
DeltaProduct: Improving State-Tracking in
Linear RNNs via Householder Products

Julien Siems∗♢, Timur Carstensen∗♢♣, Arber Zela♢,
Frank Hutter△♣♢, Massimiliano Pontil♡♠, Riccardo Grazzi∗†⋆

Equal contribution∗, University of Freiburg♢, ELLIS Institute Tübingen♣, Microsoft Research⋆

Prior Labs△, CSML, Istituto Italiano di Tecnologia♡, AI Centre, University College London♠
juliensiems@gmail.com timurcarstensen@gmail.com riccardograzzi4@gmail.com

Abstract

Linear Recurrent Neural Networks (linear RNNs) have emerged as competitive
alternatives to Transformers for sequence modeling, offering efficient training and
linear-time inference. However, existing architectures face a fundamental trade-
off between expressivity and efficiency, dictated by the structure of their state-
transition matrices. Diagonal matrices, used in models such as Mamba, GLA, or
mLSTM, yield fast runtime but have limited expressivity. To address this, recent
architectures such as DeltaNet and RWKV-7 adopted a diagonal plus rank–1 struc-
ture, which allows simultaneous token and channel mixing, improving associative
recall and, as recently shown, state-tracking when allowing state-transition ma-
trices to have negative eigenvalues. Building on the interpretation of DeltaNet’s
recurrence as performing one step of online gradient descent per token on an asso-
ciative recall loss, we introduce DeltaProduct, which instead takes multiple (nh)
steps per token. This naturally leads to diagonal plus rank–nh state-transition ma-
trices, formed as products of nh generalized Householder transformations, pro-
viding a tunable mechanism to balance expressivity and efficiency. We provide a
detailed theoretical characterization of the state-tracking capability of DeltaProd-
uct in finite precision, showing how it improves by increasing nh. Our extensive
experiments demonstrate that DeltaProduct outperforms DeltaNet in both state-
tracking and language modeling, while also showing significantly improved length
extrapolation capabilities.

1 Introduction
The Transformer architecture [1] has revolutionized natural language processing through its self-
attention mechanism, enabling both parallel computation across the sequence length and effec-
tive context retrieval. Consequently, Transformers have largely replaced recurrent models like
LSTMs [2], which exhibit slower training and poorer retrieval performance. However, the quadratic
computational complexity of Transformers with sequence length presents challenges when deal-
ing with longer sequences. Linear RNNs have emerged as a promising solution that combines
parallel training across the sequence length with linear inference-time complexity. At the core of
these models are the state-transition matrices governing the recurrence, which fundamentally de-
termine the expressivity of a linear RNN [3]. Early linear RNNs like S4 [4] and LRU [5] used
token-independent state-transition matrices. For superior expressivity, current linear RNNs now ex-
clusively use token-dependent matrices. Among these Mamba [6, 7], GLA [8], and mLSTM [9]
use diagonal state-transition matrices for efficient sequence processing. Newer architectures have
incorporated non-diagonal structures, often diagonal plus rank-1, enabling simultaneous mixing of

†Work started while at Istituto Italiano di Tecnologia.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

0 200 400
Sequence Length

0.0

0.5

1.0

A
cc

ur
ac

y

Group S5

nh
1
2
3
4

4096 16384

Sequence Length

3.0

3.2

3.4

3.6

T
ok

en
L

os
s

CodeParrot

DeltaNet

DeltaProduct2

DeltaProduct3

Figure 1: (Left) DeltaProductnh

learns higher-order permutation
groups like S5 in one layer, while
DeltaNet (nh=1) is limited to S2

(parity). (Right) Length extrap-
olation of DeltaProduct improves
significantly with higher nh.

information across both tokens and channels of the hidden state. This innovation has led to more ex-
pressive models such as (Gated) DeltaNet [10, 11], TTT-Linear [12], RWKV-7 [13], and Titans [14],
which demonstrate superior language modeling and in-context retrieval performance, often with
only a reasonable decrease in training efficiency.

Recent work has revealed a fundamental trade-off between training efficiency and expressivity of
linear RNNs, dictated by the structure of their state-transition matrices [3, 15, 16]. Models with
diagonal state-transition matrices, such as Mamba and GLA, are highly efficient to train but face
severe expressivity limitations - for instance, they cannot perform addition modulo 3 on sequences
of arbitrary length in finite precision [16, Theorem 2]. Transformers also face similar limitations
[17, 18], since they can be seen as special linear RNNs with a state-transition matrix equal to the
identity, albeit with an infinite dimensional state [19]. DeltaNet partially overcomes these limitations
through generalized Householder matrices, achieving greater expressivity, though it still requires
multiple layers for some tasks. At the other extreme, linear RNNs with full state-transition matrices
offer maximal expressivity [20], capable of recognizing any regular language with a single layer [3],
but are prohibitively expensive to train.

To bridge this gap, we propose DeltaProduct, a method that balances expressivity and efficiency of
the recurrence computation. While DeltaNet’s recurrence performs a single gradient descent step
per token on the squared loss of a linear key-to-value mapping [10, 21], DeltaProduct takes nh
gradient steps using additional keys and values, yielding state-transition matrices that are products
of nh generalized Householder matrices. This connection between the number of optimization steps
and the matrix structure provides an elegant way to interpolate between diagonal and dense matrices:
increasing the number of gradient steps automatically increases the number of Householder matrices
in the product, providing a tunable mechanism to control the recurrence’s expressivity. DeltaProduct
enables precise control over the norm of state transition matrices, ensuring it remains ≤ 1 to maintain
stability during training on long sequences. We contribute DeltaProduct to the flash-linear-attention
library [22], our experiment code is provided here.

Concretely, we make the following contributions:
• We propose (Gated) DeltaProduct, which generalizes (Gated) DeltaNet by using products of

generalized Householder transformations as state-transition matrices (Section 4).
• We provide a detailed theoretical characterization of the expressivity of DeltaProduct in finite

precision and how it improves by increasing nh (Section 4.1). Notably, we prove that for any
nh ≥ 1, DeltaProduct with at most 4 layers (3 if nh ≥ 2) can solve any group word problem,
and Gated DeltaProduct with a finite number of layers can recognize any regular language.

• We empirically validate DeltaProduct’s superior performance across multiple domains: solv-
ing complex state-tracking tasks beyond DeltaNet’s capabilities (see Figure 1) and improving
language modeling performance with significantly enhanced length extrapolation (Section 5),
which we study through analysis of the hidden state’s effective rank.

2 Background
Linear RNNs. Linear RNNs consist of stacked layers, each processing an input sequence of vectors
x1, . . . ,xt ∈ Rl (output of the previous layer) to produce an output sequence ŷ1, . . . , ŷt ∈ Rp. We
write the forward pass of each layer placing emphasis on the linear recurrence (as in [16])

Hi = A(xi)Hi−1 +B(xi), ŷi = dec(Hi,xi) where i ∈ 1, . . . , t (1)

H0 ∈ Rn×d is the initial hidden state, A : Rl → Rn×n maps the input to a state-transition matrix,
B : Rl → Rn×d controls the information added to the new hidden state, and dec : Rn×d ×

2

https://github.com/fla-org/flash-linear-attention/blob/main/fla/layers/gated_deltaproduct.py
https://github.com/automl/DeltaProduct

Rl → Rp determines the output of the recurrence. The functions A, B, and dec are learnable,
with dec typically containing a feedforward neural network. Different linear RNN variants are
distinguished by their specific implementations of these functions. For example, Mamba [6, 7],
GLA [8], and mLSTM [9] use variations of a diagonal state-transition matrix A(xi). The linearity
of the recurrence allows it to be parallelized along the sequence length, either via a chunkwise
parallel form [8, 23, 24] or using a parallel scan [6, 25–28]. For a comparison of different linear
RNN architectures see Yang et al. [10, Table 4].

DeltaNet. We base our work on the DeltaNet architecture [29, 30], which has recently seen renewed
interest through the work of Yang et al. [10, 11] who demonstrate how to parallelize DeltaNet across
the sequence length on GPUs. The DeltaNet recurrence is parameterized as

A(xi) = I − βikik
⊤
i , B(xi) = βikiv

⊤
i , dec(Hi,xi) = ψ(H⊤

i qi) (2)

where βi ∈ [0, 1], qi,ki ∈ Rn (with ∥qi∥ = ∥ki∥ = 1), vi ∈ Rd are outputs of learnable func-
tions of xi. A(xi) is a generalized Householder transformation [31], which is symmetric and has
eigenvalues 1 (multiplicity n − 1) and 1 − βi (multiplicity 1). From a geometric perspective, βi
determines the transformation type, interpolating between identity (βi = 0) and projection (βi = 1).
DeltaNet also has a natural interpretation from an online learning perspective [10], as each step of
its recurrence is one step of online gradient descent on a quadratic loss with step size βi:

Li(H) = 1/2∥H⊤ki − vi∥22; Hi = Hi−1 − βi ∇Li(Hi−1) = Hi−1 − βi ki(k
⊤
i Hi−1 − v⊤

i)

DeltaNet: Hi = (I − βikik
⊤
i)Hi−1 + βikiv

⊤
i

State-Tracking and Word Problems. State-tracking is the ability of a model to keep track of
the state of a system while only observing the updates that are applied to it. It can be modeled as a
monoid word problem, which consists in mapping sequences x1, . . . , xt, with xi being an element of
a monoid G, into sequences y1, . . . , yt, where yi = xi ·xi−1 · · ·x1 and · is the associative operation
of the monoid. Recognizing a regular language can be accomplished by solving the word problem
of a finite monoid associated to the language and will be the focus of this work. Problems where G
is also a group (group word problems) with finite elements, are notoriously hard to solve for both
Transformers and linear RNNs. Group word problems for the symmetric or permutation groups
are particularly important, since any group is isomorphic to a subgroup of a symmetric group. For
instance, if we denote with Sn the group of permutations of n elements, parity corresponds to the S2

word problem, which cannot be solved in finite precision by Transformers [17] and diagonal Linear
RNNs [15] with positive values, while the S5 word problem cannot be solved by these models even
when the precision can grow logarithmically with the sequence length, since both Transformers and
Linear RNNs belong to the TC0 circuit complexity class while S5 is in NC1 [3, 18, 32]. In contrast,
with unconstrained, full state-transition matrices any regular language can be recognized in one layer
(see e.g. [3, Theorem 5.2]). However, training using full unstructured matrices is very inefficient and
also unstable without any control on the norm.

3 Related Work
Linear RNNs have recently been studied from two main perspectives: state-space models and causal
linear attention. State-space models, originating from continuous dynamical systems, inspired vari-
ants such as S4 [4], H4 [33], and LRU [5] (see Tiezzi et al. [34] for a comprehensive survey). Models
like Mamba [6, 7] further enhance these by incorporating input-dependent gating mechanisms, sig-
nificantly improving language modeling performance. In parallel, Katharopoulos et al. [19] showed
that causal linear attention Transformers can be reformulated as RNNs with linear sequence-length
scaling. Following this, Gated Linear Attention (GLA) [8] introduced gating mechanisms similar
to Mamba. Recent studies explored more expressive recurrences via non-diagonal transition ma-
trices, such as DeltaNet [10, 29, 35], TTT-Linear [12], RWKV-7 [13], B’MOJO [36], and Titans
[14]. Additionally, Beck et al. [9] introduced xLSTM, combining linear and nonlinear RNN archi-
tectures inspired by LSTM [2]. Another line of work explores recurrences in depth, which have been
shown to increase the expressivity and reasoning capabilities [37, 38]. For instance, concurrent work
explores how fixed-point iterations of a diagonal linear RNN can increase its expressivity turning
it non-linear at the fixed-point [39, 40]. Unlike our approach, which enhances the expressivity by
increasing the complexity of the linear recurrence, their approach works by applying the same recur-
rence multiple times, effectively increasing the depth of the model without increasing the parameter
count. This approach is orthogonal to ours and the two can be potentially combined.

3

Products of structured matrices [41] have previously been used in the state-update of non-linear
RNNs – including (Givens) rotation matrices [42–44], Kronecker products [45], Householder reflec-
tions [46]—chosen for their orthogonal, norm-preserving properties that encourage long-term de-
pendency learning [47, 48]. Recently, Biegun et al. [49] applied rotation matrices as state-transition
matrices in non-selective state-space models. In contrast, DeltaProduct uses a linear recurrence with
state-transition matrices adaptive to the current token, expressed as products of generalized House-
holder matrices.

State-Tracking. Recent work by Grazzi et al. [16] demonstrates that expanding the eigenvalue
range of linear RNNs’ state transition matrices from [0, 1] to [−1, 1] significantly enhances their
expressivity. They show how DeltaNet’s eigenvalue range can be extended from [0, 1] to [−1, 1],
simply by multiplying βi by 2, allowing DeltaNet to perform reflections when βi = 2, which enables
it to handle state-tracking tasks such as parity checking and, more generally, any group word problem
where each element of the input sequence corresponds to a permutation of at most two elements,
while for other tasks, DeltaNet requires multiple layers [16, Theorem 2 and 6]. Their theoretical
results also cover the products of Householders used as state-transition matrices of DeltaProduct,
showing that they allow to solve any group word problem in one layer (Theorem 3) and recognize
any regular language (Theorem 4), when nh is large enough and with a finite number of layers. Here,
we extend that work by providing experimental evidence of the benefit of larger nh and, leveraging
the analysis by Peng et al. [13], more refined theoretical results on the expressivity, e.g. with a
greatly improved dependency on nh. The recent RWKV-7 [13] uses a state transition matrix of the
form diag(wt) − ckt(kt ⊙ at)

⊤, with ∥kt∥ = 1,at,wt ∈ [0, 1]n and c ∈ {1, 2}, which provides
a potentially asymmetric rank-1 update in contrast to DeltaNet’s symmetric update, allowing it to
recognize any regular language with only 4 layers. However, the increased expressivity comes at the
cost of losing the guarantee on the stability of the recurrence. In contrast, (Gated) DeltaProduct has
a stable recurrence since the spectral norm of every state-transition matrix is always ≤ 1.

4 DeltaProduct
While DeltaNet’s recurrence can be seen as performing one step of online gradient descent per
token, DeltaProduct builds upon DeltaNet by further refining the hidden state by taking multiple
steps per token. This naturally leads to a more expressive state-transition matrix formed as a product
of generalized Householder matrices, where each additional step expands the range of achievable
linear transformations. Formally, for each input token xi to the layer we generate nh keys as ki,j

= ψ(Wjxi)/∥ψ(Wjxi)∥2, nh values as vi,j = Vjxi, and nh betas as βi,j = ϕ(Ujxi) where
Wj ,Vj ,Uj , are learnable weight matrices specific to the j-th gradient step, ψ is a nonlinearity
(we pick SiLU as in DeltaNet), while ϕ is either the sigmoid or 2× the sigmoid to increase the
expressivity. Then, we compute nh gradient descent steps using the losses Li,j(H) = ∥H⊤ki,j −
vi,j∥22/2, i.e., for j = 1 . . . nh

Hi,j = Hi,j−1 − βi,j∇Li,j(Hi,j−1) =
(
I − βi,jki,jk

⊤
i,j

)
Hi,j−1 + βi,jki,jv

⊤
i,j ,

where Hi,0 = Hi−1 and Hi,nh
= Hi. Unrolling, we get Hi = A(xi)Hi−1 +B(xi) with

A(xi) =

nh∏
j=1

(
I − βi,j ki,jk

⊤
i,j

)
, B(xi) =

nh∑
j=1

(nh∏
k=j+1

(
I − βi,k ki,kk

⊤
i,k

))
βi,j ki,jv

⊤
i,j . (3)







 +



×
[] 

 +




nh

×




Diagonal
Token Mix:
Channel Mix:
Expressivity:
Examples:

Diagonal:
✓
×
Parity
Mamba, GLA

Rank 1 Update:
✓
✓
Reflections
DeltaNet, TTT, RWKV-7

Rank nh Update:
✓
✓
Reflections, Rotations
DeltaProduct

Figure 2: Overview of state-transition matrices A(xi) in linear RNNs.

4

Hence, by taking multiple gradient descent steps per token, DeltaProduct’s state-transition matrices
are products of generalized Householder transformations, and by expanding such a product, A(xi)
takes the form of identity plus a matrix of rank at most nh as shown in Figure 2. As DeltaNet extends
to Gated DeltaNet by incorporating a forget gate [11], DeltaProduct can similarly be extended to
Gated DeltaProduct by letting A(xi) = gi

∏nh

j=1(I −βi,j ki,jk
⊤
i,j) where the scalar gate gi ∈ [0, 1]

is adopted from Mamba 2 [7] and B(xi) remains unchanged. This formulation enables DeltaProduct
to interpolate between generalized Householder (nh = 1 as in DeltaNet) and dense matrices (of
norm ≤ 1), since increasing nh can increase the rank of A(xi).

H0
H1

k0

k1

θ

2θ

x

x′

x′′

Figure 3: Two reflec-
tions produce a 2D
rotation: Reflecting x
across planes H0 and
H1 (with normals k0

and k1) yields a rota-
tion by 2θ, where θ is
the angle between the
planes.

Expressivity of Householder products. While any state transition ma-
trix of DeltaNet can model a single Householder reflection (with βi = 2),
DeltaProduct’s can model any orthogonal matrix. This is a consequence
of the Cartan-Dieudonné theorem, which establishes that any n × n or-
thogonal matrix can be expressed as a product of at most n reflections (as
illustrated in Figure 3 for n = 2). The Householder product exhibits inter-
esting properties in special cases. When all Householder keys are identical,
the product simplifies to a single Householder with a scaled beta parameter,
offering no additional expressivity (Prop. 1.1). Conversely, when the keys
are mutually orthogonal, the Householder product simplifies to an identity
plus a symmetric rank nh matrix (Prop. 1.2). Only when the keys are non-
trivially linearly dependent can we obtain non-symmetric matrices, poten-
tially yielding complex eigenvalues (Prop. 1.3). An important consequence
of using Householder products is that it allows us to effectively bound the
norm of A(xi). This is because the norm of the product is upper bounded
by the product of the norms (each ≤ 1), which ensures the stability of the
recurrence [16, Prop. 1.1]. This bound would not be possible with the more
direct parametrization A(xi) = I−

∑nh

j=1 βi,jki,jk
⊤
i,j , which also restricts

the matrix to be symmetric.

