

CONCEPT-BASED ADVERSARIAL ATTACK: A PROBABILISTIC PERSPECTIVE

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907

Figure 1: Comparison of a single-image adversarial attack (left) versus our proposed concept-based adversarial attack (right). In both cases, adversarial examples x_{adv} are drawn from the product of a distance distribution p_{dis} and a victim distribution p_{vic} . On the left, p_{dis} is centered on a single image x_{ori} , so its overlap with p_{vic} is small. Consequently, adversarial examples that successfully fool the victim classifier typically lose the original image’s meaning, whereas those that preserve the original meaning fail to deceive the classifier. In contrast, on the right, p_{dis} spans the original concept \mathcal{C}_{ori} , greatly increasing overlap with p_{vic} . As a result, the generated adversarial examples both maintain the concept’s meaning and easily deceive the classifier. (A green image border indicates an example that successfully fools the classifier; red indicates failure.)

Building on Zhang et al. (2024b)’s probabilistic perspective, we expand the distance distribution p_{dis} from operating on a single image to operating on an entire concept, which can be represented by a probability distribution over images that correspond to the same underlying object, identity or category. As shown on the right side of Figure 1, this generalization introduces a new class of adversarial attacks. Rather than perturbing a single image, we generate a fresh image that captures the same underlying concept yet deceives the classifier. We refer to this approach as a concept-based adversarial attack. Mathematically, it remains consistent with traditional adversarial attacks when viewed under the probabilistic framework. As we demonstrate, broadening the distance distribution to concept-level information reduces its gap from the victim distribution p_{vic} , resulting in substantially higher attack success rates.

Our main contributions are as follows:

- **Concept-based adversarial attack:** We introduce a new type of adversarial attack that moves beyond single-image perturbations to a concept represented by a distribution, this new approach aligns with traditional adversarial attacks in a principled manner.
- **Concept augmentation:** We propose a practical concept augmentation strategy using modern generative models, enhancing the diversity of the distance distribution.
- **Theoretical and empirical validation:** We provide both theoretical proof and experimental evidence showing that expanding the attack from a single image to an entire concept reduces the distance between p_{vic} and p_{dis} , boosting the attack efficiency.
- **Higher success rates:** Our experiments confirm that concept-based adversarial attacks achieve higher targeted attack success rates while preserving the original concept.
- **Practical Guidelines and Scenarios:** We provide practical guidelines and example application scenarios, detailed in Appendix K.

108

2 PRELIMINARIES

109

110 2.1 PROBABILISTIC GENERATIVE MODELS (PGMs) AND THEIR LIKELIHOODS

111
 112 The goal of probabilistic generative models is to learn a parameterized distribution p_θ that approx-
 113 imates the true distribution p . In practice, we only observe a finite dataset $\mathcal{D} = \{x_1, \dots, x_n\}$, and
 114 training is typically done by maximizing its likelihood. For image modeling, popular approaches
 115 such as VAEs (Kingma et al., 2013) and diffusion models (Song & Ermon, 2019; Ho et al., 2020)
 116 optimize a lower bound on the log-likelihood (the ELBO) rather than the likelihood itself. Thus,
 117 likelihood estimation in practice amounts to computing this ELBO (Burda et al., 2015; Nalisnick
 118 et al., 2019).

119

120 2.2 ADVERSARIAL ATTACK

121 Given a classifier $C : [0, 1]^n \rightarrow \mathcal{Y}$, where n is the input dimension and \mathcal{Y} is the label space, consider
 122 an original image $x_{\text{ori}} \in [0, 1]^n$ and a target label $y_{\text{tar}} \in \mathcal{Y}$. The goal of a targeted adversarial attack
 123 is to construct an adversarial example x_{adv} such that $C(x_{\text{adv}}) = y_{\text{tar}}$ while keeping x_{adv} close to x_{ori} .
 124 The corresponding optimization problem is

$$125 \min \mathcal{D}(x_{\text{ori}}, x_{\text{adv}}) \quad \text{subject to} \quad C(x_{\text{adv}}) = y_{\text{tar}} \quad \text{and} \quad x_{\text{adv}} \in [0, 1]^n,$$

126 where \mathcal{D} measures the distance (similarity) between x_{ori} and x_{adv} , typically via an \mathcal{L}_1 , \mathcal{L}_2 , or \mathcal{L}_∞
 127 norm. Directly solving this constrained optimization can be challenging. To address this, Szegedy
 128 et al. (2014) propose a relaxation:

$$129 \min \mathcal{D}(x_{\text{ori}}, x_{\text{adv}}) + c f(x_{\text{adv}}, y_{\text{tar}}) \quad \text{subject to} \quad x_{\text{adv}} \in [0, 1]^n, \quad (1)$$

130 where c is a constant, and f is an objective function that guides the classifier’s predictions toward
 131 the target label. In Szegedy et al. (2014)’s work, f is taken to be the cross-entropy loss; Carlini &
 132 Wagner (2017) present additional choices for f .

133

134 2.3 PROBABILISTIC ADVERSARIAL ATTACK

135 By employing Langevin Dynamics as an optimizer for equation 1, Zhang et al. (2024b) derive a
 136 probabilistic perspective on adversarial attacks. They introduce the adversarial distribution:

$$137 p_{\text{adv}}(x_{\text{adv}} \mid x_{\text{ori}}, y_{\text{tar}}) \propto p_{\text{vic}}(x_{\text{adv}} \mid y_{\text{tar}}) p_{\text{dis}}(x_{\text{adv}} \mid x_{\text{ori}}), \quad (2)$$

138 where $p_{\text{vic}}(x_{\text{adv}} \mid y_{\text{tar}}) \propto \exp(-c f(x_{\text{adv}}, y_{\text{tar}}))$ is the “victim” distribution emphasizing misclassifi-
 139 cation toward y_{tar} , and $p_{\text{dis}}(x_{\text{adv}} \mid x_{\text{ori}}) \propto \exp(-\mathcal{D}(x_{\text{ori}}, x_{\text{adv}}))$ is the “distance” distribution around
 140 x_{ori} . This formulation leverages the fact that Langevin Dynamics converges to the corresponding
 141 Gibbs distribution (Lamperski, 2021), thereby providing a probabilistic interpretation of adversarial
 142 attack generation.

143 This probabilistic perspective aligns with traditional geometry-based adversarial attacks. For exam-
 144 ple, if \mathcal{D} is the \mathcal{L}_1 norm, then $p_{\text{dis}}(x_{\text{adv}} \mid x_{\text{ori}}) \propto \exp(-\|x_{\text{adv}} - x_{\text{ori}}\|_1)$ takes the form of a Laplace
 145 distribution. Similarly, if \mathcal{D} is the squared \mathcal{L}_2 norm, then $p_{\text{dis}}(x_{\text{adv}} \mid x_{\text{ori}}) \propto \exp(-\|x_{\text{adv}} - x_{\text{ori}}\|_2^2)$ is
 146 a Gaussian distribution.

147 Zhang et al. (2024b) indicate that the distance distribution p_{dis} can be any distribution centered
 148 around x_{ori} , meaning the choice of p_{dis} implicitly defines the distance \mathcal{D} . Consequently, using a
 149 PGM centered on x_{ori} as p_{dis} yields a semantic-aware notion of distance. By then sampling from the
 150 corresponding adversarial distribution p_{adv} , one can generate semantic-aware adversarial examples.

151

152 3 CONCEPT-BASED ADVERSARIAL ATTACK

153

154 3.1 CONCEPT DISTRIBUTION

155 We aim to extend adversarial attacks from operating on a single original image to operating on an
 156 original concept \mathcal{C}_{ori} . A concept is inherently abstract and subjective: it may refer to a specific
 157 physical object (e.g., a rubber duck), a particular identity such as the long-eared corgi puppy with

162 a lighter left cheek shown in Figure 1, or a broader class such as “corgi,” regardless of age, size, or
 163 specific attributes. **Although defining a concept in an absolute sense is difficult, we can represent**
 164 **it through a concept distribution**, denoted by $p(\cdot | \mathcal{C}_{\text{ori}})$.

165 This distribution serves as an interface through which users can specify what the concept is. In
 166 practice, we recommend two ways for users to instantiate their notion of a concept:
 167

- 168 • **Direct specification of a concept distribution:** The user may already possess a generative
 169 model or any other mechanism that directly provides a distribution $p(\cdot | \mathcal{C}_{\text{ori}})$ representing
 170 the concept.
- 172 • **Constructing the distribution from an image set:** The user may collect a set of im-
 173 ages depicting the desired concept (e.g., different poses of the same corgi in Figure 1),
 174 and then train or fine-tune a probabilistic generative model (PGM) on this set to ob-
 175 tain the corresponding concept distribution $p(\cdot | \mathcal{C}_{\text{ori}})$. Here, \mathcal{C}_{ori} is a set of images
 176 $\mathcal{C}_{\text{ori}} = \{x_{\text{ori}}^{(1)}, \dots, x_{\text{ori}}^{(K)}\}$, where K is the number of images depicting \mathcal{C}_{ori} .

177 In the remainder of this paper, we demonstrate the second approach, as it allows us to clearly show-
 178 case how concept-level information can be incorporated into adversarial attacks using accessible
 179 image data and standard generative modeling pipelines.
 180

181 3.2 CONCEPT DISTRIBUTION AS A DISTANCE DISTRIBUTION

183 Building on the probabilistic perspective of adversarial attacks (Zhang et al., 2024b), a distribution
 184 used as a distance distribution can implicitly define a notion of distance. Therefore, by using the
 185 concept distribution defined in the previous subsection as the distance distribution, we implicitly
 186 define the distance between an adversarial example and the underlying concept. Formally,
 187

$$p_{\text{adv}}(x_{\text{adv}} | \mathcal{C}_{\text{ori}}, y_{\text{tar}}) \propto p_{\text{vic}}(x_{\text{adv}} | y_{\text{tar}}) p_{\text{dis}}(x_{\text{adv}} | \mathcal{C}_{\text{ori}}) \quad (3)$$

189 where $p_{\text{adv}}(\cdot | \mathcal{C}_{\text{ori}}, y_{\text{tar}})$ is the adversarial distribution relative to the concept \mathcal{C}_{ori} and the target label
 190 y_{tar} . The distance distribution $p_{\text{dis}}(\cdot | \mathcal{C}_{\text{ori}})$ is **the concept distribution**.

192 Comparing (2) and (3) shows that the only modification is replacing x_{ori} with \mathcal{C}_{ori} . Hence, the
 193 probabilistic adversarial attack (Zhang et al., 2024b) is the special case $\mathcal{C}_{\text{ori}} = \{x_{\text{ori}}\}$ (i.e., $|\mathcal{C}_{\text{ori}}| =$
 194 1). This straightforward and compact expansion allows us to heavily reuse the implementation of
 195 the probabilistic adversarial attack, making probabilistic adversarial attack (ProbAttack¹) a natural
 196 ablation baseline for our method.

197 While intuition suggests that expanding the perturbation space should produce stronger adversarial
 198 examples, rigorous justification is needed. In the following sections, we adopt the probabilistic
 199 perspective, presenting both theoretical analysis and empirical evidence to demonstrate how this
 200 expansion enhances attack effectiveness without compromising perceptual quality.

202 3.3 CONCEPT-BASED ADVERSARIAL ATTACKS GENERATE HIGHER QUALITY 203 ADVERSARIAL EXAMPLES

205 From the probabilistic perspective, generating adversarial examples amounts to sampling from the
 206 overlap between p_{vic} and p_{dis} , since p_{adv} is proportional to their product (Hinton, 2002). For the
 207 common case of attacking a single original image x_{ori} , this procedure is illustrated on the left side
 208 of Figure 1. Empirical research has shown that modern robust classifiers can produce high-quality
 209 images of the target classes (Santurkar et al., 2019; Zhang et al., 2024b; Zhu et al., 2021), causing
 210 p_{vic} to concentrate on the semantics of those classes. Consequently, as x_{ori} does not depict the target
 211 class, the intersection between p_{vic} and p_{dis} is small. Since high-quality images rarely appear in
 212 low-density regions of the distribution, the resulting adversarial examples drawn from this limited
 213 intersection tend to be of lower quality.

214 ¹Both Zhang et al. (2024b) and our work present a methodology applicable to any PGM (e.g., VAE, energy-
 215 based, or diffusion). Since diffusion models are the most powerful PGMs, we adopt them throughout this paper.
 We use ProbAttack to denote the diffusion-based implementation of Zhang et al. (2024b).

We claim that our concept-based adversarial attacks reduce the distance between the p_{vic} and the p_{dis} , thereby increasing their overlap. This broader overlap yields higher-quality adversarial examples and improves targeted attack success rates, as illustrated on the right side of Figure 1.

To justify this claim, we must address two key questions:

- Do concept-based adversarial attacks indeed decrease the distance between p_{vic} and p_{dis} ?
- Do they genuinely produce better adversarial examples?

The remainder of this paper focuses on answering these questions.

