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ABSTRACT

We propose a concept-based adversarial attack framework that extends beyond
single-image perturbations by adopting a probabilistic perspective. Rather than
modifying a single image, our method operates on an entire concept — repre-
sented by a distribution — to generate diverse adversarial examples. Preserv-
ing the concept is essential, as it ensures that the resulting adversarial images
remain identifiable as instances of the original underlying category or identity.
By sampling from this concept-based adversarial distribution, we generate images
that maintain the original concept but vary in pose, viewpoint, or background,
thereby misleading the classifier. Mathematically, this framework remains con-
sistent with traditional adversarial attacks in a principled manner. Our theoreti-
cal and empirical results demonstrate that concept-based adversarial attacks yield
more diverse adversarial examples and effectively preserve the underlying con-
cept, while achieving higher attack efficiency. Code and examples can be found at
https://anonymous.4open.science/r/ConceptAdvICLR2026.

1 INTRODUCTION

Adversarial attacks aim to deceive a classifier while preserving the original meaning of the input
object (Dalvi et al., 2004; Lowd & Meek, 2005a;b; Biggio & Roli, 2018). We refer to the manipu-
lated instance as an adversarial example. Early work by Szegedy et al. (2014) and Goodfellow et al.
(2015) introduced adversarial attacks against deep learning models for images.

In the image-based adversarial setting, it is widely accepted that controlling the geometric distance
between the adversarial example and its original image is crucial for maintaining the original image’s
meaning. Consequently, many adversarial attack algorithms constrain perturbations using norms
such as L1, L2, or L∞. Moreover, given the rapid progress in machine learning research, fair
comparisons across different adversarial methods have become essential. Numerous benchmarks
and competitions (Madry et al., 2018; Croce et al., 2020; Dong et al., 2021) therefore focus on
attack success rates under the constraint that geometric distance does not exceed a threshold δ.

However, as adversarial defense techniques improve, small geometric perturbations alone increas-
ingly fail to generate adversarial examples that reliably fool classifiers, particularly when strong
transferability is required (Song et al., 2018; Xiao et al., 2018b; Bhattad et al., 2020). This shortcom-
ing has led researchers to explore unrestricted adversarial attacks, which involve larger geometric
perturbations. Although “unrestricted” implies that adversarial examples need not be bounded by
strict geometric distance, these examples must still remain faithful to the semantics of the original
image; otherwise, the core goal of preserving the input’s meaning is lost.

Zhang et al. (2024b) introduced a probabilistic perspective on adversarial attacks, demonstrating that
traditional geometric constraints can be interpreted as specific “distance” distributions pdis. Under
this view, generating adversarial examples amounts to sampling from the product of pdis and the
“victim” distribution pvic, which represents the target classifier under attack. Importantly, pdis need
not be induced solely by geometric distance. Instead, one can fit a probabilistic generative model
(PGM) around the original image, allowing the PGM’s semantic representation to implicitly define
a semantics-based notion of distance. As illustrated on the left side of Figure 1, Zhang et al. (2024b)
indicate that pdis should be centered on the original image.
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Adversarial Attack on a Single Image

pvic

pdis

Adversarial Examples (xadvs)

Original Image (xori)Target Class (ytar)

Concept-based Adversarial Attack

pvic

pdis

Adversarial Examples (xadvs)

Original Concept (Cori)Target Class (ytar)

Figure 1: Comparison of a single-image adversarial attack (left) versus our proposed concept-based
adversarial attack (right). In both cases, adversarial examples xadv are drawn from the product of a
distance distribution pdis and a victim distribution pvic. On the left, pdis is centered on a single image
xori, so its overlap with pvic is small. Consequently, adversarial examples that successfully fool the
victim classifier typically lose the original image’s meaning, whereas those that preserve the original
meaning fail to deceive the classifier. In contrast, on the right, pdis spans the original concept Cori,
greatly increasing overlap with pvic. As a result, the generated adversarial examples both maintain
the concept’s meaning and easily deceive the classifier. (A green image border indicates an example
that successfully fools the classifier; red indicates failure.)

Building on Zhang et al. (2024b)’s probabilistic perspective, we expand the distance distribution pdis
from operating on a single image to operating on an entire concept, which can be represented by a
probability distribution over images that correspond to the same underlying object, identity or cate-
gory. As shown on the right side of Figure 1, this generalization introduces a new class of adversarial
attacks. Rather than perturbing a single image, we generate a fresh image that captures the same un-
derlying concept yet deceives the classifier. We refer to this approach as a concept-based adversarial
attack. Mathematically, it remains consistent with traditional adversarial attacks when viewed under
the probabilistic framework. As we demonstrate, broadening the distance distribution to concept-
level information reduces its gap from the victim distribution pvic, resulting in substantially higher
attack success rates.

Our main contributions are as follows:

• Concept-based adversarial attack: We introduce a new type of adversarial attack that
moves beyond single-image perturbations to a concept represented by a distribution, this
new approach aligns with traditional adversarial attacks in a principled manner.

• Concept augmentation: We propose a practical concept augmentation strategy using mod-
ern generative models, enhancing the diversity of the distance distribution.

• Theoretical and empirical validation: We provide both theoretical proof and experimen-
tal evidence showing that expanding the attack from a single image to an entire concept
reduces the distance between pvic and pdis, boosting the attack efficiency.

• Higher success rates: Our experiments confirm that concept-based adversarial attacks
achieve higher targeted attack success rates while preserving the original concept.

• Practical Guidelines and Scenarios: We provide practical guidelines and example appli-
cation scenarios, detailed in Appendix K.
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2 PRELIMINARIES

2.1 PROBABILISTIC GENERATIVE MODELS (PGMS) AND THEIR LIKELIHOODS

The goal of probabilistic generative models is to learn a parameterized distribution pθ that approx-
imates the true distribution p. In practice, we only observe a finite dataset D = {x1, . . . , xn}, and
training is typically done by maximizing its likelihood. For image modeling, popular approaches
such as VAEs (Kingma et al., 2013) and diffusion models (Song & Ermon, 2019; Ho et al., 2020)
optimize a lower bound on the log-likelihood (the ELBO) rather than the likelihood itself. Thus,
likelihood estimation in practice amounts to computing this ELBO (Burda et al., 2015; Nalisnick
et al., 2019).

2.2 ADVERSARIAL ATTACK

Given a classifier C : [0, 1]n → Y , where n is the input dimension and Y is the label space, consider
an original image xori ∈ [0, 1]n and a target label ytar ∈ Y . The goal of a targeted adversarial attack
is to construct an adversarial example xadv such that C(xadv) = ytar while keeping xadv close to xori.
The corresponding optimization problem is

minD(xori, xadv) subject to C(xadv) = ytar and xadv ∈ [0, 1]n,

where D measures the distance (similarity) between xori and xadv, typically via an L1, L2, or L∞
norm. Directly solving this constrained optimization can be challenging. To address this, Szegedy
et al. (2014) propose a relaxation:

min D(xori, xadv) + c f(xadv, ytar) subject to xadv ∈ [0, 1]n, (1)

where c is a constant, and f is an objective function that guides the classifier’s predictions toward
the target label. In Szegedy et al. (2014)’s work, f is taken to be the cross-entropy loss; Carlini &
Wagner (2017) present additional choices for f .

2.3 PROBABILISTIC ADVERSARIAL ATTACK

By employing Langevin Dynamics as an optimizer for equation 1, Zhang et al. (2024b) derive a
probabilistic perspective on adversarial attacks. They introduce the adversarial distribution:

padv(xadv | xori, ytar) ∝ pvic(xadv | ytar) pdis(xadv | xori), (2)

where pvic(xadv | ytar) ∝ exp
(
−c f(xadv, ytar)

)
is the “victim” distribution emphasizing misclassifi-

cation toward ytar, and pdis(xadv | xori) ∝ exp
(
−D(xori, xadv)

)
is the “distance” distribution around

xori. This formulation leverages the fact that Langevin Dynamics converges to the corresponding
Gibbs distribution (Lamperski, 2021), thereby providing a probabilistic interpretation of adversarial
attack generation.

This probabilistic perspective aligns with traditional geometry-based adversarial attacks. For exam-
ple, if D is the L1 norm, then pdis(xadv | xori) ∝ exp(−∥xadv − xori∥1) takes the form of a Laplace
distribution. Similarly, if D is the squared L2 norm, then pdis(xadv | xori) ∝ exp(−∥xadv −xori∥22) is
a Gaussian distribution.

Zhang et al. (2024b) indicate that the distance distribution pdis can be any distribution centered
around xori, meaning the choice of pdis implicitly defines the distance D. Consequently, using a
PGM centered on xori as pdis yields a semantic-aware notion of distance. By then sampling from the
corresponding adversarial distribution padv, one can generate semantic-aware adversarial examples.

