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Abstract

Large language and vision models have been leading a revolution in visual comput-
ing. By greatly scaling up sizes of data and model parameters, the large models
learn deep priors which lead to remarkable performance in various tasks. In this
work, we present deep prior assembly, a novel framework that assembles diverse
deep priors from large models for scene reconstruction from single images in a
zero-shot manner. We show that this challenging task can be done without extra
knowledge but just simply generalizing one deep prior in one sub-task. To this
end, we introduce novel methods related to poses, scales, and occlusion parsing
which are keys to enable deep priors to work together in a robust way. Deep
prior assembly does not require any 3D or 2D data-driven training in the task and
demonstrates superior performance in generalizing priors to open-world scenes.
We conduct evaluations on various datasets, and report analysis, numerical and
visual comparisons with the latest methods to show our superiority. Project page:
https://junshengzhou.github.io/DeepPriorAssembly.

1 Introduction

Reconstructing scenes from images is a vital task in 3D computer vision and computer graphics. It
bridges the gap between the 2D images that can be easily captured by phone cameras and the 3D
geometries of scenes for various real-world applications, e.g., autonomous driving, augmented/virtual
reality and robotics. Reconstructing scenes from multi-view images [60, 67] is well-explored to
recover 3D geometries with multi-view consistency and camera poses. However, reconstructing a
scene from a single RGB image is still challenging, which is extremely difficult due to inadequate
information. Recent works [10, 42] try to solve this task as a reconstruction problem which leverages
neural networks with an encoder-decoder architecture to draw supervisions from pairs of images and
3D ground truth geometries and layouts. Nevertheless, due to the limited amount of image-scene
pairs, these methods struggle to generalize to out-of-distribution images in open world.

Large language and vision models have been extensively studied in the past few years, which
revolutionized neural language processing [58, 6], 2D/3D representation learning [ 15, 77] and content
generation [51, 26], etc. By greatly scaling up sizes of training samples and model parameters,
large models show brilliant capabilities and remarkable performance. However, they are limited in a
specific task, which limits their capability in high level perception tasks. Driven by the observation,
we raise an interesting question: can we assemble series of deep priors from large models, which are
experts with different modalities in different tasks, to solve an extremely challenging task that none
of them can accomplish alone?
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Figure 1: An illustration of our work. We assemble diverse deep priors from large models with
frozen parameters for scene reconstruction from single images in a zero-shot manner.

In this work, we propose deep prior assembly, a novel framework which assembles diverse deep
priors from large models for scene reconstruction from single images in a zero-shot manner. We
rethink this task from a new perspective, and decompose it into a set of sub-tasks instead of seeking
to a data-driven solution. We narrow down the responsibility of each deep prior on a sub-task that it
is good at, and introduce novel methods related to poses, scales, and occlusion parsing to enable deep
priors to work together in a robust way.

Specifically, we first detect and segment the instances in the input image with Grounded-SAM
[29, 33], which is a variation of Segment-Anything Model [29]. For the segmented instances that
are often corrupted due to occlusions or of low resolution, we leverage Stable-Diffusion [51] to
enhance and inpaint images containing the segmented instances. However, the Stable-Diffusion often
produces some predictions which drift away from the input instances and do not conform to the
original appearance. To solve this issue, we introduce to use Open-CLIP [47, 23] to filter out the
bad samples and select the ones matching the input instance most. We then generate the 3D models
for each instance with Shap-E [26] using the amended instance images as input. Additionally, we
estimate the depth of the origin image with Omnidata [13] as the 3D scene geometry prior. To recover
a layout consistent to the image, we propose an approach to optimize the location, orientation and
size for each 3D instance to fit it to the estimated segmentation masks and the depths.

Deep prior assembly merely generalizes deep priors and does not require additional data-driven
training for extra prior knowledge. Our evaluations on various open-world scenes show our capability
of reconstructing diverse objects and recovering plausible layout merely from a single view angle.
Our main contributions can be summarized as follows.

* We propose deep prior assembly, a flexible framework that assembles diverse deep priors
from large models together for reconstructing scenes from single images in a zero-shot
manner.

* We introduce a novel approach to optimizing the location, orientation and scale of instances
by matching them with both 2D and 3D supervision.

* We evaluate deep prior assembly for generating diverse open-world 3D scenes, and show
our superiority over the state-of-the-art supervised methods.

2 Related Work

2.1 Large Models in Different Modalities

Recently, it has been drawing significant attention on scaling up deep models for much more
powerful representations and higher performances with different modalities (e.g. NLP, 2D vision).