4.1 State-Tracking Capabilities of (Gated) DeltaProduct
We present two theorems that characterize the state-tracking capabilities of DeltaProduct. Compared
to Grazzi et al. [16, Theorem 3 and 4], we focus on results that hold for any nh ≥ 1. We defer proofs,
and more details to Appendix B, where we also include results on dihedral groups (Theorem 7) and
on finite subgroups of the orthogonal and special orthogonal groups (Theorem 4).

Theorem 1. For any n ∈ N there exists a DeltaProduct model with one of the following configu-
rations that can solve the word problem of the symmetric group Sn: (i) one layer with nh = n−1
[16, Theorem 3] (ii) 3 layers with nh>1 (iii) 4 layers with nh = 1. The construction for (ii) and
(iii) requires that the MLP at the second last layer computes a lookup-table of size 2m × (n!)2m,
function of the last 2m input tokens and the position modulo 2m with m = ⌈(n−1)/nh⌉.

Theorem 2. For any nh ≥ 1 and any regular language, there exists a Gated DeltaProduct model
with a finite number of layers (dependent on the language) that recognizes it.

The proof for Theorem 1 uses the same idea as the construction for the theoretical results of Peng
et al. [13] for RWKV-7. Each element of Sn can be mapped to a permutation matrix, but DeltaProd-
uct’s state transition matrices can only model permutations of up to nh + 1 elements. Therefore, if
nh + 1 < n, early layers decompose each product of m = ⌈(n− 1)/nh⌉ consecutive permutations
into m simpler permutations, which are applied in the recurrence of the last layer but in a delayed
fashion. To get such a decomposition and account for the delay, the MLP at the second-last layer
computes a potentially large lookup table, function of the past 2m tokens and the position modulo
2m. To prove Theorem 2, we use the Krohn-Rhodes decomposition [50], similarly to Grazzi et al.
[16, Theorem 4], where each automaton is decomposed into multiple permutation-reset automata,
and model each using the same technique of Theorem 1, exploiting gates for the resets.

Comparison to other non-diagonal Linear RNNs. Table 1 provides a comparison of the expres-
sivity of different non-diagonal linear RNNs. (Gated) DeltaProduct with nh > 1 has improved
expressivity compared to DeltaNet, and, up to 3 layers, even compared to RWKV-7. Moreover,
increasing nh has clear benefits: reducing the number of layers or the size of the lookup table.
Since DeltaProduct can solve the S5 word problem, it is outside of the TC0 complexity class, just
as RWKV-7. One might expect DeltaProduct to be able to model any useful state-transition matrix

5

Table 1: Expressivity of non-diagonal Linear RNNs shown through the formal language problems
they can solve in finite precision. Sn, Zn, Dn are the symmetric, cyclic and dihedral groups of order
n, while O(n),SO(n) are the orthogonal and special orthogonal group of order n. For Sn, “only
k-permutations” means that input sequences can contain only permutations of up to k elements. LS
is the size of the lookup table computed in the second-last layer’s MLP. |Σ| and |Q| are the sizes
of the alphabet and set of states of a finite state automaton recognizing the regular language. Gated
variants’ state updates can also model constant (reset) transitions.

Layers (Gated) DeltaNet RWKV-7 (Gated) DeltaProductnh>1

1 Sn only 2-permutations.a Sn only 2-permutations Sn only (nh + 1)-permut.a

Finite subgroups of O(nh),
SO(nh + 1) if nh is even.g

2 Zn
b,Dn

c Zn, Dn

3 Sn with LS 2m× (n!)2m

where m = ⌈(n− 1)/nh⌉.d

4 Sn with LS
2(n− 1)× (n!)2(n−1).d

Sn with LS as DeltaNet. Reg.
lang. with LS 2|Q|×(|Σ|)2|Q|.e

f(|Q|) Gated: Regular languagesf Gated: Regular languagesf

a [16, Thm. 3] b [16, Thm. 6] c Thm. 7. d Thm. 1. e [13, Thm. 3] f Thm. 2 g Thm. 4

since it can model updates of arbitrarily high rank when nh is equal to the number of rows of the hid-
den state. This is because DeltaProduct’s state-transition matrices A(xi) satisfy the spectral norm
condition ∥A(xi)∥ = max∥y∥=1 ∥A(xi)y∥2 ≤ 1, ensuring a stable recurrence. RWKV-7 relaxes
this constraint and can represent matrices with higher spectral norms. In particular, copy matrices
– identity matrices where one column is replaced by another – with ∥A(xi)∥ =

√
2 (when c = 2),

allowing RWKV-7 to recognize any regular language in just four layers. However, this may lead to
instability in the recurrence (see Appendix B.6). We could enhance expressivity at the cost of stabil-
ity by replacing the Householder matrices in DeltaProduct with RWKV-7’s state transition matrices.
This modification enables us to prove a result analogous to Theorem 1, but for regular languages
rather than group word problems—see Appendix B.4 for details. Specifically, this approach allows
the resulting linear RNN to recognize any regular language within a single layer, provided nh is
sufficiently large.
Remark 1. For any regular language recognized by a finite-state automaton (FSA) having n states
there exists a one layer linear RNN using nh = n products of RWKV-7 matrices as state-transition
matrices that can recognize it. This is because a linear RNN with unconstrained state-transition
matrices can recognize any regular language in a single layer [3, Theorem 5.2] by modeling FSA
evaluation through matrix-vector products [51]. Peng et al. [13, Lemma 3] further showed that any
transition matrix of an FSA with n states can be expressed as products of n matrices, each of which
is either a swap, copy, or the identity matrix, all of which are representable by an RWKV-7 matrix.

The above discussion oulines a trade-off between the expressivity of RWKV-7 matrices and the guar-
anteed stability of generalized Householders used in DeltaProduct. It is an open question whether
there exists a continuous parameterization of state-transition matrices which yields stable recur-
rences and still allows to recognize any regular language in a finite and fixed number of layers.

5 Experiments
We evaluate DeltaProduct on state-tracking and standard language modeling to assess its expres-
sivity and efficiency. Throughout the experiments we use either the suffix [−1, 1] or [0, 1] after
each method, to denote the eigenvalue ranges of its state transition matrices. We present additional
experiments on languages of different levels of the Chomsky hierarchy [52] in Appendix C.2.

5.1 Implementation
We use the same macro architecture used by Gated DeltaNet. Since each step of (Gated) DeltaProd-
uct follows the same recurrence structure as (Gated) DeltaNet, we can reuse its implementation
written in Triton [53], available through the FLASH-LINEAR-ATTENTION library [22], which uses
the chunk-wise parallel form for the recurrence.

6

0 200 400
Sequence Length

0.0

0.5

1.0

A
cc

ur
ac

y

Group S3

nh
1
2

0 200 400
Sequence Length

0.0

0.5

1.0

A
cc

ur
ac

y

Group S4

nh
1
2
3

0 200 400
Sequence Length

0.0

0.5

1.0

A
cc

ur
ac

y

Group A5

nh
1
2
3
4

0 200 400
Sequence Length

0.0

0.5

1.0

A
cc

ur
ac

y

Group S5

nh
1
2
3
4

0 200 400
Sequence Length

0.0

0.5

1.0

A
cc

ur
ac

y

Group S3

l
1
2
3
4
5

0 200 400
Sequence Length

0.0

0.5

1.0

A
cc

ur
ac

y

Group S4

l
1
2
4
6
8
10

0 200 400
Sequence Length

0.0

0.5

1.0

A
cc

ur
ac

y

Group A5

l
1
2
3
4
5

0 200 400
Sequence Length

0.0

0.5

1.0

A
cc

ur
ac

y

Group S5

l
1
2
4
6
8
10

Figure 5: Accuracy on state-tracking tasks for permutation groups S3, S4, A5, and S5, plot-
ted against sequence length (x-axis). (Top row) Varying the number of Householder products
nh for a single layer DeltaProductnh

[−1, 1]. (Bottom row) Varying the number of layers l of
DeltaProduct1[−1, 1]/DeltaNet[−1, 1] (single Householder). Dashed vertical line at training con-
text length 128. Higher nh improves extrapolation to longer sequences of permutations, e.g., S3 can
be learned with nh = 2 with a single layer while three layers are required when keeping nh = 1.

0

20K

40K

nh : 1 2 3

16K×1 8K×2 4K×4 2K×8
Training length × Batch size

0

20K

40K

To
ke

ns
 p

er
 se

co
nd

 (K
t/s

)

Figure 4: Training throughput
of parameter matched 1.3B
DeltaProductnh

on a H100.
Matched via: (Top) scaling
the number of heads, (Bottom)
scaling the head dimension.

However, DeltaProduct differs by using nh keys, values and be-
tas per token, resulting in a recurrence nh times longer than
DeltaNet’s. Therefore, we arrange keys (and similarly val-
ues and betas) as [k1,1, . . . ,k1,nh

,k2,1, . . . ,k2,nh
, . . .] , while

for gating we construct the expanded sequence of gates as:
[g1, 1, . . . , 1, g2, 1, . . . , 1, . . .] where each gate gi is followed by
(nh−1) ones to match the number of keys and values, so that we
use only one gate for each token. Once the recurrence is evalu-
ated, we keep only every nh-th element of the output, so that the
output sequence retains the same length as the input sequence.

Throughput. The training (and prefill time) required for the
recurrence increases linearly with nh, since we use the same
chunk size for the chunkwise parallel form. In contrast, since
we keep the embedding dimension fixed, the cost for the MLP
following the recurrence does not vary with nh. To remedy the
parameter-overhead introduced by the additional key and value
projections due to increased nh, we demonstrate the throughput
when matching parameters in Figure 4. Matching parameters
simply by scaling the head dimension is unfavorable (bottom
subplot, nh = 2) since head dimensions that are not a power
of 2 will get padded to the next power thereof, effectively giving up the remaining dimensions at
no reduction in runtime. See Appendix C.3.2 for additional results on smaller models. Note that
if nh ≥ 1, we could parallelize the recurrence to have a faster runtime also during autoregressive
generation. Note that the throughput results are obtained using an optimized Triton kernel imple-
mentation (developed by Songlin Yang and Yu Zhang, available in the flash-linear-attention library)
that achieves a 20% faster forward pass than DeltaNet’s kernel.

5.2 State-Tracking

Setup. We evaluate DeltaProduct’s ability to capture complex state dynamics using group word
problems of increasing difficulty, specifically on the permutation groups S3, S4, A5, and S5, as
implemented by Merrill et al. [3]. These tasks consist in tracking how a sequence of permutations
rearranges elements. An intuitive parallel is the shell game, where one needs to track the position of
a hidden object after each shuffle. We train on sequences of 128 permutations and measure extrapo-
lation up to 512. Throughout, we use the extended eigenvalue range, allowing eigenvalues in [−1, 1].
We find that DeltaProduct models fail to learn even the training context-length when restricted to

7

the standard eigenvalue range [0, 1], regardless of the number of Householder transformations nh as
shown in Figure 12. See Appendix C.1 for details on the experiments.

Single layer, varying nh. Figure 5 (top row) demonstrates the benefits of increasing the number of
Householders nh per token for a single layer DeltaProduct. Grazzi et al. [16, Theorem 3] presents
a construction for permutations of n elements requiring n − 1 Householders and keys of size n.
In agreement, we find that for S3 achieving reliable performance beyond sequence lengths of 128
requires nh = 2, while S5 needs nh = 4. Unexpectedly, S4 and A5 can extrapolate robustly using
only nh = 2 despite the theorem suggesting 3 and 4, respectively. This efficiency arises from their
isomorphism to subgroups of SO(3,R), i.e. the group of 3D rotations, [54, Ch. 1, Sec. 2.4] which
only require nh = 2 and keys of size 3 (see Theorem 4). Specifically, S4 is isomorphic to the
rotation group of the cube (illustrated in Figure 6) andA5 to the rotation group of the dodecahedron.
See Appendix C.1 for details on the isomorphisms.

1
2

3

4

1 2 3 4

90◦

4
1

2

3

4 1 2 3

Figure 6: Rotating a cube permutes its di-
agonals according to the S4 group. This ex-
ample shows how a 90◦ rotation of the cube
leads to the 4-cycle (1 → 2 → 3 → 4 → 1).

To empirically validate whether DeltaProduct2[−1, 1]
exploits the isomorphism of S4 to the rotation group
of the cube, we verified two hypotheses: whether
both Householders act as reflections (βi,0 = βi,1 =
2) composing to form rotations (see Figure 3), and
whether the keys are in a three-dimensional subspace.
By recording βi,0 and βi,1 values (representing the
first and second Householder in the product) across
all 24 permutations of S4, we find that a single head
has indeed learned to use both Householder transfor-
mations as reflections where βi,0 = βi,1 = 2, ef-
fectively creating rotation matrices as shown in Ap-
pendix C.1. This pattern is evident in Figure 7 (left), where this head predicts both βi,0 and βi,1
approximately at 2, confirming that the model successfully learns to approximate rotations by com-
bining two reflections. Note that the eigenvalues of the Householder product become complex in
this case allowing it to perform rotations (Prop 1.3). To further verify whether the keys are in a
three-dimensional subspace, we apply Principal Component Analysis [55] to the key vectors of this
head. The results in Figure 7 (right) demonstrate that three principal components account for over
95% of the variance in the key space. This finding strongly supports our theoretical understanding,
as it indicates that the model primarily operates in a three-dimensional subspace, which aligns with
the structure of SO(3,R).

1.8

2.0

0

10 20
Permutation Index

1.8

2.0

1

2 4 6
Num. Components

0.50

0.75

1.00

C
um

. E
xp

la
in

ed
Va

ria
nc

e

Figure 7: (Left) Estimated β values for
DeltaProduct2[−1, 1] on all permutations
of S4, clustering near 2 (reflection). (Right)
PCA of key vectors shows that the first
three components explain most of the vari-
ance.

Multiple layers, nh = 1. The bottom row of
Figure 5 explores the expressivity of multi-layered
DeltaNet[−1, 1] (i.e., nh = 1). While increasing
layers with nh = 1 improves performance, it is
less effective than increasing nh and degrades length-
extrapolation performance. Specifically, to fit the
training context length, S3 required 3 layers, S4

needed 6 layers, and A5 required 3. For S5, even 10
layers proved insufficient. This suggests that simply
adding depth is less effective in practice than increas-
ing nh, despite theoretical constructions showing that
S3 can be solved with just 2 layers (Theorem 7) and
any group word problem can be solved with 4 layers
(with a very wide MLP).

5.3 Language Modeling

Setup. We trained two model variants: DeltaProductnh
[−1, 1] and Gated DeltaProductnh

[−1, 1]
using the FineWeb dataset [57]. We provide details about the training pipeline and hyperparameters
in Appendix C.3.1. To assess length extrapolation, we measured the cross-entropy loss beyond
the training context length of 4096 tokens on CodeParrot [58] for coding, OpenThoughts-114k-
Math [59] for math, and TriviaQA [60] for knowledge retrieval. We evaluated the models using
language understanding, reasoning, and retrieval benchmarks from lm-eval-harness [61], with task
specifics in Appendix C.3.3. Throughout our experiments we find that the training process remained
stable even as we increased nh (see Appendix C.3.4).

8

0 5000 10000 15000

Sequence Length

2.9

3.0

3.1

T
ok

en
L

os
s

CodeParrot

0 5000 10000 15000

Sequence Length

2.65

2.70

2.75

2.80

Trivia QA

0 5000 10000 15000

Sequence Length

2.9

3.0

3.1

3.2

OpenThoughts 114K Math

DeltaNet DeltaProduct2 DeltaProduct3

Figure 8: Length extrapolation results. Solid and dashed lines represent models with 8 and 12 heads
respectively. Note that DeltaProduct2[−1, 1] with 8 heads (392M parameters) matches the parameter
count of DeltaNet (nh = 1) with 12 heads (dotted line), while achieving significantly better length
extrapolation. For each index of the sequence, we report the moving average over 501 tokens as
suggested by Lin et al. [56].

0 10000
Sequence Length

30

40

50

Ef
fe

ct
iv

e
R

an
k

DeltaProduct3[1, 1]

0 10000
Sequence Length

30

40

50

Ef
fe

ct
iv

e
R

an
k

DeltaNet[1, 1]

0 10000
Sequence Length

0

20

40

60

Ef
fe

ct
iv

e
R

an
k

GatedDeltaProduct3[1, 1]

0 10000
Sequence Length

0

20

40

Ef
fe

ct
iv

e
R

an
k

GatedDeltaNet[1, 1]

Figure 9: Effective rank of Hi for 4 of 8 heads in layer 20/24 on trivia-qa sequences. Solid vertical
lines mark new question-answer pairs; dashed vertical line indicates 4096-token training context
length; colored lines show effective rank per head over the sequence.

Length extrapolation results. Remarkably, as shown in Figure 8, DeltaProduct’s length extrapola-
tion performance increases sharply when going from one to two Householders, and at nh = 3, the
performance degradation is minimal across the sequence length. We hypothesize that DeltaProduct
achieves better length extrapolation by enhancing DeltaNet’s forgetting mechanism. While DeltaNet
requires n rank-1 updates to reset its state to zero, DeltaProduct can accelerate this forgetting process
by a factor of nh. However, our experiments show that DeltaProduct2[−1, 1] still performs better
with a forget gate, as demonstrated by its improved results when compared to the non-gated version
(see Appendix C.3.5).