3 CONCEPT-BASED ADVERSARIAL ATTACK

3.1 CONCEPT DISTRIBUTION

We aim to extend adversarial attacks from operating on a single original image to operating on an
original concept Cori. A concept is inherently abstract and subjective: it may refer to a specific
physical object (e.g., a rubber duck), a particular identity such as the long-eared corgi puppy with
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a lighter left cheek shown in Figure 1, or a broader class such as “corgi,” regardless of age, size, or
specific attributes. Although defining a concept in an absolute sense is difficult, we can represent
it through a concept distribution, denoted by p(· | Cori).

This distribution serves as an interface through which users can specify what the concept is. In
practice, we recommend two ways for users to instantiate their notion of a concept:

• Direct specification of a concept distribution: The user may already possess a generative
model or any other mechanism that directly provides a distribution p(· | Cori) representing
the concept.

• Constructing the distribution from an image set: The user may collect a set of im-
ages depicting the desired concept (e.g., different poses of the same corgi in Figure 1),
and then train or fine-tune a probabilistic generative model (PGM) on this set to ob-
tain the corresponding concept distribution p(· | Cori). Here, Cori is a set of images
Cori = {x(1)

ori , . . . , x
(K)
ori }, where K is the number of images depicting Cori. .

In the remainder of this paper, we demonstrate the second approach, as it allows us to clearly show-
case how concept-level information can be incorporated into adversarial attacks using accessible
image data and standard generative modeling pipelines.

3.2 CONCEPT DISTRIBUTION AS A DISTANCE DISTRIBUTION

Building on the probabilistic perspective of adversarial attacks (Zhang et al., 2024b), a distribution
used as a distance distribution can implicitly define a notion of distance. Therefore, by using the
concept distribution defined in the previous subsection as the distance distribution, we implicitly
define the distance between an adversarial example and the underlying concept. Formally,

padv(xadv | Cori, ytar) ∝ pvic(xadv | ytar) pdis(xadv | Cori) (3)

where padv(· | Cori, ytar) is the adversarial distribution relative to the concept Cori and the target label
ytar. The distance distribution pdis(· | Cori) is the concept distribution.

Comparing (2) and (3) shows that the only modification is replacing xori with Cori. Hence, the
probabilistic adversarial attack (Zhang et al., 2024b) is the special case Cori = {xori} (i.e., |Cori| =
1). This straightforward and compact expansion allows us to heavily reuse the implementation of
the probabilistic adversarial attack, making probabilistic adversarial attack (ProbAttack1) a natural
ablation baseline for our method.

While intuition suggests that expanding the perturbation space should produce stronger adversarial
examples, rigorous justification is needed. In the following sections, we adopt the probabilistic
perspective, presenting both theoretical analysis and empirical evidence to demonstrate how this
expansion enhances attack effectiveness without compromising perceptual quality.

3.3 CONCEPT-BASED ADVERSARIAL ATTACKS GENERATE HIGHER QUALITY
ADVERSARIAL EXAMPLES

From the probabilistic perspective, generating adversarial examples amounts to sampling from the
overlap between pvic and pdis, since padv is proportional to their product (Hinton, 2002). For the
common case of attacking a single original image xori, this procedure is illustrated on the left side
of Figure 1. Empirical research has shown that modern robust classifiers can produce high-quality
images of the target classes (Santurkar et al., 2019; Zhang et al., 2024b; Zhu et al., 2021), causing
pvic to concentrate on the semantics of those classes. Consequently, as xori does not depict the target
class, the intersection between pvic and pdis is small. Since high-quality images rarely appear in
low-density regions of the distribution, the resulting adversarial examples drawn from this limited
intersection tend to be of lower quality.

1Both Zhang et al. (2024b) and our work present a methodology applicable to any PGM (e.g., VAE, energy-
based, or diffusion). Since diffusion models are the most powerful PGMs, we adopt them throughout this paper.
We use ProbAttack to denote the diffusion-based implementation of Zhang et al. (2024b).
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We claim that our concept-based adversarial attacks reduce the distance between the pvic and the pdis,
thereby increasing their overlap. This broader overlap yields higher-quality adversarial examples
and improves targeted attack success rates, as illustrated on the right side of Figure 1.

To justify this claim, we must address two key questions:

• Do concept-based adversarial attacks indeed decrease the distance between pvic and pdis?
• Do they genuinely produce better adversarial examples?

The remainder of this paper focuses on answering these questions.

3.4 THE DISTANCE BETWEEN DISTRIBUTIONS: A THEORETICAL STUDY

In the whitebox adversarial attack scenario, both the victim classifier and target label are provided,
which means pvic remains fixed. Let pdis(· | Cori) be a Gibbs distribution of the form pdis(x | Cori) ∝
exp(−βD(x, µ)), where D is a distance function measuring the discrepancy between a point x and
the concept center µ. The following theorem shows that, under suitable conditions, increasing the
dispersion of pdis (i.e., decreasing β2) reduces the KL divergence between pvic and pdis:
Theorem 1. Let p be a probability distribution and q be a Gibbs distribution of the form

q(x) =
exp(−βD(x, µ))

Z(β)
,

where Z(β) is the normalizing constant, µ is a constant and D is a distance function. Then
KL(p ∥ q) is a increasing function of β whenever EX∼p[D(X,µ)] > EX∼q[D(X,µ)].

The proof is provided in Appendix A. By Theorem 1, we see that KL(pvic ∥ pdis) decreases as
β decreases, provided that EX∼p[D(X,µ)] > EX∼q[D(X,µ)]. In the probabilistic adversarial
attack framework, this condition is always satisfied because samples drawn from pvic lie farther
from the mean of pdis than samples drawn from pdis itself. If this were not the case, the fundamental
assumption that pdis represents a distance distribution concentrated around xori or Cori would be
violated.

In practice, different PGMs may be used to model pdis. When an energy-based model (EBM) is
adopted, it explicitly learns a Gibbs distribution (LeCun et al., 2006). When a diffusion model (via
score matching) is used, it instead learns an implicit representation of the corresponding energy
function (Song & Ermon, 2019). Consequently, treating pdis as a Gibbs distribution in this section is
fully consistent with practical implementations, and is also aligned with the probabilistic adversarial
attack formulation in Section 2.3.

3.5 THE DISTANCE BETWEEN DISTRIBUTIONS: AN EMPIRICAL STUDY

The following theorem provides a tractable expression for the difference in KL divergence between
a fixed victim distribution and two different distance distributions.
Theorem 2. Let p(1)

dis = pdis(· | C(1)

ori ) and p(2)

dis = pdis(· | C(2)

ori ) be two distance distributions, and
let pvic(· | ytar) be the victim distribution corresponding to a victim classifier p(ytar | x). Then, the
difference

∆ := KL
(
p(1)

dis ∥ pvic
)
− KL

(
p(2)

dis ∥ pvic
)

is given by

∆ = E
X∼p

(1)
dis

[
log p(1)

dis(X)− c log p(ytar | X)
]
− E

X∼p
(2)
dis

[
log p(2)

dis(X)− c log p(ytar | X)
]
.

The proof is provided in Appendix A. We estimate ∆ via Monte Carlo integration and further re-
duce variance by using common random numbers in the sampling process; details of such practical
techniques are introduced in Appendix B. In section 5.3, we empirically show that, concept-based
adversarial attacks reduce the distance between distributions pvic and pdis by showing ∆ < 0 when
p(2)

dis is a distance distribution around only one image and p(1)

dis is a distance distribution around a
concept.

2A smaller β corresponds to a higher “temperature” in the Gibbs distribution, which makes pdis more dis-
persed.

5
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[V] dog LoRA Model

Stable Diffusion XL

[V] dog from DreamBooth
Augmented dataset

input

finetune

generate

prompt input

parameter input

Vision-language Model
User:
This is [V] dog. Please generate 50
SDXL prompts to create images of this
object in various environments,
viewpoints, and poses. Keep the
prompts concise.

GPT-4o:
[V] dog on a skateboard
[V] dog at a picnic with food around
[V] dog playing in the snow
...

Figure 2: Illustration of how a single corgi concept (“[V] dog”) is expanded into a diverse dataset.
DreamBooth images (left) are finetuned with LoRA in Stable Diffusion XL, guided by GPT-4o
prompts, to generate various poses, viewpoints, and environments (right).

4 GENERATING CONCEPT-BASED ADVERSARIAL EXAMPLES

In this section we introduce some practical methods to generate concept-based adversarial examples.

