||k;|| = 1. Thus, from the matrices in B, it can represent only
permutations of up to ny, + 1 elements. Instead, the state-transition matrix of RWKV-7, A; =
diag(w;) — ck;(k; ©® a;) " with ¢ = 2, can represent not only the identity and permutations of two
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elements, but also any copy matrix, which is obtained by copying one column of the identity onto
another and has spectral norm equal to \/2. However, as we show in the next theorem, even with the
less expressive ¢ = 1 setup that is used in practice, the RWKV-7 recurrence is not stable unless a;
is the same for every ¢, which is the case studied in Peng et al. [[13, Theorem 1]. Having different
a; values is key to modeling the copy matrix, since this requires a value different from that of a
permutation matrix.

Theorem 8. Consider the RWKV-7 state transition matrix A; = diag(w;) — ck;(k; ® a;)" with
c = 1 (as set in practice), w; = (1,...,1)T € R, a; € [0,1]", k; € R" with ||k;|| = 1, and
n > 2. There exists an infinite set M of matrix pairs such that for every (A, A’) € M, we have
p(AA") > 1.2, where p denotes the spectral radius. Thus, if we set

A — A ifimod2=0
‘A ifimod2=1"

i
hich impli li Ajll = lim = co.
which implies  lim 1_[1 j lim = o0
j=

Proof. We demonstrate this by construction for n = 2; the generalization to n > 2 is straightfor-
ward.

Let 0 = 7/3,a = (0,1)7, @ = (1,0)7. k = (cosO,sind)" = [1/2,v/3/2]T. k' =
(sinf,cosf) " = (v/3/2,1/2)7. Note that ||k|| = ||k’|| = 1. We construct A and A’ as

A=r-kvoa =1 (R0 1= (5 YY)

A=I-KKoa) =1- <\1[§/22) /2 0= (—?\)//;/4 (1)>

Now, consider the product matrix

- a3 9 (Yon 9)- (88 39

To find the spectral radius p(M ), we examine its eigenvalues. The characteristic equation is A —
Tr(M)X + det(M) = 0, with Tr(M) = 27/16 and det(M) = 9/16. Hence, the characteristic

equation is 16A% — 27\ 4+ 9 = 0. Thus, the eigenvalues are \; = 27"‘3@ and Ay = 27_3@ and
the spectral radius is p(M) = max{|\1],]A2|} = A1 = 1.23. Also, since the spectral radius is a
continuous function of the matrix entries, which are a continuous function of 6, then this means that
there is an infinite set of matrices, namely M, obtained by varying 6 around 7 /3 whose product has

spectral radius greater than 1.2.

From our construction of A;, we have H?;l A; = M. By the definition of the spectral norm and
spectral radius, |M’H > H)\lla:H = |A|" = p(M)?, where z is the eigenvector associated with the
dominant eigenvalue \;. The result follows since lim; . p(M)* = oco. O

C Experiments

C.1 State-Tracking

Clarification on the isomorphisms of S3, Sy, A5, and S5

Ss: The group consisting of all isometries that map an equilateral triangle onto itself, including both
orientation-preserving rotations and orientation-reversing reflections, is isomorphic to Ss.

S4: The rotation group of a cube is isomorphic to the symmetric group Sy. This correspondence
arises because the cube has exactly four space diagonals, and every proper rotation—that is, every
orientation-preserving isometry of the cube about an axis through its center—permutes these diago-
nals in all possible ways (see Figure[6]for an example). In particular, these proper rotations include,
for example, the 90°, 180°, and 270° rotations about axes passing through the centers of opposite
faces, the 180° rotations about axes through the midpoints of opposite edges, and the 120°/240°
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Figure 12: Results for permutation groups Ss, Sy, As, and Ss when limiting the eigenvalue
range of the state-transition matrix to [0, 1]. (Top row) Varying the number of Householder prod-
ucts nyp, for a single layer DeltaProduct,, [0, 1]. (Bottom row) Varying the number of layers [ of
DeltaProduct; [0, 1]/DeltaNet[0, 1] (single Householder). Dashed vertical line at training context
length 128. Higher nj, improves extrapolation to longer sequences of permutations, e.g., S3 can be
learned with n;, = 2 with a single layer while three layers are required when keeping n;, = 1.

rotations about axes through opposite vertices. Hence, the proper rotational symmetries of the cube
correspond precisely to the permutations of its four space diagonals [69].