200M 400M 800M
Parameters

12

13

14

15

16

Pe
rp

le
xi

ty

FineWeb
DeltaNet
DeltaProduct2

DeltaProduct3

200M 400M 800M
Parameters

20
30
40
50
60
70
80
90

Pe
rp

le
xi

ty

Lambada
DeltaNet
DeltaProduct2

DeltaProduct3

200M400M 800M
Parameters

0.42

0.44

0.46

0.48

Av
g.

 a
cc

ur
ac

y

Avg. accuracy lm-eval

DeltaNet
DeltaProduct2

DeltaProduct3

Figure 10: Scaling
analysis w.r.t. (top)
final perplexity on
FineWeb, (bottom)
Lambada and lm-eval
tasks.

Analyzing state dynamics through effective rank. To test our hypoth-
esis towards a better forgetting mechanism, we compare how the infor-
mation density of the hidden state Hi changes over time for (Gated)
DeltaProduct3[−1, 1] and (Gated) DeltaNet[−1, 1]. We propose to mea-
sure the information density of Hi using its effective rank [62] defined as
erank(Hi) = exp(−

∑
k pk log pk), where pk = σk/

∑
i |σi| and σi is

the i-th singular value of Hi, which satisfies 1 ≤ erank(Hi) ≤ rank(Hi).
Note that Parnichkun et al. [63] also used the effective rank in the context of
linear RNNs, but measured on a different quantity: a linear operator associ-
ated to the recurrence. Similarly, Peng et al. [13] conducted an interpretabil-
ity study on the hidden state of RWKV-7 using the average stable rank [64]
across layers. In Figure 9, we present the effective rank of DeltaProduct3,
Gated DeltaProduct3, Gated DeltaNet, and DeltaNet across a sequence of
tokens from the TriviaQA dataset, which consists of question-answer pairs
that test common knowledge. We observe that some heads of DeltaProduct
learn to update their state with new information at the beginning of sequence
(BOS) tokens and then decay over the rest of the sequence. In comparison,
a few heads of Gated DeltaNet and Gated DeltaProduct learn to reduce the
effective rank of the hidden state close to zero after each BOS token, while the other heads maintain
a very low effective rank throughout the sequence. In contrast, DeltaNet’s effective rank increases
substantially beyond the training context. We attribute DeltaNet’s inability to extrapolate to longer
sequences to this issue, as the training and extrapolation regimes differ, resulting in a distribution
shift. We present additional results for other layers and the CodeParrot dataset in Appendix C.3.5.

9

Scaling Analysis. We test whether it is favorable to increase model size through Householder prod-
ucts as opposed to increasing model capacity through e.g., the head dimension. We adjust either the
head dimension in DeltaNet, or the number of Householder products (nh) in DeltaProduct to reach
a given size. Figure 10 (top) shows that DeltaProduct scales better in terms of training perplexity.
The results on lm-eval-harness tasks, in Figure 10 (bottom), reinforce our findings as DeltaProduct
maintains its performance advantage at the largest scale. In total, we test two methods to reach pa-
rameter equivalence at each model scale: scaling the number of heads or the head dimension. We
find that the latter shows more consistent scaling. Results for scaling the number of heads can be
found in Appendix C.3.6. In Appendix C.3.3 we report additional results, including gated variants,
where we find that both DeltaProduct and Gated DeltaProduct on average outperform their baseline
counterparts (DeltaNet[−1, 1] and Gated DeltaNet[−1, 1]) across the considered language model-
ing benchmarks from lm-eval harness when we increase nh. Interestingly, DeltaProduct3[−1, 1]
achieves comparable performance to Gated DeltaNet[−1, 1], despite lacking a forget gate.

6 Conclusion and Future Work
We present DeltaProduct, an extension of DeltaNet that uses products of Householder transfor-
mations as state-transition matrices. Our approach bridges the gap between structured and dense
matrices, with each recurrence step interpretable as multiple steps of gradient descent on an as-
sociative recall loss (compared to DeltaNet’s single step). The number of Householder matrices
(nh) serves as a tunable parameter balancing expressivity and computational efficiency. Our ex-
periments demonstrate DeltaProduct’s superior performance over DeltaNet in state tracking, formal
language recognition, and language modeling, with particularly strong length extrapolation results.
DeltaProduct represents a promising step towards developing sequence models that are more capa-
ble while still remaining scalable. Limitation. The main limitation of DeltaProduct is its increased
computational cost, which scales linearly with nh during training. Future Work. Future research
could explore more expressive and possibly stable matrix parameterizations or an adaptive version
of DeltaProduct determining the number of Householders per token similar to Graves [65] in or-
der to reduce computation. The additional parameters introduced with higher nh could be reduced
through LoRA MLPs as done in RWKV-7 [13]. In addition, one could combine DeltaProduct with
fixed point RNNs [39, 40]. Our DeltaProduct implementation could be further optimized through
custom kernels as suggested in the recent works by Cirone and Salvi [66] or Beck et al. [67]. We also
identify promising applications for DeltaProduct in reasoning tasks, where the higher token counts
align well with the strength of linear RNNs. Given that state-tracking benefits reasoning tasks [39],
future work should examine how increasing nh affects reasoning.

Acknowledgements
We would like to thank Songlin Yang, Eddie Bergman, Arjun Krishnakumar, Alma Lindborg, and
Julie Naegelen for constructive discussions and feedback. We acknowledge the support and as-
sistance of the Data Science and Computation Facility and its Support Team, in particular Mat-
tia Pini, in using the IIT High-Performance Computing Infrastructure, on which we run part of
our experiments. This research was partially supported by the following sources: PNRR MUR
Project PE000013 CUP J53C22003010006 “Future Artificial Intelligence Research (FAIR)“, funded
by the European Union – NextGenerationEU, and EU Project ELSA under grant agreement No.
101070617. TAILOR, a project funded by EU Horizon 2020 research and innovation programme
under GA No 952215; the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
under grant number 417962828; the European Research Council (ERC) Consolidator Grant ’Deep
Learning 2.0’ (grant no. 10). This research was partially funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under grant number 539134284, through EFRE (FEIH
2698644) and the state of Baden-Württemberg. Frank Hutter acknowledges financial support by
the Hector Foundation. The authors acknowledge support from ELLIS and ELIZA. Funded by the
European Union. The authors gratefully acknowledge the computing time made available to them
on the high-performance computers and at the NHR Centers at TU Dresden and KIT. These centers
are jointly supported by the Federal Ministry of Research, Technology and Space of Germany and
the state governments participating in the NHR. Views and opinions expressed are however those of
the author(s) only and do not necessarily reflect those of the European Union or the ERC. Neither
the European Union nor the ERC can be held responsible for them.

10

References
[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser, and I. Polo-

sukhin. Attention is all you need. In I. Guyon, U. von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Proceedings of the 31st International
Conference on Advances in Neural Information Processing Systems (NeurIPS’17). Curran As-
sociates, Inc., 2017.

[2] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation, 9
(8):1735–1780, 1997.

[3] W. Merrill, J. Petty, and A. Sabharwal. The Illusion of State in State-Space Models. In
R. Salakhutdinov, Z. Kolter, K. Heller, A. Weller, N. Oliver, J. Scarlett, and F. Berkenkamp,
editors, Proceedings of the 41st International Conference on Machine Learning (ICML’24),
volume 251 of Proceedings of Machine Learning Research. PMLR, 2024.

[4] A. Gu, K. Goel, and C. Re. Efficiently Modeling Long Sequences with Structured State Spaces.
In The Tenth International Conference on Learning Representations (ICLR’22). ICLR, 2022.

[5] A. Orvieto, S. L. Smith, A. Gu, A. Fernando, C. Gulcehre, R. Pascanu, and S. De. Resurrecting
recurrent neural networks for long sequences. In A. Krause, E. Brunskill, K. Cho, B. Engel-
hardt, S. Sabato, and J. Scarlett, editors, Proceedings of the 40th International Conference on
Machine Learning (ICML’23), volume 202 of Proceedings of Machine Learning Research.
PMLR, 2023.

[6] Albert Gu and Tri Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces.
In First Conference on Language Modeling, 2024.

[7] T. Dao and A. Gu. Transformers are SSMs: Generalized models and efficient algorithms
through structured state space duality. In R. Salakhutdinov, Z. Kolter, K. Heller, A. Weller,
N. Oliver, J. Scarlett, and F. Berkenkamp, editors, Proceedings of the 41st International Con-
ference on Machine Learning (ICML’24), volume 251 of Proceedings of Machine Learning
Research. PMLR, 2024.

[8] S. Yang, B. Wang, Y. Shen, R. Panda, and Y. Kim. Gated Linear Attention Transformers with
Hardware-Efficient Training. In R. Salakhutdinov, Z. Kolter, K. Heller, A. Weller, N. Oliver,
J. Scarlett, and F. Berkenkamp, editors, Proceedings of the 41st International Conference on
Machine Learning (ICML’24), volume 251 of Proceedings of Machine Learning Research.
PMLR, 2024.

[9] M. Beck, K. Pöppel, M. Spanring, A. Auer, O. Prudnikova, M. Kopp, G. Klambauer, J. Brand-
stetter, and S. Hochreiter. xLSTM: Extended Long Short-Term Memory. In A. Globerson,
L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, Proceedings
of the 37th International Conference on Advances in Neural Information Processing Systems
(NeurIPS’24), 2024.

[10] S. Yang, B. Wang, Y. Zhang, Y. Shen, and Y. Kim. Parallelizing Linear Transformers with the
Delta Rule over Sequence Length. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Pa-
quet, J. Tomczak, and C. Zhang, editors, Proceedings of the 37th International Conference on
Advances in Neural Information Processing Systems (NeurIPS’24), 2024.

[11] S. Yang, J. Kautz, and A. Hatamizadeh. Gated delta networks: Improving mamba2 with delta
rule. In The Thirteenth International Conference on Learning Representations (ICLR’25).
ICLR, 2025.

[12] Y. Sun, X. Li, K. Dalal, J. Xu, A. Vikram, G. Zhang, Y. Dubois, X. Chen, X. Wang, S. Koyejo,
T. Hashimoto, and C. Guestrin. Learning to (learn at test time): RNNs with expressive hidden
states. arXiv:2407.04620 [cs.LG], 2024.

[13] Bo Peng, Ruichong Zhang, Daniel Goldstein, Eric Alcaide, Haowen Hou, Janna Lu, William
Merrill, Guangyu Song, Kaifeng Tan, Saiteja Utpala, Nathan Wilce, Johan S. Wind, Tianyi
Wu, Daniel Wuttke, and Christian Zhou-Zheng. RWKV-7 ”Goose” with Expressive Dynamic
State Evolution, 2025.

11

[14] Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. Titans: Learning to memorize at test time.
arXiv preprint arXiv:2501.00663, 2024.

[15] Y. Sarrof, Y. Veitsman, and M. Hahn. The Expressive Capacity of State Space Models: A
Formal Language Perspective. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet,
J. Tomczak, and C. Zhang, editors, Proceedings of the 37th International Conference on Ad-
vances in Neural Information Processing Systems (NeurIPS’24), 2024.

[16] R. Grazzi, J. Siems, A. Zela, J. Franke, F. Hutter, and M. Pontil. Unlocking State-Tracking in
Linear RNNs Through Negative Eigenvalues. In The Thirteenth International Conference on
Learning Representations (ICLR’25). ICLR, 2025.

[17] Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transac-
tions of the Association for Computational Linguistics, 8:156–171, 2020.

[18] William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision
transformers. Transactions of the Association for Computational Linguistics, 11:531–545,
2023.

[19] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. Transformers are RNNs: Fast Autore-
gressive Transformers with Linear Attention. In H. Daume III and A. Singh, editors, Pro-
ceedings of the 37th International Conference on Machine Learning (ICML’20), volume 98.
Proceedings of Machine Learning Research, 2020.

[20] N. M. Cirone, A. Orvieto, B. Walker, C. Salvi, and T. Lyons. Theoretical Foundations of
Deep Selective State-Space Models. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Pa-
quet, J. Tomczak, and C. Zhang, editors, Proceedings of the 37th International Conference on
Advances in Neural Information Processing Systems (NeurIPS’24), 2024.

[21] Ke Alexander Wang, Jiaxin Shi, and Emily B Fox. Test-time regression: A unifying framework
for designing sequence models with associative memory. arXiv preprint arXiv:2501.12352,
2025.

[22] Songlin Yang and Yu Zhang. FLA: A Triton-Based Library for Hardware-Efficient Imple-
mentations of Linear Attention Mechanism, January 2024. URL https://github.com/
sustcsonglin/flash-linear-attention.

[23] W. Hua, Z. Dai, H. Liu, and Q. Le. Transformer quality in linear time. In K. Chaudhuri,
S. Jegelka, L. Song, C. Szepesvári, G. Niu, and S. Sabato, editors, Proceedings of the 39th
International Conference on Machine Learning (ICML’22), volume 162 of Proceedings of
Machine Learning Research. PMLR, 2022.

[24] Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang,
and Furu Wei. Retentive network: A successor to transformer for large language models. arXiv
preprint arXiv:2307.08621, 2023.

[25] Guy E. Blelloch. Prefix sums and their applications. Technical Report CMU-CS-90-190,
School of Computer Science, Carnegie Mellon University, 1990.

[26] E. Martin and C. Cundy. Parallelizing Linear Recurrent Neural Nets Over Sequence Length.
In The Sixth International Conference on Learning Representations (ICLR’18). ICLR, 2018.

[27] J. Smith, A. Warrington, and S. Linderman. Simplified State Space Layers for Sequence
Modeling. In The Eleventh International Conference on Learning Representations (ICLR’23).
ICLR, 2023.

[28] Ting-Han Fan, Ta-Chung Chi, and Alexander Rudnicky. Advancing Regular Language Rea-
soning in Linear Recurrent Neural Networks. In Proceedings of the 2024 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 2: Short Papers), pages 45–53, 2024.

[29] I. Schlag, K. Irie, and J. Schmidhuber. Linear transformers are secretly fast weight program-
mers. In M. Meila and T. Zhang, editors, Proceedings of the 38th International Conference
on Machine Learning (ICML’21), volume 139 of Proceedings of Machine Learning Research.
PMLR, 2021.

12

https://github.com/sustcsonglin/flash-linear-attention
https://github.com/sustcsonglin/flash-linear-attention

[30] I. Schlag, T. Munkhdalai, and J. Schmidhuber. Learning Associative Inference Using
Fast Weight Memory. In The Ninth International Conference on Learning Representations
(ICLR’21). ICLR, 2021.

[31] Alston S Householder. Unitary triangularization of a nonsymmetric matrix. Journal of the
ACM (JACM), 5(4):339–342, 1958.

[32] B. Liu, J. Ash, S. Goel, A. Krishnamurthy, and C. Zhang. Transformers Learn Shortcuts to
Automata. In The Eleventh International Conference on Learning Representations (ICLR’23).
ICLR, 2023.

[33] D. Fu, T. Dao, K. Saab, A. Thomas, A. Rudra, and C. Re. Hungry Hungry Hippos: Towards
Language Modeling with State Space Models. In The Eleventh International Conference on
Learning Representations (ICLR’23). ICLR, 2023.

[34] Matteo Tiezzi, Michele Casoni, Alessandro Betti, Tommaso Guidi, Marco Gori, and Stefano
Melacci. Back to recurrent processing at the crossroad of transformers and state-space models.
Nature Machine Intelligence, may 2025. ISSN 2522-5839. doi: 10.1038/s42256-025-01034-6.

[35] Kazuki Irie, Róbert Csordás, and Jürgen Schmidhuber. Practical computational power of linear
transformers and their recurrent and self-referential extensions. In The 2023 Conference on
Empirical Methods in Natural Language Processing, 2023.

[36] L. Zancato, A. Seshadri, Y. Dukler, A. Golatkar, Y. Shen, B. Bowman, M. Trager, A. Achille,
and S. Soatto. B’MOJO: Hybrid State Space Realizations of Foundation Models with Eidetic
and Fading Memory. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tom-
czak, and C. Zhang, editors, Proceedings of the 37th International Conference on Advances in
Neural Information Processing Systems (NeurIPS’24), 2024.

[37] D. Mostafa, G. Stephan, V. Oriol, J. Uszkoreit, and L. Kaiser. Universal Transformers. In The
Seventh International Conference on Learning Representations (ICLR’19). ICLR, 2019.

[38] Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bar-
toldson, Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time com-
pute with latent reasoning: A recurrent depth approach. arXiv preprint arXiv:2502.05171,
2025.

[39] Mark Schöne, Babak Rahmani, Heiner Kremer, Fabian Falck, Hitesh Ballani, and Jannes
Gladrow. Implicit Language Models are RNNs: Balancing Parallelization and Expressivity.
arXiv preprint arXiv:2502.07827, 2025.

[40] Sajad Movahedi, Felix Sarnthein, Nicola Muca Cirone, and Antonio Orvieto. Fixed-point
RNNs: From diagonal to dense in a few iterations. In First Workshop on Scalable Optimization
for Efficient and Adaptive Foundation Models, 2025.

[41] Matthias Kissel and Klaus Diepold. Structured matrices and their application in neural net-
works: A survey. New Generation Computing, 41(3):697–722, 2023.

[42] Victor D. Dorobantu, Per Andre Stromhaug, and Jess Renteria. DizzyRNN: Reparame-
terizing Recurrent Neural Networks for Norm-Preserving Backpropagation. arXiv preprint
arXiv:1612.04035, 2016.

[43] L. Jing, Y. Shen, T. Dubcek, J. Peurifoy, S. Skirlo, Y. LeCun, M. Tegmark, and M. Soljacic.
Tunable Efficient Unitary Neural Networks (EUNN) and their application to RNNs. In D. Pre-
cup and Y. Teh, editors, Proceedings of the 34th International Conference on Machine Learn-
ing (ICML’17), volume 70. Proceedings of Machine Learning Research, 2017.

[44] Rumen Dangovski, Li Jing, Preslav Nakov, Mićo Tatalović, and Marin Soljačić. Rotational
unit of memory: a novel representation unit for rnns with scalable applications. Transactions
of the Association for Computational Linguistics, 7:121–138, 2019.