4.1 AUGMENT CONCEPT DATASETS BY MODERN GENERATIVE MODELS

In practice, it can be somewhat challenging to obtain a high-quality, highly diverse dataset Cori
depicting the same concept, as required by our method. For example, as shown on the left side of
Figure 2, the dataset provided by DreamBooth (Ruiz et al., 2023) contains four images of the same
long-eared corgi. Although the corgi is shown in various poses and from multiple viewpoints, the
relatively uniform backgrounds do not provide sufficient diversity for our concept-based adversarial
attack. Therefore, we decided to use Stable Diffusion XL (Podell et al., 2023) to expand the concept-
description dataset.

As illustrated in Figure 2, we designate the corgi as “[V] dog”. Using LoRA finetuning (Hu et al.,
2022), we train an SDXL LoRA model on this concept. Next, we feed the five corgi images into
GPT-4o (Hurst et al., 2024), stating that these images represent the “[V] dog” and asking it to
produce SDXL prompts that embody sufficient diversity for the “[V] dog.” Finally, we load the
corgi LoRA into SDXL and, guided by GPT-4o’s prompts (on the top of Figure 2), generate images
featuring a wide range of viewpoints, environments, and poses for this corgi concept (see the right
side of Figure 2).

4.2 SAMPLE SELECTION

A key advantage of probabilistic adversarial attacks is that we can draw multiple samples from padv
and select the best ones3. In a white-box scenario, we can simply discard samples that fail to deceive
the classifier (rejection sampling). However, if pdis and pvic overlap only slightly, this may lead to
high rejection rates (especially under a top-1 success criterion).

As a workaround, we first sample M adversarial examples from padv and select the best among them.
For small batches, it is feasible to manually choose which examples preserve the original concept.
However, because we need a large number of adversarial examples, we use an automated approach:
we sort the samples by how highly they rank the target class and, in the event of a tie, we employ

3Although deterministic methods may yield different results when sampled multiple times, their variability
does not stem from algorithmic design but rather from other sources of error.
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one of two strategies — referred to here as the “conservative strategy” (CONS) and the “aggressive
strategy” (AGGR). Under the conservative strategy, we pick the example with the lowest softmax
probability, thereby filtering out samples that deviate significantly from the original concept. Under
the aggressive strategy, we pick the example with the highest softmax probability, helping us select
samples with the greatest adversarial potential.

5 EXPERIMENTS

5.1 DATA PREPARATION

We use the DreamBooth dataset (Ruiz et al., 2023), which provides 30 objects (animals, dolls, and
everyday items) each with 5-6 representative images. To increase diversity, we apply the augmen-
tation method in Section 4.1, generating 30 additional images per concept and forming the Dream-
BoothPlus dataset. Among the 30 objects of DreamBooth, we only augment 26, excluding four
that pose challenges for text generation or require different fine-tuning parameters for cartoon-style
content.

5.2 FITTING THE DISTANCE DISTRIBUTIONS

We use the DreamBoothPlus dataset to finetune a diffusion model (Dhariwal & Nichol, 2021; Nichol
& Dhariwal, 2021) to fit the distance distribution pdis (Details in Appendix D). We choose this model
over more advanced architectures, such as the Stable Diffusion series (Podell et al., 2023; Rombach
et al., 2022) or Flux, because it directly models p(x) instead of p(x | y), where x is the image
and y is a label or prompt. Our goal is to employ a more principled model to illustrate our general
adversarial attack method, rather than to optimize for the highest possible engineering performance.

5.3 CALCULATING THE DIFFERENCE BETWEEN KL DIVERGENCES

We empirically estimate the difference between two KL divergences,

∆ := KL(p(1)

dis ∥ pvic) − KL(p(2)

dis ∥ pvic),

by using the Monte-Carlo method and the practical techniques introduced in Section 3.5 and Ap-
pendix B, and we denote this estimate by ∆̃. Concretely, for each concept in DreamBoothPlus, we
fine-tune a diffusion model on the entire concept to obtain p(1)

dis . We then fine-tune a separate diffu-
sion model on just one image to obtain p(2)

dis . Next, we calculate the empirical difference ∆̃ and find
that ∆̃ < 0 for every concept. This strongly suggests that ∆ < 0, confirming our hypothesis from
Section 3.5. The table in Appendix B summarizes the values of ∆̃ for each concept.

5.4 GENERATING TARGETED ADVERSARIAL EXAMPLES

We evaluate the performance of the concept-based adversarial attack in a targeted adversarial at-
tack setting, because targeted attacks are generally more difficult than untargeted attacks4. In our
experiments, we compare NCF (Yuan et al., 2022), ACA (Chen et al., 2024b), DiffAttack (Chen
et al., 2024a), and ProbAttack (Zhang et al., 2024b). We include NCF because it is the strongest
color-based adversarial attack. Both ACA and DiffAttack apply adversarial gradients in the latent
space induced by Stable Diffusion and DDIM, representing the state of the art in unrestricted adver-
sarial attacks. As discussed earlier in Section 3, ProbAttack can be viewed as a special case of our
approach when |Cori| = 1. For both ProbAttack and our approach, we set the number of samples
M to 10. During the sample selection phase of the experiments, our method uses two strategies —
a conservative strategy and an aggressive strategy (both described in Section 4.2) — denoted in the
tables as OURS (CONS) and OURS (AGGR), respectively.

For each compared method, we conduct a white-box attack on the victim classifier (also referred
to as the surrogate classifier) by generating adversarial samples based on it. Next, we feed these

4This is especially true for ImageNet classifiers, which must distinguish among 1,000 classes. In an un-
targeted attack, the goal is simply to prevent the victim classifier from assigning the adversarial sample to its
correct class. In contrast, a targeted attack requires the classifier to misclassify the adversarial sample exactly
as the chosen target class ytar.

7
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white-box-generated adversarial samples into other classifiers — a process known as a black-box
attack. If these additional classifiers also classify the adversarial samples into the target class, the
black-box attack is deemed successful, indicating transferability.

In our experiments, ResNet50 (He et al., 2016) is used as the victim classifier for white-box attacks.
We measure transferability on VGG19 (Simonyan & Zisserman, 2015), ResNet152 (He et al., 2016),
DenseNet161 (Huang et al., 2017), Inception V3 (Szegedy et al., 2016), EfficientNet B7 (Tan & Le,
2019), and on adversarially trained Inception V3 Adv (Kurakin et al., 2017), EfficientNet B7 Adv
(Xie et al., 2020), and Ensemble IncRes V2 (Tramèr et al., 2018). We report both the white-box
targeted attack success rate (on ResNet50) and the black-box transfer success rate (on the remaining
models).

Table 1: Targeted attack success rates (%) on ImageNet classifiers. In the white-box setting, a
targeted attack is counted as successful if the target class is ranked first. For transferability, we
report top-5 success rates, counting an attack as successful if the target class is among the top 5
predictions (since top-1 success was uniformly low across all methods). See Appendix Q for full
results.

NCF ACA DiffAttack ProbAttack OURS (CONS) OURS (AGGR)

White-box Targeted-Top1

ResNet 50 1.15 6.03 84.23 59.23 97.82 97.82

Transferability Targeted-Top5

VGG19 1.28 1.67 4.36 2.44 2.05 4.36
ResNet 152 1.41 1.92 8.33 3.33 2.82 8.72
DenseNet 161 1.41 2.05 7.44 3.97 3.85 11.54
Inception V3 0.90 1.41 3.08 2.56 1.28 4.74
EfficientNet B7 1.41 1.67 1.79 1.41 1.28 3.97

Adversarial Defence

Inception V3 Adv 1.15 1.28 3.21 2.18 0.90 3.72
EfficientNet B7 Adv 0.26 1.15 2.05 2.31 1.67 6.41
Ensemble IncRes V2 0.77 1.28 2.69 1.92 0.77 5.00

For unrestricted adversarial examples, we must also check whether they preserve the original con-
cept and remain undetectable to humans. Therefore, we measure similarity via a user study (Ap-
pendix F) and CLIP (Radford et al., 2021), and image quality using no-reference metrics (MUSIQ
(Ke et al., 2021), TReS (Golestaneh et al., 2022), NIMA (Talebi & Milanfar, 2018), ARNIQA (Ag-
nolucci et al., 2024), DBCNN (Zhang et al., 2020), and HyperIQA (Su et al., 2020)).

As ImageNet has 1,000 classes, it is impractical to evaluate them all. Therefore, we randomly
select 30 target classes ytar, listed in Appendix E. Since DreamBoothPlus contains 26 concepts, each
method generates 26× 30 = 780 adversarial examples. This scale is comparable to current popular
approaches performing untargeted adversarial attacks on the ImageNet-Compatible dataset (Kurakin
et al., 2018).