Starting from NLP, recent works in scaling up pre-trained language models [0, 34, 48] have largely
revolutionized natural language processing. Some researches translates the progress from language
to 2D vision [47, 12, 3, 20, 15] and 3D vision [77] via model and data scaling.

Except for the large foundation models which focus on producing large-scale representations for
language, 2D images or 3D point clouds, some researches explore large models for specific tasks
(e.g. text-to-image generation [51], image segmentation [29], 3D analysis [62, 78, 76, 31, 30] and 3D
object generation [80, 61, 35, 79]) and have shown remarkable performance. Stable Diffusion trains
a large model of latent diffusion models and achieves commercially available 2D content generation
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Figure 2: The overview of deep prior assembly. Given a single image of a 3D scene, we detect
the instances and segment them with Grounded-SAM. After normalizing the size and center for the
instances, we attempt to amend the quality of the instance images by enhancing and inpainting them.
Here, we take a sofa in the image for example. Leveraging the Stable-Diffusion model, we generate a
set of candidate images through image-to-image generation, with additional guidance from a text
prompt of the instance category predicted by Grounded-SAM. We then filter out the bad generation
samples with Open-CLIP by evaluating the cosine similarity between the generated instances and
original one. After that, we generate multiple 3D model proposals for this instance with Shap-E
from the Top- K generated instance images. Additionally, we estimate the depth of the origin input
image with Omnidata as a 3D geometry prior. To estimate the layout, we propose an approach to
optimize the location, orientation and scale for each 3D proposal by matching it with the estimated
segmentation masks and the depths (the ~ for the example sofa). Finally, we choose the 3D model
proposal with minimal matching error as the final prediction of this instance, and the final scene is
generated by combining the generated 3D models for all detected instances.

effects. Segment Anything Model (SAM) [29] revolutionize the field of image segmentation by
training models with large-scale annotated data. Omnidata [13] trains the large depth estimation
model with various data sources for bringing robust 3D awareness to pure RGB images. In the 3D
domain, the recent works Point-E [40] and Shap-E [26] collect millions of 3D objects to train large
3D models for generating 3D geometries from rendering-style images or texts. In this work, we
aim at leveraging the powerful capabilities of the large models in different modalities and different
domains to solve a challenging task, i.e. scene generation from single images, by assembling deep
priors together.

2.2 Scene Reconstruction from Images

Recovering the underlying 3D surfaces of scenes from images [60, 70, 22, 19, 41] or point clouds
[72,75, 73,25, 36, 74, 24, 43] is a long-standing task in 3D computer vision. Most of the previous
works focus on the multi-view reconstruction with the input dense images captured around the scene.
Classic multi-view stereo methods [, 5, 4] mainly represent the scene by estimating depths for
dense images with feature matching. Inspired by NeRF [39] which performs volume rendering
for scene representation, a series of works [00, 44, 65, 59, 68, 69] introduce the neural implicit
surface reconstruction by learning signed distance fields [45] or occupancy fields [38] for scenes
from multi-view images. NeuRIS [59] proposes to use normal priors for indoor scene reconstruction,
and MonoSDF [67] further introduces monocular depth cues for improving scene geometries.

3 Method

Overview. The overview of deep prior assembly is shown in Fig. 2. We will start from an
introduction of the task decomposition in Sec. 3.1 and then present the pipeline for solving each of
the decomposed sub-tasks using a deep prior from a specific large model in Sec. 3.2. Finally, we
introduce an optimization-based approach for layout estimation in Sec. 3.3.



3.1 Task Decomposition

Revealing 3D scene geometries from a single image is an extremely challenging task duo to limited
context and supervisions. Instead of using a data-driven strategy to learn priors [42, 10], we reformu-
late this task from a new perspective. We decompose it into a set of sub-tasks, each of which can be
done using one deep prior without a need of learning extra knowledge. More specifically, we can
progressively resolve the task by:

1) First, performing detection and segmentation on the input image to acquire the segmentation
images, masks and category labels for all detected instances.

2) Amending instance images through enhancing and inpainting to improve the image qualities.
3) Generating a set of 3D model proposals for each instance from 2D segmented images.

4) Estimating the layout by predicting the location, rotation, and scale for each 3D proposal to
put them to the correct position of the 3D scene.

5) Producing a scene reconstruction by applying the estimated layout and shape poses with
reconstructed instances.

3.2 Assembling Large Models

Inspired by the remarkable performances of recent large models, we propose to assign an expert large
model in each sub-task, which maximizes their abilities for modeling a scene in a zero-shot manner.

Detect and Segment 2D instances. To reveal a scene S from a single image I, we first detect the
instances in I and separate multiple objects into single instances. In this way, we can reconstruct a
scene at shape level, which simplifies the task.