[45] C. Jose, M. Cisse, and F. Fleuret. Kronecker recurrent units. In J. Dy and A. Krause, edi-
tors, Proceedings of the 35th International Conference on Machine Learning (ICML’18), vol-
ume 80. Proceedings of Machine Learning Research, 2018.

13

[46] Z. Mhammedi, A. Hellicar, A. Rahman, and J. Bailey. Efficient orthogonal parametrisation of
recurrent neural networks using householder reflections. In D. Precup and Y. Teh, editors, Pro-
ceedings of the 34th International Conference on Machine Learning (ICML’17), volume 70.
Proceedings of Machine Learning Research, 2017.

[47] Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen netzen. Diploma, Technische
Universität München, 91(1):31, 1991.

[48] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with
gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

[49] Kai Biegun, Rares Dolga, Jake Cunningham, and David Barber. RotRNN: Modelling Long
Sequences with Rotations. arXiv preprint arXiv:2407.07239, 2024.

[50] Kenneth Krohn and John Rhodes. Algebraic theory of machines. i. prime decomposition theo-
rem for finite semigroups and machines. Transactions of the American Mathematical Society,
116:450–464, 1965.

[51] Anil Nerode. Linear automaton transformations. Proceedings of the American Mathematical
Society, 9(4):541–544, 1958.

[52] G. Delétang, A. Ruoss, J. Grau-Moya, T. Genewein, L. K. Wenliang, E. Catt, C. Cundy,
M. Hutter, S. Legg, J. Veness, and P. A. Ortega. Neural Networks and the Chomsky Hi-
erarchy. In The Eleventh International Conference on Learning Representations (ICLR’23).
ICLR, 2023.

[53] Philippe Tillet, Hsiang-Tsung Kung, and David Cox. Triton: An intermediate language and
compiler for tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN
International Workshop on Machine Learning and Programming Languages, pages 10–19,
2019.

[54] Yvette Kosmann Schwarzbach. Groups and symmetries from finite groups to lie groups, 2010.

[55] Karl Pearson. LIII. On lines and planes of closest fit to systems of points in space. The London,
Edinburgh, and Dublin philosophical magazine and journal of science, 2(11):559–572, 1901.

[56] Zhixuan Lin, Evgenii Nikishin, Xu Owen He, and Aaron Courville. Forgetting transformer:
Softmax attention with a forget gate. arXiv preprint arXiv:2503.02130, 2025.

[57] Guilherme Penedo, Hynek Kydlı́ček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell,
Colin Raffel, Leandro Von Werra, and Thomas Wolf. The FineWeb Datasets: Decanting the
Web for the Finest Text Data at Scale, 2024.

[58] Lewis Tunstall, Leandro Von Werra, and Thomas Wolf. Natural Language Processing with
Transformers. O’Reilly Media, Inc., 2022.

[59] OpenThoughts Team. Open Thoughts. https://open-thoughts.ai, January 2025.

[60] Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale
distantly supervised challenge dataset for reading comprehension. In Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 1601–1611, 2017.

[61] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles
Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas
Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron,
Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A frame-
work for few-shot language model evaluation, 07 2024.

[62] Olivier Roy and Martin Vetterli. The effective rank: A measure of effective dimensionality. In
2007 15th European signal processing conference, pages 606–610. IEEE, 2007.

[63] Rom N Parnichkun, Neehal Tumma, Armin W Thomas, Alessandro Moro, Qi An, Taiji Suzuki,
Atsushi Yamashita, Michael Poli, and Stefano Massaroli. Quantifying Memory Utilization
with Effective State-Size. arXiv preprint arXiv:2504.19561, 2025.

14

[64] Mark Rudelson and Roman Vershynin. Sampling from large matrices: An approach through
geometric functional analysis. Journal of the ACM (JACM), 54(4):21–es, 2007.

[65] Alex Graves. Adaptive computation time for recurrent neural networks. arXiv preprint
arXiv:1603.08983, 2016.

[66] Nicola Muca Cirone and Cristopher Salvi. ParallelFlow: Parallelizing Linear Transformers via
Flow Discretization. arXiv preprint arXiv:2504.00492, 2025.

[67] Maximilian Beck, Korbinian Pöppel, Phillip Lippe, and Sepp Hochreiter. Tiled Flash Linear
Attention: More Efficient Linear RNN and xLSTM Kernels. In ICLR 2025 Workshop on
Foundation Models in the Wild, 2025.

[68] Robert Schreiber and Beresford Parlett. Block reflectors: Theory and computation. SIAM
Journal on Numerical Analysis, 25(1):189–205, 1988.

[69] Joseph Gallian. Contemporary abstract algebra. Chapman and Hall/CRC, 2021.

[70] Lorraine L Foster. On the symmetry group of the dodecahedron. Mathematics Magazine, 63
(2):106–107, 1990.

[71] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In The Seventh Interna-
tional Conference on Learning Representations (ICLR’19). ICLR, 2019.

[72] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Te-
jani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative
style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alche Buc, E. Fox, and R. Garnett, editors, Proceedings of the 32nd International Confer-
ence on Advances in Neural Information Processing Systems (NeurIPS’19), 2019.

[73] I. Loshchilov and F. Hutter. SGDR: Stochastic gradient descent with warm restarts. In The
Fifth International Conference on Learning Representations (ICLR’17). ICLR, 2017.

[74] J. Fiotto-Kaufman, A. R. Loftus, E. Todd, J. Brinkmann, K. Pal, D. Troitskii, M. Ripa,
A. Belfki, C. Rager, C. Juang, A. Mueller, S. Marks, A. Sen Sharma, F. Lucchetti, N. Prakash,
C. Brodley, A. Guha, J. Bell, B. C. Wallace, and D. Bau. Nnsight and ndif: Democratizing
access to foundation model internals. In The Twelfth International Conference on Learning
Representations (ICLR’24). ICLR, 2024.

[75] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-
learn: Machine learning in Python. the Journal of machine Learning research, 12:2825–2830,
2011.

[76] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory opti-
mizations toward training trillion parameter models. In SC20: International Conference for
High Performance Computing, Networking, Storage and Analysis, pages 1–16. IEEE, 2020.

[77] Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc-Quan Pham, Raffaella
Bernardi, Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The LAM-
BADA dataset: Word prediction requiring a broad discourse context. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1525–1534, 2016.

[78] Yonatan Bisk, Rowan Zellers, Ronan Le bras, Jianfeng Gao, and Yejin Choi. PIQA: Reasoning
about physical commonsense in natural language. Proceedings of the AAAI Conference on
Artificial Intelligence, 34(05):7432–7439, Apr. 2020.

[79] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can
a Machine Really Finish Your Sentence? In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 4791–4800, 2019.

15

[80] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

[81] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? Try arc, the ai2 reasoning
challenge. arXiv preprint arXiv:1803.05457, 2018.

16

Supplementary Material
The supplementary material is structured as follows:

Appendix A presents a proposition that provides special cases of the generalized Householder prod-
uct for specific choices of keys and betas and characterizes the spectrum of the product of two
generalized Householders.

Appendix B characterizes the expressivity of DeltaProduct.

• B.2 demonstrates how DeltaProduct can solve any group word problem in a single layer
when nh is sufficiently high, or alternatively using up to 4 layers when nh is limited.

• B.3 shows how DeltaProduct can recognize any regular language in a finite number of
layers using the Krohn-Rhodes decomposition.

• B.4 details the expressivity of a linear RNN with products of RWKV-7 state-transition
matrices.

• B.5 demonstrates how DeltaNet can solve any dihedral group in 2 layers using a specific
construction.

• B.6 discusses the tradeoff between expressivity and stability in linear RNNs.

Appendix C provides comprehensive details on our experiments and additional results.

We provide the code for our experiments at https://github.com/automl/DeltaProduct

Notation. Mathematical objects are typically styled as follows. Matrices: uppercase letters (e.g.,
A,H,M). Vectors: lowercase letters (e.g., k,v,x). Standard sets: R for reals, C for complexes,
N for naturals. Common symbols and operations are denoted as follows. I: Identity matrix. ⊤:
Transpose operator (e.g., k⊤). ∥v∥ or ∥v∥2: Euclidean norm of a vector v. ∥A∥: the operator
norm for a matrix A. | · |: Absolute value for real scalars, or modulus for complex numbers. ⊙:
Element-wise (Hadamard) product. σ(A), ρ(A): Spectrum (set of eigenvalues) and spectral radius
of matrix A. tr(A),det(A): Trace and determinant of matrix A. δij : Kronecker delta (1 if i = j, 0
otherwise). ei ∈ {0, 1}n is the i-th element of the canonical basis of Rn.

A Spectral Properties and Simplifications of Householder Product Matrices
The following proposition characterizes conditions under which the product structure simplifies and
the spectrum is real, contrasting with the general case which allows for complex spectra. It provides
illustrative special cases for the more general Proposition 1 in Grazzi et al. [16].
Proposition 1. Let A ∈ Rn×n be a matrix defined as the product of nh ≥ 1 generalized House-
holder transformations: A =

∏nh

j=1 Hj where each Hj = I − βjkjk
⊤
j , with kj ∈ Rn being a unit

vector (∥kj∥2 = 1) and βj ∈ [0, 2]. Let σ(A) ⊂ C denote the spectrum (set of eigenvalues) of A.
Then, all eigenvalues λ ∈ σ(A) satisfy |λ| ≤ 1 and the following hold.

1. (Identical Direction Vector) Let k ∈ Rn be nonzero and kj = k/ ∥k∥ for all j = 1..m. Then∏m
j=1

(
I−βj kk⊤) = I−β∗ kk⊤ for some real scalar β∗ depending on {β}mj=1. The product

collapses to a single effective transformation of the same form. Consequently, if A is formed
using only a single direction vector k1, it is symmetric and its spectrum is real.

2. (Orthogonal Vectors) If the direction vectors {kj}nh
j=1 form an orthonormal set (i.e., k⊤

j kl =
δjl; this requires nh ≤ n), then the factors Hj commute, and the product simplifies to A =
I −

∑nh

j=1 βjkjk
⊤
j . This matrix A is symmetric, and its spectrum is purely real: σ(A) =

{1− β1, . . . , 1− βnh
} ∪ {1 (multiplicity n− nh)}. When βj = 2 for all j ∈ {1, ..., nh} then

A is known as a block reflector [68].

3. (Complex Spectrum via Non-orthogonal Directions) For nh = 2, A has complex eigenvalues
if two consecutive direction vectors, e.g. k1,k2 satisfy 0 < |k⊤

1 k2| < 1 and their coefficients
β1, β2 exceed a threshold β∗(θ) < 2 dependent on the angle θ between them. Conversely, if
0 ≤ β1 ≤ 1 or 0 ≤ β2 ≤ 1, these eigenvalues from the 2D span are guaranteed to be real.

Proof. Identical Direction Vector If m = 1, then the statement is trivially satisfied with β∗ = β1.
Suppose the statement is true for m ≥ 1, i.e.,

∏m
j=1(I −βj kk

⊤) = I −β(m) kk⊤. Multiplying by

17

https://github.com/automl/DeltaProduct

0 2
0

2

2

0.0 ◦

0 2

7.5 ◦

0 2

15.0 ◦

0 2

22.5 ◦

0 2

30.0 ◦

0 2

37.5 ◦

0 2

45.0 ◦

0 2

52.5 ◦

0 2

60.0 ◦

0 2

67.5 ◦

0 2

75.0 ◦

0 2

82.5 ◦

0 2

90.0 ◦

1

Figure 11: Visualization of complex eigenvalues of (I−β1k1k
⊤
1)(I−β2k2k

⊤
2) with cos θ = k⊤

1 k2.
Complex region in red, real in white.

(I−βm+1 kk
⊤) produces (I−β(m) kk⊤)(I−βm+1 kk

⊤) = I−
[
β(m)+βm+1−β(m)βm+1

]
kk⊤.

Hence, by induction, the product of any number of such factors remains of the form I − β∗kk⊤.
Since the resulting matrix A = I − β∗kk⊤ (where k = k1) is symmetric, its eigenvalues are real.

Orthogonal Vectors Assume {kj}nh
j=1 is an orthonormal set (k⊤

j kl = δjl, nh ≤ n). Let Pj =

kjk
⊤
j . Then PjPl = δjlPj . The factors Hj = I − βjPj commute because PjPl = 0 for

j ̸= l. The product simplifies via induction to A = I −
∑nh

j=1 βjPj . This matrix is symmetric. Its
eigenvalues are (1−βl) for l = 1, . . . , nh (eigenvector kl) and 1 with multiplicity n−nh (subspace
orthogonal to all kj). The spectrum is real.

Complex Spectrum via Non-orthogonal Directions and Real Subcase Let k1,k2 span a 2D sub-
space S ⊂ Rn with cos θ = k⊤

1 k2 such that 0 < | cos θ| < 1. The product A = H2H1 acts as the
identity on S⊥ (preserving n− 2 eigenvalues at 1) and non-trivially on S. The restriction AS of A
to S has trace tr(AS) = 2− β1 − β2 + β1β2 cos

2 θ and determinant det(AS) = (1− β1)(1− β2).
The discriminant of its characteristic equation isD = [tr(AS)]

2−4 det(AS). Complex eigenvalues
arise if D < 0.

To find the explicit bounds, we expand the inequality D < 0:

(2− β1 − β2 + β1β2 cos
2 θ)2 − 4(1− β1)(1− β2) < 0

Rearranging this expression as a quadratic in x = cos2 θ yields:

(β1β2)
2x2 + 2(2− β1 − β2)β1β2x+ (β1 − β2)

2 < 0

This inequality holds if and only if x = cos2 θ lies strictly between the two roots of the correspond-
ing equation. Solving for the roots gives the explicit bounds for complex eigenvalues:

(
√
β1 − 1−

√
β2 − 1)2

β1β2
< cos2 θ <

(
√
β1 − 1 +

√
β2 − 1)2

β1β2

This inequality is only satisfiable when β1, β2 ∈ (1, 2]. For the special case of two standard reflec-
tions where β1 = β2 = 2, the condition simplifies to 0 < cos2 θ < 1, confirming that the product of
any two distinct reflections is a rotation.

Conversely, we show that if at least one coefficient βi ∈ [0, 1], the eigenvalues are real as D ≥ 0.
We analyze this by cases:

• Case 1: One coefficient is in [0, 1], the other is in (1, 2]. Without loss of generality, let β1 ∈ [0, 1]
and β2 ∈ (1, 2]. This implies (1 − β1) ≥ 0 and (1 − β2) < 0, so their product det(AS) ≤ 0.
The term −4 det(AS) is therefore non-negative. Since [tr(AS)]

2 ≥ 0, their sum D must be
non-negative.

• Case 2: Both coefficients are in [0, 1]. By the AM-GM inequality on the non-negative terms
(1 − β1) and (1 − β2), we have (1 − β1) + (1 − β2) ≥ 2

√
(1− β1)(1− β2) = 2

√
det(AS).

Since tr(AS) includes an additional non-negative term β1β2 cos
2 θ, it also holds that tr(AS) ≥

2
√
det(AS). Squaring both sides gives [tr(AS)]

2 ≥ 4 det(AS), ensuring D ≥ 0.

This analysis confirms that complex eigenvalues, which enable rotations, can only arise if and only
if both β1 > 1 and β2 > 1. When at least one βi ≤ 1, real eigenvalues restrict the transformations
in that subspace to scaling or reflection. This clear distinction in behavior, dictated by the β values
and θ, is illustrated in Figure 11.

18

B Expressivity of DeltaProduct

In this section, we characterize the expressivity of (Gated) DeltaProduct in solving group word
problems and recognizing regular languages, in support of Section 4.1. The results hold in finite
precision (since our constructions require a finite number of values), and take inspiration from Peng
et al. [13, Appendix D] and [16]. We begin by stating and discussing our key assumptions in Ap-
pendix B.1. We then present our main results for group word problems in Appendix B.2, followed by
our findings for regular languages in Appendix B.3. In Appendix B.5, we examine a result specific
to dihedral groups. Finally, we explore the fundamental tradeoff between expressivity and stability
of the recurrence in Appendix B.6.

B.1 Assumptions

We consider a (Gated) DeltaProduct model where each layer is structured as

Hi = A(xi)Hi−1 +B(xi), ŷi = dec(Hi,xi) where i ∈ 1, . . . , t

A(xi) = gi

nh∏
j=1

(
I − βi,j ki,jk

⊤
i,j

)
, B(xi) =

nh∑
j=1

(nh∏
k=j+1

(
I − βi,k ki,kk

⊤
i,k

))
βi,j ki,jv

⊤
i,j ,

where gi is only present in the gated variant and there is only one head per layer. If H heads are
considered, head j will run the recurrence Hj

i = Aj(xi)Hi−1 +Bj(xi), (with different learnable
parameters from all other heads) and all the states will be passed to the decoder to get the output as
ŷi = dec((H1

i , . . . ,H
H
i),xi).

Each layer receives the outputs of all previous layers. We assume that the output of all layers is
passed as input to all following layers: this can be achieved by using the residual connections (which
would be inside dec) and by placing the output of different layers onto separate subspaces.

Task-dependent initial state. We assume that the initial state H0 can be set appropriately depend-
ing on the task and is of rank at most nh.

Arbitrary decoder and state transition functions. We also assume that for every i, j, gi ∈ [0, 1],
βi,j ∈ [0, 2],ki,j ∈ Rd, ∥ki,j∥ = 1 and vi,j ∈ Rd are arbitrary continuous functions of xi. The
function dec can also be arbitrary (continuous). Since in all our setups the possible values of xi

and Hi are finite, this implies that the functions dec, A,B can model an arbitrary function of their
discrete domain of interest, with the only restriction coming from the structural assumption of the
output spaces of A (product of nh Householders) and B (rank nh). This assumption can always be
fulfilled in practice if dec is a sufficiently wide MLP (see the next section for practical concerns)
and, in the case of A,B, which generally do not contain MLPs, by setting the dimension of xi

sufficiently large, which can be achieved by adjusting the embedding layer or the dimensionality of
the output of dec. Note that the width of the MLP will grow with the complexity of the function to
be approximated, which in our case depends on the complexity of the problem.