Table 1 presents the targeted attack success rates on ImageNet classifiers. Since the choice of aggres-
sive or conservative strategy in the sample selection phase does not affect white-box performance,
those rates are identical. Notably, the aggressive strategy achieves significantly higher transferability
than other methods. While the conservative strategy leads to slightly lower transferability, it is still
roughly comparable to the baseline methods. Please refer to Appendix Q for full results.

Table 2 reports the similarity between each adversarial sample and its original image, as well as
the image quality of the generated examples. Both our aggressive and conservative strategies out-
perform the other methods in these metrics. Combined with the attack success rates in Table 1,
our approach not only achieves higher success but also preserves the original concept Cori more
effectively. Figure 3 provides a qualitative comparison, showing how well our method maintains
the original concept. Notably, DiffAttack generates images missing details, which aligns with its
weaker image quality scores. For additional qualitative analysis, please refer to Appendix G.
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Table 2: Quantitative comparison of similarity to the original images and no reference image quality
metrics for unrestricted adversarial examples.

Clean NCF ACA DiffAttack ProbAttack OURS (CONS) OURS (AGGR)

Similarity
↑ User Study N/A 0.1859 0.2808 0.7577 0.8041 0.9654 0.8808
↑ Avg. Clip Score 1.0 0.8728 0.7861 0.8093 0.8581 0.8283 0.8043

Image Quality
↑ HyperIQA 0.7255 0.5075 0.6462 0.5551 0.6675 0.6947 0.6809
↑ DBCNN 0.6956 0.5096 0.6103 0.5294 0.6161 0.6572 0.6399
↑ ARNIQA 0.7667 0.5978 0.6879 0.6909 0.7009 0.7335 0.7154
↑ MUSIQ-AVA 4.3760 3.8135 4.2687 4.0734 4.3130 4.5305 4.5250
↑ NIMA-AVA 4.5595 3.7916 4.4511 4.0589 4.5168 4.7575 4.7401
↑ MUSIQ-KonIQ 65.0549 50.5022 59.0840 52.5399 58.1563 63.7486 62.2217
↑ TReS 93.2127 64.7050 85.8435 74.1167 84.3131 90.4488 88.0836

xori / Cori

ytar

NCF

ACA

DiffAtk

ProbAtk

OURS
(CONS)

OURS
(AGGR)

ambulance basenji hamster king snake panda goldfish mushroom laptop papillon

Figure 3: Qualitative comparison. (A green border indicates an example that successfully fools the
classifier; red indicates failure.) See Appendix G for a more detailed qualitative analysis.

6 RELATED WORKS

To the best of our knowledge, no existing method constructs adversarial examples conditioned on an
identity-level concept. The most closely related works are Song et al. (2018)’s, Dai et al. (2024)’s
and Collins et al. (2025)’s. However, they treats a “class” (e.g., cat, dog, or truck) as the concept,
which cannot precisely capture an individual identity. In our framework, we represent a concept
through a distribution that could be learned from a set of images, allowing it to flexibly correspond
to a single image (i.e. a set with size 1), an identity-level concept, or a class-level concept. By con-
trast, other unrestricted adversarial attack methods focus solely on generating adversarial examples
from a single image: Xiao et al. (2018a) generate adversarial examples using GANs, Chen et al.
(2023) employ diffusion models, and Laidlaw et al. (2020) impose a feature-space distance as a
regularization term in the optimization objective. ACA (Chen et al., 2024b) and DiffAttack (Chen
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et al., 2024a) further apply the attack gradient directly in the DDIM latent space (Song et al., 2020).
Color-based transformations have proven effective in preserving semantic content for untargeted
attacks (Bhattad et al., 2020; Hosseini & Poovendran, 2018; Shamsabadi et al., 2020; Yuan et al.,
2022; Zhao et al., 2020), yet they perform poorly in targeted scenarios (Chen et al., 2024a), a result
confirmed by our experiments.

Unrestricted Adversarial Attack Method Single-image Identity-level Concept Class-level Concept

Bhattad et al. (2020) Yes No No
Hosseini & Poovendran (2018) Yes No No
Colorfool (Shamsabadi et al., 2020) Yes No No
Zhao et al. (2020) Yes No No
NCF (Yuan et al., 2022) Yes No No
ACA (Chen et al., 2024b) Yes No No
DiffAttack (Chen et al., 2024a) Yes No No
ProbAttack (Zhang et al., 2024b) Yes No No
AdvGAN (Xiao et al., 2018a) Yes No No
Xiao et al. (2018b) Yes No No
Perceptual Adv. Attack (Laidlaw et al., 2020) Yes No No
Song et al. (2018) No No Yes
NatADiff (Collins et al., 2025) No No Yes
AdvDiff (Dai et al., 2024) No No Yes
AdvDiffuser Chen et al. (2023) Yes No Yes

Ours: Concept-based Adv. Attack Yes Yes Yes

Table 3: Comparison of unrestricted adversarial attack methods. Our method is the only one capable
of performing adversarial attacks at the identity-level concept, while also supporting single-image
and class-level concepts.

Our work directly inherited from Zhang et al. (2024b)’s probabilistic perspective, but we make a
novel contribution by, for the first time, defining the distance distribution in adversarial attacks with
respect to a distribution representing a concept rather than a single image. Although, operationally,
our method appears to be a straightforward extension — replacing the single-image-centered distri-
bution pdis(· | xori) with a concept-centered distribution pdis(· | Cori) (as in the difference between
(2) and (3)) — we rigorously demonstrate, both theoretically and empirically, why this seemingly
simple generalization is remarkably effective.

7 CONCLUSIONS

The essence of adversarial attacks is to create examples that are imperceptible to humans yet harmful
to computational systems. Our work demonstrates that in an era of powerful generative models,
creating an adversarial example from scratch — one that humans perceive as conceptually correct
— can be more flexible, more realistic, and ultimately more potent than simply perturbing a single
image. Leveraging modern generative models, adversarial noise can be concealed in subtle changes
to viewpoint, pose, or background, making it exceedingly difficult to detect. We believe that our
concept-based adversarial attack heralds the future of adversarial attacks, posing new challenges to
the field of AI security. Defending against such threats will be crucial for advancing AI security
research.
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ETHICS STATEMENT

This work introduces a new class of adversarial attacks that operate at the concept level. While
our primary goal is to advance scientific understanding of adversarial robustness and stimulate the
development of stronger defenses, we acknowledge the potential for malicious misuse. In particular,
concept-based adversarial attacks could be exploited to evade security-sensitive image classifiers or
to manipulate systems deployed in safety-critical applications.

To mitigate these risks, we have:

• Released all code and data strictly for research purposes, under licenses that encourage
responsible use.

• Discussed mitigation strategies in Appendix L, including adversarial training, AI-generated
content detection, and hybrid defenses.

We emphasize that the broader impact (Appendix M) of this work depends on the research commu-
nity’s response. By exposing vulnerabilities of current classifiers, we aim to encourage the develop-
ment of more robust and trustworthy AI systems. We strongly discourage any use of this research
for harmful purposes.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work:

• Code and models: We provide the full source code, including scripts for dataset prepara-
tion, model fine-tuning, and adversarial example generation, at https://anonymous.
4open.science/r/ConceptAdvICLR2026. All hyperparameters and training de-
tails are specified in the code repository.

• Datasets: Our experiments are based on the DreamBooth dataset (Ruiz et al., 2023), which
is publicly available under a CC-BY-4.0 license. We also describe our augmentation proce-
dure using SDXL and LoRA in Section 4.1, and provide scripts for generating data (Dream-
BoothPlus) as part of our code repo.

• Hyperparameters: Fine-tuning settings for both SDXL LoRA and diffusion models are
detailed in Appendix D. For sampling and evaluation, we report the number of generated
adversarial examples, sampling strategies, and evaluation metrics in Sections 4-5.

• Theoretical results: Proofs of all theorems are included in Appendix A, and additional
details on KL divergence estimation are in Appendix B.

• Compute resources: We report hardware specifications and training times in Appendix I
to allow others to reproduce our experiments with similar resources.

We believe these resources provide sufficient detail for reproducing both our theoretical and empir-
ical results.
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APPENDIX

A PROOF OF THE THEOREMS

Theorem 1. Let p be a probability distribution and q be a Gibbs distribution of the form

q(x) =
exp(−βD(x, µ))

Z(β)
,

where Z(β) is the normalizing constant, µ is a constant and D is a distance function. Then
KL(p ∥ q) is a increasing function of β whenever EX∼p[D(X,µ)] > EX∼q[D(X,µ)].