Mask R-CNN vs. SAM vs. Grounded SAM. Detecting and segmenting images have been widely
explored in the past few years. Mask R-CNN [21] is widely adopted as a popular and robust backbone.
However, the performance of Mask R-CNN does not generalize well since it is only trained under a
relative small dataset. Recently, the large SAM [29] have shown promising segmentation accuracy by
scaling up parameters and using more training samples, nevertheless, it only predicts fine-grained
masks but with few semantic concepts. Thus, we adopt Grounded-SAM, which is an improved
version of SAM by introducing Grounding-DINO [33] as an open-set detector and using SAM to
jointly predict detection boxes, segmentation masks and category labels for each instance, formulated
as:

{mg,ci,d; }¥, = GroundedSAM(I), where d; > o (N

{my, ¢;, d;} includes the predicted mask m;, category ¢; and the detection confidence score d; for
the i-th instance, and N is the number of instances in this scene. We only keep the predictions with
a high confidence score larger than a threshold o. The low confident instances often contain large
occlusions or wrong category predictions.

Enhance and Inpaint 2D instances. With the predicted masks {m;}¥ ;, we achieve the segmented
instance images {t;} Y, by masking the original input image I. We then normalize each instance
image by centering it at the origin and normalizing its scale in {t;}), to 0.6 of the max width
or height of I. As shown in Fig. 2, the segmented instance images often suffer from occlusions
or low-resolution of small instances. The low-quality images have a large negative impact on the
followup 3D generation. Therefore, we propose to first improve the quality of instance images by
enhancing and inpainting them with the large model Stable-Diffusion [51].

Specifically, we adopt the image-to-image generation [37] from Stable-Diffusion. We take the
instance image ¢; as the initialization, and add noises on it and then subsequently denoise the noise
corrupted image to increase the realism through the guidance of the text prompt description from the
predicted categories ¢;. We find the prompt template ‘High quality, authentic style {category}” works
fine for most of the indoor instances. For other situations, we directly leverage the category as the
prompt. We observe that Stable-Diffusion may produce some unreliable predictions which are ‘too
creative’ and can not faithfully improve the image quality but turn it into another image, as shown in
Fig. 3. To solve this issue, we generate multiple enhanced images {e’ jj‘il for each instance image t;
and filter out the bad generation samples with the approaches described next.



Filter Out Bad Generation Samples.
To filter out the bad generation samples
produced by Stable-Diffusion and se-
lect the top K enhanced images for the
following 2D-to-3D generation, we pro-
pose to leverage the CLIP models as a
judge to determine which generated im-
ages {e’ jj‘il from Stable-Diffusion can
conform to the original appearance of
the instance t;. Specifically, we adopt
the large open-sourced CLIP [47] model
Open-CLIP [23] as the implementation.

We use cosine similarities {2/ jj‘il be-
tween the generated instance image
{e7}}L, and the original one t; as a met-
ric for the selection, formulated as:
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where fy is the frozen image encoder
from Open-CLIP. We use the Top-K
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Figure 3: Examples on the effect of our pipeline. For the
corrupted 2D instant segmented from the scene image, we
leverage Stable-Diffusion to produce 6 amended genera-
tions. We then adopt Open-CLIP to filter out bad samples
by judging the similarities and producing confidence scores
for the generations, and keep the Top-3 generated images.
The shape generations with Shap-E from the amended im-
ages are significantly more complete and accurate than the
one produced by the original corrupted image.

generated instance images with the largest similarities to the original ¢; as the amended images.
As shown in Fig. 3, Open-CLIP successfully filters out the bad generations.

Generate 3D models from 2D instances. The object-level 3D generation from single images [38, 61]
is a well-explored task in 3D computer vision, however, most previous works show limited generation
performance on open-world images. Shap-E [20] is a large model for 3D generation by training a
3D hyper diffusion model with millions of non-public 3D objects. Therefore, we leverage Shap-E to
provide the deep prior to convert 2D instance images into 3D reconstructions. By this way, we obtain
K 3D reconstruction proposals {sf}le for each 2D instance ¢; by employing Shap-E on the top K
amended images.

3.3 Recovering Scene Layout

The final step is to select the most accurate 3D model proposal §; from the K candidates {s¥}X |
and put it to the right position in a 3D scene to recover the scene layout in the input image. To achieve
this, we propose a novel approach to optimize the location, orientation and size for each 3D proposal
in {sf}szl by matching it with the estimated segmentation mask and the estimated depth. We further
introduce a RANSAC-like solution for robust position optimizing. We select the reconstruction with
the minimum matching error as the reconstruction s; of ¢;.