B.1.1 Practical Considerations

Beginning of sequence token. Alternatively, the assumption on H0 (task-dependent with rank at
most nh) can be replaced by using a beginning of sequence token x1 = $ and setting H0 = 0, as
done in practice, so that H1 = B($) is a learnable matrix of rank at most nh which acts as the H0

in our constructions.

Decoder implementation. In our implementation, dec is the same as in Gated DeltaNet:

dec((H1
t , . . .H

H
t),xt) = MLP(RMSnorm(xt + ot)),

ot =

H∑
j=1

W j
oRMSnorm((Hj

t)
⊤qj

t), qj
t = ψ(W j

q xt)/||ψ(W j
q xt)||

where W j
o ,W

j
q are two learned matrices, ψ = SiLU, RMSnorm(x) = a⊙x/

√
ϵ+ d−1

∑d
i=1 x

2
i

corresponds (when ϵ = 0) to a projection onto an axis aligned ellipse where a ∈ Rd is learnable
and determines the lengths of the axis and ϵ > 0 is a small value set to avoid numerical errors.

19

Meanwhile, MLP is a two layer MLP. This structure can be limiting. For instance, when Hj
t ∈ Rd,

then bt = (Hj
t)

⊤qt ∈ R and if bt >> ϵ, then |RMSNorm(bt)| ≈ 1, which means that after
RMSNorm we are left with effectively only 2 possible values, while our constructions might require
more: as many as the number of possible states. Indeed, for all our constructions to work in practice,
we would need a sufficiently large ϵ, so that the output of RMSnorm can retain some magnitude
information. Since in our constructions the number of states is finite, with ϵ > 0 and an appropriate
value for qj

t we are guaranteed that the map Hj
t 7→ RMSnorm((Hj

t)
⊤qj

t), and consequently (by
appropriately setting W j

o) the map from states and inputs xt, to the input of the MLP, is injective,
which we show in the next lemma. Hence, thanks to the MLP, the decoder can approximate any
continuous function of (Ht,xt) even after the bottlenecks caused by the scalar product with qj

t and
the RMSnorm.
Lemma 1. Let S ⊂ R be a finite set of values. Define δmin = minx,y∈S,x̸=y |x − y| and δmax =

maxx,y∈S |x− y|. Let b = (b, b2, . . . , bd)⊤ and set q = b/ ∥b∥. If b satisfies b ≥ δmax

δmin
+1, then the

mapping f : Sd → R given by f(H) = RMSnorm(H⊤q) is injective.

Proof. The mapping f is a composition f = g3 ◦ g2 ◦ g1, where the component functions are:

g1(H) =

d∑
i=1

hib
i, g2(x) =

x

∥b∥
, g3(x) = RMSnorm(x),

where H = (h1, . . . , hd)
⊤. The overall mapping is injective if each component is injective.

1. Injectivity of g1: Intuitively, g1 encodes the vector H as a scalar as a number in base b, where
each hi acts as a “digit” drawn from the finite set S. By choosing b sufficiently large relative to
the spread of S (captured by δmax/δmin), we ensure that different vectors produce distinct scalars.
To prove this formally, we show that for any non-zero difference vector ∆ = (∆1, . . . ,∆d)

⊤ =

H1 − H2, the difference g1(H1) − g1(H2) =
∑d

i=1 ∆ib
i is also non-zero. This is true since

b is by definition greater than Cauchy polynomial upper bound for the roots of the polynomial
P (b) =

∑d
i=1 ∆ib

i. For an elementary proof, let k = max{i | ∆i ̸= 0}. The magnitude of the
highest-order term is lower-bounded by:

|∆kb
k| = |∆k|bk ≥ δminb

k

The magnitude of the sum of lower-order terms is upper-bounded as∣∣∣∣∣
k−1∑
i=1

∆ib
i

∣∣∣∣∣ ≤
k−1∑
i=1

|∆i|bi ≤
k−1∑
i=1

δmaxb
i = δmax

(
bk − b

b− 1

)
≤ δmin(b

k − b),

where we used the triangle inequality and the assumption on b, which implies δmax ≤ δmin(b− 1).
Comparing the bounds, we see that

|∆kb
k| ≥ δminb

k > δmin(b
k − b) ≥

∣∣∣∣∣
k−1∑
i=1

∆ib
i

∣∣∣∣∣
Since the magnitude of the highest-order term is strictly greater than that of the sum of all other
terms, their sum cannot be zero. Thus, g1 is injective.

2. Injectivity of g2 and g3: The function g2 is a linear scaling by the non-zero constant 1/ ∥b∥
and is therefore injective. For g3(x) = RMSnorm(x), its derivative is strictly positive for ϵ > 0,
meaning g3 is strictly monotonic and also injective.

Since g1, g2, and g3 are all injective, their composition f is also injective.

When the state is one-hot, i.e. Hj
t = ei ∈ {0, 1}d, with 1 ≤ i ≤ d (i-th element of the canonical

basis), an alternative to the above construction is to replicate the recurrence onto d heads, where the
j-th head has W j

o = qj
t = ej , so that, assuming that in the RMSnorm a = (

√
d, . . . ,

√
d)⊤ and

ϵ = 0, we get ot = Ht = ei. This is the strategy used in Peng et al. [13, Appendix D]. However,
for some problems using the one-hot encoding states e1, . . . en is not very efficient. For instance, to
solve the Sn word problem one would need n!-dimensional one-hot vectors as states, while in our
Theorem 1 we use n-dimensional vectors. Moreover, learning multiple identical heads is redundant
and indeed we observe that in our synthetic experiments, the model is learning to use only one head
to solve the tasks (see Section 5.2).

20

B.2 Group Word Problems
The next theorem establishes that DeltaProduct can solve the word problem for the symmetric group
Sn, which implies that it can also solve any group word problem, since for every groupG there exists
n such that G is isomorphic to a subgroup of Sn.
Theorem 3 (Restatement of Theorem 1). For any n ∈ N there exists a DeltaProduct model with
one of the following configurations that can solve the word problem of the symmetric group Sn: (i)
one layer with nh = n−1 [16, Theorem 3] (ii) 3 layers with nh>1 (iii) 4 layers with nh=1. The
construction for (ii) and (iii) requires that the MLP at the second last layer computes a lookup-
table of size 2m × (n!)2m, function of the last 2m input tokens and the position modulo 2m with
m = ⌈(n−1)/nh⌉.

Proof. One way to solve the group word problem for the symmetric group Sn is to map each element
of the group g ∈ Sn to the corresponding permutation matrix Pg ∈ {0, 1}n and then for each input
sequence x1, . . . , xt with xi ∈ Sn compute each element of the output sequence y1, . . . , yt as

yi = xi · xi−1 · · ·x1 = ϕ(Pxi
· · ·Px1

u0), u0 = (1, . . . , n)⊤,

where ϕ is a surjective map from vectors in {1, . . . , n}n to the n! elements of Sn, which we consider
integers for simplicity, i.e. xi, yi ∈ {1, . . . , n!}.

(i). Since a permutation of n elements is a series of at most n−1 swaps of 2 elements, if nh = n−1,
then we can solve the problem with a 1-layer DeltaProduct by setting H0 = u0, dec(Hi, xi) =
ϕ(Hi), B(xi) = 0 (vi,j = 0), A(xi) = Pxi . The latter is achieved by setting for the j-th element
in the product

∏nh

j=1(I − βi,jki,jk
⊤
i,j), either βi,j = 2 and ki,j = (ek − ep)/

√
2 with ei being

the i-th element of the canonical basis of Rn (swap element at index k with the one at index p), or
βi,j = 0 (identity).

(ii) and (iii). If nh < n−1, then the state transition matrix is not sufficiently expressive to represent
all permutations of n elements. However, we can use additional layers to overcome this issue as
follows. We divide the input sequence into blocks of m elements: we factorize the position i ∈
{1, . . . t} into i = lm + ĩ where l ≥ 0 is the index of the previous block and ĩ ∈ {1, . . . ,m}
is the position within the current block (index l + 1). First, consider the case when l ≥ 1. Let
P̃l = Px(l−1)m+m

. . .Px(l−1)m+1
be the product of the permutations of the previous block. Since P̃l

is a permutation matrix of n elements, we can factor it into P̃l = Gl,m · · ·Gl,1 where we recall that
m = ⌈(n−1)/nh⌉ and each of Gl,1, . . . ,Gl,m is a product of nh generalized Householder matrices
and thus can be a state-transition matrix of our model. We fix one factorization for each possible
permutation matrix and we set P̃0 = G0,m · · ·G0,1, with G0,i = I to handle the case when l = 0.

Now let xi be the input of the last layer. if xi contains enough information about previous tokens
(as we specify later), we can set the recurrence and decoder of the last layer as

Hi = Gl,̃iHi−1, dec(Hi,xi) = ϕ
(
Pxi

· · ·Pxlm+1︸ ︷︷ ︸
current block

Gl,m · · ·Gl,̃i+1︸ ︷︷ ︸
previous block

Hi

)
.

where H0 = u0, B(xi) = 0, A(xi) = Gl,̃i, using the construction at point (i) since Gl,̃i is a
product of at most nh Householers. Note that Hi contains the product of the input permutations
only up to token x(l−1)m and a partial computation of previous block of permutations P̃l. Hence,
the decoder completes the computation by applying two additional components: (1) the remaining
transformations Gl,̃i+1 through Gl,m needed to complete P̃l, and (2) the actual permutations from
the current partial block Pxlm+1

through Pxi . The delay in the recurrence is necessary, since to
compute even the first matrix of the factorization for a block of m elements of the input sequence,
all the elements in such a block need to be processed.

We can check that this ends up computing the correct output yi by substituting the expression for
Hi and unrolling the recurrence as follows.

dec(Hi,xi) = ϕ(Pxlm+ĩ
· · ·Pxlm+1

Gl,m · · ·Gl,1Gl−1,m · · ·Gl−1,1 . . .G0,m . . .G0,1H0).

= ϕ(Pxlm+ĩ
· · ·Pxlm+1

P̃lP̃l−1 . . . P̃0u0).

= ϕ(Pxlm+ĩ
· · ·Pxlm+1

Px(l−1)m+m
· · ·Px(l−1)m+1

. . .Pxm
· · ·Px1

P̃0u0).

= ϕ(Pxi
· · ·Px1

u0) = yi,

21

Note that to compute A(xi) = Gl,̃i and dec(Hi,xi), xi should contain ĩ = i mod m and the last
m+ ĩ (in general the last 2m) tokens, corresponding to the current and previous blocks. Hence, the
layers before the last one are dedicated to compute at each time-step i a lookup table for the possible
values of (i mod 2m,xi, . . . , xi−2m+1) whose output will be included in the input of the last layer
xi. The first layers (two layers if nh = 1, one if nh > 1) can provide i mod 2m by using Lemma 2
with d = 2m. Finally, the second to last layer can output any function of the last 2m tokens and the
position modulo 2m through Lemma 3 with d = 2m and at = xt, by using i mod 2m from the first
layer(s).

Lemma 2. The following DeltaProduct configurations can count modulo d ∈ N. (i) 2 layers each
with one head and nh = 1 [16, Theorem 6]. (ii) 1 layer with one head and nh ≥ 2.

Proof. For (i), we can use the same construction as in [16, Theorem 6], where the first layer does
counting modulo 2 and the second layer computes addition modulo d. In this case, since we just
want to count modulo d we can ignore input tokens and add 1 modulo d at each time-step. For (ii),
note that if nh > 2, we can set, for any time-step t, B(xt) = 0 and the state transition matrix A(xt)
equal to a 2D rotation with an angle of 2π/d by appropriately setting two keys, say kt,1,kt,2, setting
βt,1, βt,2 = 2 (while for the other Householders we set βi,j = 0). Then, we can count modulo d by
setting H0 in the span of kt,1,k1,2 and dec appropriately to map the d values that Ht can take to
the correspondent element in {1, . . . , d}.

Lemma 3. A DeltaProduct layer with nh = 1, receiving in its input at time-step t the tuple (t mod
d, at) (t ≥ 1) where at ∈ D ⊂ R with D being a discrete set of values, can implement any function
of (t mod d, at−d+1, . . . , at), where for simplicity we set ai = a /∈ D for i ∈ {2− d, . . . , 0}.

Proof. Let t̃ = t mod d+ 1 Set H0 = 0 ∈ Rd and the recurrence update as

Ht = (I − et̃e
⊤
t̃)Ht−1 + et̃at,

where ei is the i-th element of the canonical basis of Rd. This can be implemented by setting βt,1 =
1, kt,1 = et̃, vt,1 = at and βt,j ,kt,j ,vt,j = 0. With this choice, Ht contains at−d+1, . . . , at. The
result follows since dec can be an arbitrary continuous function of both Ht and xt and the latter
contains t mod d.

Finally, the next results concern finite subgroups of the orthogonal and special orthogonal groups.

Theorem 4. LetG be a group isomorphic either to a subgroup of O(n), or to a subgroup of SO(n+
1) if n is even, then if nh = n, there exists a DeltaProduct model that solves the group word problem
for G.

Proof. From the assumption we can map each element g ∈ G to an orthogonal matrix Gg . For the
word problem for G, each element of the input sequence belongs to G: xi ∈ G for every i.

If Gg ∈ O(n), then, since nh = n and every orthogonal n× n matrix can be written as the product
of at most n Householder matrices, we can set H0 = I ∈ Rn×n and A(xi) = Gxi , B(xi) = 0
and dec(Ht, xi) = ϕ(Hi) with ϕ : O(n) → G bijective (which exists due to the isomorphism).
The Householder product structure enables A(xi) to represent general orthogonal matrices Gxi ,
including rotations.

If instead Gg ∈ SO(n+1), since n is even in this case then we can still write Gg as a product of an
even number (at most n since n + 1 is odd) of Householder matrices of dimension n + 1 × n + 1.
This is because the determinant of Gg is +1, which is only possible if it is a product of an even
number of Householder matrices, each having determinant −1. Thus, we can set A(xi) = Gxi ∈
Rn+1×n+1, B(xi) = 0. Now if we let Ḡ = GxiGxi−1 · · ·Gx1 and set H0 = diag(1, . . . , 1, 0) ∈
R(n+1)×(n+1) (we are only allowed a rank n matrix), then Hi = ḠH0 will have all the first n
columns equal to Ḡ and the last set to zero. However, the last column can be found as a function of
the others since it must be the unique unit vector orthogonal to all other columns of Ḡ and for which
det(Ḡ) = +1. Therefore, there exists a bijective functon from states to elements of the group,
which can be implemented in dec.

22

B.3 Regular Languages
This section details how Gated DeltaProduct networks can recognize any regular language in a finite
number of layers. The core idea is to show that Gated DeltaProduct can simulate any Finite State
Automaton (FSA), since FSAs are the computational models that define regular languages. The
proof proceeds in two main steps: First, we leverage the Krohn-Rhodes theorem, a fundamental
result in automata theory, which states that any FSA can be decomposed into a cascade of simpler
FSAs known as permutation-reset automata. These simpler automata only perform two types of
operations: permuting their states or resetting all states to a single state. Second, we demonstrate in
Lemma 4 that Gated DeltaProduct is well-equipped to simulate these permutation-reset automata.
The “DeltaProduct” mechanism, using products of Householder transformations, naturally handles
permutations, while the “Gated” aspect allows for the reset operations by nullifying the previous
state’s influence and setting a new one. By simulating these building blocks and cascading them,
Gated DeltaProduct can thus simulate any FSA and, consequently, recognize any regular language.
Definition 1 (Finite state automaton (FSA)). A finite state automaton (FSA) is a tuple
(Σ, Q, q0, δ, F), where Σ is a finite set called alphabet, Q is the finite set of states, q0 ∈ Q is
the initial state, for every w ∈ Σ, δw : Q→ Q is a state transition function and F ⊂ Q is the set of
accepting states.
Definition 2 (Permutation-reset automaton). An FSA is permutation-reset if for every w ∈ Σ, δw is
either bijective or constant.
Definition 3 (Regular language). A regular language is a set of sequences L such that there exists
an FSA that accepts it, i.e. such that L ⊂ Σ∗, where Σ∗ is the set of sequences with elements in Σ,
and that for every word w = w1w2 . . . wt ∈ Σ∗

δw(q0) := δwt ◦ δwt−1 ◦ · · · ◦ δw1(q0) ∈ F ⇐⇒ w ∈ L. (4)

Notably, the computation of any FSA can be also done using only matrix and vector multiplications.
Indeed, if we let Q = {1, . . . , n} (for simplicity), then we can map each state q to the one hot vector
eq (element of the canonical basis of Rn) and each transition δw to the matrix Mw ∈ {0, 1}n×n with
element at row q and column q′ being 1 if and only if δ(q′) = q. This way, by setting r ∈ {0, 1}n
such that rq = 1 if q ∈ F and rq = 0 otherwise, we have that for every word w = w1w2 . . . wn ∈ Σ∗

r⊤Mwt
Mwt−1

· · ·Mw1
eq0 = 1 ⇐⇒ w ∈ L. (5)

We observe that if δw is bijective and changes k states, then the corresponding Mw is a permutation
matrix that can be written as a product of k−1 Householder matrices, each corresponding to a swap
of two elements. Moreover, if δw is a reset (constant), i.e. if δw(q) = q̄ for every q ∈ Q, then
Mweq = eq̄ . As we will see, constant transitions can be modeled by setting the gate to zero. We
are now ready to state our main result.
Theorem 5 (Restatement of Theorem 2). For any regular language L and any nh ∈ N, there exists
a Gated DeltaProduct model with a finite number of layers that recognizes the language, i.e., for
every word w ∈ Σ∗ outputs 1 if w ∈ L and 0 otherwise.

Proof. Using the landmark theorem by Krohn and Rhodes [50] we can decompose the FSA corre-
sponding to the regular language L into a cascade of permutation-reset FSA. We can use a group
of at most 4 consecutive layers to represent each automaton in the cascade via Lemma 4. Then, we
can combine the different FSA in the cascade in a feedforward manner using the same construction
as the one in the proof of [16, Theorem 3], where the input of each FSA is the output concatenated
with the input of the previous FSA in the cascade.