3.4 THE DISTANCE BETWEEN DISTRIBUTIONS: A THEORETICAL STUDY

In the whitebox adversarial attack scenario, both the victim classifier and target label are provided, which means p_{vic} remains fixed. Let $p_{\text{dis}}(\cdot \mid \mathcal{C}_{\text{ori}})$ be a Gibbs distribution of the form $p_{\text{dis}}(x \mid \mathcal{C}_{\text{ori}}) \propto \exp(-\beta D(x, \mu))$, where D is a distance function measuring the discrepancy between a point x and the concept center μ . The following theorem shows that, under suitable conditions, increasing the dispersion of p_{dis} (i.e., decreasing β^2) reduces the KL divergence between p_{vic} and p_{dis} :

Theorem 1. *Let p be a probability distribution and q be a Gibbs distribution of the form*

$$q(x) = \frac{\exp(-\beta D(x, \mu))}{Z(\beta)},$$

where $Z(\beta)$ is the normalizing constant, μ is a constant and D is a distance function. Then $KL(p \parallel q)$ is a increasing function of β whenever $\mathbb{E}_{X \sim p}[D(X, \mu)] > \mathbb{E}_{X \sim q}[D(X, \mu)]$.

The proof is provided in Appendix A. By Theorem 1, we see that $KL(p_{\text{vic}} \parallel p_{\text{dis}})$ decreases as β decreases, provided that $\mathbb{E}_{X \sim p}[D(X, \mu)] > \mathbb{E}_{X \sim q}[D(X, \mu)]$. In the probabilistic adversarial attack framework, this condition is always satisfied because samples drawn from p_{vic} lie farther from the mean of p_{dis} than samples drawn from p_{dis} itself. If this were not the case, the fundamental assumption that p_{dis} represents a distance distribution concentrated around x_{ori} or \mathcal{C}_{ori} would be violated.

In practice, different PGMs may be used to model p_{dis} . When an energy-based model (EBM) is adopted, it explicitly learns a Gibbs distribution (LeCun et al., 2006). When a diffusion model (via score matching) is used, it instead learns an implicit representation of the corresponding energy function (Song & Ermon, 2019). Consequently, treating p_{dis} as a Gibbs distribution in this section is fully consistent with practical implementations, and is also aligned with the probabilistic adversarial attack formulation in Section 2.3.

3.5 THE DISTANCE BETWEEN DISTRIBUTIONS: AN EMPIRICAL STUDY

The following theorem provides a tractable expression for the difference in KL divergence between a fixed victim distribution and two different distance distributions.

Theorem 2. *Let $p_{\text{dis}}^{(1)} = p_{\text{dis}}(\cdot \mid \mathcal{C}_{\text{ori}}^{(1)})$ and $p_{\text{dis}}^{(2)} = p_{\text{dis}}(\cdot \mid \mathcal{C}_{\text{ori}}^{(2)})$ be two distance distributions, and let $p_{\text{vic}}(\cdot \mid y_{\text{tar}})$ be the victim distribution corresponding to a victim classifier $p(y_{\text{tar}} \mid x)$. Then, the difference*

$$\Delta := KL(p_{\text{dis}}^{(1)} \parallel p_{\text{vic}}) - KL(p_{\text{dis}}^{(2)} \parallel p_{\text{vic}})$$

is given by

$$\Delta = \mathbb{E}_{X \sim p_{\text{dis}}^{(1)}} [\log p_{\text{dis}}^{(1)}(X) - c \log p(y_{\text{tar}} \mid X)] - \mathbb{E}_{X \sim p_{\text{dis}}^{(2)}} [\log p_{\text{dis}}^{(2)}(X) - c \log p(y_{\text{tar}} \mid X)].$$

The proof is provided in Appendix A. We estimate Δ via Monte Carlo integration and further reduce variance by using common random numbers in the sampling process; details of such practical techniques are introduced in Appendix B. In section 5.3, we empirically show that, concept-based adversarial attacks reduce the distance between distributions p_{vic} and p_{dis} by showing $\Delta < 0$ when $p_{\text{dis}}^{(2)}$ is a distance distribution around only one image and $p_{\text{dis}}^{(1)}$ is a distance distribution around a concept.

²A smaller β corresponds to a higher “temperature” in the Gibbs distribution, which makes p_{dis} more dispersed.

Figure 2: Illustration of how a single corgi concept (“[V] dog”) is expanded into a diverse dataset. DreamBooth images (left) are finetuned with LoRA in Stable Diffusion XL, guided by GPT-4o prompts, to generate various poses, viewpoints, and environments (right).

4 GENERATING CONCEPT-BASED ADVERSARIAL EXAMPLES

In this section we introduce some practical methods to generate concept-based adversarial examples.

4.1 AUGMENT CONCEPT DATASETS BY MODERN GENERATIVE MODELS

In practice, it can be somewhat challenging to obtain a high-quality, highly diverse dataset \mathcal{C}_{ori} depicting the same concept, as required by our method. For example, as shown on the left side of Figure 2, the dataset provided by DreamBooth (Ruiz et al., 2023) contains four images of the same long-eared corgi. Although the corgi is shown in various poses and from multiple viewpoints, the relatively uniform backgrounds do not provide sufficient diversity for our concept-based adversarial attack. Therefore, we decided to use Stable Diffusion XL (Podell et al., 2023) to expand the concept-description dataset.

As illustrated in Figure 2, we designate the corgi as “[V] dog”. Using LoRA finetuning (Hu et al., 2022), we train an SDXL LoRA model on this concept. Next, we feed the five corgi images into GPT-4o (Hurst et al., 2024), stating that these images represent the “[V] dog” and asking it to produce SDXL prompts that embody sufficient diversity for the “[V] dog.” Finally, we load the corgi LoRA into SDXL and, guided by GPT-4o’s prompts (on the top of Figure 2), generate images featuring a wide range of viewpoints, environments, and poses for this corgi concept (see the right side of Figure 2).

4.2 SAMPLE SELECTION

A key advantage of probabilistic adversarial attacks is that we can draw multiple samples from p_{adv} and select the best ones³. In a white-box scenario, we can simply discard samples that fail to deceive the classifier (rejection sampling). However, if p_{dis} and p_{vic} overlap only slightly, this may lead to high rejection rates (especially under a top-1 success criterion).

As a workaround, we first sample M adversarial examples from p_{adv} and select the best among them. For small batches, it is feasible to manually choose which examples preserve the original concept. However, because we need a large number of adversarial examples, we use an automated approach: we sort the samples by how highly they rank the target class and, in the event of a tie, we employ

³Although deterministic methods may yield different results when sampled multiple times, their variability does not stem from algorithmic design but rather from other sources of error.

324 one of two strategies — referred to here as the “conservative strategy” (CONS) and the “aggressive
 325 strategy” (AGGR). Under the conservative strategy, we pick the example with the lowest softmax
 326 probability, thereby filtering out samples that deviate significantly from the original concept. Under
 327 the aggressive strategy, we pick the example with the highest softmax probability, helping us select
 328 samples with the greatest adversarial potential.

330 5 EXPERIMENTS

332 5.1 DATA PREPARATION

334 We use the DreamBooth dataset (Ruiz et al., 2023), which provides 30 objects (animals, dolls, and
 335 everyday items) each with 5-6 representative images. To increase diversity, we apply the augmen-
 336 tation method in Section 4.1, generating 30 additional images per concept and forming the Dream-
 337 BoothPlus dataset. Among the 30 objects of DreamBooth, we only augment 26, excluding four
 338 that pose challenges for text generation or require different fine-tuning parameters for cartoon-style
 339 content.

340 5.2 FITTING THE DISTANCE DISTRIBUTIONS

342 We use the DreamBoothPlus dataset to finetune a diffusion model (Dhariwal & Nichol, 2021; Nichol
 343 & Dhariwal, 2021) to fit the distance distribution p_{dis} (Details in Appendix D). We choose this model
 344 over more advanced architectures, such as the Stable Diffusion series (Podell et al., 2023; Rombach
 345 et al., 2022) or Flux, because it directly models $p(x)$ instead of $p(x | y)$, where x is the image
 346 and y is a label or prompt. Our goal is to employ a more principled model to illustrate our general
 347 adversarial attack method, rather than to optimize for the highest possible engineering performance.

349 5.3 CALCULATING THE DIFFERENCE BETWEEN KL DIVERGENCES

351 We empirically estimate the difference between two KL divergences,

$$352 \Delta := KL(p_{\text{dis}}^{(1)} \| p_{\text{vic}}) - KL(p_{\text{dis}}^{(2)} \| p_{\text{vic}}),$$

353 by using the Monte-Carlo method and the practical techniques introduced in Section 3.5 and Ap-
 354 pendix B, and we denote this estimate by $\tilde{\Delta}$. Concretely, for each concept in DreamBoothPlus, we
 355 fine-tune a diffusion model on the entire concept to obtain $p_{\text{dis}}^{(1)}$. We then fine-tune a separate diffu-
 356 sion model on just one image to obtain $p_{\text{dis}}^{(2)}$. Next, we calculate the empirical difference $\tilde{\Delta}$ and find
 357 that $\tilde{\Delta} < 0$ for every concept. This strongly suggests that $\Delta < 0$, confirming our hypothesis from
 358 Section 3.5. The table in Appendix B summarizes the values of $\tilde{\Delta}$ for each concept.

360 5.4 GENERATING TARGETED ADVERSARIAL EXAMPLES

362 We evaluate the performance of the concept-based adversarial attack in a targeted adversarial at-
 363 tacking setting, because targeted attacks are generally more difficult than untargeted attacks⁴. In our
 364 experiments, we compare NCF (Yuan et al., 2022), ACA (Chen et al., 2024b), DiffAttack (Chen
 365 et al., 2024a), and ProbAttack (Zhang et al., 2024b). We include NCF because it is the strongest
 366 color-based adversarial attack. Both ACA and DiffAttack apply adversarial gradients in the latent
 367 space induced by Stable Diffusion and DDIM, representing the state of the art in unrestricted ad-
 368 versarial attacks. As discussed earlier in Section 3, ProbAttack can be viewed as a special case of our
 369 approach when $|\mathcal{C}_{\text{ori}}| = 1$. For both ProbAttack and our approach, we set the number of samples
 370 M to 10. During the sample selection phase of the experiments, our method uses two strategies —
 371 a conservative strategy and an aggressive strategy (both described in Section 4.2) — denoted in the
 372 tables as OURS (CONS) and OURS (AGGR), respectively.

373 For each compared method, we conduct a white-box attack on the victim classifier (also referred
 374 to as the surrogate classifier) by generating adversarial samples based on it. Next, we feed these

375 ⁴This is especially true for ImageNet classifiers, which must distinguish among 1,000 classes. In an un-
 376 targeted attack, the goal is simply to prevent the victim classifier from assigning the adversarial sample to its
 377 correct class. In contrast, a targeted attack requires the classifier to misclassify the adversarial sample exactly
 as the chosen target class y_{tar} .

378 white-box-generated adversarial samples into other classifiers — a process known as a black-box
 379 attack. If these additional classifiers also classify the adversarial samples into the target class, the
 380 black-box attack is deemed successful, indicating transferability.

381 In our experiments, ResNet50 (He et al., 2016) is used as the victim classifier for white-box attacks.
 382 We measure transferability on VGG19 (Simonyan & Zisserman, 2015), ResNet152 (He et al., 2016),
 383 DenseNet161 (Huang et al., 2017), Inception V3 (Szegedy et al., 2016), EfficientNet B7 (Tan & Le,
 384 2019), and on adversarially trained Inception V3 Adv (Kurakin et al., 2017), EfficientNet B7 Adv
 385 (Xie et al., 2020), and Ensemble IncRes V2 (Tramèr et al., 2018). We report both the white-box
 386 targeted attack success rate (on ResNet50) and the black-box transfer success rate (on the remaining
 387 models).

388
 389
 390
 391 Table 1: Targeted attack success rates (%) on ImageNet classifiers. In the white-box setting, a
 392 targeted attack is counted as successful if the target class is ranked first. For transferability, we
 393 report top-5 success rates, counting an attack as successful if the target class is among the top 5
 394 predictions (since top-1 success was uniformly low across all methods). See Appendix Q for full
 395 results.

	NCF	ACA	DiffAttack	ProbAttack	OURS (CONS)	OURS (AGGR)
White-box	Targeted-Top1					
ResNet 50	1.15	6.03	84.23	59.23	97.82	97.82
Transferability	Targeted-Top5					
VGG19	1.28	1.67	4.36	2.44	2.05	4.36
ResNet 152	1.41	1.92	8.33	3.33	2.82	8.72
DenseNet 161	1.41	2.05	7.44	3.97	3.85	11.54
Inception V3	0.90	1.41	3.08	2.56	1.28	4.74
EfficientNet B7	1.41	1.67	1.79	1.41	1.28	3.97
Adversarial Defence						
Inception V3 Adv	1.15	1.28	3.21	2.18	0.90	3.72
EfficientNet B7 Adv	0.26	1.15	2.05	2.31	1.67	6.41
Ensemble IncRes V2	0.77	1.28	2.69	1.92	0.77	5.00

408
 409
 410 For unrestricted adversarial examples, we must also check whether they preserve the original concept and remain undetectable to humans. Therefore, we measure similarity via a user study (Appendix F) and CLIP (Radford et al., 2021), and image quality using no-reference metrics (MUSIQ (Ke et al., 2021), TReS (Golestaneh et al., 2022), NIMA (Talebi & Milanfar, 2018), ARNIQA (Ag-nolucci et al., 2024), DBCNN (Zhang et al., 2020), and HyperIQA (Su et al., 2020)).

411 As ImageNet has 1,000 classes, it is impractical to evaluate them all. Therefore, we randomly
 412 select 30 target classes y_{tar} , listed in Appendix E. Since DreamBoothPlus contains 26 concepts, each
 413 method generates $26 \times 30 = 780$ adversarial examples. This scale is comparable to current popular
 414 approaches performing untargeted adversarial attacks on the ImageNet-Compatible dataset (Kurakin
 415 et al., 2018).