As: Similarly, a regular dodecahedron contains exactly five special cubes symmetrically arranged
within it. Each proper rotation of the dodecahedron—that is, every orientation-preserving rigid
motion mapping the dodecahedron onto itself—rearranges these inscribed cubes by an even permu-
tation. This property makes the rotation group of the dodecahedron isomorphic to the alternating
group As, the group of all even permutations of five elements [[70]].

S5: When both proper rotations and reflections (orientation-reversing symmetries) are considered,
the full symmetry group of the dodecahedron corresponds exactly to the symmetric group S5, since
reflections allow both even and odd permutations of the five hidden cubes [70].

Experimental Details. We used the experimental setup from Merrill et al. [3] and sampled
2,000,000 training datapoints at sequence length 128 and 500,000 test datapoints at sequence length
512. We did not use a curriculum over sequence length during training. The models were trained us-
ing AdamW optimizer [71] with parameters 5; = 0.9, f2 = 0.999, and € = 1078 in PyTorch [72].
We used a learning rate of 10~ with cosine annealing [73] and trained for 100 epochs with a batch
size of 1024, except for the S5 models which required a batch size of 2048 for more reliable results.
All models used a single-layer DeltaProduct architecture featuring 12 heads (more heads made the
results more reliable) and a head dimension of 32. We applied a weight decay coefficient of 1075.
The [ values were extracted from the forward pass of the trained models using NNsight [74]. We
use the PCA implementation in scikit-learn [[75]].

C.2 Chomsky Hierarchy

Setup. We conducted experiments on selected formal language tasks originally introduced by
Delétang et al. [52]. Our goal was to demonstrate the improvements in length extrapolation that
can be achieved using multiple Householder matrices in the state-transition matrix compared to
DeltaNet. Following Grazzi et al. [[16], we focus on three tasks: parity, modular arithmetic without
brackets (both regular languages), and modular arithmetic with brackets (a context-free language).
We trained DeltaProduct,,, with n, € {2,3,4} on sequences of length 3 to 40 and tested on se-
quences ranging from 40 to 256 to evaluate generalization to longer inputs. We compare our results
against the results obtained by Grazzi et al. [[16] for Transformer, mLSTM and sLSTM from Beck
et al. [9], Mamba [6], and DeltaNet [10]. For both Mamba and DeltaNet, we experiment with an
eigenvalue range restricted to [0, 1] and extended to [—1, 1].
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Figure 13: fy and $3; values across all 24 permutations in Sy in DeltaProducty[—1, 1]. We find that
only head 6 (shown in Figure [7) learns to use both Householders as reflections (5y ~ 2, f1 =~ 2)
allowing it to learn the rotations to solve Sy.

Experimental Details. All DeltaProduct and DeltaNet models contain 3 layers with 1 head each
and heads’ dimensions set to 128, except for modular arithmetic with brackets, where we use 12
heads and set the heads’ dimensions to 32. Both models use a |causal depthwise 1D convolution
with a kernel size of 4 after the query/key/value projection. For modular arithmetic, we also use a
gradient clipping norm of 1.0. We train each model using AdamW [71]] using a learning rate of 5e-4,
batch size of 1024, 0.1 weight decay, and a cosine annealing learning rate schedule [73] (minimum
learning rate: le-6) after 10% warm-up steps. We train on the modular arithmetic and parity tasks
for 100k and 20k steps in total, respectively. At each training step, we make sure to generate a valid
random sample from the task at hand (see below). We repeat the runs 3 times with different seeds
each, and later pick the best to report in Table

Considered Tasks. We empirically evaluated three tasks—parity, modular arithmetic without brack-
ets, and modular arithmetic with brackets—spanning different levels of the Chomsky Hierarchy. Be-
low, we provide details for each task, where || denotes the vocabulary size and Acc;.q,,q represents
the accuracy of random guessing:

e Parity (|X| = 2, Accrana = 0.5). Given a binary sequence * = z1 ...x; € {0, 1}, the parity
label y, € {0, 1} is 1 if the total number of ones in the sequence is odd, and 0 otherwise. This task
is equivalent to computing the sum of all previous values modulo 2, i.e., y; = (Zle x;) mod 2.