Lemma 4. For any permutation-reset FSA with |Q| = n and |Σ| = s, where each bijective state-
transition function δw changes at most k states, there exists a Gated DeltaProduct model with the
following configuration that can implement it, i.e., for any word w = w1, . . . , wt ∈ Σ in input, it
can output the corresponding sequence of states q1, . . . , qt of the FSA. (i) one layer with nh = k−1.
(ii) 3 layers with nh > 1. (iii) 4 layers with nh = 1. The construction for (ii) and (iii) requires that
the MLP at the second last layer computes a lookup-table of size 2m× s2m, function of the last 2m
input tokens and the position modulo 2m with m = ⌈(k − 1)/nh⌉.

Proof. We use the matrix vector multiply construction to implement the FSA. For every time-step i
we set xi = wi as the input to the model. The proof follows a path similar to the one of Theorem 3

23

(where more details are provided), where in addition to modeling permutations, the state-transition
matrix uses the gate to model constant transitions.

(i). Set H0 = eq0 . When δwi
is bijective, by assumption it changes at most k states. Thus, by

setting nh = k − 1 we can represent the corresponding Mwi
matrix using A(wi) with gate gi = 1

(product of k − 1 generalized Householder matrices), and thus we set B(wi) = 0. If instead δwi
is

constant, i.e., δi(q) = q̄ and Mweq = eq̄ for every q ∈ Q, then we can set the gate gi = 0 so that
A(wi) = 0 and B(wi) = ki = eq̄ . Finally, we set dec(Hi, xi) = H⊤

i (1, . . . , n)⊤ to retrieve the
correct state at step i (for simplicity Q = {1, . . . , n}).

(ii) and (iii). If nh < k−1, then the state transition matrix is not sufficiently expressive to represent
all permutations of k elements. However, we can use additional layers to overcome this issue.

We factorize the position i ∈ {1, . . . t} into i = lm + ĩ for integers l ≥ 0 and ĩ ∈ {1, . . . ,m}.
First, consider the case when l ≥ 1. The product M̃l = Mw(l−1)m+1

. . .Mw(l−1)m+m
is either

a permutation matrix of k elements or, if for some i δwi is constant, then there exists q̄ such that
M̃leq = q̄ for every q ∈ Q. Therefore, we factor M̃l into M̃l = Gl,m · · ·Gl,1 where each of
Gl,1, . . . ,Gl,m is either a product of nh generalized Householder matrices or Gl,ieq = eq̄ for
every q ∈ Q, which can be modeled setting the gate to zero as in point (i). We fix one factorization
for each possible permutation matrix. In the last layer and with enough information in its input xi

about past tokens, we can thus set H0 = e0 and

Hi = Gl,̃iHi−1, dec(Hi,xi) = (Mlm+ĩ · · ·Mlm+1Gl,m · · ·Gl,̃i+1Hi)
⊤(1, . . . , n)⊤

The case when l = 0 is handled by setting M̃0 = G0,m · · ·G0,1 with G0,i = I . Note that both
Ml,̃i and dec(Ht,xt) are functions of ĩ = i mod m and the last m + ĩ (in general the last 2m)
tokens. Hence, the layers before the last are dedicated to output at each time-step i a lookup table
for the possible values of (i mod 2m,wi, . . . , wi−2m+1). The first layers (2 if nh = 1, 1 if nh > 1)
can provide i mod 2m by using Lemma 2 with d = 2m. Finally, the second last layer can output
any function of the last 2m tokens and the position modulo 2m through Lemma 3 with d = 2m and
at = wt, by using i mod 2m from the first layer(s).

B.4 Regular language recognition through products of RWKV-7 matrices

To enhance the expressivity at the cost of stability, we can replace the product of Householder
matrices of DeltaProduct with a product of RWKV-7 matrices, i.e. for each layer set

A(xi) =

nh∏
j=1

(diag(wi,j)− cki,j(ki,j ⊙ ai,j)), (6)

where wi,j , ai,j , ki,j are computed from xi such that ai,j ,wi,j ∈ [0, 1]n, ||ki,j || = 1 and
c ∈ {1, 2}. Even without using gates, the resulting model will be capable of recognizing regu-
lar languages effectively as the following theorem shows.

Theorem 6. For any regular language recognized by a finite-state automaton (FSA) with n ∈ N
states, there exists a linear RNN using products of RWKV-7 matrices as state-transition matrices (as
in (6) with c = 2) with one of the following configurations that can recognize it: (i) one layer with
nh = n (ii) 3 layers with nh > 1 (iii) 4 layers with nh = 1 [13, Theorem 3]. The construction for (ii)
and (iii) requires that the MLP at the second last layer computes a lookup-table of size 2m×(n!)2m,
function of the last 2m input tokens and the position modulo 2m with m = ⌈n/nh⌉.

Proof. The computation of an FSA with n states can be done using matrix-vector multiplications as
shown in (4), where the n × n state transition matrices Mwt

have elements in {0, 1} and a single
one in each column. Peng et al. [13, Lemma 3] prove that any of those matrices can be expressed
as products of n matrices, each of which is either a swap (identity with two columns swapped),
copy (identity with one row copied onto another), or the identity matrix and can be modeled by a
single RWKV-7 matrix. The proof for (ii) and (iii) follows similarly to Theorem 1 but now tackling
all state transition matrices, while Theorem 1 could handle only permutations since a generalized
Householders matrix cannot be a copy matrix.

24

B.5 Dihedral Groups
In Grazzi et al. [16, Theorem 6] it is shown that with 2 layers and the extended eigenvalue range,
DeltaNet can compute addition modulo m, which corresponds to solving the group word problem
for the cyclic group Zm, for any m ∈ N. We extend this result and prove that, under identical as-
sumptions, DeltaNet (DeltaProduct with nh = 1) can solve the group word problem for the dihedral
group Dm, for any m ∈ N. The dihedral group Dm represents the symmetries (both rotations and
reflections) of a regular m-sided polygon. As a notable example, D3 is isomorphic to the symmetric
group S3.

The linear RNN construction used in this result can be implemented using a 2-layer DeltaNet Model
with two heads in the first layer. In the first layer, the linear RNN will compute parity for rotations
and reflections separately, i.e. it will record if the number of past rotations (reflections) is even or
odd. The recurrent state of the second layer will have 2m possible values (same as the order of
Dm) and each will be decoded differently based on the parity of reflections. The parity of rotations,
combined with the group element, determines which reflection matrix to use as the state transition
matrix of the second layer.
Theorem 7 (Dihedral group word problems with reflections). For any m ∈ N , consider the group
word problem of the dihedral group Dm. There exist DeltaProduct models with the following con-
figurations that can solve it. (ii) Two layers with nh = 1 and at least two heads in the first layer and
one in the second layer. (ii) One layer with nh ≥ 2.

Proof. The elements of the dihedral groupDm can be divided intom rotations R = {r0, . . . , rm−1}
and m reflections S = {s0, . . . , sm−1}. The identity is r0. To be able to solve the corresponding
word problem, we would like to map sequences of group elements x1, . . . , xt with xi ∈ R∪ S into
sequences y1, . . . , yt with yi = xi · xi−1 · · ·x1 and · is the group operation, that for dihedral groups
is defined as

ri · rj = ri+j mod m, ri · sj = si+j mod m, si · rj = si−j mod m, si · sj = ri−j mod m. (7)

Note that a product of two rotations is commutative, while the product of two reflections or a reflec-
tion with a rotation is not. Indeed for m ≥ 3 Dm, is not an abelian group.

(i) The constructions of the two layers of DeltaProduct with nh = 1 builds upon the one for the
cyclic groupZm outlined in [16, Theorem 6]. The first layer functions as a pre-processor, calculating
auxiliary information from the input sequence. Specifically, for each time step t, it determines two
parities: the parity of the total number of reflections and the parity of the total number of rotations
in the sequence x1, . . . , xt. This information is then passed to the second layer.

The second layer is responsible for computing the cumulative group product. It uses a 2D hidden
state to geometrically model the group elements and their compositions. The core challenge lies
in modeling the group operations, i.e. rotations and reflections, using only a reflection as state-
transition matrices (rotation matrices cannot be represented with nh = 1). To address this, the
state representation in the second layer must encode more than just the previous group product. It
is designed to also incorporate the rotation parity computed by the first layer. This is achieved by
maintaining two distinct sets of m state vectors each and two distinct sets of 2m reflection matrices
each to represent the group elements. The choice of which set to use is determined by the rotation
parity. Moreover, the reflection parity is also used but only in the decoder. This design allows a
single, unified update mechanism, based solely on geometric reflections, to correctly implement all
four of the distinct multiplication rules defined in (7).

We define rotation by and reflection matrices as

Rotation: R(α) =

(
cos(α) − sin(α)
sin(α) cos(α)

)
Reflection: H(α) =

(
cos(α) sin(α)
sin(α) − cos(α)

)
, (8)

where R(α) is a rotation by an angle of α, while H(α) is a reflection by a line having an angle of
α/2 with the line passing from the origin and the point (1, 0). Note that both R and H are periodic
with period 2π. Moreover, let α, γ ∈ R, the following are standard identities of products of matrix
representations of 2D rotations and reflections.

R(α)R(γ) = R(α+ γ), H(α)H(γ) = R(α− γ),

R(α)H(γ), = H (α+ γ) H(γ)R(α) = H (γ − α) .
(9)

25

For the first layer we use the following diagonal recurrence which indicates in the first (second)
coordinate whether the number of rotations (reflections) is even (0) or odd (1).

h
(1)
0 = 0, h

(1)
t = a(xt)⊙ h

(1)
t−1 + b(xt), y

(1)
t = dec(1)(ht, xt) = (xt, ht,1, ht,2).

a(xi)1 =

{
−1 if xi ∈ R
1 if xi ∈ S a(xi)2 =

{
−1 if xi ∈ S
1 if xi ∈ R

b(xi)1 =

{
1 if xi ∈ R
0 if xi ∈ S b(xi)2 =

{
1 if xi ∈ S
0 if xi ∈ R

This recurrence can be implemented also by DeltaProduct with nh = 1 using 2 heads each with
scalar hidden states: one for the rotations and the other for the reflections. For the second layer, we
have instead the following constructions, which selects the appropriate reflection based on the parity
of the rotations and uses the parity of the reflections for dec.

h
(2)
0 = (1, 0)⊤, h

(2)
t = A(2)(y

(1)
t)h

(2)
t−1, y

(2)
t = dec(2)(h

(2)
t ,y

(1)
t),

A(2)(y) = H(θ(y1, y2)),

dec(2)(h,y) =

{
ri∗ if y3 = 0

sm−i∗ if y3 = 1
, i∗ = argmax

i∈{0,...,m−1}
max(c⊤i h,d

⊤
i h)

where y = (y1, y2, y3)
⊤ ∈ R ∪ S × {0, 1} × {0, 1} and θ : R ∪ S × {0, 1} → R determines the

angle of the reflection and is defined for all i ∈ {0, . . . ,m− 1} as

θ(ri, 1) =
(1− 2i)π

m
, θ(ri, 0) =

(1 + 2i)π

m
, θ(si, 1) =

−2iπ

m
, θ(si, 0) =

(2 + 2i)π

m
.

Moreover, C = {c0, . . . , cm−1} and D = {d0, . . . ,dm−1} are two sets of states and are defined as

d0 = h
(2)
0 = (1, 0)⊤, c0 = H(π/m)d0,

di = R(2iπ/m)d0, ci = R(−2iπ/m)c0 for all i ∈ {0, . . . ,m− 1}.

From our choice of d0 = (1, 0)⊤ and c0 and from (8)-(9), for any α ∈ R we have

R(α)d0 = H(α)d0, and
R(α)c0 = R(α)H(π/m)d0 = R(α)R(π/m)d0 = R(α+ π/m+ π/m− π/m)d0

= H(α+ 2π/m)H(π/m)d0 = H(α+ 2π/m)c0.

Moreover, from our choice of θ, di and ci, using the identities above and the the fact that R is a
periodic function with period 2π we have that

di = R(2iπ/m)d0 = R(2iπ/m)H(π/m)c0 = H(θ(ri, 0))c0
ci = R(−2iπ/m)c0 = R(−2iπ/m)H(π/m)d0 = H(θ(ri, 1))d0

dm−i = R(−2iπ/m)d0 = H(−2iπ/m)d0 = H(θ(si, 1))d0

cm−i = R(+2iπ/m)c0 = H((2 + 2i)π/m)c0 = H(θ(si, 0))c0

for every i ∈ {0, . . . ,m− 1}. Therefore, we can write

H(θ(rj , 1))di = R(θ(rj , 1)− θ(ri, 0))c0 = R(−2(i+ j)π/m)c0 = ci+j mod m,

H(θ(rj , 0))ci = R(θ(rj , 0)− θ(ri, 1))d0 = R(2(i+ j)π/m)d0 = di+j mod m,

H(θ(sj , 1))di = R(θ(sj , 1)− θ(sm−i, 1))d0 = R(−2(i+ j)π/m)d0 = d−i−j mod m,

H(θ(sj , 0))ci = R(θ(sj , 0)− θ(sm−i, 0))c0 = R(2(i+ j)π/m)c0 = c−i−j mod m,

(10)

for every i, j ∈ {0, . . . ,m−1}. We proceed to verify that the output of the second layer is computed
correctly: satisfying the product rule for the dihedral group in (7), i.e., we want to verify that

y
(2)
t =


ri+j mod m if y(2)t−1 = ri, xt = rj

si+j mod m if y(2)t−1 = ri, xt = sj

si−j mod m if y(2)t−1 = si, xt = rj

ri−j mod m if y(2)t−1 = si, xt = sj

(11)

26

Where we set y(2)0 = r0. First note that when y(2)t ∈ S , then y(1)t,3 = 1 and when y(2)t ∈ R, then

y
(1)
t,3 = 0. We consider two cases.

Case 1. If y(2)t−1 = ri and hence y(1)t−1,3 = 0, then using (10) we obtain

h
(2)
t = A(2)(y(1))h

(2)
t−1 =


H(θ(rj , 1))di = ci+j mod m if xt = rj , y

(1)
t,2 = 1

H(θ(rj , 0))ci = di+j mod m if xt = rj , y
(1)
t,2 = 0

H(θ(sj , 1))di = d−i−j mod m if xt = sj , y
(1)
t,2 = 1

H(θ(sj , 0))ci = c−i−j mod m if xt = sj , y
(1)
t,2 = 0

This, together with the definition of dec(2) implies that

y
(2)
t = dec(2)(h

(2)
t ,y

(1)
t) =

{
ri+j mod m if xt = rj , y

(1)
t,3 = 0

si+j mod m if xt = sj , y
(1)
t,3 = 1

(12)

Case 2. If instead y(2)t−1 = si and hence y(1)t−1,3 = 1, then using (10) we obtain

h
(2)
t = A(2)(y(1))h

(2)
t−1 =


H(θ(rj , 1))dm−i = cj−i mod m if xt = rj , y

(1)
t,2 = 1

H(θ(rj , 0))cm−i = dj−i mod m if xt = rj , y
(1)
t,2 = 0

H(θ(sj , 1))dm−i = di−j mod m if xt = sj , y
(1)
t,2 = 1

H(θ(sj , 0))cm−i = ci−j mod m if xt = sj , y
(1)
t,2 = 0

This, together with the definition of dec(2) implies that

y
(2)
t = dec(2)(h

(2)
t ,y

(1)
t) =

{
si−j mod m if xt = rj , y

(1)
t,3 = 1

ri−j mod m if xt = sj , y
(1)
t,3 = 0

. (13)

Note that (12) and (13) imply (11). Setting the output of the linear RNN equal to the output of the
second layer concludes the proof.

(ii) It follows from Theorem 4 since Dm is a finite subgroup of O(2), the group of 2D orthogonal
transformations: rotations and reflections.

B.6 Stability vs. Expressivity of Linear RNNs

In this section, we discuss the tradeoff between expressivity and stability of a linear RNN recurrence
Hi = AiHi−1 +Bi, where Ai = A(xi), Bi = B(xi). We say that such a recurrence is stable if

∃M ∈ [0,∞) such that

∥∥∥∥∥∥
i∏

j=1

Aj

∥∥∥∥∥∥ < M ∀i ∈ N, (14)

where ∥·∥ is the spectral norm. This property is true if and only if ρ(
∏i

j=1 Aj) ≤ 1 where ρ(M) is
the spectral radius of M , i.e. the maximum modulus of its eigenvalues. When this property is not
satisfied, the norm of the state will diverge. An effective way to satisfy (14) withM = 1 is to enforce
∥Ai∥ ≤ 1 for every i, since the norm of the product is less than or equal to the product of the norms
(due to the submultiplicativity property). However, this restriction excludes some boolean matrices
which are useful for recognizing regular languages. Indeed, in the construction shown in (4), all
matrices involved are n×n with entries taking values in {0, 1} and having only a single one in each
column. This class of matrices B satisfies (14) with M =

√
n because it is closed under matrix

multiplication, i.e. ∀B,B′ ∈ B, we have BB′ ∈ B, and maxB∈B ∥B∥ =
√
n, which is achieved

by matrices with ones only in one row. In particular, all matrices in B that are not permutations have
spectral norm greater than one and therefore cannot be expressed if we enforce ∥Ai∥ ≤ 1.

The (Gated) DeltaProduct state transition matrix Ai =
∏nh

l=1 gl(I − βlklk
⊤
l) satisfies ∥Ai∥ ≤ 1

since gl ∈ [0, 1], βl ∈ [0, 2], and ∥kl∥ = 1. Thus, from the matrices in B, it can represent only
permutations of up to nh + 1 elements. Instead, the state-transition matrix of RWKV-7, Ai =
diag(wi)− cki(ki ⊙ ai)

⊤ with c = 2, can represent not only the identity and permutations of two

27

elements, but also any copy matrix, which is obtained by copying one column of the identity onto
another and has spectral norm equal to

√
2. However, as we show in the next theorem, even with the

less expressive c = 1 setup that is used in practice, the RWKV-7 recurrence is not stable unless ai

is the same for every i, which is the case studied in Peng et al. [13, Theorem 1]. Having different
ai values is key to modeling the copy matrix, since this requires a value different from that of a
permutation matrix.