416 Table 1 presents the targeted attack success rates on ImageNet classifiers. Since the choice of aggressive
 417 or conservative strategy in the sample selection phase does not affect white-box performance,
 418 those rates are identical. Notably, the aggressive strategy achieves significantly higher transferability
 419 than other methods. While the conservative strategy leads to slightly lower transferability, it is still
 420 roughly comparable to the baseline methods. Please refer to Appendix Q for full results.

421 Table 2 reports the similarity between each adversarial sample and its original image, as well as
 422 the image quality of the generated examples. Both our aggressive and conservative strategies out-
 423 perform the other methods in these metrics. Combined with the attack success rates in Table 1,
 424 our approach not only achieves higher success but also preserves the original concept C_{ori} more
 425 effectively. Figure 3 provides a qualitative comparison, showing how well our method maintains
 426 the original concept. Notably, DiffAttack generates images missing details, which aligns with its
 427 weaker image quality scores. For additional qualitative analysis, please refer to Appendix G.

432

433
434
Table 2: Quantitative comparison of similarity to the original images and no reference image quality
metrics for unrestricted adversarial examples.

435

	Clean	NCF	ACA	DiffAttack	ProbAttack	OURS (CONS)	OURS (AGGR)
Similarity							
↑ User Study	N/A	0.1859	0.2808	0.7577	0.8041	0.9654	0.8808
↑ Avg. Clip Score	1.0	0.8728	0.7861	0.8093	0.8581	0.8283	0.8043
Image Quality							
↑ HyperIQA	0.7255	0.5075	0.6462	0.5551	0.6675	0.6947	0.6809
↑ DBCNN	0.6956	0.5096	0.6103	0.5294	0.6161	0.6572	0.6399
↑ ARNIQA	0.7667	0.5978	0.6879	0.6909	0.7009	0.7335	0.7154
↑ MUSIQ-AVA	4.3760	3.8135	4.2687	4.0734	4.3130	4.5305	4.5250
↑ NIMA-AVA	4.5595	3.7916	4.4511	4.0589	4.5168	4.7575	4.7401
↑ MUSIQ-KonIQ	65.0549	50.5022	59.0840	52.5399	58.1563	63.7486	62.2217
↑ TReS	93.2127	64.7050	85.8435	74.1167	84.3131	90.4488	88.0836

445

471

472
473
Figure 3: Qualitative comparison. (A **green** border indicates an example that successfully fools the
474 classifier; **red** indicates failure.) See Appendix G for a more detailed qualitative analysis.

475

6 RELATED WORKS

476

477 To the best of our knowledge, no **existing method constructs adversarial examples conditioned on an**
 478 **identity-level concept**. The most closely related works are Song et al. (2018)’s, Dai et al. (2024)’s
 479 and Collins et al. (2025)’s. However, they treat a “class” (e.g., cat, dog, or truck) as the concept,
 480 which cannot precisely capture an individual identity. In our **framework, we represent a concept**
 481 **through a distribution that could be learned from a set of images, allowing it to flexibly correspond**
 482 **to a single image (i.e. a set with size 1), an identity-level concept, or a class-level concept**. By
 483 contrast, other unrestricted adversarial attack methods focus solely on generating adversarial examples
 484 from a single image: Xiao et al. (2018a) generate adversarial examples using GANs, Chen et al.
 485 (2023) employ diffusion models, and Laidlaw et al. (2020) impose a feature-space distance as a
 486 regularization term in the optimization objective. ACA (Chen et al., 2024b) and DiffAttack (Chen

486 et al., 2024a) further apply the attack gradient directly in the DDIM latent space (Song et al., 2020).
 487 Color-based transformations have proven effective in preserving semantic content for untargeted
 488 attacks (Bhattad et al., 2020; Hosseini & Poovendran, 2018; Shamsabadi et al., 2020; Yuan et al.,
 489 2022; Zhao et al., 2020), yet they perform poorly in targeted scenarios (Chen et al., 2024a), a result
 490 confirmed by our experiments.

491

492

Unrestricted Adversarial Attack Method	Single-image	Identity-level Concept	Class-level Concept
Bhattad et al. (2020)	Yes	No	No
Hosseini & Poovendran (2018)	Yes	No	No
Colorfool (Shamsabadi et al., 2020)	Yes	No	No
Zhao et al. (2020)	Yes	No	No
NCF (Yuan et al., 2022)	Yes	No	No
ACA (Chen et al., 2024b)	Yes	No	No
DiffAttack (Chen et al., 2024a)	Yes	No	No
ProbAttack (Zhang et al., 2024b)	Yes	No	No
AdvGAN (Xiao et al., 2018a)	Yes	No	No
Xiao et al. (2018b)	Yes	No	No
Perceptual Adv. Attack (Laidlaw et al., 2020)	Yes	No	No
Song et al. (2018)	No	No	Yes
NatADiff (Collins et al., 2025)	No	No	Yes
AdvDiff (Dai et al., 2024)	No	No	Yes
AdvDiffuser Chen et al. (2023)	Yes	No	Yes
Ours: Concept-based Adv. Attack	Yes	Yes	Yes

505 **Table 3: Comparison of unrestricted adversarial attack methods. Our method is the only one capable**
 506 **of performing adversarial attacks at the identity-level concept, while also supporting single-image**
 507 **and class-level concepts.**

508 Our work directly inherited from Zhang et al. (2024b)’s probabilistic perspective, but we make a
 509 novel contribution by, for the first time, defining the distance distribution in adversarial attacks with
 510 respect to a **distribution representing** a concept rather than a single image. Although, operationally,
 511 our method appears to be a straightforward extension — replacing the single-image-centered distri-
 512 bution $p_{\text{dis}}(\cdot | x_{\text{ori}})$ with a concept-centered distribution $p_{\text{dis}}(\cdot | C_{\text{ori}})$ (as in the difference between
 513 (2) and (3)) — we rigorously demonstrate, both theoretically and empirically, why this seemingly
 514 simple generalization is remarkably effective.

516 7 CONCLUSIONS

517 The essence of adversarial attacks is to create examples that are imperceptible to humans yet harmful
 518 to computational systems. Our work demonstrates that in an era of powerful generative models,
 519 creating an adversarial example from scratch — one that humans perceive as conceptually correct
 520 — can be more flexible, more realistic, and ultimately more potent than simply perturbing a single
 521 image. Leveraging modern generative models, adversarial noise can be concealed in subtle changes
 522 to viewpoint, pose, or background, making it exceedingly difficult to detect. We believe that our
 523 concept-based adversarial attack heralds the future of adversarial attacks, posing new challenges to
 524 the field of AI security. Defending against such threats will be crucial for advancing AI security
 525 research.

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 ETHICS STATEMENT
541

542 This work introduces a new class of adversarial attacks that operate at the concept level. While
543 our primary goal is to advance scientific understanding of adversarial robustness and stimulate the
544 development of stronger defenses, we acknowledge the potential for malicious misuse. In particular,
545 concept-based adversarial attacks could be exploited to evade security-sensitive image classifiers or
546 to manipulate systems deployed in safety-critical applications.

547 To mitigate these risks, we have:
548

- 549 • Released all code and data strictly for research purposes, under licenses that encourage
550 responsible use.
- 551 • Discussed mitigation strategies in Appendix L, including adversarial training, AI-generated
552 content detection, and hybrid defenses.

554 We emphasize that the broader impact (Appendix M) of this work depends on the research commu-
555 nity’s response. By exposing vulnerabilities of current classifiers, we aim to encourage the develop-
556 ment of more robust and trustworthy AI systems. We strongly discourage any use of this research
557 for harmful purposes.

558
559 REPRODUCIBILITY STATEMENT
560

561 We have taken several steps to ensure the reproducibility of our work:
562

- 563 • **Code and models:** We provide the full source code, including scripts for dataset prepara-
564 tion, model fine-tuning, and adversarial example generation, at [https://anonymous.
565 4open.science/r/ConceptAdvICLR2026](https://anonymous.4open.science/r/ConceptAdvICLR2026). All hyperparameters and training de-
566 tails are specified in the code repository.
- 567 • **Datasets:** Our experiments are based on the DreamBooth dataset (Ruiz et al., 2023), which
568 is publicly available under a CC-BY-4.0 license. We also describe our augmentation proce-
569 dure using SDXL and LoRA in Section 4.1, and provide scripts for generating data (Dream-
570 BoothPlus) as part of our code repo.
- 571 • **Hyperparameters:** Fine-tuning settings for both SDXL LoRA and diffusion models are
572 detailed in Appendix D. For sampling and evaluation, we report the number of generated
573 adversarial examples, sampling strategies, and evaluation metrics in Sections 4-5.
- 574 • **Theoretical results:** Proofs of all theorems are included in Appendix A, and additional
575 details on KL divergence estimation are in Appendix B.
- 576 • **Compute resources:** We report hardware specifications and training times in Appendix I
577 to allow others to reproduce our experiments with similar resources.

579 We believe these resources provide sufficient detail for reproducing both our theoretical and empi-
580 cal results.

582 REFERENCES
583

584 Lorenzo Agnolucci, Leonardo Galteri, Marco Bertini, and Alberto Del Bimbo. Arniqa: Learning
585 distortion manifold for image quality assessment. In *Proceedings of the IEEE/CVF Winter Con-
586 ference on Applications of Computer Vision*, pp. 189–198, 2024.

587 Anand Bhattad, Min Jin Chong, Kaizhao Liang, Bo Li, and David A. Forsyth. Unrestricted adver-
588 sarial examples via semantic manipulation. In *8th International Conference on Learning Repre-
589 sentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020*. OpenReview.net, 2020. URL
590 https://openreview.net/forum?id=Sye_OgHFwH.

592 Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of adversarial machine learn-
593 ing. In *Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security*, pp. 2154–2156, 2018.

594 Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. *arXiv*
 595 *preprint arXiv:1509.00519*, 2015.
 596

597 Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In *2017*
 598 *ieee symposium on security and privacy (sp)*, pp. 39–57. Ieee, 2017.

599 Jianqi Chen, Hao Chen, Keyan Chen, Yilan Zhang, Zhengxia Zou, and Zhenwei Shi. Diffusion mod-
 600 els for imperceptible and transferable adversarial attack. *IEEE Transactions on Pattern Analysis*
 601 *and Machine Intelligence*, pp. 1–17, 2024a. doi: 10.1109/TPAMI.2024.3480519.
 602

603 Xinquan Chen, Xitong Gao, Juanjuan Zhao, Kejiang Ye, and Cheng-Zhong Xu. Advdiffuser: Natu-
 604 ral adversarial example synthesis with diffusion models. In *Proceedings of the IEEE/CVF Inter-*
 605 *national Conference on Computer Vision*, pp. 4562–4572, 2023.

606 Zhaoyu Chen, Bo Li, Shuang Wu, Kaixun Jiang, Shouhong Ding, and Wenqiang Zhang. Content-
 607 based unrestricted adversarial attack. *Advances in Neural Information Processing Systems*, 36,
 608 2024b.

609 Max Collins, Jordan Vice, Tim French, and Ajmal Mian. Natadiff: Adversarial boundary guidance
 610 for natural adversarial diffusion. *arXiv preprint arXiv:2505.20934*, 2025.

611 Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flam-
 612 marion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized adver-
 613 sarial robustness benchmark. *arXiv preprint arXiv:2010.09670*, 2020.

614 Xuelong Dai, Kaisheng Liang, and Bin Xiao. Advdiff: Generating unrestricted adversarial examples
 615 using diffusion models. In *European Conference on Computer Vision*, pp. 93–109. Springer, 2024.

616 Nilesh Dalvi, Pedro Domingos, Mausam, Sumit Sanghai, and Deepak Verma. Adversarial clas-
 617 sification. In *Proceedings of the tenth ACM SIGKDD international conference on Knowledge*
 618 *discovery and data mining*, pp. 99–108, 2004.

619 Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat gans on image synthesis. In
 620 Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman
 621 Vaughan (eds.), *Advances in Neural Information Processing Systems 34: Annual Conference on*
 622 *Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual*, pp.
 623 8780–8794, 2021. URL <https://proceedings.neurips.cc/paper/2021/hash/49ad23d1ec9fa4bd8d77d02681df5cfa-Abstract.html>.

624 Yinpeng Dong, Qi-An Fu, Xiao Yang, Wenzhao Xiang, Tianyu Pang, Hang Su, Jun Zhu, Jiayu Tang,
 625 Yuefeng Chen, XiaoFeng Mao, et al. Adversarial attacks on ml defense models competition. *arXiv*
 626 *preprint arXiv:2110.08042*, 2021.

627 S Alireza Golestaneh, Saba Dadsetan, and Kris M Kitani. No-reference image quality assessment
 628 via transformers, relative ranking, and self-consistency. In *Proceedings of the IEEE/CVF winter*
 629 *conference on applications of computer vision*, pp. 1220–1230, 2022.

630 Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
 631 examples. In Yoshua Bengio and Yann LeCun (eds.), *3rd International Conference on Learning*
 632 *Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceed-*
 633 *ings*, 2015. URL <http://arxiv.org/abs/1412.6572>.

634 Martin Gubri, Maxime Cordy, Mike Papadakis, Yves Le Traon, and Koushik Sen. Lgv: Boosting
 635 adversarial example transferability from large geometric vicinity. In *European Conference on*
 636 *Computer Vision*, pp. 603–618. Springer, 2022.

637 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 638 recognition. In *2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR*
 639 *2016, Las Vegas, NV, USA, June 27-30, 2016*, pp. 770–778. IEEE Computer Society, 2016. doi:
 640 10.1109/CVPR.2016.90. URL <https://doi.org/10.1109/CVPR.2016.90>.