* Modular Arithmetic without Brackets (|X| = 10, Accrqng = 1/5). Given a set of special
tokens X5 = {4+, —, *, =, [PAD]} and a modulus m > 1, we define ¥ = ¥, U {0,...,m — 1}.
The label y; corresponds to the result of evaluating the arithmetic operations in the sequence
T =x1,...,%, computed modulo m. In our experiments, we set m = 5. An example is:

24+1—2%2—3=1[PAD]

* Modular Arithmetic with Brackets (|3| = 12, Accrqna = 1/5). This task follows the same
definition as modular arithmetic without brackets but includes an extended set of special tokens,
Y, ={+,—,%,=,),(, [PAD]}, allowing for nested expressions. Again, we set m = 5. An example
sequence is:

((1 = (=2)) +((4) +3)) = 0 [PAD]

Results. As shown in Table [2} DeltaProduct,,, with n; > 2 has better average accuracy compared
to DeltaNet and other baselines. This performance improvement is particularly pronounced when
using the extended eigenvalue range [—1, 1], which aligns with the findings of Grazzi et al. [16].
Notably, we observe the most significant improvement in the modular arithmetic with brackets task,
which is also the most challenging.
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Table 2: Performance of DeltaProduct,, [—1,1], n, € {2,3,4}, on formal language tasks. We
report the best of 3 runs. Scores are scaled accuracy, with 1.0 indicating perfect performance and
0.0 random guessing. The results for the other models were taken directly from Grazzi et al. [16]].

Mod. Arithm. Mod. Arithm.

Model Parity (w/o brackets) (w/ brackets) Avg.
Transformer 0.022 0.031 0.067 0.040
mLSTM 0.087 0.040 0.114 0.080
sLSTM 1.000 0.787 0.178 0.655
Mamba [0, 1] 0.000 0.095 0.123 0.073
Mamba [—1, 1] 1.000 0.241 0.116 0.452
DeltaNet [0, 1] 0.233 0.302 0.253 0.263
DeltaProduct, [0, 1] 0.264 0.402 0.249 0.305
DeltaProducts [0, 1] 0.285 0.402 0.288 0.325
DeltaProducty [0, 1] 0.295 0.369 0.288 0.317
DeltaNet [—1, 1] 0.982 0.915 0.281 0.726
DeltaProductg -1,1] 0.896 0.887 0.329 0.704
DeltaProducts [—1, 1] 0.932 0.736 0.330 0.666
DeltaProducty [—1, 1] 0.982 0.893 0.342 0.739

C.3 Language Modeling
C.3.1 Experimental setup

We follow the same basic training setup as in [[16]. We use the training pipeline flame from the
flash-linear-attention [22] repository. All of our models are trained on NVIDIA L40s, NVIDIA
A100 40GB or NVIDIA H100 94GB GPUs. We used 16 to 32 GPUs at a time to train one model,
in a 2 to 8 node setup, depending on resource availability. We used DeepSpeed with ZeRO-2 [76]
for distributed training. All models were trained with an effective batch size of 524 288 tokens, and
a learning rate of 3e-4. We optimized the models with AdamW [71] (0.01 weight decay) and used
cosine annealing [73] for the learning rate schedule with linear warm up for 512 steps. We used a
total of 10500 GPU hours to train all of our models.

C.3.2 Throughput

- 1 E2 O3

40K

20K

Tokens per second (Kt/s)

0 16K x1 8K x2 4K x4 2K x8
Training length x Batch size

Figure 14: Training throughput of a parameter matched DeltaProduct 1.3B. Parameter matching is
achieved by decreasing the inner dimension in the SwiGLU MLP for nj, > 1.