Theorem 8. Consider the RWKV-7 state transition matrix Ai = diag(wi) − cki(ki ⊙ ai)
⊤ with

c = 1 (as set in practice), wi = (1, . . . , 1)⊤ ∈ Rn, ai ∈ [0, 1]n, ki ∈ Rn with ∥ki∥ = 1, and
n ≥ 2. There exists an infinite set M of matrix pairs such that for every (A,A′) ∈ M, we have
ρ(AA′) > 1.2, where ρ denotes the spectral radius. Thus, if we set

Ai =

{
A if i mod 2 = 0

A′ if i mod 2 = 1
, which implies lim

i→∞

∥∥∥∥∥∥
i∏

j=1

Aj

∥∥∥∥∥∥ = lim
i→∞

= ∞.

Proof. We demonstrate this by construction for n = 2; the generalization to n ≥ 2 is straightfor-
ward.

Let θ = π/3, a = (0, 1)⊤, a′ = (1, 0)⊤. k = (cos θ, sin θ)⊤ = [1/2,
√
3/2]⊤. k′ =

(sin θ, cos θ)⊤ = (
√
3/2, 1/2)⊤. Note that ∥k∥ = ∥k′∥ = 1. We construct A and A′ as

A = I − k(k ⊙ a)⊤ = I −
(√

3/2
1/2

)
[0 1/2] =

(
1 −

√
3/4

0 3/4

)
A′ = I − k′(k′ ⊙ a′)⊤ = I −

(
1/2√
3/2

)
[1/2 0] =

(
3/4 0

−
√
3/4 1

)
Now, consider the product matrix

M = AA′ =

(
1 −

√
3/4

0 3/4

)(
3/4 0

−
√
3/4 1

)
=

(
15/16 −

√
3/4

−3
√
3/16 3/4

)
To find the spectral radius ρ(M), we examine its eigenvalues. The characteristic equation is λ2 −
Tr(M)λ + det(M) = 0, with Tr(M) = 27/16 and det(M) = 9/16. Hence, the characteristic
equation is 16λ2 − 27λ + 9 = 0. Thus, the eigenvalues are λ1 = 27+

√
153

32 and λ2 = 27−
√
153

32 and
the spectral radius is ρ(M) = max{|λ1|, |λ2|} = λ1 ≈ 1.23. Also, since the spectral radius is a
continuous function of the matrix entries, which are a continuous function of θ, then this means that
there is an infinite set of matrices, namely M, obtained by varying θ around π/3 whose product has
spectral radius greater than 1.2.

From our construction of Ai, we have
∏2i

j=1 Aj = M i. By the definition of the spectral norm and
spectral radius,

∥∥M i
∥∥ ≥

∥∥λi1x∥∥ = |λ|i = ρ(M)i, where x is the eigenvector associated with the
dominant eigenvalue λ1. The result follows since limi→∞ ρ(M)i = ∞.

C Experiments

C.1 State-Tracking

Clarification on the isomorphisms of S3, S4, A5, and S5

S3: The group consisting of all isometries that map an equilateral triangle onto itself, including both
orientation-preserving rotations and orientation-reversing reflections, is isomorphic to S3.

S4: The rotation group of a cube is isomorphic to the symmetric group S4. This correspondence
arises because the cube has exactly four space diagonals, and every proper rotation—that is, every
orientation-preserving isometry of the cube about an axis through its center—permutes these diago-
nals in all possible ways (see Figure 6 for an example). In particular, these proper rotations include,
for example, the 90◦, 180◦, and 270◦ rotations about axes passing through the centers of opposite
faces, the 180◦ rotations about axes through the midpoints of opposite edges, and the 120◦/240◦

28

0 200 400
Sequence Length

0.0

0.5

1.0

A
cc

ur
ac

y

Group S3

nh
1
2

0 200 400
Sequence Length

0.0

0.5

1.0

A
cc

ur
ac

y

Group S4

nh
1
2
3

0 200 400
Sequence Length

0.0

0.5

1.0

A
cc

ur
ac

y

Group A5

nh
1
2
3
4

0 200 400
Sequence Length

0.0

0.5

1.0

A
cc

ur
ac

y

Group S5

nh
1
2
3
4

0 200 400
Sequence Length

0.0

0.5

1.0

A
cc

ur
ac

y

Group S3

l
1
2
3
4
5

0 200 400
Sequence Length

0.0

0.5

1.0

A
cc

ur
ac

y

Group S4

l
1
2
4
6
8
10

0 200 400
Sequence Length

0.0

0.5

1.0

A
cc

ur
ac

y

Group A5

l
1
2
4
6
8
10

0 200 400
Sequence Length

0.0

0.5

1.0

A
cc

ur
ac

y

Group S5

l
1
2
4
6
8
10

Figure 12: Results for permutation groups S3, S4, A5, and S5 when limiting the eigenvalue
range of the state-transition matrix to [0, 1]. (Top row) Varying the number of Householder prod-
ucts nh for a single layer DeltaProductnh

[0, 1]. (Bottom row) Varying the number of layers l of
DeltaProduct1[0, 1]/DeltaNet[0, 1] (single Householder). Dashed vertical line at training context
length 128. Higher nh improves extrapolation to longer sequences of permutations, e.g., S3 can be
learned with nh = 2 with a single layer while three layers are required when keeping nh = 1.

rotations about axes through opposite vertices. Hence, the proper rotational symmetries of the cube
correspond precisely to the permutations of its four space diagonals [69].

A5: Similarly, a regular dodecahedron contains exactly five special cubes symmetrically arranged
within it. Each proper rotation of the dodecahedron—that is, every orientation-preserving rigid
motion mapping the dodecahedron onto itself—rearranges these inscribed cubes by an even permu-
tation. This property makes the rotation group of the dodecahedron isomorphic to the alternating
group A5, the group of all even permutations of five elements [70].

S5: When both proper rotations and reflections (orientation-reversing symmetries) are considered,
the full symmetry group of the dodecahedron corresponds exactly to the symmetric group S5, since
reflections allow both even and odd permutations of the five hidden cubes [70].

Experimental Details. We used the experimental setup from Merrill et al. [3] and sampled
2,000,000 training datapoints at sequence length 128 and 500,000 test datapoints at sequence length
512. We did not use a curriculum over sequence length during training. The models were trained us-
ing AdamW optimizer [71] with parameters β1 = 0.9, β2 = 0.999, and ϵ = 10−8 in PyTorch [72].
We used a learning rate of 10−3 with cosine annealing [73] and trained for 100 epochs with a batch
size of 1024, except for the S3 models which required a batch size of 2048 for more reliable results.
All models used a single-layer DeltaProduct architecture featuring 12 heads (more heads made the
results more reliable) and a head dimension of 32. We applied a weight decay coefficient of 10−6.
The β values were extracted from the forward pass of the trained models using NNsight [74]. We
use the PCA implementation in scikit-learn [75].

C.2 Chomsky Hierarchy

Setup. We conducted experiments on selected formal language tasks originally introduced by
Delétang et al. [52]. Our goal was to demonstrate the improvements in length extrapolation that
can be achieved using multiple Householder matrices in the state-transition matrix compared to
DeltaNet. Following Grazzi et al. [16], we focus on three tasks: parity, modular arithmetic without
brackets (both regular languages), and modular arithmetic with brackets (a context-free language).
We trained DeltaProductnh

with nh ∈ {2, 3, 4} on sequences of length 3 to 40 and tested on se-
quences ranging from 40 to 256 to evaluate generalization to longer inputs. We compare our results
against the results obtained by Grazzi et al. [16] for Transformer, mLSTM and sLSTM from Beck
et al. [9], Mamba [6], and DeltaNet [10]. For both Mamba and DeltaNet, we experiment with an
eigenvalue range restricted to [0, 1] and extended to [−1, 1].

29

0

2
Head 0 Head 1 Head 2 Head 3

0

2
Head 4 Head 5 Head 6 Head 7

0 2
0

2
Head 8

0 2

Head 9

0 2

Head 10

0 2

Head 11

0

1

Figure 13: β0 and β1 values across all 24 permutations in S4 in DeltaProduct2[−1, 1]. We find that
only head 6 (shown in Figure 7) learns to use both Householders as reflections (β0 ≈ 2, β1 ≈ 2)
allowing it to learn the rotations to solve S4.

Experimental Details. All DeltaProduct and DeltaNet models contain 3 layers with 1 head each
and heads’ dimensions set to 128, except for modular arithmetic with brackets, where we use 12
heads and set the heads’ dimensions to 32. Both models use a causal depthwise 1D convolution
with a kernel size of 4 after the query/key/value projection. For modular arithmetic, we also use a
gradient clipping norm of 1.0. We train each model using AdamW [71] using a learning rate of 5e-4,
batch size of 1024, 0.1 weight decay, and a cosine annealing learning rate schedule [73] (minimum
learning rate: 1e-6) after 10% warm-up steps. We train on the modular arithmetic and parity tasks
for 100k and 20k steps in total, respectively. At each training step, we make sure to generate a valid
random sample from the task at hand (see below). We repeat the runs 3 times with different seeds
each, and later pick the best to report in Table 2.

Considered Tasks. We empirically evaluated three tasks—parity, modular arithmetic without brack-
ets, and modular arithmetic with brackets—spanning different levels of the Chomsky Hierarchy. Be-
low, we provide details for each task, where |Σ| denotes the vocabulary size and Accrand represents
the accuracy of random guessing:

• Parity (|Σ| = 2, Accrand = 0.5). Given a binary sequence x = x1 . . . xt ∈ {0, 1}t, the parity
label yt ∈ {0, 1} is 1 if the total number of ones in the sequence is odd, and 0 otherwise. This task
is equivalent to computing the sum of all previous values modulo 2, i.e., yt = (

∑t
i=1 xi) mod 2.

• Modular Arithmetic without Brackets (|Σ| = 10, Accrand = 1/5). Given a set of special
tokens Σs = {+,−, ∗,=, [PAD]} and a modulus m ≥ 1, we define Σ = Σs ∪ {0, . . . ,m − 1}.
The label yt corresponds to the result of evaluating the arithmetic operations in the sequence
x = x1, . . . , xt, computed modulo m. In our experiments, we set m = 5. An example is:

2+ 1− 2 ∗ 2− 3 = 1 [PAD]

• Modular Arithmetic with Brackets (|Σ| = 12, Accrand = 1/5). This task follows the same
definition as modular arithmetic without brackets but includes an extended set of special tokens,
Σs = {+,−, ∗,=,), (, [PAD]}, allowing for nested expressions. Again, we setm = 5. An example
sequence is:

((1− (−2)) + ((4) + 3)) = 0 [PAD]

Results. As shown in Table 2, DeltaProductnh
with nh ≥ 2 has better average accuracy compared

to DeltaNet and other baselines. This performance improvement is particularly pronounced when
using the extended eigenvalue range [−1, 1], which aligns with the findings of Grazzi et al. [16].
Notably, we observe the most significant improvement in the modular arithmetic with brackets task,
which is also the most challenging.

30

https://github.com/Dao-AILab/causal-conv1d

Table 2: Performance of DeltaProductnh
[−1, 1], nh ∈ {2, 3, 4}, on formal language tasks. We

report the best of 3 runs. Scores are scaled accuracy, with 1.0 indicating perfect performance and
0.0 random guessing. The results for the other models were taken directly from Grazzi et al. [16].

Model Parity Mod. Arithm.
(w/o brackets)

Mod. Arithm.
(w/ brackets) Avg.

Transformer 0.022 0.031 0.067 0.040

mLSTM 0.087 0.040 0.114 0.080
sLSTM 1.000 0.787 0.178 0.655
Mamba [0, 1] 0.000 0.095 0.123 0.073
Mamba [−1, 1] 1.000 0.241 0.116 0.452
DeltaNet [0, 1] 0.233 0.302 0.253 0.263
DeltaProduct2 [0, 1] 0.264 0.402 0.249 0.305
DeltaProduct3 [0, 1] 0.285 0.402 0.288 0.325
DeltaProduct4 [0, 1] 0.295 0.369 0.288 0.317

DeltaNet [−1, 1] 0.982 0.915 0.281 0.726
DeltaProduct2 [−1, 1] 0.896 0.887 0.329 0.704
DeltaProduct3 [−1, 1] 0.932 0.736 0.330 0.666
DeltaProduct4 [−1, 1] 0.982 0.893 0.342 0.739

C.3 Language Modeling

C.3.1 Experimental setup

We follow the same basic training setup as in [16]. We use the training pipeline flame from the
flash-linear-attention [22] repository. All of our models are trained on NVIDIA L40s, NVIDIA
A100 40GB or NVIDIA H100 94GB GPUs. We used 16 to 32 GPUs at a time to train one model,
in a 2 to 8 node setup, depending on resource availability. We used DeepSpeed with ZeRO-2 [76]
for distributed training. All models were trained with an effective batch size of 524 288 tokens, and
a learning rate of 3e-4. We optimized the models with AdamW [71] (0.01 weight decay) and used
cosine annealing [73] for the learning rate schedule with linear warm up for 512 steps. We used a
total of 10 500 GPU hours to train all of our models.

C.3.2 Throughput

16K × 1 8K × 2 4K × 4 2K × 8
Training length × Batch size

0

20K

40K

To
ke

ns
 p

er
 se

co
nd

 (K
t/s

) nh : 1 2 3

Figure 14: Training throughput of a parameter matched DeltaProduct 1.3B. Parameter matching is
achieved by decreasing the inner dimension in the SwiGLU MLP for nh > 1.

C.3.3 Additional Benchmarks

In Table 3 we report evaluations for the models in Figure 10 on tasks from lm-eval-harness [61]. In
addition, we also train and evaluate models with 2048 context length at the 340M parameter scale
and report the results in Table 5 and compare them with the results in [10] which are trained under a
comparable setup. We observe that DeltaProduct outperforms DeltaNet in terms of average accuracy
for both training setups.

Tasks Details. We use the lm-eval-harness benchmark [61] to assess model performance. Following
Yang et al. [10], the evaluation encompasses multiple task categories: Language Understanding
Tasks. The evaluation includes LAMBADA (LMB) [77] for testing text comprehension, PIQA
[78] for physical reasoning assessment, HellaSwag (Hella.) [79] for situational understanding, and
Winogrande (Wino.) [80] for commonsense reasoning evaluation. Reasoning. The ARC dataset
provides two distinct testing sets: ARC-easy (ARC-e) and ARC-challenge (ARC-c) [81], measuring
varying levels of scientific knowledge comprehension.

31

Table 3: Performance comparison of models shown in Figure 10. Parameter equivalence was
achieved by scaling the head dimension. To account for the increased parameter count we scaled the
training token budget from 19B (213M parameters) to 55B (805M parameters) on FineWeb [57].
Models were trained on 4096 token context length.

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc n ↑ acc ↑ acc ↑ acc n ↑ ↑

19
B

/2
13

M DeltaNet[−1, 1] 32.39 107.41 20.4 65.3 35.1 52 44.1 24.5 40.23
DeltaProduct2[−1, 1] 31.46 78.98 23.9 64.6 36.2 52.6 45 23 40.88
DeltaProduct3[−1, 1] 30.94 70.5 24.6 66.3 36.8 49.1 46 23.7 41.01

35
B

/3
92

M DeltaNet[−1, 1] 25.5 40.32 30.2 68.5 41 51.9 47.3 23.3 43.7
DeltaProduct2[−1, 1] 24.82 34.31 33.3 68.9 43.4 50.7 49.2 25 45.08
DeltaProduct3[−1, 1] 24.81 37.13 31.1 68.5 43.3 50 48.2 23.7 44.1

55
B

/8
05

M DeltaNet[−1, 1] 20.81 20.57 37.8 71.5 48.9 55.6 51.9 25.6 48.55
DeltaProduct2[−1, 1] 20.54 19.56 38.3 71 50.7 55.2 52.1 26.7 49
DeltaProduct3[−1, 1] 20.01 15.56 42.9 71.4 51.4 53 54.6 26.4 49.95

Table 4: Performance comparison of models shown in Figure 21. Parameter equivalence was
achieved by scaling the number of heads in the attention. To account for the increased parameter
count we scaled the training token budget from 19B (213M parameters) to 55B (805M parameters)
on FineWeb [57]. Models were trained on 4096 token context length.

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc n ↑ acc ↑ acc ↑ acc n ↑ ↑

19
B

/2
13

M DeltaNet[−1, 1] 31.96 85.36 22.5 65.2 35.4 50.8 44.7 22.4 40.17
DeltaProduct2[−1, 1] 30.87 89.23 23.1 65.4 36.5 51.2 43.5 22.4 40.35
DeltaProduct3[−1, 1] 30.85 71.52 24.1 66.3 36.1 51.6 44.1 23.9 41.02

35
B

/3
92

M DeltaNet[−1, 1] 24.86 39.1 30.8 69.2 41.4 50.5 46.7 24.4 43.83
DeltaProduct2[−1, 1] 24.97 35.68 31.9 69.6 42.5 52.6 47.4 25.9 44.98
DeltaProduct3[−1, 1] 25.2 40.96 30.5 69.1 42.3 51.4 47.7 23.9 44.15

55
B

/8
05

M DeltaNet[−1, 1] 20.6 21.18 38.7 71.5 48.7 52.8 51.9 25.7 48.22
DeltaProduct2[−1, 1] 20.26 17.41 40.7 72.6 50.3 53.9 52.4 24.9 49.13
DeltaProduct3[−1, 1] 19.97 17.78 40.79 72.3 50.9 52.1 53.9 26.4 49.4

Table 5: Performance comparison of models trained with 2048 context length. (SlimPajama (SPJ)
reproduced from Yang et al. [10], Fine-Web (FW) ours). Results are shown for DeltaProduct and
Gated DeltaProduct. We use 8 heads for each layer, unless otherwise specified.