641 Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. *Neural*
 642 *computation*, 14(8):1771–1800, 2002.

648 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
 649 Hugo Larochelle, Marc'Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
 650 Tien Lin (eds.), *Advances in Neural Information Processing Systems 33: Annual Con-
 651 ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
 652 2020, virtual*, 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html>.

654 Hossein Hosseini and Radha Poovendran. Semantic adversarial examples. In *Proceedings of the*
 655 *IEEE Conference on Computer Vision and Pattern Recognition Workshops*, pp. 1614–1619, 2018.
 656

657 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 658 and Weizhu Chen. Lora: Low-rank adaptation of large language models. In *The Tenth Inter-
 659 national Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.*
 660 OpenReview.net, 2022. URL <https://openreview.net/forum?id=nZeVKeeFYf9>.

661 Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected
 662 convolutional networks. In *2017 IEEE Conference on Computer Vision and Pattern Recognition,
 663 CVPR 2017, Honolulu, HI, USA, July 21-26, 2017*, pp. 2261–2269. IEEE Computer Society,
 664 2017. doi: 10.1109/CVPR.2017.243. URL <https://doi.org/10.1109/CVPR.2017.243>.

666 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 667 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 668 *arXiv:2410.21276*, 2024.

669 Junjie Ke, Qifei Wang, Yilin Wang, Peyman Milanfar, and Feng Yang. Musiq: Multi-scale im-
 670 age quality transformer. In *Proceedings of the IEEE/CVF international conference on computer*
 671 *vision*, pp. 5148–5157, 2021.

673 Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.

674 Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial machine learning at scale. In *5th*
 675 *International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,*
 676 *2017, Conference Track Proceedings*. OpenReview.net, 2017. URL <https://openreview.net/forum?id=BJm4T4Kgx>.

679 Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
 680 In *Artificial intelligence safety and security*, pp. 99–112. Chapman and Hall/CRC, 2018.

681 Cassidy Laidlaw, Sahil Singla, and Soheil Feizi. Perceptual adversarial robustness: Defense against
 682 unseen threat models. *arXiv preprint arXiv:2006.12655*, 2020.

684 Andrew Lamperski. Projected stochastic gradient langevin algorithms for constrained sampling and
 685 non-convex learning. In *Conference on Learning Theory*, pp. 2891–2937. PMLR, 2021.

686 Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, Fujie Huang, et al. A tutorial on energy-
 687 based learning. *Predicting structured data*, 1(0), 2006.

689 Daniel Lowd and Christopher Meek. Adversarial learning. In *Proceedings of the eleventh ACM*
 690 *SIGKDD international conference on Knowledge discovery in data mining*, pp. 641–647, 2005a.

691 Daniel Lowd and Christopher Meek. Good word attacks on statistical spam filters. In *CEAS*, volume
 692 2005, 2005b.

694 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 695 Towards deep learning models resistant to adversarial attacks. In *6th International Conference*
 696 *on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,*
 697 *Conference Track Proceedings*. OpenReview.net, 2018. URL <https://openreview.net/forum?id=rJzIBfZAb>.

699 Eric T. Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Görür, and Balaji Lakshminarayanan.
 700 Do deep generative models know what they don't know? In *7th International Conference on*
 701 *Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019*. OpenReview.net,
 2019. URL <https://openreview.net/forum?id=H1xwNhCcYm>.

702 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
 703 In Marina Meila and Tong Zhang (eds.), *Proceedings of the 38th International Conference on*
 704 *Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event*, volume 139 of *Proceedings of*
 705 *Machine Learning Research*, pp. 8162–8171. PMLR, 2021. URL <http://proceedings.mlr.press/v139/nichol21a.html>.

706

707 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 708 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 709 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

710

711 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 712 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 713 models from natural language supervision. In *International conference on machine learning*, pp.
 714 8748–8763. PMLR, 2021.

715

716 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 717 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 718 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

719

720 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
 721 Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In *Pro-
 722 ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 22500–
 723 22510, 2023.

724

725 Shibani Santurkar, Andrew Ilyas, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Alek-
 726 sander Madry. Image synthesis with a single (robust) classifier. In Hanna M. Wallach, Hugo
 727 Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.),
 728 *Advances in Neural Information Processing Systems 32: Annual Conference on Neural Infor-
 729 mation Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada*, pp.
 730 1260–1271, 2019. URL <https://proceedings.neurips.cc/paper/2019/hash/6f2268bd1d3d3ebaabb04d6b5d099425-Abstract.html>.

731

732 Ali Shahin Shamsabadi, Ricardo Sánchez-Matilla, and Andrea Cavallaro. Colorfool: Seman-
 733 tic adversarial colorization. In *2020 IEEE/CVF Conference on Computer Vision and Pattern
 734 Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020*, pp. 1148–1157. IEEE, 2020.
 735 doi: 10.1109/CVPR42600.2020.00123. URL <https://doi.org/10.1109/CVPR42600.2020.00123>.

736

737 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 738 recognition. In Yoshua Bengio and Yann LeCun (eds.), *3rd International Conference on Learning
 739 Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceed-
 740 ings*, 2015. URL <http://arxiv.org/abs/1409.1556>.

741

742 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv
 743 preprint arXiv:2010.02502*, 2020.

744

745 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 746 *Advances in neural information processing systems*, 32, 2019.

747

748 Yang Song, Rui Shu, Nate Kushman, and Stefano Ermon. Constructing unrestricted ad-
 749 versarial examples with generative models. In Samy Bengio, Hanna M. Wallach, Hugo
 750 Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), *Advances
 751 in Neural Information Processing Systems 31: Annual Conference on Neural Infor-
 752 mation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada*, pp.
 753 8322–8333, 2018. URL <https://proceedings.neurips.cc/paper/2018/hash/8cea559c47e4fbdb73b23e0223d04e79-Abstract.html>.

754

755 Shaolin Su, Qingsen Yan, Yu Zhu, Cheng Zhang, Xin Ge, Jinqiu Sun, and Yanning Zhang. Blindly
 756 assess image quality in the wild guided by a self-adaptive hyper network. In *Proceedings of the
 757 IEEE/CVF conference on computer vision and pattern recognition*, pp. 3667–3676, 2020.

756 Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Good-
 757 fellow, and Rob Fergus. Intriguing properties of neural networks. In Yoshua Bengio and
 758 Yann LeCun (eds.), *2nd International Conference on Learning Representations, ICLR 2014,*
 759 *Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings*, 2014. URL <http://arxiv.org/abs/1312.6199>.

760

761 Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Re-
 762 thinking the inception architecture for computer vision. In *2016 IEEE Conference on Com-
 763 puter Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016*,
 764 pp. 2818–2826. IEEE Computer Society, 2016. doi: 10.1109/CVPR.2016.308. URL <https://doi.org/10.1109/CVPR.2016.308>.

765

766 Hossein Talebi and Peyman Milanfar. Nima: Neural image assessment. *IEEE transactions on image
 767 processing*, 27(8):3998–4011, 2018.

768

769 Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural
 770 networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th
 771 International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, Cali-
 772 fornia, USA*, volume 97 of *Proceedings of Machine Learning Research*, pp. 6105–6114. PMLR,
 773 2019. URL <http://proceedings.mlr.press/v97/tan19a.html>.

774

775 Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian J. Goodfellow, Dan Boneh, and Patrick D.
 776 McDaniel. Ensemble adversarial training: Attacks and defenses. In *6th International Confer-
 777 ence on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
 778 Conference Track Proceedings*. OpenReview.net, 2018. URL <https://openreview.net/forum?id=rkZvSe-RZ>.

779

780 Xiaosen Wang and Kun He. Enhancing the transferability of adversarial attacks through variance
 781 tuning. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 782 pp. 1924–1933, 2021.

783

784 Zhihang Wang, Xiaosen Wang, Bo Wang, Siheng Chen, Zhibo Wang, Xingjun Ma, and Yu-Gang
 785 Jiang. Diffpatch: Generating customizable adversarial patches using diffusion models. *arXiv
 786 preprint arXiv:2412.01440*, 2024.

787

788 Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He, Mingyan Liu, and Dawn Song. Generating adver-
 789 sarial examples with adversarial networks. *arXiv preprint arXiv:1801.02610*, 2018a.

790

791 Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan Liu, and Dawn Song. Spatially trans-
 792 formed adversarial examples. In *6th International Conference on Learning Representations,
 793 ICML 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings*.
 794 OpenReview.net, 2018b. URL <https://openreview.net/forum?id=HyydRMZC->.

795

796 Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang, Alan L. Yuille, and Quoc V. Le. Adversarial
 797 examples improve image recognition. In *2020 IEEE/CVF Conference on Computer Vision and
 798 Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020*, pp. 816–825. IEEE, 2020.
 799 doi: 10.1109/CVPR42600.2020.00090. URL <https://doi.org/10.1109/CVPR42600.2020.00090>.

800

801 Shengming Yuan, Qilong Zhang, Lianli Gao, Yaya Cheng, and Jingkuan Song. Natural color fool:
 802 Towards boosting black-box unrestricted attacks. *Advances in Neural Information Processing
 803 Systems*, 35:7546–7560, 2022.

804

805 Andi Zhang, Tim Z Xiao, Weiyang Liu, Robert Bamler, and Damon Wischik. Your fine-
 806 tuned large language model is already a powerful out-of-distribution detector. *arXiv preprint
 807 arXiv:2404.08679*, 2024a.

808

809 Andi Zhang, Mingtian Zhang, and Damon Wischik. Constructing semantics-aware adversarial ex-
 810 amples with a probabilistic perspective. *Advances in Neural Information Processing Systems*, 37:
 811 136259–136285, 2024b.

812

813 Weixia Zhang, Kede Ma, Jia Yan, Dexiang Deng, and Zhou Wang. Blind image quality assessment
 814 using a deep bilinear convolutional neural network. *IEEE Transactions on Circuits and Systems
 815 for Video Technology*, 30(1):36–47, 2020.

810 Zhengyu Zhao, Zhuoran Liu, and Martha A. Larson. Adversarial color enhancement: Generating
811 unrestricted adversarial images by optimizing a color filter. In *31st British Machine Vision Con-*
812 *ference 2020, BMVC 2020, Virtual Event, UK, September 7-10, 2020*. BMVA Press, 2020. URL
813 <https://www.bmvc2020-conference.com/assets/papers/0099.pdf>.

814 Yao Zhu, Jiacheng Ma, Jiacheng Sun, Zewei Chen, Rongxin Jiang, Yaowu Chen, and Zhenguo Li.
815 Towards understanding the generative capability of adversarially robust classifiers. In *Proceedings*
816 *of the IEEE/CVF International Conference on Computer Vision*, pp. 7728–7737, 2021.

817 Yao Zhu, Yuefeng Chen, Xiaodan Li, Kejiang Chen, Yuan He, Xiang Tian, Bolun Zheng, Yaowu
818 Chen, and Qingming Huang. Toward understanding and boosting adversarial transferability from
819 a distribution perspective. *IEEE Transactions on Image Processing*, 31:6487–6501, 2022.

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

APPENDIX

A PROOF OF THE THEOREMS

Theorem 1. *Let p be a probability distribution and q be a Gibbs distribution of the form*

$$q(x) = \frac{\exp(-\beta D(x, \mu))}{Z(\beta)},$$

where $Z(\beta)$ is the normalizing constant, μ is a constant and D is a distance function. Then $KL(p \parallel q)$ is a increasing function of β whenever $\mathbb{E}_{X \sim p}[D(X, \mu)] > \mathbb{E}_{X \sim q}[D(X, \mu)]$.