C.3.3 Additional Benchmarks

In Table |§| we report evaluations for the models in Figure @l on tasks from Im-eval-harness [61]]. In
addition, we also train and evaluate models with 2048 context length at the 340 M parameter scale
and report the results in TableE] and compare them with the results in [[L0] which are trained under a
comparable setup. We observe that DeltaProduct outperforms DeltaNet in terms of average accuracy
for both training setups.

Tasks Details. We use the Im-eval-harness benchmark [61] to assess model performance. Following
Yang et al. [10], the evaluation encompasses multiple task categories: Language Understanding
Tasks. The evaluation includes LAMBADA (LMB) [77] for testing text comprehension, PIQA
[78] for physical reasoning assessment, HellaSwag (Hella.) [[79] for situational understanding, and
Winogrande (Wino.) [80] for commonsense reasoning evaluation. Reasoning. The ARC dataset
provides two distinct testing sets: ARC-easy (ARC-e) and ARC-challenge (ARC-c) [81], measuring
varying levels of scientific knowledge comprehension.
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Table 3: Performance comparison of models shown in Figure Parameter equivalence was
achieved by scaling the head dimension. To account for the increased parameter count we scaled the
training token budget from 19B (213M parameters) to 55B (805M parameters) on FineWeb [57].
Models were trained on 4096 token context length.

Wiki. LMB. | LMB. PIQA Hella. Wino. ARC-e ARC-c Avg.

Model ppld ppl J accT acct accnt acct accT accn T T
DeltaNet[—1, 1] 32.39 10741 20.4 65.3 35.1 52 44.1 24.5 40.23
DeltaProducts[—1,1] | 31.46  78.98 23.9 64.6 36.2 52.6 45 23 40.88
DeltaProducts[—1,1] | 30.94  70.5 24.6 66.3 36.8 49.1 46 23.7 41.01
DeltaNet[—1, 1] 25.5 40.32 30.2 68.5 41 51.9 473 23.3 43.7

DeltaProducty[—1,1] | 24.82  34.31 333 68.9 434 50.7 49.2 25 45.08
DeltaProducts[—1,1] | 24.81  37.13 31.1 68.5 433 50 48.2 23.7 44.1

DeltaNet[—1, 1] 20.81  20.57 37.8 71.5 48.9 55.6 51.9 256 48.55
DeltaProducto[—1,1] | 20.54  19.56 38.3 71 50.7 552 52.1 26.7 49
DeltaProductz[—1,1] | 20.01  15.56 429 71.4 514 53 54.6 264 4995

55B/805M |35B/392M |19B /213M

Table 4: Performance comparison of models shown in Figure Parameter equivalence was
achieved by scaling the number of heads in the attention. To account for the increased parameter
count we scaled the training token budget from 19B (213M parameters) to 55B (805M parameters)
on FineWeb [57]]. Models were trained on 4096 token context length.

Wiki. LMB. | LMB. PIQA Hella. Wino. ARC-e ARC-c Avg.
ppld  ppl) | acct acct accnf acct accT accnt T

DeltaNet[—1, 1] 3196 8536 | 225 65.2 354 50.8 44.7 224 40.17
DeltaProducty[—1,1] | 30.87 89.23 23.1 65.4 36.5 51.2 43.5 224 4035
DeltaProducts[—1,1] | 30.85 71.52 | 24.1 66.3 36.1 51.6 44.1 239  41.02

DeltaNet[—1, 1] 2486  39.1 30.8 69.2 41.4 50.5 46.7 244  43.83
DeltaProducty[—1,1] | 24.97  35.68 31.9 69.6 425 52.6 47.4 259 4498
DeltaProducts[—1,1] | 252 4096 | 30.5 69.1 423 514 47.7 239 4415

DeltaNet[—1, 1] 206  21.18 38.7 71.5 48.7 52.8 51.9 25.7 48.22
DeltaProducty[—1,1] | 20.26  17.41 40.7 72.6 50.3 539 524 249  49.13
DeltaProductz[—1,1] | 19.97 17.78 | 40.79 723 50.9 52.1 539 26.4 494

Model

55B/805M |35B/392M |19B /213M

Table 5: Performance comparison of models trained with 2048 context length. (SlimPajama (SPJ)
reproduced from Yang et al. [10], Fine-Web (FW) ours). Results are shown for DeltaProduct and
Gated DeltaProduct. We use 8 heads for each layer, unless otherwise specified.