Depth Estimation. For more accurate
layout estimations, we first estimate the
depth map of the input image I as a 3D
geometry prior. We leverage the large
model Omnidata [13, 27] as the depth
estimator which is trained under a col-
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Figure 4: Illustration of the depth transform. The es-
timated depth maps from Omnidata is not scale-aware,
resulting in scale inaccuracies and distortion in the back-
projected depth point clouds. We achieve the accurate
depth point cloud by first transforming the depth maps
with the pre-solved scale and shift before back-projecting.



dataset. Specifically, we leverage least-squares criterion [ 14, 49] which has a closed-form solution
to solve the depth scale and shift by matching the pair of predicted and real depth with a specific
scene camera intrinsic parameter Cx . After transforming D with the scale h and shift ¢, we can now
back-project D into the 3D space with camera intrinsic parameter Cg, achieving a 3D scene depth
point cloud. The example in Fig. 4 shows that the depth point cloud produced using the transformed
depth maps precisely aligns with the ground truth scene. Alternatively, we can use metric depth
estimation methods [63, 66, 64, 28], which naturally handle depth scale and shift, to replace Omnidata
and lessen the reliance on ground truth depth data. The depth point cloud d; for each instance ¢; is
further achieved by masking the back-projected 3D point cloud.

Pose/Scale Optimization. We further estimate the scale and pose of each 3D model proposal s?
to put them into the right position in the 3D scene. We propose to solve this problem with an
optimization-based approach on the location, rotation and size for s¥ per the mask m; from the
Grounded-SAM and the depth point cloud d; from Omnidata.

We model this problem as a 7-DoF shape registration task with 3-DoF of translation (tz, ty, tz),
3-DoF of rotation (rx, 7y, rz) and one DoF of object scale (v). Specifically, we first sample a point
cloud p? from the mesh of a 3D proposal s¥ and initialize a 7-DoF transform as a transformation
function fy with learnable 7-DoF parameters ¢. We then project pk with fo to achieve the transformed
prediction p¥ by:

B = fo(pl). 3)

We obtain p¥ by optimizing the 7-Dof parameters ¢ with supervisions. With the estimated depth d;,
we can draw the direct 3D matching supervision by minimizing the Chamfer Distance Loss between
the transformed ¥ and the depth points d;. However, merely with the 3D matching constraint, the
pose/scale optimization do not always converge stably since the predicted depth d; is usually with
noises in complex scenes, which significantly affects the registration on shapes.

To resolve this issue, we get inspirations from [8] to leverage the mask information predicted by Stable-
Diffusion as an extra matching supervision in 2D space. Specifically, we project the transformed
3D point cloud p¥ to the 2D space with the camera intrinsic parameters C g, resulting in a 2D point
cloud p¥. Meanwhile, we form another 2D point cloud 77; from the mask m; by randomly sampling
dense 2D points on the occupied region of the mask m;. We then use the 2D matching constraint
to minimize the 2D Chamfer Distance between p¥ and 72;. We illustrate the effect of 2D Matching
constraint with an optimization example in Fig. 5. The final loss for pose/scale optimization of 3D
reconstruction s¥ is then formulated as:

L= LY (di, pY) + LED ;1) 4)

Robust RANSAC-like Solution.
With the optimization-based 7-DoF
registration, we are now able to put
the generated 3D object proposals into
the 3D scene. However, if the mis-
registration is quite large, especially
in the rotation, the optimization may
be trapped in a local optimum and
fail to produce accurate registrations.
We further introduce a RANSAC-like
solution to enhance the robustness of
pose/scale optimization. Specifically, Figure 5: Effect of the 2D Matching. An example of op-
we repeat the optimization 7 times timizing the pose and scale for a chair. We visualize the
with randomly initialized rotation optimization in 2D space. The red 2D points indicate the
matrices for f, each time. The final dense 2D point cloud sampled in the mask, which is the target.
transform for the 3D proposal s¥ is And the green 2D points donate the 2D projection of trans-
selected as the one with minimum formed 3D point clouds sampled from the generated shape
matching loss in Eq. (4) among r of this chair instance. More robust registration is achieved
optimal optimizations, and we define  with the proposed 2D matching constraint. The total 1,000
the matching error w¥ of s! as the iterations take 9.2 seconds on a single 3090 GPU.

minimal matching loss.

Without 2DMatching

With 2DMatching

LS



\ 3D-Front | BlendSwap | Replica
Method | CDLI-S | | CDL1] | F-Scoref | CDLI-S | | CDL1] [ F-ScoreT | CDLI-S| | CDLI] [ F-Score?