Proof. According to the definition of KL divergence, we have

KL(p||q) =
∫

p(x) log
p(x)

q(x)
dx =

∫
p(x) log p(x)dx−

∫
p(x) log q(x)dx

Since
∫
p(x) log p(x)dx is independent of β, we can treat it as a constant. Let us denote the β-

dependent component as f(β), which gives us

f(β) = −
∫

p(x) log q(x)dx

= −
∫

p(x) [−βD(x, µ)− logZ(β)] dx

=

∫
p(x)βD(x, µ)dx+ logZ(β)

∫
p(x)dx

= EX∼p[βD(X,µ)] + logZ(β)

Taking the derivative with respect to β, we obtain

d

dβ
f(β) = EX∼p[D(X,µ)] +

1

Z(β)

dZ(β)

dβ

= EX∼p[D(X,µ)] +
1

Z(β)

∫
d exp(−βD(X,µ))

dβ
dx

= EX∼p[D(X,µ)] +
1

Z(β)

∫
−D(X,µ) exp(−βD(X,µ))dx

= EX∼p[D(X,µ)]− EX∼q[D(X,µ)]

Therefore, when EX∼p[D(X,µ)] > EX∼q[D(X,µ)], the derivative becomes positive. This implies
that both f(β) and consequently KL(p||q) increase as β increases.

Theorem 2. Let p(1)dis = pdis(· | C(1)
ori ) and p

(2)
dis = pdis(· | C(2)

ori ) be two distance distributions, and
let pvic(· | ytar) be the victim distribution corresponding to a victim classifier p(ytar | x). Then, the
difference

∆ = KL
(
p
(1)
dis ∥ pvic

)
− KL

(
p
(2)
dis ∥ pvic

)
is given by

∆ = E
X∼p

(1)
dis

[
log p

(1)
dis (X)− c log p(ytar | X)

]
− E

X∼p
(2)
dis

[
log p

(2)
dis (X)− c log p(ytar | X)

]
.

Proof. Recall that for distributions p and q on the same space, the Kullback–Leibler (KL) divergence
is

KL(p ∥ q) = EX∼p

[
log p(X) − log q(X)

]
.

Hence, for pdis(· | Cori) and pvic(· | ytar),

KL
(
pdis(· | Cori) ∥ pvic(· | ytar)

)
= EX∼pdis(·|Cori)

[
log pdis(X | Cori) − log pvic(X | ytar)

]
.
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Given that the victim distribution is proportional to

pvic(x | ytar) ∝ exp
(
−c f(x, ytar)

)
,

where f(x, ytar) is the cross-entropy loss, i.e. f(x, ytar) = − log p(ytar | x). Thus we can write

pvic(x | ytar) =
exp(−c f(x, ytar))∫
exp(−c f(x, ytar)) dx

.

Let Z :=
∫
exp

(
−c f(x, ytar)

)
dx. Then

log pvic(X | ytar) = log exp
(
−c f(X, ytar)

)
− logZ = −c f(X, ytar) − logZ.

Therefore,

KL
(
pdis(· | Cori) ∥ pvic(· | ytar)

)
= EX∼pdis(·|Cori)

[
log pdis(X | Cori) + c f(X, ytar)

]
+ logZ.

Since f(x, ytar) = − log p(ytar | x), we get

cEX∼pdis(·|Cori)[f(X, ytar)] = −cEX∼pdis(·|Cori)[log p(ytar | X)].

Hence

KL
(
pdis(· | Cori) ∥ pvic(· | ytar)

)
= EX∼pdis(·|Cori)

[
log pdis(X | Cori) − c log p(ytar | X)

]
+ logZ.

Now take two such distributions, p(1)dis and p
(2)
dis . Because logZ does not depend on which pdis(· | Cori)

we use, it cancels when we form the difference:

∆ =KL
(
p
(1)
dis ∥ pvic

)
− KL

(
p
(2)
dis ∥ pvic

)
=
(
E
X∼p

(1)
dis

[
log p

(1)
dis (X)− c log p(ytar | X)

]
+ logZ

)
−
(
E
X∼p

(2)
dis

[
log p

(2)
dis (X)− c log p(ytar | X)

]
+ logZ

)
=E

X∼p
(1)
dis

[
log p

(1)
dis (X) − c log p(ytar | X)

]
− E

X∼p
(2)
dis

[
log p

(2)
dis (X) − c log p(ytar | X)

]
,

which is precisely the claimed result.

B PRACTICAL STRATEGIES FOR KL DIVERGENCE ESTIMATION

B.1 COMMON RANDOM NUMBERS

In practice, our distance distributions p(1)

dis and p(2)

dis are instantiated by diffusion models: each image
X is generated from noise ϵ via a generator G. We write X = G(1)(ϵ) to indicate that X is sampled
from p(1)

dis , and X = G(2)(ϵ) to indicate that X is sampled from p(2)

dis . In this common-noise setup, the
difference in KL divergences becomes

∆ = Eϵ

[
log p(1)

dis(G
(1)(ϵ))− c log p(ytar | G(1)(ϵ))− log p(2)

dis(G
(2)(ϵ)) + c log p(ytar | G(2)(ϵ))

]
. (4)

B.2 LIKELIHOOD CORRECTION

We posit a probabilistic model pshare that captures the non-semantic, shared features of the im-
ages. Specifically, we assume that for samples X drawn from p(1)

dis and p(2)

dis , the expected values
E
X∼p

(1)
dis
[log pshare(X)] and E

X∼p
(2)
dis
[log pshare(X)] are equal. This assumption is reasonable be-

cause the two distributions, in principle, can generate images sharing the same non-semantic details,
differing only in their semantic content.

Then, under our diffusion-model instantiation, we have

E
X∼p

(1)
dis
[log pshare(X)] = E

X∼p
(2)
dis
[log pshare(X)] ⇒ Eϵ [log pshare(G(1)(ϵ))− log pshare(G(2)(ϵ))] = 0
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for ∆, following equation 4, we have the equations:

∆ =Eϵ

[
log p(1)

dis(G
(1)(ϵ))− c log p(ytar | G(1)(ϵ))− log p(2)

dis(G
(2)(ϵ)) + c log p(ytar | G(2)(ϵ))

]
− Eϵ [log pshare(G(1)(ϵ))− log pshare(G(2)(ϵ))]

=Eϵ

[
log p(1)

dis(G
(1)(ϵ))− log pshare(G(1)(ϵ))− c log p(ytar | G(1)(ϵ))

− log p(2)

dis(G
(2)(ϵ)) + log pshare(G(2)(ϵ)) + c log p(ytar | G(2)(ϵ))

]
In practice, however, the assumption E

X∼p
(1)
dis
[pshare(X)] = E

X∼p
(2)
dis
[pshare(X)] may not hold per-

fectly, due to differences in model capacity, finetuning steps, and other factors. For example, a
model p(1)

dis finetuned on more images might actually lose some non-semantic details compared to
p(2)

dis , which is finetuned on a single image. The extra pshare-based terms can thus be viewed as a
correction that accounts for these mismatches in non-semantic content.

Following Zhang et al. (2024a)’s work, a good practical choice for pshare is often the pretrained
model, because it has been trained on a large, diverse dataset and therefore captures broad, shared
non-semantic features of images.

B.3 ESTIMATED DIFFERENCES OF KL DIVERGENCES

Because ∆ depends on both the original concept Cori and the target class ytar, enumerating every pos-
sible ∆ would be impractical. Therefore, similar to the adversarial-example generation experiment
introduced in Section 5.4, we restrict our analysis to the 30 target classes listed in Appendix E. We
then compute the mean and variance of the estimated ∆ (denoted ∆̃), as shown in Table 4.

Table 4: Estimated differences of KL divergences ∆̃ for each concept.

Concept name ∆̃ Concept name ∆̃ Concept name ∆̃

backpack −3507.28 ± 2040.85 backpack dog −8372.57 ± 860.92 bear plushie −466.69 ± 1413.40
candle −3637.39 ± 940.80 cat −4658.98 ± 2423.05 cat2 −6654.28 ± 1318.03
colorful sneaker −4954.90 ± 420.40 dog −7159.63 ± 696.25 dog2 −4814.63 ± 470.95
dog3 −8303.66 ± 2964.40 dog5 −8080.70 ± 2808.13 dog6 −2380.29 ± 1780.36
dog7 −10545.45 ± 787.79 dog8 −12401.76 ± 966.62 duck toy −2420.45 ± 2334.07
fancy boot −5780.99 ± 1489.92 grey sloth plushie −6848.96 ± 1477.16 monster toy −7435.54 ± 1698.99
pink sunglasses −5711.26 ± 799.22 poop emoji −219.27 ± 929.88 rc car −5046.80 ± 3212.23
robot toy −7008.27 ± 710.45 shiny sneaker −3203.81 ± 4447.21 teapot −7327.87 ± 486.00
vase −8806.76 ± 2435.28 wolf plushie −325.80 ± 2811.99

C SENSITIVITY STUDY FOR SAMPLE SELECTION

As described in Section 4.2, when generating adversarial examples we first sample M candidate
adversarial images and then select the “best” one. To investigate the effect of different values of M ,
we perform a sensitivity study. In this study, |Cori| is set to either 1 or 30, while M is set to 1, 5, or
10. Note that |Cori| = 1 corresponds to ProbAttack (Zhang et al., 2024b).