Proof. According to the definition of KL divergence, we have

$$KL(p \parallel q) = \int p(x) \log \frac{p(x)}{q(x)} dx = \int p(x) \log p(x) dx - \int p(x) \log q(x) dx$$

Since $\int p(x) \log p(x) dx$ is independent of β , we can treat it as a constant. Let us denote the β -dependent component as $f(\beta)$, which gives us

$$\begin{aligned} f(\beta) &= - \int p(x) \log q(x) dx \\ &= - \int p(x) [-\beta D(x, \mu) - \log Z(\beta)] dx \\ &= \int p(x) \beta D(x, \mu) dx + \log Z(\beta) \int p(x) dx \\ &= \mathbb{E}_{X \sim p}[\beta D(X, \mu)] + \log Z(\beta) \end{aligned}$$

Taking the derivative with respect to β , we obtain

$$\begin{aligned} \frac{d}{d\beta} f(\beta) &= \mathbb{E}_{X \sim p}[D(X, \mu)] + \frac{1}{Z(\beta)} \frac{dZ(\beta)}{d\beta} \\ &= \mathbb{E}_{X \sim p}[D(X, \mu)] + \frac{1}{Z(\beta)} \int \frac{d \exp(-\beta D(X, \mu))}{d\beta} dx \\ &= \mathbb{E}_{X \sim p}[D(X, \mu)] + \frac{1}{Z(\beta)} \int -D(X, \mu) \exp(-\beta D(X, \mu)) dx \\ &= \mathbb{E}_{X \sim p}[D(X, \mu)] - \mathbb{E}_{X \sim q}[D(X, \mu)] \end{aligned}$$

Therefore, when $\mathbb{E}_{X \sim p}[D(X, \mu)] > \mathbb{E}_{X \sim q}[D(X, \mu)]$, the derivative becomes positive. This implies that both $f(\beta)$ and consequently $KL(p \parallel q)$ increase as β increases. \square

Theorem 2. *Let $p_{dis}^{(1)} = p_{dis}(\cdot \mid \mathcal{C}_{ori}^{(1)})$ and $p_{dis}^{(2)} = p_{dis}(\cdot \mid \mathcal{C}_{ori}^{(2)})$ be two distance distributions, and let $p_{vic}(\cdot \mid y_{tar})$ be the victim distribution corresponding to a victim classifier $p(y_{tar} \mid x)$. Then, the difference*

$$\Delta = KL(p_{dis}^{(1)} \parallel p_{vic}) - KL(p_{dis}^{(2)} \parallel p_{vic})$$

is given by

$$\Delta = \mathbb{E}_{X \sim p_{dis}^{(1)}} [\log p_{dis}^{(1)}(X) - c \log p(y_{tar} \mid X)] - \mathbb{E}_{X \sim p_{dis}^{(2)}} [\log p_{dis}^{(2)}(X) - c \log p(y_{tar} \mid X)].$$

Proof. Recall that for distributions p and q on the same space, the Kullback–Leibler (KL) divergence is

$$KL(p \parallel q) = \mathbb{E}_{X \sim p} [\log p(X) - \log q(X)].$$

Hence, for $p_{dis}(\cdot \mid \mathcal{C}_{ori})$ and $p_{vic}(\cdot \mid y_{tar})$,

$$KL(p_{dis}(\cdot \mid \mathcal{C}_{ori}) \parallel p_{vic}(\cdot \mid y_{tar})) = \mathbb{E}_{X \sim p_{dis}(\cdot \mid \mathcal{C}_{ori})} [\log p_{dis}(X \mid \mathcal{C}_{ori}) - \log p_{vic}(X \mid y_{tar})].$$

Given that the victim distribution is proportional to

$$p_{\text{vic}}(x | y_{\text{tar}}) \propto \exp(-c f(x, y_{\text{tar}})),$$

where $f(x, y_{\text{tar}})$ is the cross-entropy loss, i.e. $f(x, y_{\text{tar}}) = -\log p(y_{\text{tar}} | x)$. Thus we can write

$$p_{\text{vic}}(x | y_{\text{tar}}) = \frac{\exp(-c f(x, y_{\text{tar}}))}{\int \exp(-c f(x, y_{\text{tar}})) dx}.$$

Let $Z := \int \exp(-c f(x, y_{\text{tar}})) dx$. Then

$$\log p_{\text{vic}}(X | y_{\text{tar}}) = \log \exp(-c f(X, y_{\text{tar}})) - \log Z = -c f(X, y_{\text{tar}}) - \log Z.$$

Therefore,

$$KL(p_{\text{dis}}(\cdot | \mathcal{C}_{\text{ori}}) \| p_{\text{vic}}(\cdot | y_{\text{tar}})) = \mathbb{E}_{X \sim p_{\text{dis}}(\cdot | \mathcal{C}_{\text{ori}})} [\log p_{\text{dis}}(X | \mathcal{C}_{\text{ori}}) + c f(X, y_{\text{tar}})] + \log Z.$$

Since $f(x, y_{\text{tar}}) = -\log p(y_{\text{tar}} | x)$, we get

$$c \mathbb{E}_{X \sim p_{\text{dis}}(\cdot | \mathcal{C}_{\text{ori}})} [f(X, y_{\text{tar}})] = -c \mathbb{E}_{X \sim p_{\text{dis}}(\cdot | \mathcal{C}_{\text{ori}})} [\log p(y_{\text{tar}} | X)].$$

Hence

$$KL(p_{\text{dis}}(\cdot | \mathcal{C}_{\text{ori}}) \| p_{\text{vic}}(\cdot | y_{\text{tar}})) = \mathbb{E}_{X \sim p_{\text{dis}}(\cdot | \mathcal{C}_{\text{ori}})} [\log p_{\text{dis}}(X | \mathcal{C}_{\text{ori}}) - c \log p(y_{\text{tar}} | X)] + \log Z.$$

Now take two such distributions, $p_{\text{dis}}^{(1)}$ and $p_{\text{dis}}^{(2)}$. Because $\log Z$ does not depend on which $p_{\text{dis}}(\cdot | \mathcal{C}_{\text{ori}})$ we use, it cancels when we form the difference:

$$\begin{aligned} \Delta &= KL(p_{\text{dis}}^{(1)} \| p_{\text{vic}}) - KL(p_{\text{dis}}^{(2)} \| p_{\text{vic}}) \\ &= \left(\mathbb{E}_{X \sim p_{\text{dis}}^{(1)}} [\log p_{\text{dis}}^{(1)}(X) - c \log p(y_{\text{tar}} | X)] + \log Z \right) \\ &\quad - \left(\mathbb{E}_{X \sim p_{\text{dis}}^{(2)}} [\log p_{\text{dis}}^{(2)}(X) - c \log p(y_{\text{tar}} | X)] + \log Z \right) \\ &= \mathbb{E}_{X \sim p_{\text{dis}}^{(1)}} [\log p_{\text{dis}}^{(1)}(X) - c \log p(y_{\text{tar}} | X)] - \mathbb{E}_{X \sim p_{\text{dis}}^{(2)}} [\log p_{\text{dis}}^{(2)}(X) - c \log p(y_{\text{tar}} | X)], \end{aligned}$$

which is precisely the claimed result. \square

B PRACTICAL STRATEGIES FOR KL DIVERGENCE ESTIMATION

B.1 COMMON RANDOM NUMBERS

In practice, our distance distributions $p_{\text{dis}}^{(1)}$ and $p_{\text{dis}}^{(2)}$ are instantiated by diffusion models: each image X is generated from noise ϵ via a generator \mathcal{G} . We write $X = \mathcal{G}^{(1)}(\epsilon)$ to indicate that X is sampled from $p_{\text{dis}}^{(1)}$, and $X = \mathcal{G}^{(2)}(\epsilon)$ to indicate that X is sampled from $p_{\text{dis}}^{(2)}$. In this common-noise setup, the difference in KL divergences becomes

$$\Delta = \mathbb{E}_{\epsilon} \left[\log p_{\text{dis}}^{(1)}(\mathcal{G}^{(1)}(\epsilon)) - c \log p(y_{\text{tar}} | \mathcal{G}^{(1)}(\epsilon)) - \log p_{\text{dis}}^{(2)}(\mathcal{G}^{(2)}(\epsilon)) + c \log p(y_{\text{tar}} | \mathcal{G}^{(2)}(\epsilon)) \right]. \quad (4)$$

B.2 LIKELIHOOD CORRECTION

We posit a probabilistic model p_{share} that captures the non-semantic, shared features of the images. Specifically, we assume that for samples X drawn from $p_{\text{dis}}^{(1)}$ and $p_{\text{dis}}^{(2)}$, the expected values $\mathbb{E}_{X \sim p_{\text{dis}}^{(1)}} [\log p_{\text{share}}(X)]$ and $\mathbb{E}_{X \sim p_{\text{dis}}^{(2)}} [\log p_{\text{share}}(X)]$ are equal. This assumption is reasonable because the two distributions, in principle, can generate images sharing the same non-semantic details, differing only in their semantic content.

Then, under our diffusion-model instantiation, we have

$$\mathbb{E}_{X \sim p_{\text{dis}}^{(1)}} [\log p_{\text{share}}(X)] = \mathbb{E}_{X \sim p_{\text{dis}}^{(2)}} [\log p_{\text{share}}(X)] \Rightarrow \mathbb{E}_{\epsilon} [\log p_{\text{share}}(\mathcal{G}^{(1)}(\epsilon)) - \log p_{\text{share}}(\mathcal{G}^{(2)}(\epsilon))] = 0$$

972 for Δ , following equation 4, we have the equations:
 973

$$\begin{aligned}
 974 \quad \Delta &= \mathbb{E}_\epsilon \left[\log p_{\text{dis}}^{(1)}(\mathcal{G}^{(1)}(\epsilon)) - c \log p(y_{\text{tar}} \mid \mathcal{G}^{(1)}(\epsilon)) - \log p_{\text{dis}}^{(2)}(\mathcal{G}^{(2)}(\epsilon)) + c \log p(y_{\text{tar}} \mid \mathcal{G}^{(2)}(\epsilon)) \right] \\
 975 \\
 976 &\quad - \mathbb{E}_\epsilon [\log p_{\text{share}}(\mathcal{G}^{(1)}(\epsilon)) - \log p_{\text{share}}(\mathcal{G}^{(2)}(\epsilon))] \\
 977 \\
 978 &= \mathbb{E}_\epsilon \left[\log p_{\text{dis}}^{(1)}(\mathcal{G}^{(1)}(\epsilon)) - \log p_{\text{share}}(\mathcal{G}^{(1)}(\epsilon)) - c \log p(y_{\text{tar}} \mid \mathcal{G}^{(1)}(\epsilon)) \right. \\
 979 &\quad \left. - \log p_{\text{dis}}^{(2)}(\mathcal{G}^{(2)}(\epsilon)) + \log p_{\text{share}}(\mathcal{G}^{(2)}(\epsilon)) + c \log p(y_{\text{tar}} \mid \mathcal{G}^{(2)}(\epsilon)) \right] \\
 980 \\
 981
 \end{aligned}$$

982 In practice, however, the assumption $\mathbb{E}_{X \sim p_{\text{dis}}^{(1)}}[p_{\text{share}}(X)] = \mathbb{E}_{X \sim p_{\text{dis}}^{(2)}}[p_{\text{share}}(X)]$ may not hold per-
 983 perfectly, due to differences in model capacity, finetuning steps, and other factors. For example, a
 984 model $p_{\text{dis}}^{(1)}$ finetuned on more images might actually lose some non-semantic details compared to
 985 $p_{\text{dis}}^{(2)}$, which is finetuned on a single image. The extra p_{share} -based terms can thus be viewed as a
 986 correction that accounts for these mismatches in non-semantic content.

987 Following Zhang et al. (2024a)’s work, a good practical choice for p_{share} is often the pretrained
 988 model, because it has been trained on a large, diverse dataset and therefore captures broad, shared
 989 non-semantic features of images.
 990

991 B.3 ESTIMATED DIFFERENCES OF KL DIVERGENCES

992 Because Δ depends on both the original concept \mathcal{C}_{ori} and the target class y_{tar} , enumerating every possible Δ would be impractical. Therefore, similar to the adversarial-example generation experiment
 993 introduced in Section 5.4, we restrict our analysis to the 30 target classes listed in Appendix E. We
 994 then compute the mean and variance of the estimated Δ (denoted $\tilde{\Delta}$), as shown in Table 4.
 995

1000 Table 4: Estimated differences of KL divergences $\tilde{\Delta}$ for each concept.

1001 Concept name	1002 $\tilde{\Delta}$	1003 Concept name	1004 $\tilde{\Delta}$	1005 Concept name	1006 $\tilde{\Delta}$
1007 backpack	−3507.28 ± 2040.85	1008 backpack.dog	−8372.57 ± 860.92	1009 bear_plushie	−466.69 ± 1413.40
1010 candle	−3637.39 ± 940.80	1011 cat	−4658.98 ± 2423.05	1012 cat2	−6654.28 ± 1318.03
1013 colorful_sneaker	−4954.90 ± 420.40	1014 dog	−7159.63 ± 696.25	1015 dog2	−4814.63 ± 470.95
1016 dog3	−8303.66 ± 2964.40	1017 dog5	−8080.70 ± 2808.13	1018 dog6	−2380.29 ± 1780.36
1019 dog7	−10545.45 ± 787.79	1020 dog8	−12401.76 ± 966.62	1021 duck_toy	−2420.45 ± 2334.07
1022 fancy_boot	−5780.99 ± 1489.92	1023 grey_sloth_plushie	−6848.96 ± 1477.16	1024 monster_toy	−7435.54 ± 1698.99
1025 pink_sunglasses	−5711.26 ± 799.22	1026 poop_emoji	−219.27 ± 929.88	1027 rc_car	−5046.80 ± 3212.23
1028 robot_toy	−7008.27 ± 710.45	1029 shiny_sneaker	−3203.81 ± 4447.21	1030 teapot	−7327.87 ± 486.00
vase	−8806.76 ± 2435.28	wolf_plushie	−325.80 ± 2811.99		

1011 C SENSITIVITY STUDY FOR SAMPLE SELECTION

1012 As described in Section 4.2, when generating adversarial examples we first sample M candidate
 1013 adversarial images and then select the “best” one. To investigate the effect of different values of M ,
 1014 we perform a sensitivity study. In this study, $|\mathcal{C}_{\text{ori}}|$ is set to either 1 or 30, while M is set to 1, 5, or
 1015 10. Note that $|\mathcal{C}_{\text{ori}}| = 1$ corresponds to ProbAttack (Zhang et al., 2024b).

1016 From Table 5, we observe that as M increases, the white-box attack success rate rises significantly.
 1017 In the $|\mathcal{C}_{\text{ori}}| = 1$ case, the transferability also increases as M grows. However, in the $|\mathcal{C}_{\text{ori}}| = 30$ case,
 1018 increasing M results in a decrease in transferability. This happens because we employ a conservative
 1019 strategy (introduced in Section 4.2) to pick images that just barely fool the classifier while preserving
 1020 the original concept. Evidence of this conservative strategy can be seen in Table 6: when $|\mathcal{C}_{\text{ori}}| = 30$,
 1021 increasing M yields higher image quality and greater similarity to the original image. In contrast,
 1022 when $|\mathcal{C}_{\text{ori}}| = 1$, the ranking criterion is more influential during the sample selection stage, so the
 1023 conservative strategy does not take effect. Consequently, as M grows, the image quality tends to
 1024 decrease.
 1025

1026
 1027 Table 5: Targeted attack success rates (%) on ImageNet classifiers. In the white-box setting, success
 1028 is counted when the target class is the top prediction. For transferability, we report top 100 success
 1029 rates, as top 1 success was uniformly low across all methods.