Mesh R-CNN[18] | 0449 | 0471 | 23.90 0265 | 0406 | 2187 0268 | 0408 | 2542
Total3D [42] 0198 | 0520 | 1844 0133 | 0400 | 2693 0390 | 0780 | 24.01
PanoRecon [10] 0120 | 0125 | 31.94 0355 | 0417 | 17.11 0326 | 0440 | 17.13
Ours | 0109 | 0134 | 3567 | 0106 | 008 | 7319 | 0113 | 0.110 | 7048

Table 1: Comparisons on scene reconstruction from single images. Lower is better for CDL1 (i.e.,
Chamfer Distance), higher is better for F-Score. CDL1-S is the single-direction Chamfer Distance
from the generated objects to the ground truth meshes.
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Figure 6: Comparisons on scene reconstruction from single images under the 3D-Front dataset.

We repeat the above procedure for each one of the K 3D proposals {sf}szl We select the 3D
proposal with the minimum w? as the final reconstruction §; of ¢;. The final scene generation from
the single image I is achieved by combining the transformed {s;} ; together.

4 Experiments

4.1 Setup

Implement Details. The number M of samples generated by Stable-Diffusion for each instance is
set to 6, where we select the Top K = 3 samples with Open-CLIP. The pose/scale optimization is
repeated for r = 10 times for each instance with RANSAC-like solution.

Datasets. We evaluate deep prior assembly under four widely-used 3D scene reconstruction bench-
marks 3D-Front [17], Replica [55], BlendSwap [2] and ScanNet [11].

3D-Front [17] is a synthetic 3D dataset of indoor 3D scenes. We adopt the data pre-processed by
PanoRecon [10] and randomly select 1,000 scene images from the test set as the single-image dataset.
Note that all the images are captured parallel to the ground with camera locations at 0.75m height
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Figure 7: Comparisons on scene reconstruction from single images under Replica and BlendSwap
dataset.

above the floor in the 3D-Front dataset. We follow PanoRecon to achieve the corresponding ground
truth mesh for each image by only keeping the geometry at the same view and cull anything outside
of the view frustum.

The Replica [55] dataset is an indoor scene dataset which contains 8 scanned 3D indoor scene
with highly photo-realistic 3D indoor scene reconstruction at both room and flat scale. We adopt
the pre-processed data provided by MonoSDF [67] and sample one image for each scene as the
single-image dataset. The ground truth meshes are obtained with the same way as 3D-Front.

The BlendSwap [2] dataset is a high-fidelity synthesis 3D scene dataset collected by Neural-RGBD
[2], containing 9 scenes with complex geometries. We collect single-view images and corresponding
ground truth meshes with the same way as Replica dataset.

The ScanNet [1 1] dataset is a real-word 3D scene dataset captured by RGB-D cameras. We select 7
scenes from the test set of ScanNet and sample one image from each scene as the input.

Baselines. We mainly compare our method with the state-of-the-art methods in scene reconstruction
from single images, i.e., Mesh R-CNN [18], Total3D [42] and PanoRecon [10]. Note that all these
methods are data-driven methods and trained under 3D datasets with ground truth 3D annotations,
while our method solves the task in a zero-shot manner. This means that we do not require any
data-driven training on any 3D or 2D datasets, which is a much more flexible and general solution for
the single image reconstruction task. We direct evaluate these methods with the official codes and the
pre-trained models for numerical and visual comparisons.

Metrics. We use Chamfer Distance and F-Score with the default threshold of 0.1 following [42, 46]
as metrics. Since Mesh R-CNN and Total3D only predicts the 3D objects and do not generate the
backgrounds (e.g. wall and floor), we further report the single-direction Chamfer Distance from the
generated objects to the ground truth meshes, i.e., CDL1-S, to only evaluate the accuracy of generated
objects. Note that Total3D can generate the scene layout which can roughly represent the background,
however, we find that Total3D generates layouts with large errors on all the three datasets. Therefore
we do not keep the layout of Total3D for evaluation. While we achieve the background points by
back-projecting the segmented background depth maps. We sample 10k points on the ground truth
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Figure 8: Comparisons of the scene reconstructions under the real-captured images from ScanNet.

meshes and the generated scenes of each methods for evaluation. Please refer to the appendix for
more details on evaluation.

4.2 Scene Reconstruction on 3D-Front

Tab. 1 reports numerical comparisons on the 3D-Front dataset. We achieve the best performance
among the state-of-the-art methods. Specifically, PanoRecon is trained under the 3D-Front dataset,
therefore it shows convincing results in this dataset. Mesh R-CNN and Total3D are trained under
Pix3D [57]/ShapeNet [7] and SUN-RGBD [54]/Pix3D datasets, respectively.