From Table 5, we observe that as M increases, the white-box attack success rate rises significantly.
In the |Cori| = 1 case, the transferability also increases as M grows. However, in the |Cori| = 30 case,
increasing M results in a decrease in transferability. This happens because we employ a conservative
strategy (introduced in Section 4.2) to pick images that just barely fool the classifier while preserving
the original concept. Evidence of this conservative strategy can be seen in Table 6: when |Cori| = 30,
increasing M yields higher image quality and greater similarity to the original image. In contrast,
when |Cori| = 1, the ranking criterion is more influential during the sample selection stage, so the
conservative strategy does not take effect. Consequently, as M grows, the image quality tends to
decrease.
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Table 5: Targeted attack success rates (%) on ImageNet classifiers. In the white-box setting, success
is counted when the target class is the top prediction. For transferability, we report top 100 success
rates, as top 1 success was uniformly low across all methods.

|Cori| = 1 |Cori| = 1 |Cori| = 1 |Cori| = 30 |Cori| = 30 |Cori| = 30
M = 1 M = 5 M = 10 M = 1 M = 5 M = 10

White-box Top1

Resnet 50 26.03 50.38 59.23 81.41 96.28 97.82

Transferability Top100

VGG19 16.41 17.82 18.97 30.00 23.21 20.90
ResNet 152 21.79 23.97 26.79 43.85 37.69 35.13
DenseNet 161 26.67 30.26 33.08 53.08 44.10 41.03
Inception V3 16.03 17.44 18.21 22.95 19.36 19.87
EfficientNet B7 16.15 16.54 17.44 25.90 21.54 20.38

Adversarial Defence Top100

Inception V3 Adv 18.97 17.82 20.00 25.26 20.64 20.51
EfficientNet B7 Adv 16.54 17.95 21.03 33.72 27.82 24.74
Ensemble IncRes V2 14.10 14.87 17.31 24.74 18.08 17.44

Table 6: Quantitative comparison of similarity to the original images and no reference image quality
metrics for unrestricted adversarial examples.

Clean |Cori| = 1 |Cori| = 1 |Cori| = 1 |Cori| = 30 |Cori| = 30 |Cori| = 30
M = 1 M = 5 M = 10 M = 1 M = 5 M = 10

Similarity
↑ User Study N/A N/A N/A 0.8041 N/A N/A 0.9654
↑ Avg. Clip Score 1.0 0.8953 0.8859 0.8581 0.8175 0.8286 0.8283

Image Quality
↑ MUSIQ-KonIQ 65.0549 59.0779 59.7026 58.1563 62.8293 63.8795 63.7486
↑ MUSIQ-AVA 4.3760 4.3016 4.3400 4.3130 4.5013 4.5356 4.5305
↑ TReS 93.2127 86.4084 86.9480 84.3131 88.9667 90.6312 90.4488
↑ NIMA-AVA 4.5595 4.5729 4.5851 4.5168 4.6804 4.7422 4.7575
↑ HyperIQA 0.7255 0.6800 0.6808 0.6675 0.6880 0.6952 0.6947
↑ DBCNN 0.6956 0.6303 0.6340 0.6161 0.6459 0.6564 0.6572
↑ ARNIQA 0.7667 0.7222 0.7153 0.7009 0.7187 0.7323 0.7335

D FINETUNING DETAILS

In this section, we provide the key parameters required to fine-tune the models. For all parameters,
please refer to the code repository of this paper.

D.1 FINETUNING DETAILS OF SDXL LORAS

In the SDXL LoRA finetuning described in Section 4.1 and Section 5.1, we use a LoRA rank of 128
with a corresponding LoRA alpha of 128, and set the dropout rate to 0.05. We employ the AdamW
optimizer and train for 250 epochs, using a learning rate of 10−4 for UNet parameters and 10−5 for
text encoder parameters. For more detailed settings, please refer to the accompanying code.

D.2 FINETUNING DETAILS OF DISTANCE DISTRIBUTIONS

For the diffusion model fine-tuning described in Section 5.2, we set the learning rate to 10−6, use
the AdamW optimizer, and train for 8000 steps per image in the fine-tuning set. More details are in
the code repository.

E LIST OF THE SELECTED TARGET CLASSES

Since ImageNet consists of 1000 classes and it is impractical to cover them all, we randomly selected
30 target classes. For details, please refer to Table 7.
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Table 7: List of the selected target classes

Index Description

1 goldfish, Carassius auratus
2 great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias
7 cock
56 king snake, kingsnake
134 crane
151 Chihuahua
157 papillon
231 collie
254 basenji
309 bee
328 sea urchin
333 hamster
341 hog, pig, grunter, squealer, Sus scrofa
345 hippopotamus, hippo, river horse, Hippopotamus amphibius
368 gibbon, Hylobates lar
388 giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca
404 airliner
407 ambulance
417 balloon
504 coffee mug
555 fire engine, fire truck
563 fountain pen
620 laptop, laptop computer
721 pillow
769 rule, ruler
817 sports car, sport car
894 wardrobe, closet, press
947 mushroom
955 jackfruit, jak, jack
963 pizza, pizza pie

F DETAILS OF THE USER STUDY

We employed a crowdsourcing approach by hiring five annotators to determine whether each adver-
sarial example preserves the original concept. Since our concepts are all concrete objects, we used
the term “same item” to convey the notion of “same concept” in a straightforward manner. Follow-
ing the user study methods of Song et al. (2018) and Zhang et al. (2024b), all five annotators voted
on whether they believed each adversarial example still represented the original concept.

Annotator Instructions.

In this study, you will see two images and be asked whether they show the
“same item.” Please follow these guidelines when making your judgment:

1. Shape/Form
• If the overall shape (including any accessories) in both images closely

matches or approximates each other, answer “Yes.”
• If the object in one image appears excessively distorted or deformed com-

pared to the other, answer “No.”
2. Accessories

• Even if the second image has additional or fewer accessories, as long as
it essentially represents the same item, answer “Yes.”

3. Color
• If there is no significant difference in color between the two images, an-

swer “Yes.”
• If there is a clear and noticeable color difference that affects recognizing

the item, answer “No.”

Figure 4 shows the user interface for this study.
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Figure 4: Screenshot of the user interface for user study.

G DETAILED QUALITATIVE ANALYSIS

Due to space constraints, the qualitative comparison figures in the main text are relatively small.
Therefore, in this section, we present enlarged qualitative comparisons between DiffAttack and our
approach. We focus on comparing DiffAttack in particular because, although it achieves a high
target attack success rate, it produces lower-quality images, as shown in our user study and image
quality tests. Here, we examine specific adversarial examples generated by DiffAttack to illustrate
why its image quality is inferior.

• Border Collie (first column of Figure 5). DiffAttack removes all the dog’s fur details and
replaces its eyes with those of another canine, while the nose and tongue become stylized
with a graffiti-like look, losing realistic details. In contrast, although our concept-based
adversarial example changes the dog’s pose, it preserves the animal’s fur and facial details.

• Shiny Sneakers (second column). DiffAttack turns the sneakers into a shoe design with
sharp edges, losing the smooth curves of the original model.

• Chow Chow (third column). DiffAttack alters all of the fur details and erases the dog’s
forelegs, resulting in a shape that resembles a drumstick rather than a chow chow.

• Colorful Sneakers (fourth column). While DiffAttack retains the purple front section and
the blue rear section, it removes the yellow line in the middle and the adjacent cyan trim.
Without these details, the sneaker’s appearance changes to a different style altogether.

• Cat (fifth column). DiffAttack modifies the cat’s fur patterns and gives it a distorted facial
expression.

These observations further show that DiffAttack’s adversarial examples degrade crucial details, re-
sulting in a significant drop in image quality and diminished fidelity to the original concept. To
emphasize that this qualitative study is not cherry-picking, we provide the complete set of
adversarial examples — both from other methods and ours — in the code repository.
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basenji hamster goldfish laptop papillon

Figure 5: Qualitative comparison (zoomed in). (A green border indicates an example that success-
fully fools the classifier; red indicates failure.)