	$ C_{\text{ori}} = 1$ $M = 1$	$ C_{\text{ori}} = 1$ $M = 5$	$ C_{\text{ori}} = 1$ $M = 10$	$ C_{\text{ori}} = 30$ $M = 1$	$ C_{\text{ori}} = 30$ $M = 5$	$ C_{\text{ori}} = 30$ $M = 10$
White-box						
Top1						
Resnet 50	26.03	50.38	59.23	81.41	96.28	97.82
Transferability						
Top100						
VGG19	16.41	17.82	18.97	30.00	23.21	20.90
ResNet 152	21.79	23.97	26.79	43.85	37.69	35.13
DenseNet 161	26.67	30.26	33.08	53.08	44.10	41.03
Inception V3	16.03	17.44	18.21	22.95	19.36	19.87
EfficientNet B7	16.15	16.54	17.44	25.90	21.54	20.38
Adversarial Defence						
Top100						
Inception V3 Adv	18.97	17.82	20.00	25.26	20.64	20.51
EfficientNet B7 Adv	16.54	17.95	21.03	33.72	27.82	24.74
Ensemble IncRes V2	14.10	14.87	17.31	24.74	18.08	17.44

1043
 1044 Table 6: Quantitative comparison of similarity to the original images and no reference image quality
 1045 metrics for unrestricted adversarial examples.

	Clean	$ C_{\text{ori}} = 1$ $M = 1$	$ C_{\text{ori}} = 1$ $M = 5$	$ C_{\text{ori}} = 1$ $M = 10$	$ C_{\text{ori}} = 30$ $M = 1$	$ C_{\text{ori}} = 30$ $M = 5$	$ C_{\text{ori}} = 30$ $M = 10$
Similarity							
↑ User Study	N/A	N/A	N/A	0.8041	N/A	N/A	0.9654
↑ Avg. Clip Score	1.0	0.8953	0.8859	0.8581	0.8175	0.8286	0.8283
Image Quality							
↑ MUSIQ-KonIQ	65.0549	59.0779	59.7026	58.1563	62.8293	63.8795	63.7486
↑ MUSIQ-AVA	4.3760	4.3016	4.3400	4.3130	4.5013	4.5356	4.5305
↑ TReS	93.2127	86.4084	86.9480	84.3131	88.9667	90.6312	90.4488
↑ NIMA-AVA	4.5595	4.5729	4.5851	4.5168	4.6804	4.7422	4.7575
↑ HyperIQA	0.7255	0.6800	0.6808	0.6675	0.6880	0.6952	0.6947
↑ DBCNN	0.6956	0.6303	0.6340	0.6161	0.6459	0.6564	0.6572
↑ ARNIQA	0.7667	0.7222	0.7153	0.7009	0.7187	0.7323	0.7335

1058 D FINETUNING DETAILS

1059 In this section, we provide the key parameters required to fine-tune the models. For all parameters,
 1060 please refer to the code repository of this paper.

1064 D.1 FINETUNING DETAILS OF SDXL LoRAs

1065 In the SDXL LoRA finetuning described in Section 4.1 and Section 5.1, we use a LoRA rank of 128
 1066 with a corresponding LoRA alpha of 128, and set the dropout rate to 0.05. We employ the AdamW
 1067 optimizer and train for 250 epochs, using a learning rate of 10^{-4} for UNet parameters and 10^{-5} for
 1068 text encoder parameters. For more detailed settings, please refer to the accompanying code.

1070 D.2 FINETUNING DETAILS OF DISTANCE DISTRIBUTIONS

1072 For the diffusion model fine-tuning described in Section 5.2, we set the learning rate to 10^{-6} , use
 1073 the AdamW optimizer, and train for 8000 steps per image in the fine-tuning set. More details are in
 1074 the code repository.

1076 E LIST OF THE SELECTED TARGET CLASSES

1078 Since ImageNet consists of 1000 classes and it is impractical to cover them all, we randomly selected
 1079 30 target classes. For details, please refer to Table 7.

1080

1081

Table 7: List of the selected target classes

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

F DETAILS OF THE USER STUDY

1108

1109

1110

1111

1112

1113

1114

1115

We employed a crowdsourcing approach by hiring five annotators to determine whether each adversarial example preserves the original concept. Since our concepts are all concrete objects, we used the term “same item” to convey the notion of “same concept” in a straightforward manner. Following the user study methods of Song et al. (2018) and Zhang et al. (2024b), all five annotators voted on whether they believed each adversarial example still represented the original concept.

1114 Annotator Instructions.

1116

1117

1118

In this study, you will see two images and be asked whether they show the “same item.” Please follow these guidelines when making your judgment:

1119

1. Shape/Form

1120

1121

1122

1123

- If the overall shape (including any accessories) in both images closely matches or approximates each other, answer “Yes.”
- If the object in one image appears excessively distorted or deformed compared to the other, answer “No.”

1124

1125

1126

1127

2. Accessories

1128

1129

1130

1131

1132

1133

- Even if the second image has additional or fewer accessories, as long as it essentially represents the same item, answer “Yes.”

3. Color

1134

1135

1136

1137

1138

- If there is no significant difference in color between the two images, answer “Yes.”
- If there is a clear and noticeable color difference that affects recognizing the item, answer “No.”

Figure 4 shows the user interface for this study.

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153

1154
 1155
 1156
 1157

G DETAILED QUALITATIVE ANALYSIS

1160 Due to space constraints, the qualitative comparison figures in the main text are relatively small.
 1161 Therefore, in this section, we present enlarged qualitative comparisons between DiffAttack and our
 1162 approach. We focus on comparing DiffAttack in particular because, although it achieves a high
 1163 target attack success rate, it produces lower-quality images, as shown in our user study and image
 1164 quality tests. Here, we examine specific adversarial examples generated by DiffAttack to illustrate
 1165 why its image quality is inferior.

1166
 1167

- **Border Collie (first column of Figure 5).** DiffAttack removes all the dog’s fur details and replaces its eyes with those of another canine, while the nose and tongue become stylized with a graffiti-like look, losing realistic details. In contrast, although our concept-based adversarial example changes the dog’s pose, it preserves the animal’s fur and facial details.
- **Shiny Sneakers (second column).** DiffAttack turns the sneakers into a shoe design with sharp edges, losing the smooth curves of the original model.
- **Chow Chow (third column).** DiffAttack alters all of the fur details and erases the dog’s forelegs, resulting in a shape that resembles a drumstick rather than a chow chow.
- **Colorful Sneakers (fourth column).** While DiffAttack retains the purple front section and the blue rear section, it removes the yellow line in the middle and the adjacent cyan trim. Without these details, the sneaker’s appearance changes to a different style altogether.
- **Cat (fifth column).** DiffAttack modifies the cat’s fur patterns and gives it a distorted facial expression.

1181
 1182
 1183
 1184

1185 These observations further show that DiffAttack’s adversarial examples degrade crucial details, re-
 1186 sulting in a significant drop in image quality and diminished fidelity to the original concept. **To**
 1187 **emphasize that this qualitative study is not cherry-picking, we provide the complete set of**
 1188 **adversarial examples — both from other methods and ours — in the code repository.**

Figure 5: Qualitative comparison (zoomed in). (A **green** border indicates an example that successfully fools the classifier; **red** indicates failure.)

H ADDITIONAL COMMENTS ON TRANSFERABILITY

As shown in Appendix Q, our proposed method consistently achieves the best transferability among comparable approaches. However, its attack success rates are still considerably lower than those of methods explicitly optimized for transferability, such as works of Zhu et al. (2022), Wang & He (2021), Gubri et al. (2022) and Collins et al. (2025). We note that approaches targeting transferability often generate clear visual features of the target class. Especially in the setting of unrestricted adversarial attacks, directly synthesizing objects of the target class within the image is also considered valid (see Figure 5 in the appendix of Collins et al. (2025)).

From the probabilistic perspective of adversarial attack, this phenomenon is especially intuitive. As illustrated in Figure 6, p_{dis} denotes the distance distribution, while $p_{\text{vic}}^{(1)}$ and $p_{\text{vic}}^{(2)}$ represent the victim distributions induced by two different classifiers. Without loss of generality, suppose adversarial examples are sampled from the product of the red distribution $p_{\text{vic}}^{(1)}$ and the blue distribution p_{dis} . The resulting adversarial examples concentrate in the region where these two distributions overlap. As shown in the figure, this region corresponds to low probability density under the green distribution $p_{\text{vic}}^{(2)}$, leading to poor transferability across classifiers.

Although the overall transferability of our method is relatively low, expanding p_{dis} indeed brings the overlap between the blue and red distributions closer to the green distribution, making it reasonable that a larger p_{dis} leads to an improvement in transferability.

However, it is important to emphasize that our goal fundamentally differs from methods explicitly designed to maximize transferability. Approaches that achieve very high transferability, such as Zhu et al. (2022) and Collins et al. (2025), typically introduce strong visual features of the target class. Doing so moves samples toward the intersection of the red and green victim distributions, thereby dramatically improving transferability. Yet this strategy comes at the cost of injecting target-

1242 class semantics into the generated images, which directly violates our requirement of preserving the
 1243 original identity-level concept.
 1244

1245 In contrast, our method aims to investigate how enlarging the concept-based distance distribution
 1246 p_{dis} affects both image quality and transferability, while strictly maintaining the underlying iden-
 1247 tity. Under this constraint, extremely high transferability is not expected - and, in fact, cannot be
 1248 achieved without compromising identity preservation. Although our framework could be extended
 1249 to incorporate target-class features to boost transferability, we view this as beyond the scope of the
 1250 current work and a promising direction for future research.
 1251

1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264 Figure 6: Transferability of adversarial attacks from a probabilistic perspective. p_{dis} denotes the
 1265 distance distribution, while $p_{\text{vic}}^{(1)}$ and $p_{\text{vic}}^{(2)}$ represent the victim distributions induced by two different
 1266 classifiers. Without loss of generality, assume that adversarial examples are sampled from the pro-
 1267 duct of the red distribution $p_{\text{vic}}^{(1)}$ and the blue distribution p_{dis} . In this case, the generated adversarial
 1268 examples concentrate in the overlap between these two distributions. As illustrated in the figure, this
 1269 overlapping region has low probability density under the green distribution $p_{\text{vic}}^{(2)}$, resulting in poor
 1270 transferability. Moreover, if a sample happens to contain strong visual evidence of the target class,
 1271 then both classifiers would classify it as the target with high confidence, hence the high-density re-
 1272 gions of $p_{\text{vic}}^{(1)}$ and $p_{\text{vic}}^{(2)}$ would necessarily overlap.
 1273
 1274
 1275
 1276

I COMPUTE RESOURCES

1277 All experiments are conducted on a single NVIDIA H100 Tensor Core GPU. Our method requires
 1278 approximately 20 minute per concept for concept augmentation and around 8 hours per concept for
 1279 diffusion model fine-tuning. For adversarial example generation, although our method is slightly
 1280 slower, it is still within the same order of magnitude.
 1281

1282 To ensure that the diffusion model learns a high-quality identity-level concept, we train it for a
 1283 long duration during the concept finetuning stage. When the concept dataset is sufficiently large
 1284 (e.g., the 30 images described in the main text), the diffusion model does not collapse even after
 1285 many epochs of finetuning. However, in settings like ProbAttack, where finetuning is performed
 1286 on a single image, the number of epochs must be carefully controlled to avoid model collapse. For
 1287 this reason, the concept finetuning time for ProbAttack is approximately 20 minutes, whereas our
 1288 concept-based method requires about 8 hours.
 1289

1290 In our experiments, we ensured that this 8-hour finetuning worked reliably across all concepts stud-
 1291 ied in the paper. In practice, the finetuning time can be reduced to some extent; however, maintaining
 1292 an identity-level concept is inherently subjective and difficult to quantify, making it challenging to
 1293 specify a universally optimal finetuning duration.
 1294

1295 Table 8 summarizes the time consumption of different methods across concept augmentation, con-
 1296 cept fine-tuning, and adversarial example generation stages.
 1297

1296

1297

Table 8: Time consumption of each method across different stages.

1298

1299

1300

1301

1302

1303

1304

1305

J DATASETS AND LICENSES

1306

1307

In this work, we use the DreamBooth dataset, which is licensed under the Creative Commons Attribution 4.0 International license.

1309

1310

K PRACTICAL USAGE GUIDELINES AND EXAMPLE SCENARIOS

1311

1312

K.1 GUIDELINES

1313

1314

Although the term “concept” is difficult to define precisely, our method provides a clear definition: a concept can be specified by either a set \mathcal{C}_{ori} or a probabilistic model. Users can therefore construct \mathcal{C}_{ori} to include whatever concept variations they desire. In our experiments, we demonstrate a broad range of concept variations — background, pose, and viewpoint — leading to a highly diverse \mathcal{C}_{ori} and scenarios like the one shown in Figure 1 (right).

1315

1316

1317

1318

In practice, constraints may prevent such extensive concept variations. For example, one might need to fix the background and viewpoint, leaving only the object’s pose or special variations (e.g., dressing a dog in different outfits). However, if the concept variations are too limited, the intersection between p_{dis} and p_{vic} may be insufficient, making it harder to generate adversarial samples. Practitioners should be mindful of this trade-off.