Wiki. LMB. | LMB. PIQA Hella. Wino. ARC-e ARC-c Avg.

Model ppll  ppld accT acctT accntT acct accT accn? 1

2 | 340M params
2 Transformer++ 28.39  42.69 31.0 63.3 34.0 50.4 44.5 24.2 41.2
3 Mamba [0, 1] 28.39 39.66 | 30.6 65.0 354 50.1 46.3 23.6 41.8
8 GLA [0,1] 29.47 4553 31.3 65.1 33.8 51.6 44.4 24.6 41.8
= DeltaNet [0, 1] 28.24 3737 | 32.1 64.8 34.3 52.2 45.8 23.5 42.1

DeltaNet[—1, 1] 340M 26.92 43.07 | 29.8 69.0 41.0 50.9 46.6 24.5 43.6
. DeltaNet[—1, 1] 12 heads, 392M 26.57 36.76 | 31.8 69.2 423 50.9 47.2 244 443
= DeltaProducts[—1, 1] 392M 2643  30.66 | 34.0 68.9 424 53.1 48.9 259 455
2 | DeltaProductz[—1, 1] 443M 2594 2991 | 34.2 69.9 43.2 51.9 48.2 24.1 452

Gated DeltaNet[—1, 1] 340M 2597 3357 | 33.1 69.5 44.1 51.1 50.9 26.7 459

Gated DeltaProducty[—1,1] 393M | 25.12  30.03 | 34.2 69.1 44.6 55.3 49.8 25.3 46.4
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C.3.4 Training behavior

The training behavior of DeltaProduct,,, is stable as shown in Figure [T5] This is also true for all
considered model sizes in Figures[I0]and 21]and Appendix [C.3.3]

Training Loss vs Steps

Last 15k Steps

Loss

Steps 10
Number of Householders (1)
1 — 2 — 3

Figure 15: Training loss curves of DeltaProduct,,, [—1, 1]. The curves demonstrate stable training
behavior as n, increases, with higher values of n; consistently yielding lower losses throughout
training and convergence. While the absolute differences in loss between different n;, values are
relatively small, they correspond to significant differences in length extrapolation performance.

C.3.5 Additional results on Length Extrapolation

In this section we show additional plots on length extrapolation. In Figure [I6] we show the length
extrapolation behavior of (Gated) DeltaProduct,,, scaling up n, without adjusting any of the other
model configuration parameters. As discussed in Section [5.3] increasing ny, increases the param-
eter count of the model. Hence, Figures [I7] and [I8] show the per-token loss and perplexity of
DeltaProduct,,, at three different scales where the parameter counts are matched at the respective
scales following the configuration parameters shown in Table[6] Note that these are the same models
as shown in Figure 21]
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(Top) per token loss. (Bottom) Perplexity. Per token losses smoothed with a window-size of 300.
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Table 6: Model configuration parameters for models shown in Figures and All other config-
uration parameters are the same as in [16].

Model Scale \ # Householders Hidden size # Heads

1 768 8
213M 2 736 6
3 768 4
1 1024 12
392M 2 1024 8
3 1024 6
1 1536 16
805M 2 1468 12
3 1536 8
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Figure 19: Effective rank of H; for 4 of 8 heads for a selection of the layers on CodeParrot se-
quences. Solid vertical lines mark new code sequences; dashed vertical line indicates 4096-token
training context length; colored lines show effective rank per head over the sequence.

C.3.6 Additional Results on Scaling Behavior

In Figure [I0] parameter equivalence is achieved at each scale mainly by decreasing the the head
dimension for models with nj, > 1. In Figure 21| we show perplexity of FineWeb for another set of
scaling results where parameter equivalence is reached by reducing the the number of heads in the
attention. The result for this alternative type of scaling still shows the superiority of DeltaProduct
compared to DeltaNet. However, in this case, models with higher n;, are not strictly better than
those with fewer Householders.
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