H ADDITIONAL COMMENTS ON TRANSFERABILITY

As shown in Appendix Q, our proposed method consistently achieves the best transferability among
comparable approaches. However, its attack success rates are still considerably lower than those
of methods explicitly optimized for transferability, such as works of Zhu et al. (2022), Wang & He
(2021), Gubri et al. (2022) and Collins et al. (2025). We note that approaches targeting transferabil-
ity often generate clear visual features of the target class. Especially in the setting of unrestricted
adversarial attacks, directly synthesizing objects of the target class within the image is also consid-
ered valid (see Figure 5 in the appendix of Collins et al. (2025)).

From the probabilistic perspective of adversarial attack, this phenomenon is especially intuitive. As
illustrated in Figure 6, pdis denotes the distance distribution, while p(1)vic and p

(2)
vic represent the victim

distributions induced by two different classifiers. Without loss of generality, suppose adversarial
examples are sampled from the product of the red distribution p

(1)
vic and the blue distribution pdis. The

resulting adversarial examples concentrate in the region where these two distributions overlap. As
shown in the figure, this region corresponds to low probability density under the green distribution
p
(2)
vic , leading to poor transferability across classifiers.

Although the overall transferability of our method is relatively low, expanding pdis indeed brings the
overlap between the blue and red distributions closer to the green distribution, making it reasonable
that a larger pdis leads to an improvement in transferability.

However, it is important to emphasize that our goal fundamentally differs from methods explicitly
designed to maximize transferability. Approaches that achieve very high transferability, such as
Zhu et al. (2022) and Collins et al. (2025), typically introduce strong visual features of the target
class. Doing so moves samples toward the intersection of the red and green victim distributions,
thereby dramatically improving transferability. Yet this strategy comes at the cost of injecting target-
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class semantics into the generated images, which directly violates our requirement of preserving the
original identity-level concept.

In contrast, our method aims to investigate how enlarging the concept-based distance distribution
pdis affects both image quality and transferability, while strictly maintaining the underlying iden-
tity. Under this constraint, extremely high transferability is not expected - and, in fact, cannot be
achieved without compromising identity preservation. Although our framework could be extended
to incorporate target-class features to boost transferability, we view this as beyond the scope of the
current work and a promising direction for future research.

p(1)
vic

p(2)
vic

pdis

Figure 6: Transferability of adversarial attacks from a probabilistic perspective. pdis denotes the
distance distribution, while p

(1)
vic and p

(2)
vic represent the victim distributions induced by two different

classifiers. Without loss of generality, assume that adversarial examples are sampled from the prod-
uct of the red distribution p

(1)
vic and the blue distribution pdis. In this case, the generated adversarial

examples concentrate in the overlap between these two distributions. As illustrated in the figure, this
overlapping region has low probability density under the green distribution p

(2)
vic , resulting in poor

transferability. Moreover, if a sample happens to contain strong visual evidence of the target class,
then both classifiers would classify it as the target with high confidence, hence the high-density re-
gions of p(1)vic and p

(2)
vic would necessarily overlap.

I COMPUTE RESOURCES

All experiments are conducted on a single NVIDIA H100 Tensor Core GPU. Our method requires
approximately 20 minute per concept for concept augmentation and around 8 hours per concept for
diffusion model fine-tuning. For adversarial example generation, although our method is slightly
slower, it is still within the same order of magnitude.

To ensure that the diffusion model learns a high-quality identity-level concept, we train it for a
long duration during the concept finetuning stage. When the concept dataset is sufficiently large
(e.g., the 30 images described in the main text), the diffusion model does not collapse even after
many epochs of finetuning. However, in settings like ProbAttack, where finetuning is performed
on a single image, the number of epochs must be carefully controlled to avoid model collapse. For
this reason, the concept finetuning time for ProbAttack is approximately 20 minutes, whereas our
concept-based method requires about 8 hours.

In our experiments, we ensured that this 8-hour finetuning worked reliably across all concepts stud-
ied in the paper. In practice, the finetuning time can be reduced to some extent; however, maintaining
an identity-level concept is inherently subjective and difficult to quantify, making it challenging to
specify a universally optimal finetuning duration.

Table 8 summarizes the time consumption of different methods across concept augmentation, con-
cept fine-tuning, and adversarial example generation stages.
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Table 8: Time consumption of each method across different stages.

NCF ACA DiffAttack ProbAttack OURS

Concept augmentation (per concept) - - - - 20m
Concept finetune (per concept) - - - 20m 8h
Adversarial example generation (per image) 30s 20s 12s 75s 75s

J DATASETS AND LICENSES

In this work, we use the DreamBooth dataset, which is licensed under the Creative Commons Attri-
bution 4.0 International license.

K PRACTICAL USAGE GUIDELINES AND EXAMPLE SCENARIOS

K.1 GUIDELINES

Although the term “concept” is difficult to define precisely, our method provides a clear definition:
a concept can be specified by either a set Cori or a probabilistic model. Users can therefore construct
Cori to include whatever concept variations they desire. In our experiments, we demonstrate a broad
range of concept variations — background, pose, and viewpoint — leading to a highly diverse Cori
and scenarios like the one shown in Figure 1 (right).

In practice, constraints may prevent such extensive concept variations. For example, one might
need to fix the background and viewpoint, leaving only the object’s pose or special variations (e.g.,
dressing a dog in different outfits). However, if the concept variations are too limited, the inter-
section between pdis and pvic may be insufficient, making it harder to generate adversarial samples.
Practitioners should be mindful of this trade-off.

K.2 EXAMPLE SCENARIOS

K.2.1 SCENARIO 1: PROHIBITED ITEM ADVERTISEMENTS ON SOCIAL PLATFORMS

Social or second-hand platforms often employ basic classifiers to preliminarily filter user-uploaded
content for prohibited items (e.g., firearms, knives, protected animals). Malicious actors aim to
sell prohibited items such as a specific brand and model of firearm, a particular knife, or a specific
protected animal cub. They prefer to upload images capturing all detailed features of the prohibited
items (i.e., preserving concept/identity, such as the specific firearm model or exact animal cub) to
attract precise target buyers while bypassing platform moderation (untargeted attack).

In such cases, preserving the concept and identity is crucial to attracting potential customers, while
background and perspective variations in images are insignificant. This perfectly aligns with the
applicability of concept-based adversarial attacks.

Considering the potential societal harm of this scenario, as previously discussed, social platforms
should implement multiple detection systems, including AI-based detection, to prevent such attacks.

K.2.2 SCENARIO 2: IMPERCEPTIBLE ADVERSARIAL PATCHES IN REAL-WORLD SCENARIOS
(ADVERSARIAL PATCH T-SHIRTS)

In practice, adversarial examples may be printed as patches. Early adversarial patches, though
able to evade classifiers or detectors, often appeared unnatural or suspicious, making them easily
noticeable by humans and limiting their effectiveness. Creating imperceptible adversarial patches
remains a significant challenge.

Our method addresses this challenge by adopting brand images, logos, or cartoon characters as the
concept. By altering the background or viewpoint of these concepts, we create realistic adversarial
patches suitable for real-world applications.
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More concretely, as demonstrated by Wang et al. (2024), adversarial examples can be created as
printed patches on T-shirts to deceive detection systems. However, unnatural or suspicious patches
would prompt humans to comment, “You’re wearing a strange T-shirt,” or, “The logo on your T-
shirt looks odd.” In such scenarios, our concept-based adversarial attack excels by preserving logos,
branding, or cartoon imagery while subtly changing the background or making the characters per-
form specific actions, resulting in adversarial patches that are difficult for humans to detect.

Specifically referencing Wang et al. (2024)’s work, their algorithm primarily focuses on single-
image adversarial patch creation, leading to unnatural-looking printed watermarks on T-shirts. In
contrast, our concept-based adversarial attack provides a better solution.

Given the social harm posed by these attacks, real-world detection systems should employ multi-
layered detection with varying thresholds and multiple scales of analysis to prevent such vulnerabil-
ities.

L NEGATIVE SOCIAL EFFECT AND MITIGATION STRATEGIES

Mitigating the risks of our proposed attack is a crucial responsibility for both the machine learning
community and society. Potential strategies include:

• Adversarial training using concept-based adversarial examples is a direct and general miti-
gation strategy. However, this may come at the cost of reduced baseline model accuracy.

• Given that our adversarial examples are directly generated from probabilistic gen-
erative models, contemporary AI-generated content detection techniques (open-
source/commercial), such as frequency-domain analysis, heatmap analysis, anomaly de-
tection, and counterfactual detection, can serve as effective countermeasures.

• In practical engineering scenarios, combining various methods according to specific appli-
cation needs can significantly mitigate the threat posed by this attack.

The field of adversarial attacks continually evolves through the ongoing advancement of both at-
tack and defense strategies. We hope our novel attack method draws sufficient attention from the
community to further enhance AI Safety research.