1319

1320

1321

1322

1323

1324

K.2 EXAMPLE SCENARIOS

1325

1326

K.2.1 SCENARIO 1: PROHIBITED ITEM ADVERTISEMENTS ON SOCIAL PLATFORMS

1327

1328

Social or second-hand platforms often employ basic classifiers to preliminarily filter user-uploaded content for prohibited items (e.g., firearms, knives, protected animals). Malicious actors aim to sell prohibited items such as a specific brand and model of firearm, a particular knife, or a specific protected animal cub. They prefer to upload images capturing all detailed features of the prohibited items (i.e., preserving concept/identity, such as the specific firearm model or exact animal cub) to attract precise target buyers while bypassing platform moderation (untargeted attack).

1329

1330

1331

1332

1333

1334

In such cases, preserving the concept and identity is crucial to attracting potential customers, while background and perspective variations in images are insignificant. This perfectly aligns with the applicability of concept-based adversarial attacks.

1335

1336

1337

1338

1339

1340

Considering the potential societal harm of this scenario, as previously discussed, social platforms should implement multiple detection systems, including AI-based detection, to prevent such attacks.

1341

1342

K.2.2 SCENARIO 2: IMPERCEPTIBLE ADVERSARIAL PATCHES IN REAL-WORLD SCENARIOS (ADVERSARIAL PATCH T-SHIRTS)

1343

1344

1345

1346

1347

In practice, adversarial examples may be printed as patches. Early adversarial patches, though able to evade classifiers or detectors, often appeared unnatural or suspicious, making them easily noticeable by humans and limiting their effectiveness. Creating imperceptible adversarial patches remains a significant challenge.

1348

1349

Our method addresses this challenge by adopting brand images, logos, or cartoon characters as the concept. By altering the background or viewpoint of these concepts, we create realistic adversarial patches suitable for real-world applications.

1350 More concretely, as demonstrated by Wang et al. (2024), adversarial examples can be created as
 1351 printed patches on T-shirts to deceive detection systems. However, unnatural or suspicious patches
 1352 would prompt humans to comment, “You’re wearing a strange T-shirt,” or, “The logo on your T-
 1353 shirt looks odd.” In such scenarios, our concept-based adversarial attack excels by preserving logos,
 1354 branding, or cartoon imagery while subtly changing the background or making the characters per-
 1355 form specific actions, resulting in adversarial patches that are difficult for humans to detect.

1356 Specifically referencing Wang et al. (2024)’s work, their algorithm primarily focuses on single-
 1357 image adversarial patch creation, leading to unnatural-looking printed watermarks on T-shirts. In
 1358 contrast, our concept-based adversarial attack provides a better solution.

1359 Given the social harm posed by these attacks, real-world detection systems should employ multi-
 1360 layered detection with varying thresholds and multiple scales of analysis to prevent such vulnerabil-
 1361 ities.

1363 L NEGATIVE SOCIAL EFFECT AND MITIGATION STRATEGIES

1364 Mitigating the risks of our proposed attack is a crucial responsibility for both the machine learning
 1365 community and society. Potential strategies include:

- 1366 • Adversarial training using concept-based adversarial examples is a direct and general miti-
 1367 gation strategy. However, this may come at the cost of reduced baseline model accuracy.
- 1368 • Given that our adversarial examples are directly generated from probabilistic gener-
 1369 ative models, contemporary AI-generated content detection techniques (open-
 1370 source/commercial), such as frequency-domain analysis, heatmap analysis, anomaly de-
 1371 tection, and counterfactual detection, can serve as effective countermeasures.
- 1372 • In practical engineering scenarios, combining various methods according to specific appli-
 1373 cation needs can significantly mitigate the threat posed by this attack.

1374 The field of adversarial attacks continually evolves through the ongoing advancement of both at-
 1375 tack and defense strategies. We hope our novel attack method draws sufficient attention from the
 1376 community to further enhance AI Safety research.

1381 M BROADER IMPACTS OF THIS WORK

1382 This study introduces concept-based adversarial attacks, providing valuable insights into the vulner-
 1383 abilities of sophisticated classifiers.

1384 On the positive side, our work exposes critical weaknesses in systems previously considered robust,
 1385 highlighting the need for enhanced security measures in classifier design. By identifying these
 1386 vulnerabilities, we contribute to the development of more resilient artificial intelligence systems.

1387 However, we acknowledge potential negative implications. The concept-based attack methods de-
 1388 scribed could be misappropriated by malicious actors, for example, for identification purposes. We
 1389 emphasize the importance of developing countermeasures against such exploitation and encourage
 1390 the research community to consider ethical implications when building upon this work.

1394 N LLM DISCLAIMER

1395 In this work, we use large language models solely for text polishing.

1398 O LIMITATIONS

1399 Our approach is slower than similar methods because it requires time-consuming fine-tuning on
 1400 a concept dataset \mathcal{C}_{ori} , which may also need to be built or expanded if unavailable. However, in
 1401 adversarial attack scenarios, even one successful example can cause severe damage, highlighting
 1402 the practical importance of our method.

1404	Method	Sampler / Solver	# Sampling Steps	# Attack Steps	Step Size	Notes
1405	DiffAttack	DDIM	50	30	0.01	–
1406	ACA	DDIM	50	10	0.04	–
1407	NCF	–	–	15	0.013	# Color Sampling = 10
1408	ProbAttack	DDPM	250	–	–	$ C_{\text{ori}} = 1, M = 10, c = 30.$
1409	Concept-based	DDPM	250	–	–	$ C_{\text{ori}} = 30, M = 10, c = 30.$

1410 Table 9: Hyperparameter settings for all compared methods. ProbAttack and our concept-based
 1411 adversarial attack both use the standard stochastic diffusion (DDPM) sampler with classifier-guided
 1412 Langevin dynamics, not DDIM. All other parameters are at default.

P BASELINE SETTINGS

1417 We list the hyperparameter settings for all compared methods in Table 9. Note that DiffAttack/ACA
 1418 and ProbAttack/Concept-based Attack rely on fundamentally different attack mechanisms: the for-
 1419 mer are based on DDIM and operate in the latent space, while the latter directly sample from p_{adv} .
 1420 As a result, the number of sampling steps is not directly comparable across these methods, and the
 1421 latter do not require any additional attack steps.

1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457

1458 **Q FULL MAIN EXPERIMENTAL RESULTS**
1459
1460
1461

1462 Due to space constraints, the main text reports only the white-box Top-1 and black-box Top-5 results
1463 using ResNet-50 as the surrogate classifier. In this section, we provide the full set of experimental
1464 results, including targeted attack success rates (white-box Top-1, black-box Top-1, Top-5, Top-10,
1465 and Top-100) in Section Q.1, and the similarity and image quality evaluations in Section Q.2.

1470 **Q.1 TARGETED ATTACK SUCCESS RATES**
1471
1472
1473
1474
1475
1476
1477

1478 Table 10: Attack success rates (%) on ImageNet classifiers, with ResNet-50 serving as the white-box
1479 victim (surrogate) classifier.

	NCF	ACA	DiffAttack	ProbAttack	OURS (CONS)	OURS (AGGR)
White-box						
ResNet 50	1.15	6.03	84.23	59.23	97.82	97.82
Transferability						
VGG19	0.26	0.26	1.67	0.38	0.00	1.15
ResNet 152	0.13	0.38	1.79	0.77	0.26	1.79
DenseNet 161	0.00	0.26	1.67	0.51	0.26	2.82
Inception V3	0.13	0.13	0.90	0.51	0.00	1.54
EfficientNet B7	0.00	0.26	0.38	0.00	0.13	1.15
Adversarial Defence						
ResNet 50 Adv	0.00	0.38	0.77	0.26	0.00	1.15
Inception V3 Adv	0.00	0.26	1.03	0.26	0.00	1.03
EfficientNet B7 Adv	0.00	0.51	0.64	0.38	0.26	1.41
Ensemble IncRes V2	0.00	0.26	0.38	0.64	0.00	1.28
White-box						
ResNet 50	3.21	10.64	90.64	72.82	99.87	99.87
Transferability						
VGG19	1.28	1.67	4.36	2.44	2.05	4.36
ResNet 152	1.41	1.92	8.33	3.33	2.82	8.72
DenseNet 161	1.41	2.05	7.44	3.97	3.85	11.54
Inception V3	0.90	1.41	3.08	2.56	1.28	4.74
EfficientNet B7	1.41	1.67	1.79	1.41	1.28	3.97
Adversarial Defence						
ResNet 50 Adv	0.90	1.15	3.46	2.56	1.79	5.64
Inception V3 Adv	1.15	1.28	3.21	2.18	0.90	3.72
EfficientNet B7 Adv	0.26	1.15	2.05	2.31	1.67	6.41
Ensemble IncRes V2	0.77	1.28	2.69	1.92	0.77	5.00
White-box						
ResNet 50	4.23	12.69	93.46	75.64	99.87	99.87
Transferability						
VGG19	2.69	2.69	8.21	3.46	3.21	6.79
ResNet 152	2.44	3.59	14.74	5.77	6.28	15.13
DenseNet 161	2.31	3.72	12.69	6.15	8.72	19.62
Inception V3	1.28	2.31	5.13	3.46	2.31	6.54
EfficientNet B7	2.31	2.82	4.23	3.21	3.59	6.54
Adversarial Defence						
ResNet 50 Adv	1.41	1.92	5.64	3.59	2.69	8.46
Inception V3 Adv	1.79	1.79	5.13	3.46	2.31	6.54
EfficientNet B7 Adv	0.38	2.05	3.08	3.46	2.44	9.36
Ensemble IncRes V2	1.28	2.05	3.85	3.08	1.79	7.18

1512
 1513 Table 11: Attack success rates (%) on ImageNet classifiers, with MobileNet v2 serving as the white-
 1514 box victim (surrogate) classifier.

	NCF	ACA	DiffAttack	ProbAttack	OURS (CONS)	OURS (AGGR)
White-box						
MN-V2	3.85	12.95	91.92	51.15	97.31	97.31
Transferability						
VGG19	0.00	0.13	1.79	0.00	0.00	1.54
ResNet 152	0.13	0.26	0.90	0.13	0.00	1.03
DenseNet 161	0.00	0.26	0.90	1.03	0.00	1.28
Inception V3	0.00	0.13	0.51	0.38	0.00	0.90
EfficientNet B7	0.00	0.00	0.64	0.13	0.13	1.28
Adversarial Defence						
Inception V3 Adv	0.00	0.26	0.77	0.13	0.13	1.15
EfficientNet B7 Adv	0.00	0.26	0.26	0.26	0.38	1.41
Ensemble IncRes V2	0.00	0.38	0.77	0.26	0.13	1.28
White-box						
MN-V2	6.41	17.18	95.64	65.64	99.74	99.74
Transferability						
VGG19	1.03	2.05	4.36	1.54	1.92	4.74
ResNet 152	1.15	1.54	3.72	1.79	1.92	4.87
DenseNet 161	1.15	1.54	5.51	3.46	2.56	7.18
Inception V3	0.90	1.15	2.44	1.92	1.79	3.97
EfficientNet B7	1.03	1.41	2.05	0.51	0.90	4.36
Adversarial Defence						
Inception V3 Adv	0.90	1.15	2.56	1.67	0.90	3.08
EfficientNet B7 Adv	0.38	1.15	1.92	1.54	1.41	5.77
Ensemble IncRes V2	0.38	1.67	2.56	1.15	0.90	4.36
White-box						
MN-V2	8.33	20.00	97.05	72.31	99.74	99.74
Transferability						
VGG19	1.28	2.95	7.31	2.69	3.33	6.92
ResNet 152	1.54	2.56	7.05	3.59	2.82	8.08
DenseNet 161	1.67	3.08	9.10	5.00	4.36	12.44
Inception V3	1.41	2.82	4.23	2.82	2.82	5.90
EfficientNet B7	1.79	3.33	3.72	2.18	3.08	7.31
Adversarial Defence						
Inception V3 Adv	1.28	1.41	4.10	2.56	2.05	5.90
EfficientNet B7 Adv	0.64	2.44	3.59	2.82	3.97	8.72
Ensemble IncRes V2	0.77	2.31	3.72	2.95	2.31	7.18

1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565

1566

1567 Table 12: Attack success rates (%) on ImageNet classifiers, with ViT-Base serving as the white-box
1568 victim (surrogate) classifier.