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc n ↑ acc ↑ acc ↑ acc n ↑ ↑

15
B

to
ke

ns
SP

J 340M params
Transformer++ 28.39 42.69 31.0 63.3 34.0 50.4 44.5 24.2 41.2
Mamba [0, 1] 28.39 39.66 30.6 65.0 35.4 50.1 46.3 23.6 41.8
GLA [0, 1] 29.47 45.53 31.3 65.1 33.8 51.6 44.4 24.6 41.8
DeltaNet [0, 1] 28.24 37.37 32.1 64.8 34.3 52.2 45.8 23.5 42.1

35
B

F
W

DeltaNet[−1, 1] 340M 26.92 43.07 29.8 69.0 41.0 50.9 46.6 24.5 43.6
DeltaNet[−1, 1] 12 heads, 392M 26.57 36.76 31.8 69.2 42.3 50.9 47.2 24.4 44.3
DeltaProduct2[−1, 1] 392M 26.43 30.66 34.0 68.9 42.4 53.1 48.9 25.9 45.5
DeltaProduct3[−1, 1] 443M 25.94 29.91 34.2 69.9 43.2 51.9 48.2 24.1 45.2

Gated DeltaNet[−1, 1] 340M 25.97 33.57 33.1 69.5 44.1 51.1 50.9 26.7 45.9
Gated DeltaProduct2[−1, 1] 393M 25.12 30.03 34.2 69.1 44.6 55.3 49.8 25.3 46.4

32

C.3.4 Training behavior

The training behavior of DeltaProductnh
is stable as shown in Figure 15. This is also true for all

considered model sizes in Figures 10 and 21 and Appendix C.3.5.

0 1 2 3 4 5 6 7
Steps ×104

3

4

5

6

7

8

9

10

Lo
ss

Training Loss vs Steps

Number of Householders (nh)
1 2 3

5.25 5.50 5.75 6.00 6.25 6.50
Steps ×104

2.64

2.66

2.68

2.70

Last 15k Steps

Figure 15: Training loss curves of DeltaProductnh
[−1, 1]. The curves demonstrate stable training

behavior as nh increases, with higher values of nh consistently yielding lower losses throughout
training and convergence. While the absolute differences in loss between different nh values are
relatively small, they correspond to significant differences in length extrapolation performance.

C.3.5 Additional results on Length Extrapolation

In this section we show additional plots on length extrapolation. In Figure 16 we show the length
extrapolation behavior of (Gated) DeltaProductnh

scaling up nh without adjusting any of the other
model configuration parameters. As discussed in Section 5.3, increasing nh increases the param-
eter count of the model. Hence, Figures 17 and 18 show the per-token loss and perplexity of
DeltaProductnh

at three different scales where the parameter counts are matched at the respective
scales following the configuration parameters shown in Table 6. Note that these are the same models
as shown in Figure 21.

33

4096 16384

2.9

3.0

3.1

3.2

T
ok

en
L

os
s

CodeParrot

4096 16384

2.9

3.0

3.1

3.2

3.3

OpenThoughts 114K Math

4096 16384
2.60

2.65

2.70

2.75

2.80

Trivia QA

4096 16384

2.6

2.7

2.8

SlimPajama-6B

4096 16384

Sequence Position

18

20

22

24

P
er

p
le

x
it

y

4096 16384

Sequence Position

18

20

22

24

4096 16384

Sequence Position

14.0

14.5

15.0

15.5

4096 16384

Sequence Position

14.5

15.0

15.5

16.0

nh
1 2 3

nh
1 2 3

Model type
Non-gated Gated

Figure 16: Per token loss and perplexity on context lengths up to 32.768 for (Gated) DeltaProductnh
.

(Top) per token loss. (Bottom) Perplexity. Per token losses smoothed with a window-size of 300.

34

4096 16384

3.2

3.3

3.4

3.5

3.6

T
ok

en
L

os
s

CodeParrot

4096 16384

3.2

3.4

3.6

3.8

4.0

OpenThoughts 114K Math

4096 16384

2.85

2.90

2.95

3.00

Trivia QA

4096 16384

2.80

2.85

2.90

2.95

3.00

SlimPajama-6B

4096 16384

3.0

3.2

T
ok

en
L

os
s

4096 16384

3.0

3.2

3.4

3.6

4096 16384

2.70

2.75

2.80

4096 16384

2.7

2.8

4096 16384

Sequence Position

2.8

3.0

3.2

T
ok

en
L

os
s

4096 16384

Sequence Position

2.8

3.0

3.2

3.4

3.6

4096 16384

Sequence Position

2.50

2.55

2.60

2.65

4096 16384

Sequence Position

2.5

2.6

2.7

nh
1 2 3

nh
1 2 3

Figure 17: Per token loss of DeltaProductnh
on contexts up to 32.768 at different model sizes.

Models are parameter equivalent at each scale. Parameter equivalence is achieved by scaling the
number of heads. Exact model configurations can be found in Table 6 (Top) 213M parameters.
(Middle) 392M parameters. (Bottom) 805M parameters.

35

4096 16384

26

28

30

P
er

p
le

x
it

y

CodeParrot

4096 16384

25

30

35
OpenThoughts 114K Math

4096 16384
17.5

18.0

18.5

19.0
Trivia QA

4096 16384
17.50

17.75

18.00

18.25

18.50

SlimPajama-6B

4096 16384
19

20

21

22

23

P
er

p
le

x
it

y

4096 16384

20

22

24

26

4096 16384
14.8

15.0

15.2

15.4

15.6

4096 16384
15.00

15.25

15.50

15.75

4096 16384

Sequence Position

16

18

20

P
er

p
le

x
it

y

4096 16384

Sequence Position

15.0

17.5

20.0

22.5

25.0

4096 16384

Sequence Position

12.0

12.5

13.0

4096 16384

Sequence Position

13.0

13.5

14.0

nh
1 2 3

nh
1 2 3

Figure 18: Perplexity analogue of Figure 17

Table 6: Model configuration parameters for models shown in Figures 17 and 18. All other config-
uration parameters are the same as in [16].

Model Scale # Householders Hidden size # Heads

213M
1 768 8
2 736 6
3 768 4

392M
1 1024 12
2 1024 8
3 1024 6

805M
1 1536 16
2 1468 12
3 1536 8

36

L
ay

er
22

0 10000
Sequence Length

0

20

40

60

Ef
fe

ct
iv

e
R

an
k

DeltaProduct3[1, 1]

0 10000
Sequence Length

0

20

40

60

Ef
fe

ct
iv

e
R

an
k

DeltaNet[1, 1]

0 10000
Sequence Length

0

20

40

60

Ef
fe

ct
iv

e
R

an
k

GatedDeltaProduct3[1, 1]

0 10000
Sequence Length

0

10

20

30

Ef
fe

ct
iv

e
R

an
k

GatedDeltaNet[1, 1]

L
ay

er
19

0 10000
Sequence Length

0

20

40

Ef
fe

ct
iv

e
R

an
k

DeltaProduct3[1, 1]

0 10000
Sequence Length

0

20

40

60

Ef
fe

ct
iv

e
R

an
k

DeltaNet[1, 1]

0 10000
Sequence Length

0

20

40

60

Ef
fe

ct
iv

e
R

an
k

GatedDeltaProduct3[1, 1]

0 10000
Sequence Length

0

20

40

60

Ef
fe

ct
iv

e
R

an
k

GatedDeltaNet[1, 1]

L
ay

er
16

0 10000
Sequence Length

0

20

40

60

Ef
fe

ct
iv

e
R

an
k

DeltaProduct3[1, 1]

0 10000
Sequence Length

0

20

40

60

Ef
fe

ct
iv

e
R

an
k

DeltaNet[1, 1]

0 10000
Sequence Length

0

25

50

75

Ef
fe

ct
iv

e
R

an
k

GatedDeltaProduct3[1, 1]

0 10000
Sequence Length

0

10

20

30

Ef
fe

ct
iv

e
R

an
k

GatedDeltaNet[1, 1]

L
ay

er
13

0 10000
Sequence Length

0

20

40

Ef
fe

ct
iv

e
R

an
k

DeltaProduct3[1, 1]

0 10000
Sequence Length

0

20

40

Ef
fe

ct
iv

e
R

an
k

DeltaNet[1, 1]

0 10000
Sequence Length

0

20

40

60

Ef
fe

ct
iv

e
R

an
k

GatedDeltaProduct3[1, 1]

0 10000
Sequence Length

0

20

40

Ef
fe

ct
iv

e
R

an
k

GatedDeltaNet[1, 1]

L
ay

er
10

0 10000
Sequence Length

0

20

40

60

Ef
fe

ct
iv

e
R

an
k

DeltaProduct3[1, 1]

0 10000
Sequence Length

0

20

40

Ef
fe

ct
iv

e
R

an
k

DeltaNet[1, 1]

0 10000
Sequence Length

0

20

40

Ef
fe

ct
iv

e
R

an
k

GatedDeltaProduct3[1, 1]

0 10000
Sequence Length

0

20

40

Ef
fe

ct
iv

e
R

an
k

GatedDeltaNet[1, 1]

L
ay

er
7

0 10000
Sequence Length

0

20

40

Ef
fe

ct
iv

e
R

an
k

DeltaProduct3[1, 1]

0 10000
Sequence Length

0

20

40

Ef
fe

ct
iv

e
R

an
k

DeltaNet[1, 1]

0 10000
Sequence Length

0

20

40

60

Ef
fe

ct
iv

e
R

an
k

GatedDeltaProduct3[1, 1]

0 10000
Sequence Length

0

20

40

Ef
fe

ct
iv

e
R

an
k

GatedDeltaNet[1, 1]

L
ay

er
4

0 10000
Sequence Length

0

10

20

30

Ef
fe

ct
iv

e
R

an
k

DeltaProduct3[1, 1]

0 10000
Sequence Length

0

20

40

Ef
fe

ct
iv

e
R

an
k

DeltaNet[1, 1]

0 10000
Sequence Length

0

10

20

30

Ef
fe

ct
iv

e
R

an
k

GatedDeltaProduct3[1, 1]

0 10000
Sequence Length

0

10

20

Ef
fe

ct
iv

e
R

an
k

GatedDeltaNet[1, 1]

L
ay

er
1

0 10000
Sequence Length

0

10

20

30

Ef
fe

ct
iv

e
R

an
k

DeltaProduct3[1, 1]

0 10000
Sequence Length

0

20

40

Ef
fe

ct
iv

e
R

an
k

DeltaNet[1, 1]

0 10000
Sequence Length

0.0

2.5

5.0

7.5

Ef
fe

ct
iv

e
R

an
k

GatedDeltaProduct3[1, 1]

0 10000
Sequence Length

0

5

10

Ef
fe

ct
iv

e
R

an
k

GatedDeltaNet[1, 1]

Figure 19: Effective rank of Hi for 4 of 8 heads for a selection of the layers on CodeParrot se-
quences. Solid vertical lines mark new code sequences; dashed vertical line indicates 4096-token
training context length; colored lines show effective rank per head over the sequence.

C.3.6 Additional Results on Scaling Behavior

In Figure 10 parameter equivalence is achieved at each scale mainly by decreasing the the head
dimension for models with nh > 1. In Figure 21 we show perplexity of FineWeb for another set of
scaling results where parameter equivalence is reached by reducing the the number of heads in the
attention. The result for this alternative type of scaling still shows the superiority of DeltaProduct
compared to DeltaNet. However, in this case, models with higher nh are not strictly better than
those with fewer Householders.

37

L
ay

er
22

0 10000
Sequence Length

0

20

40

60

Ef
fe

ct
iv

e
R

an
k

DeltaProduct3[1, 1]

0 10000
Sequence Length

0

20

40

60

Ef
fe

ct
iv

e
R

an
k

DeltaNet[1, 1]

0 10000
Sequence Length

0

20

40

60

Ef
fe

ct
iv

e
R

an
k

GatedDeltaProduct3[1, 1]

0 10000
Sequence Length

0

10

20

Ef
fe

ct
iv

e
R

an
k

GatedDeltaNet[1, 1]

L
ay

er
19

0 10000
Sequence Length

0

20

40

Ef
fe

ct
iv

e
R

an
k

DeltaProduct3[1, 1]

0 10000
Sequence Length

0

20

40

60

Ef
fe

ct
iv

e
R

an
k

DeltaNet[1, 1]

0 10000
Sequence Length

0

20

40

60

Ef
fe

ct
iv

e
R

an
k

GatedDeltaProduct3[1, 1]

0 10000
Sequence Length

0

20

40

Ef
fe

ct
iv

e
R

an
k

GatedDeltaNet[1, 1]

L
ay

er
16

0 10000
Sequence Length

0

20

40

Ef
fe

ct
iv

e
R

an
k

DeltaProduct3[1, 1]

0 10000
Sequence Length

0

20

40

60

Ef
fe

ct
iv

e
R

an
k

DeltaNet[1, 1]

0 10000
Sequence Length

0

20

40

60

Ef
fe

ct
iv

e
R

an
k

GatedDeltaProduct3[1, 1]

0 10000
Sequence Length

0

20

40

Ef
fe

ct
iv

e
R

an
k

GatedDeltaNet[1, 1]

L
ay

er
13

0 10000
Sequence Length

0

20

40

Ef
fe

ct
iv

e
R

an
k

DeltaProduct3[1, 1]

0 10000
Sequence Length

0

20

40

60

Ef
fe

ct
iv

e
R

an
k

DeltaNet[1, 1]

0 10000
Sequence Length

0

20

40

Ef
fe

ct
iv

e
R

an
k

GatedDeltaProduct3[1, 1]

0 10000
Sequence Length

0

20

40

60

Ef
fe

ct
iv

e
R

an
k

GatedDeltaNet[1, 1]

L
ay

er
10

0 10000
Sequence Length

0

20

40

60

Ef
fe

ct
iv

e
R

an
k

DeltaProduct3[1, 1]

0 10000
Sequence Length

0

20

40

Ef
fe

ct
iv

e
R

an
k

DeltaNet[1, 1]

0 10000
Sequence Length

0

20

40

Ef
fe

ct
iv

e
R

an
k

GatedDeltaProduct3[1, 1]

0 10000
Sequence Length

0

20

40

Ef
fe

ct
iv

e
R

an
k

GatedDeltaNet[1, 1]

L
ay

er
7

0 10000
Sequence Length

0

20

40

Ef
fe

ct
iv

e
R

an
k

DeltaProduct3[1, 1]

0 10000
Sequence Length

0

20

40

Ef
fe

ct
iv

e
R

an
k

DeltaNet[1, 1]

0 10000
Sequence Length

0

20

40

Ef
fe

ct
iv

e
R

an
k

GatedDeltaProduct3[1, 1]

0 10000
Sequence Length

0

20

40

Ef
fe

ct
iv

e
R

an
k

GatedDeltaNet[1, 1]

L
ay

er
4

0 10000
Sequence Length

0

10

20

30

Ef
fe

ct
iv

e
R

an
k

DeltaProduct3[1, 1]

0 10000
Sequence Length

0

20

40

Ef
fe

ct
iv

e
R

an
k

DeltaNet[1, 1]

0 10000
Sequence Length

0

10

20

30

Ef
fe

ct
iv

e
R

an
k

GatedDeltaProduct3[1, 1]

0 10000
Sequence Length

0

10

20

Ef
fe

ct
iv

e
R

an
k

GatedDeltaNet[1, 1]

L
ay

er
1

0 10000
Sequence Length

0

10

20

30

Ef
fe

ct
iv

e
R

an
k

DeltaProduct3[1, 1]

0 10000
Sequence Length

0

20

40

Ef
fe

ct
iv

e
R

an
k

DeltaNet[1, 1]

0 10000
Sequence Length

0.0

2.5

5.0

7.5

Ef
fe

ct
iv

e
R

an
k

GatedDeltaProduct3[1, 1]

0 10000
Sequence Length

0

5

10

Ef
fe

ct
iv

e
R

an
k

GatedDeltaNet[1, 1]

Figure 20: Effective rank of Hi for 4 of 8 heads for a selection of the layers on TriviaQA sequences.
Solid vertical lines mark new question-answer pairs; dashed vertical line indicates 4096-token train-
ing context length; colored lines show effective rank per head over the sequence.

38

200M 400M 800M
Parameters

11

12

13

14

15

16

17

Pe
rp

le
xi

ty

DeltaNet
DeltaProduct2

DeltaProduct3

200M 400M 800M
Parameters

20
30
40
50
60
70
80
90

Pe
rp

le
xi

ty

Lambada
DeltaNet
DeltaProduct2

DeltaProduct3

200M400M 800M
Parameters

0.42

0.44

0.46

0.48

Av
g.

 a
cc

ur
ac

y

Avg. accuracy lm-eval

DeltaNet
DeltaProduct2

DeltaProduct3

Figure 21: Scaling analysis w.r.t. (top) final perplexity on FineWeb, (bottom) Lambada and lm-eval
tasks. Parameter equivalence is achieved by scaling the number of heads. Models trained at each
scale with number of tokens as reported in Table 4.

39

	Introduction
	Background
	Related Work
	DeltaProduct
	State-Tracking Capabilities of (Gated) DeltaProduct

	Experiments
	Implementation
	State-Tracking
	Language Modeling

	Conclusion and Future Work
	Spectral Properties and Simplifications of Householder Product Matrices
	Expressivity of DeltaProduct
	Assumptions
	Practical Considerations

	Group Word Problems
	Regular Languages
	Regular language recognition through products of RWKV-7 matrices
	Dihedral Groups
	Stability vs. Expressivity of Linear RNNs

	Experiments
	State-Tracking
	Chomsky Hierarchy
	Language Modeling
	Experimental setup
	Throughput
	Additional Benchmarks
	Training behavior
	Additional results on Length Extrapolation
	Additional Results on Scaling Behavior