The qualitative comparison is shown in Fig. 6, where we remove the background geometries for
PanoRecon, ours and GT for a clear visual comparison on the generated instances among all the
methods. We further show the colored scene since the used object generator Shap-E is able to generate
textured 3D objects. The visualization demonstrates our superior performance to produce accurate
and visual-appealing scene reconstruction from merely a single image in a zero-shot manner.

4.3 Scene Generation of Open-World Images

We further evaluate our method under the open-world images from the BlendSwap dataset and the
indoor scene dataset Replica. The quantitative comparisons in these two datasets are shown in Tab. 1,
where we achieve the best performance over all the baseline methods. Note that the performance
of PanoRecon [10] largely degrades under open-world scene images compared to the performance
under 3D-Front dataset. The reason is that PanoRecon fails to generalize to the out-of-distribution
inputs and can only handle the specific image patterns in the trained 3D-Front dataset.

The visual comparison is shown in Fig. 7, where we significantly outperform the previous works in
the generation accuracy and completeness. Specifically, as shown in the 3-rd and 5-th row in Fig.
7, our method generates more accurate geometries for the table with thin legs and the chair with a



complex back. While Mesh R-CNN and Total3D can only generate the coarse 3D shapes and also
fail to estimate accurate layout.

4.4 Scene Reconstruction from Real Images

We further evaluate deep prior assembly under the ScanNet [ 1] using real images. For a qualitative
comparison with other methods, we select 7 scenes from the test set of ScanNet and sample one image
from each scene as the input. We compare deep prior assembly with the state-of-the-art methods
in scene reconstruction from single images, e.g., Mesh R-CNN [18] and Total3D [42]. We do not
compare with PanoRecon [10] here since it fails to generalize to the out-of-distribution inputs and
can only handle the specific image patterns in the trained 3D-Front dataset, as demonstrated in Fig. 7.

We show the visual comparisons in Fig. 8, where we successfully reconstruct scenes from real images
and significantly outperform the previous works in the reconstruction accuracy and completeness.
This demonstrates the huge potentials of the assembled deep priors in reconstructing real-world 3D
scenes. Note that the real-world images are often blurry and corrupted when the camera doesn’t focus
well, e.g., the blurry input image shown in the 5-th row in Fig. 8. While our proposed deep prior
assembly can also handle these challenging situations due to the powerful and robust deep priors
from the large vision models.

4.5 Ablation Study

Framework Design. To evaluate the major com-  Aplation |CDL1-S | |CDLI || F-Scoret
ponents in our methods, we conduct ablations

under the Replica dataset [55] and report the x;g gg_bﬁ;:t)clhfifg;wn 832 83? gg?é
results in Tab. 2. We first justify the effective- /o 3p-Matching 0199 | 0168 | 56.08
ness of introducing Stable-Diffusion for enhanc-

Full | 0113 | 0.110 | 70.48

ing and inpainting images as shown in ‘W/o
Stable-Diffusion’, where we directly adopt the  Taple 2: Ablation studies on framework designs.
segmented instances for shape generation with-

out leveraging Stable-Diffusion for enhancing and inpainting them. We then report the performance
of removing the 2D or 3D matching constraints as shown in “W/o 2D-Matching’ and ‘“W/o 3D-
Matching’. The ablation studies demonstrate the effect of each design by significantly improving the
generation performance. Note that the pose/scale optimization is broken without 3D-Matching since
the only 2D-Matching does not involve depth information.

Effect of Open-CLIP and RANSAC-like so-

lution. We further evaluate the effectiveness of Open-CLIP |[RANSAC| €DL1-S | | CDL1 | | F-Scoref
filtering bad samples with Open-CLIP and the v X 0.121 | 0.118 | 69.28
RANSAC-like solution for robust pose / scale X v 0.129 | 0.123 | 68.92
optimization. The results is shown in Tab. 3, v/ ‘ v/ ‘ 0.113 ‘ 0.110 ‘ 70.48
where both components improve the scene re-

construction accuracy. Table 3: Ablation studies on the effect of Open-

CLIP filtering and RANSAC-like solution.

5 Conclusion

We introduce deep prior assembly, a novel framework that assembles diverse deep priors from large
models for scene reconstruction from single images in a zero-shot manner. This approach breaks
down the task into several sub-tasks, each of which is handled by a deep prior. We do not rely on
any 3D or 2D data-driven training, and provide the key solutions on layout estimation and occlusion
parsing to make all deep priors work together robustly. We report analysis, numerical and visual
comparisons to show remarkable performance over the latest methods.
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Appendix

A More Ablation Studies and Analysis

A.1 Alternatives on sub-tasks.