	NCF	ACA	DiffAttack	ProbAttack	OURS (CONS)	OURS (AGGR)
White-box	Targeted-Top1					
ViT-B	0.90	3.46	81.41	63.85	85.51	85.51
Transferability	Targeted-Top1					
VGG19	0.13	0.26	0.51	0.13	0.13	1.28
ResNet 152	0.00	0.38	0.77	0.00	0.00	1.41
DenseNet 161	0.00	0.26	1.15	0.51	0.00	1.15
Inception V3	0.00	0.38	0.38	0.13	0.13	0.64
EfficientNet B7	0.00	0.26	0.64	0.00	0.00	0.77
Adversarial Defence	Targeted-Top5					
Inception V3 Adv	0.00	0.26	0.38	0.13	0.13	0.90
EfficientNet B7 Adv	0.00	0.38	0.90	0.51	0.51	1.15
Ensemble IncRes V2	0.00	0.13	1.03	0.13	0.00	1.15
White-box	Targeted-Top5					
ViT-B	2.44	6.67	92.44	89.74	94.87	94.87
Transferability	Targeted-Top5					
VGG19	1.03	1.41	1.79	1.28	1.41	3.33
ResNet 152	0.64	1.67	3.33	1.03	1.67	4.74
DenseNet 161	0.64	1.67	4.87	2.18	1.67	5.51
Inception V3	0.77	1.41	2.95	1.54	0.90	3.08
EfficientNet B7	0.90	1.92	2.69	1.28	1.15	3.08
Adversarial Defence	Targeted-Top10					
Inception V3 Adv	0.51	1.92	3.21	0.64	0.90	3.46
EfficientNet B7 Adv	0.26	1.79	3.08	1.67	1.41	3.85
Ensemble IncRes V2	0.51	1.41	3.08	1.28	0.90	3.21
White-box	Targeted-Top10					
ViT-B	3.46	8.97	95.13	92.05	95.51	95.51
Transferability	Targeted-Top10					
VGG19	1.79	2.69	3.46	2.05	2.82	4.49
ResNet 152	1.28	1.92	5.77	2.05	2.82	7.69
DenseNet 161	1.15	2.82	6.92	3.08	4.23	8.59
Inception V3	1.28	2.05	4.87	1.79	1.92	5.00
EfficientNet B7	1.54	2.95	4.49	2.44	3.21	5.64
Adversarial Defence	Targeted-Top10					
Inception V3 Adv	0.77	2.18	5.13	2.44	2.05	5.26
EfficientNet B7 Adv	0.38	2.31	5.51	2.82	3.33	6.03
Ensemble IncRes V2	0.90	2.31	4.87	2.31	2.56	5.00

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621 Table 13: Attack success rates (%) on ImageNet classifiers, with ConvNext serving as the white-box
1622 victim (surrogate) classifier.

	NCF	ACA	DiffAttack	ProbAttack	OURS (CONS)	OURS (AGGR)
White-box	Targeted-Top1					
ConvNext	1.03	5.38	83.59	60.38	94.74	94.74
Transferability						
VGG19	0.00	0.26	1.28	0.26	0.00	1.15
ResNet 152	0.00	0.38	1.54	0.51	0.13	1.67
DenseNet 161	0.00	0.26	1.54	0.51	0.13	2.31
Inception V3	0.13	0.26	0.77	0.38	0.00	1.28
EfficientNet B7	0.00	0.26	0.51	0.00	0.13	1.03
Adversarial Defence						
Inception V3 Adv	0.00	0.26	0.90	0.26	0.00	1.03
EfficientNet B7 Adv	0.00	0.51	0.77	0.38	0.38	1.28
Ensemble IncRes V2	0.00	0.26	0.51	0.51	0.00	1.28
White-box	Targeted-Top5					
ConvNext	2.95	9.36	91.15	78.85	98.59	98.59
Transferability-Top5						
VGG19	1.15	1.54	3.46	2.05	1.79	4.10
ResNet 152	1.15	1.79	6.92	2.69	2.44	7.56
DenseNet 161	1.15	1.92	6.67	3.33	3.21	9.62
Inception V3	0.90	1.41	3.08	2.18	1.15	4.23
EfficientNet B7	1.28	1.79	2.05	1.41	1.28	3.72
Adversarial Defence						
Inception V3 Adv	0.90	1.41	3.21	1.67	0.90	3.59
EfficientNet B7 Adv	0.26	1.28	2.44	2.05	1.54	5.51
Ensemble IncRes V2	0.64	1.28	2.82	1.67	0.77	4.49
White-box	Targeted-Top10					
ConvNext	3.97	11.67	93.97	81.54	98.72	98.72
Transferability						
VGG19	2.44	2.69	6.67	2.95	3.08	6.15
ResNet 152	2.05	3.08	11.92	4.49	5.13	12.82
DenseNet 161	1.92	3.46	10.90	5.13	7.18	16.41
Inception V3	1.28	2.18	5.00	2.82	2.18	6.15
EfficientNet B7	2.05	2.82	4.36	2.95	3.46	6.28
Adversarial Defence						
Inception V3 Adv	1.41	1.92	5.13	3.08	2.18	6.15
EfficientNet B7 Adv	0.38	2.18	3.72	3.21	2.69	8.21
Ensemble IncRes V2	1.15	2.18	4.23	2.82	2.05	6.54

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675 **Table 14:** Attack success rates (%) on ImageNet classifiers, with ResNet-50 Adv serving as the
1676 white-box victim (surrogate) classifier.

	NCF	ACA	DiffAttack	ProbAttack	OURS (CONS)	OURS (AGGR)
White-box	Targeted-Top1					
ResNet-50 Adv	0.90	5.13	81.79	61.28	94.23	94.23
Transferability	Targeted-Top1					
VGG19	0.13	0.38	1.67	0.51	0.00	2.31
ResNet 152	0.00	0.51	2.56	1.03	0.38	2.56
DenseNet 161	0.00	0.38	2.31	0.77	0.38	3.97
Inception V3	0.00	0.26	1.28	0.77	0.00	2.18
EfficientNet B7	0.00	0.38	0.51	0.00	0.26	1.67
Adversarial Defence	Targeted-Top5					
Inception V3 Adv	0.00	0.51	1.67	0.51	0.00	1.79
EfficientNet B7 Adv	0.00	0.90	1.15	0.64	0.51	2.56
Ensemble IncRes V2	0.00	0.51	0.64	1.15	0.00	2.31
White-box	Targeted-Top5					
ResNet-50 Adv	2.82	9.62	89.74	75.00	98.08	98.08
Transferability	Targeted-Top5					
VGG19	1.03	2.31	5.77	3.33	2.82	6.15
ResNet 152	1.15	2.69	11.28	4.49	3.85	11.79
DenseNet 161	1.15	2.82	10.00	5.38	5.26	15.38
Inception V3	0.77	1.92	4.36	3.46	1.79	6.67
EfficientNet B7	1.15	2.31	2.56	1.92	1.79	5.51
Adversarial Defence	Targeted-Top10					
Inception V3 Adv	0.90	1.92	5.13	3.46	1.41	6.15
EfficientNet B7 Adv	0.26	1.79	3.33	3.59	2.56	10.00
Ensemble IncRes V2	0.64	1.92	4.36	3.08	1.15	7.95
White-box	Targeted-Top10					
ResNet-50 Adv	3.85	11.67	92.95	77.56	98.97	98.97
Transferability	Targeted-Top10					
VGG19	2.18	3.72	8.97	4.62	4.36	10.77
ResNet 152	2.05	4.87	18.97	7.44	8.08	19.49
DenseNet 161	1.92	5.00	16.28	7.95	11.15	25.13
Inception V3	1.03	3.21	6.92	4.62	3.08	8.72
EfficientNet B7	1.92	3.85	5.64	4.36	4.87	8.72
Adversarial Defence	Targeted-Top10					
Inception V3 Adv	1.41	2.69	8.21	5.38	3.59	10.51
EfficientNet B7 Adv	0.38	3.08	5.00	5.38	3.85	14.74
Ensemble IncRes V2	1.03	3.08	6.15	4.74	2.82	11.41

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728 Q.2 SIMILARITY AND IMAGE QUALITY
17291730 Due to cost constraints, only the ResNet-50 results reported in the main text include the user study.
17311732
1733
1734 Table 15: Quantitative comparison of similarity to the original images and no reference image qual-
1735 ity metrics for unrestricted adversarial examples with ResNet-50 serving as the victim (surrogate)
1736 classifier.
1737

	Clean	NCF	ACA	DiffAttack	ProbAttack	OURS (CONS)	OURS (AGGR)
Similarity							
↑ User Study	N/A	0.1859	0.2808	0.7577	0.8041	0.9654	0.8808
↑ Avg. Clip Score	1.0	0.8728	0.7861	0.8093	0.8581	0.8283	0.8043
Image Quality							
↑ HyperIQA	0.7255	0.5075	0.6462	0.5551	0.6675	0.6947	0.6809
↑ DBCNN	0.6956	0.5096	0.6103	0.5294	0.6161	0.6572	0.6399
↑ ARNIQA	0.7667	0.5978	0.6879	0.6909	0.7009	0.7335	0.7154
↑ MUSIQ-AVA	4.3760	3.8135	4.2687	4.0734	4.3130	4.5305	4.5250
↑ NIMA-AVA	4.5595	3.7916	4.4511	4.0589	4.5168	4.7575	4.7401
↑ MUSIQ-KonIQ	65.0549	50.5022	59.0840	52.5399	58.1563	63.7486	62.2217
↑ TReS	93.2127	64.7050	85.8435	74.1167	84.3131	90.4488	88.0836

1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753 Table 16: Quantitative comparison of similarity to the original images and no reference image qual-
1754 ity metrics for unrestricted adversarial examples with MN-V2 serving as the victim (surrogate) clas-
1755 sifier.

	Clean	NCF	ACA	DiffAttack	ProbAttack	OURS (CONS)	OURS (AGGR)
Similarity							
↑ Avg. Clip Score	1.0	0.8783	0.7756	0.8197	0.8693	0.8229	0.7988
Image Quality							
↑ HyperIQA	0.7255	0.5002	0.6486	0.5471	0.6808	0.6998	0.6865
↑ DBCNN	0.6956	0.5040	0.6175	0.5236	0.6310	0.6577	0.6402
↑ ARNIQA	0.7667	0.5972	0.6909	0.6872	0.7112	0.7328	0.7142
↑ MUSIQ-AVA	4.3760	3.7912	4.3042	4.0496	4.3236	4.6125	4.5700
↑ NIMA-AVA	4.5595	3.7879	4.4532	4.0549	4.5317	4.8172	4.7778
↑ MUSIQ-KonIQ	65.0549	49.9072	59.5258	51.9209	59.7813	63.5363	61.6641
↑ TReS	93.2127	63.7643	86.2644	73.0392	86.4376	90.7757	88.9947

1765
1766
1767
1768
1769
1770 Table 17: Quantitative comparison of similarity to the original images and no reference image qual-
1771 ity metrics for unrestricted adversarial examples with ViT-Base serving as the victim (surrogate)
1772 classifier.

	Clean	NCF	ACA	DiffAttack	ProbAttack	OURS (CONS)	OURS (AGGR)
Similarity							
↑ Avg. Clip Score	1.0	0.8733	0.7681	0.8040	0.8586	0.8222	0.8104
Image Quality							
↑ HyperIQA	0.7255	0.5006	0.6324	0.5475	0.6796	0.7077	0.6961
↑ DBCNN	0.6956	0.5027	0.5842	0.5222	0.6254	0.6652	0.6526
↑ ARNIQA	0.7667	0.5879	0.6765	0.6844	0.7120	0.7351	0.7195
↑ MUSIQ-AVA	4.3760	3.7822	4.3131	4.0400	4.2450	4.5401	4.5345
↑ NIMA-AVA	4.5595	3.7666	4.4775	4.0321	4.4918	4.7706	4.7747
↑ MUSIQ-KonIQ	65.0549	50.0413	57.6105	52.0604	59.3605	64.2536	62.4264
↑ TReS	93.2127	64.1109	83.6834	73.4362	85.8749	91.7463	89.7815

1782

1783 **Table 18: Quantitative comparison of similarity to the original images and no reference image qual-**
1784 **ity metrics for unrestricted adversarial examples with ConvNeXT serving as the victim (surrogate)**
1785 **classifier.**

	Clean	NCF	ACA	DiffAttack	ProbAttack	OURS (CONS)	OURS (AGGR)
Similarity							
↑ Avg. Clip Score	1.0	0.8621	0.7542	0.7964	0.8467	0.8139	0.8011
Image Quality							
↑ HyperIQA	0.7255	0.4928	0.6281	0.5392	0.6703	0.6933	0.6810
↑ DBCNN	0.6956	0.4951	0.5784	0.5179	0.6201	0.6531	0.6405
↑ ARNIQA	0.7667	0.5835	0.6710	0.6801	0.7066	0.7294	0.7118
↑ MUSIQ-AVA	4.3760	3.7511	4.2814	4.0206	4.2314	4.5116	4.5030
↑ NIMA-AVA	4.5595	3.7524	4.4433	4.0215	4.4830	4.7464	4.7492
↑ MUSIQ-KonIQ	65.0549	49.3812	57.0114	51.7324	58.9012	63.1025	61.3571
↑ TReS	93.2127	62.9011	82.7410	72.1109	85.2442	90.9211	88.7724

1795

1796

1797

1798 **Table 19: Quantitative comparison of similarity to the original images and no reference image qual-**
1799 **ity metrics for unrestricted adversarial examples with ResNet-50 Adv. serving as the victim (surro-**
1800 **gate) classifier.**

	Clean	NCF	ACA	DiffAttack	ProbAttack	OURS (CONS)	OURS (AGGR)
Similarity							
↑ Avg. Clip Score	1.0	0.8556	0.7485	0.7877	0.8367	0.8059	0.7945
Image Quality							
↑ HyperIQA	0.7255	0.4854	0.6221	0.5297	0.6617	0.6875	0.6750
↑ DBCNN	0.6956	0.4908	0.5718	0.5070	0.6078	0.6473	0.6342
↑ ARNIQA	0.7667	0.5764	0.6654	0.6683	0.6932	0.7231	0.7070
↑ MUSIQ-AVA	4.3760	3.7435	4.2637	4.0130	4.2223	4.5031	4.4966
↑ NIMA-AVA	4.5595	3.7453	4.4342	4.0113	4.4676	4.7399	4.7351
↑ MUSIQ-KonIQ	65.0549	49.3740	57.0028	51.7202	58.1513	63.0946	61.3527
↑ TReS	93.2127	62.8961	82.7340	72.1034	84.3081	90.4438	88.0786

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835