We explore the effectiveness of our chosen solutions in each sub-task by comparing them with the
alternatives. Specifically, we conduct ablations to replace Shap-E [26] with One-2-3-45 [32], replace
Open-CLIP [47, 23] with EVA-CLIP [56] and replace Omnidata [13] with MiDaS [50] in Tab. 4.
We visually compare Shap-E with One-2-3-45 for shape generation in Fig. 9, where the results
demonstrate that Shap-E is a more robust solution for generating 3D models from 2D instances.

A.2 The Effect of Instance Scale

We further conduct ablation studies to explore the effect of the instance scales to the generation
qualities of Shap-E as described in “Enhance and Inpaint 2D instances” of Sec. 3.2 in our paper.
We provide an visual comparison of the generations with different instance scales in Fig. 10. The
results show that Shap-E is quite sensitive to the scale of instances in the images, where a too small
or too large scale will lead to inaccurate generations with unreliable geometries and appearances.
We set the scale to 6 where the Shap-E performs the best in shape generation from instance images
according to our experiences.

A.3 The Effect of Confidence Threshold.

We further conduct ablations to evaluate the effect of confidence threshold ¢ as described in “Detect
and Segment 2D instances.” of Sec.3.2 in our paper. As shown in Fig. 11, a too large o will drop too
many instances and a too small o struggles to filter bad instances. We choose o = 0.4 as the suitable
confidence threshold.

B More Comparisons with Data-Driven Reconstruction Methods

We additionally compare our method with SOTA data-driven scene reconstruction works PanoRecon
[10], BUOL [9] and Uni-3D [71]. We show the visual comparisons under 3D-Front and ScanNet
datasets in Fig. 12, where our method achieves better and more visual-appealing results under both
3D-Front and ScanNet datasets. Specifically, our method significantly outperforms other methods
using real-world images in ScanNet. The reason is that all the three methods are trained under
3D-Front, and struggle to generalize on real-world images.

We further compare deep prior assembly with ScenePrior [41] in Fig.13. As shown, our method
clearly outperforms ScenePrior in terms of the quality of scene geometries. Moreover, ScenePrior
can only reconstruct the geometry, whereas deep prior assembly is capable of recovering high-fidelity
scene appearances as well.

C Background Reconstruction

We demonstrate that deep prior assembly can also reconstruct the background geometries from the
scene images. We show two scene reconstructions with backgrounds (i.e. floor, wall) in BlendSwap
and Replica datasets in Fig. 14. The backgrounds are achieved by fitting planes to the projected

Ablation | CDLI-S | | CDLI | | F-Score?t

& 5 '
One2-345 | 0.123 0.122 | 67.98 & N v '
EVA-CLIP | 0.113 0.111 | 7041 D« It =
MiDa$S 0.120 | 0119 | 6871 D | L

i ¥ . |
Ours | 0013 | 0110 | 7048 Input Ours(One-2-3-45)  Ours(ShapE)

Table 4: Ablation studies on the sub-task al-

. Figure 9: Ablation on shape generation alternatives.
ternatives.
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Figure 10: The ablation study on the instance scale. We select one instance for each input image and
show the amended instance images. The generations obtained with Shap-E under different instance
scales are visualized on the right.
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Figure 11: The ablation study on the confidence threshold.

background depth points in a similar way as our pose/scale optimization algorithm. We then cull the
geometries outside of the view frustum for a clear visualization.

D Outdoor Scene Reconstruction

We further conduct experiments to evaluate deep prior assembly on complex outdoor scenes and
scene containing animals, as shown in Fig. 15. The first image comes from KITTI dataset, others are
collected from the Internet. With the help of powerful large foundation models, deep prior assembly
demonstrates superior zero-shot scene reconstruction performance in these real-world outdoor scenes.

3D-Front

sz

< | R §
| l‘ ' 'i ’

W
J Uni-3D Ours (Colored)

ScanNet

I

Input Image |  PanoRecon

Figure 12: Visual comparisons under 3D-Front and ScanNet dataset.
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Input Image ScenePrior Ours (Colored)

Figure 13: Visual comparisons with ScenePrior under ScanNet dataset.

(a) BlendSwap

Input Reconstruction Input Reconstruction

Figure 14: Scene reconstructions with backgrounds.

E Efficiency Analysis

We further evaluate the efficiency of our proposed deep prior assembly by reporting the average
runtime of each sub-pipeline in our framework. The results in Tab. 5 show that reconstructing a
scene from a single image takes less than 3 minutes in total, where the inference of Grounded-SAM,
Open-CLIP and Omnidata takes only about 1 second. The most time consuming parts include the
StableDiffusion, Shap-E and the RANSAC-like pose/scale optimization. For these three parts, we
process all instances of the scene in parallel, resulting in significant time savings.

F Evaluation Details

PanoRecon. For evaluating PanoRecon [10], we adopt the official code and pretrained models for
inference and directly report the performance under 3D-Front [16] dataset by evaluating the metrics
(e.g. Chamfer Distance and F-Score) between the reconstructions and the ground truth meshes. For

¥ 9
- % é?

Input Image Ours Ours(Colored)  Input Image Ours Ours(Colored)

Figure 15: Outdoor scene reconstructions produced by deep prior assembly.
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| G-SAM | Sta.-Diff. | Open-CLIP | Omnidata | Shap-E | RANSAC-Opti | Total
Time(s) | 093 | 336 | 005 | o021 | 392 | 972 | 1712

Table 5: Runtime of each sub-pipeline on a RTX3090 GPU.

the Replica [55] and BlendSwap [2] datasets where the scene location and orientation do not match
the 3D-Front dataset where the PanoRecon is trained, we first normalize the center of the predicted
scenes to the ground truth scenes and then register the predicted scene reconstructions to the ground
truth scenes. Specifically, we first predict an initial alignment by a global registration algorithm based
on feature matching [53] with RANSAC and then leverage ICP (Iterative Closest Point) registration
algorithm [52] to obtain the fine registration based on the initial alignment. The metrics are reported
with the registered reconstructions and the ground truth meshes.

Total3D. We leverage the official code and the pretrained models for predicting scene reconstructions
with Total3D [42]. We evaluate Total3D under 3D-Front, Replica and BlendSwap with a similar
way as we evaluating PanoRecon to first normalize the predicted scenes and register them to the
ground truth ones before computing metrics. Total3D only predicts 3D objects and do not generate
backgrounds (e.g. wall and floor). Therefore, we further report the single-direction chamfer distance
from the generated objects to the ground truth meshes, i.e., Chamfer-L1 (S), to only evaluate the
accuracy of the generated objects. Note that Total3D can generate the scene layout which can roughly
represent the background, however, we find that Total3D generates layouts with large errors on all
the three datasets. Therefore we do not keep the layout of Total3D for evaluation.

Mesh R-CNN. We adopt the official code and the pretrained models for predicting scene reconstruc-
tions with Mesh R-CNN [18]. We notice that Mesh R-CNN produces reconstructions with larger
scales than the predictions of other methods and the ground truths. Therefore, we first normalize both
the center and scale of the predicted scenes to the ground truth scenes and then register the predicted
scene reconstructions to the ground truth scenes with a similar way as we evaluate Total3D.

Deep Prior Assembly. We evaluate our proposed deep prior assembly in the same way. We follow
the same settings as we evaluate other baselines to first normalize the center of the predicted scenes
to the ground truth scenes, and then register the predicted scenes to the ground truth scenes. The
background points (e.g. wall and floor) of deep prior assembly are obtained by back-projecting the
background depth maps, i.e., the areas where no instances exists.

G Limitation

One limitation of our method is that it may sometimes produce reconstructions with 3D instance
models that are not perfectly aligned with the 2D instance segmentations in the input images. For
example, the left chair generation in the last row of Fig. 8 exhibits a different color from the 2D
instance of the input image. The reason is that we use Stable-Diffusion to enhance and inpaint the 2D
instances, and then leverage Shap-E to generate 3D reconstructions. This process can introduce some
randomness in the generated textures. The randomness primarily affects the appearances, while the
geometries remain accurate. However, we justify that most reconstructions can faithfully recover the
consistent scene appearances and geometries from the input images. Another limitation of deep prior
assembly is that scene reconstructions may exhibit distortion due to inaccurate depth scale and shift.
This issue can be addressed by replacing Omnidata with recent advances in metric depth estimation
methods [63, 28].
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We analysis the limitations of our method in Sec.H of the appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the detailed information in reproducing our methods in Sec.3,
Sec.4 of the main paper and the appendix. We also provide a demonstration code of our
method in the supplementary materials.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide our demonstration code as a part of our supplementary materials.
We will release the source code, data and instructions upon acceptance.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the training and testing details in the experiment section (Sec.4)
and the appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: We report the average performance as the experimental results.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computer resources needed to reproduce the experiments are provided in
Sec.F of the appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the applications and potential impacts of our method in the
introduction.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We use the open-sourced datasets under their licenses.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

23


paperswithcode.com/datasets

13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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