M BROADER IMPACTS OF THIS WORK

This study introduces concept-based adversarial attacks, providing valuable insights into the vulner-
abilities of sophisticated classifiers.

On the positive side, our work exposes critical weaknesses in systems previously considered robust,
highlighting the need for enhanced security measures in classifier design. By identifying these
vulnerabilities, we contribute to the development of more resilient artificial intelligence systems.

However, we acknowledge potential negative implications. The concept-based attack methods de-
scribed could be misappropriated by malicious actors, for example, for identification purposes. We
emphasize the importance of developing countermeasures against such exploitation and encourage
the research community to consider ethical implications when building upon this work.

N LLM DISCLAIMER

In this work, we use large language models solely for text polishing.

O LIMITATIONS

Our approach is slower than similar methods because it requires time-consuming fine-tuning on
a concept dataset Cori, which may also need to be built or expanded if unavailable. However, in
adversarial attack scenarios, even one successful example can cause severe damage, highlighting
the practical importance of our method.
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Method Sampler / Solver # Sampling Steps # Attack Steps Step Size Notes

DiffAttack DDIM 50 30 0.01 –
ACA DDIM 50 10 0.04 –
NCF – – 15 0.013 # Color Sampling = 10
ProbAttack DDPM 250 – – |Cori| = 1, M = 10, c = 30.
Concept-based DDPM 250 – – |Cori| = 30, M = 10, c = 30.

Table 9: Hyperparameter settings for all compared methods. ProbAttack and our concept-based
adversarial attack both use the standard stochastic diffusion (DDPM) sampler with classifier-guided
Langevin dynamics, not DDIM. All other parameters are at default.

P BASELINE SETTINGS

We list the hyperparameter settings for all compared methods in Table 9. Note that DiffAttack/ACA
and ProbAttack/Concept-based Attack rely on fundamentally different attack mechanisms: the for-
mer are based on DDIM and operate in the latent space, while the latter directly sample from padv.
As a result, the number of sampling steps is not directly comparable across these methods, and the
latter do not require any additional attack steps.
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Q FULL MAIN EXPERIMENTAL RESULTS

Due to space constraints, the main text reports only the white-box Top-1 and black-box Top-5 results
using ResNet-50 as the surrogate classifier. In this section, we provide the full set of experimental
results, including targeted attack success rates (white-box Top-1, black-box Top-1, Top-5, Top-10,
and Top-100) in Section Q.1, and the similarity and image quality evaluations in Section Q.2.

Q.1 TARGETED ATTACK SUCCESS RATES

Table 10: Attack success rates (%) on ImageNet classifiers, with ResNet-50 serving as the white-box
victim (surrogate) classifier.

NCF ACA DiffAttack ProbAttack OURS (CONS) OURS (AGGR)

White-box Targeted-Top1

ResNet 50 1.15 6.03 84.23 59.23 97.82 97.82

Transferability

VGG19 0.26 0.26 1.67 0.38 0.00 1.15
ResNet 152 0.13 0.38 1.79 0.77 0.26 1.79
DenseNet 161 0.00 0.26 1.67 0.51 0.26 2.82
Inception V3 0.13 0.13 0.90 0.51 0.00 1.54
EfficientNet B7 0.00 0.26 0.38 0.00 0.13 1.15

Adversarial Defence

ResNet 50 Adv 0.00 0.38 0.77 0.26 0.00 1.15
Inception V3 Adv 0.00 0.26 1.03 0.26 0.00 1.03
EfficientNet B7 Adv 0.00 0.51 0.64 0.38 0.26 1.41
Ensemble IncRes V2 0.00 0.26 0.38 0.64 0.00 1.28

White-box Targeted-Top5

ResNet 50 3.21 10.64 90.64 72.82 99.87 99.87

Transferability

VGG19 1.28 1.67 4.36 2.44 2.05 4.36
ResNet 152 1.41 1.92 8.33 3.33 2.82 8.72
DenseNet 161 1.41 2.05 7.44 3.97 3.85 11.54
Inception V3 0.90 1.41 3.08 2.56 1.28 4.74
EfficientNet B7 1.41 1.67 1.79 1.41 1.28 3.97

Adversarial Defence

ResNet 50 Adv 0.90 1.15 3.46 2.56 1.79 5.64
Inception V3 Adv 1.15 1.28 3.21 2.18 0.90 3.72
EfficientNet B7 Adv 0.26 1.15 2.05 2.31 1.67 6.41
Ensemble IncRes V2 0.77 1.28 2.69 1.92 0.77 5.00

White-box Targeted-Top10

ResNet 50 4.23 12.69 93.46 75.64 99.87 99.87

Transferability

VGG19 2.69 2.69 8.21 3.46 3.21 6.79
ResNet 152 2.44 3.59 14.74 5.77 6.28 15.13
DenseNet 161 2.31 3.72 12.69 6.15 8.72 19.62
Inception V3 1.28 2.31 5.13 3.46 2.31 6.54
EfficientNet B7 2.31 2.82 4.23 3.21 3.59 6.54

Adversarial Defence

ResNet 50 Adv 1.41 1.92 5.64 3.59 2.69 8.46
Inception V3 Adv 1.79 1.79 5.13 3.46 2.31 6.54
EfficientNet B7 Adv 0.38 2.05 3.08 3.46 2.44 9.36
Ensemble IncRes V2 1.28 2.05 3.85 3.08 1.79 7.18
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Table 11: Attack success rates (%) on ImageNet classifiers, with MobileNet v2 serving as the white-
box victim (surrogate) classifier.

NCF ACA DiffAttack ProbAttack OURS (CONS) OURS (AGGR)

White-box Targeted-Top1

MN-V2 3.85 12.95 91.92 51.15 97.31 97.31

Transferability

VGG19 0.00 0.13 1.79 0.00 0.00 1.54
ResNet 152 0.13 0.26 0.90 0.13 0.00 1.03
DenseNet 161 0.00 0.26 0.90 1.03 0.00 1.28
Inception V3 0.00 0.13 0.51 0.38 0.00 0.90
EfficientNet B7 0.00 0.00 0.64 0.13 0.13 1.28

Adversarial Defence

Inception V3 Adv 0.00 0.26 0.77 0.13 0.13 1.15
EfficientNet B7 Adv 0.00 0.26 0.26 0.26 0.38 1.41
Ensemble IncRes V2 0.00 0.38 0.77 0.26 0.13 1.28

White-box Targeted-Top5

MN-V2 6.41 17.18 95.64 65.64 99.74 99.74

Transferability

VGG19 1.03 2.05 4.36 1.54 1.92 4.74
ResNet 152 1.15 1.54 3.72 1.79 1.92 4.87
DenseNet 161 1.15 1.54 5.51 3.46 2.56 7.18
Inception V3 0.90 1.15 2.44 1.92 1.79 3.97
EfficientNet B7 1.03 1.41 2.05 0.51 0.90 4.36

Adversarial Defence

Inception V3 Adv 0.90 1.15 2.56 1.67 0.90 3.08
EfficientNet B7 Adv 0.38 1.15 1.92 1.54 1.41 5.77
Ensemble IncRes V2 0.38 1.67 2.56 1.15 0.90 4.36

White-box Targeted-Top10

MN-V2 8.33 20.00 97.05 72.31 99.74 99.74

Transferability

VGG19 1.28 2.95 7.31 2.69 3.33 6.92
ResNet 152 1.54 2.56 7.05 3.59 2.82 8.08
DenseNet 161 1.67 3.08 9.10 5.00 4.36 12.44
Inception V3 1.41 2.82 4.23 2.82 2.82 5.90
EfficientNet B7 1.79 3.33 3.72 2.18 3.08 7.31

Adversarial Defence

Inception V3 Adv 1.28 1.41 4.10 2.56 2.05 5.90
EfficientNet B7 Adv 0.64 2.44 3.59 2.82 3.97 8.72
Ensemble IncRes V2 0.77 2.31 3.72 2.95 2.31 7.18
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Table 12: Attack success rates (%) on ImageNet classifiers, with ViT-Base serving as the white-box
victim (surrogate) classifier.

NCF ACA DiffAttack ProbAttack OURS (CONS) OURS (AGGR)

White-box Targeted-Top1

ViT-B 0.90 3.46 81.41 63.85 85.51 85.51

Transferability

VGG19 0.13 0.26 0.51 0.13 0.13 1.28
ResNet 152 0.00 0.38 0.77 0.00 0.00 1.41
DenseNet 161 0.00 0.26 1.15 0.51 0.00 1.15
Inception V3 0.00 0.38 0.38 0.13 0.13 0.64
EfficientNet B7 0.00 0.26 0.64 0.00 0.00 0.77

Adversarial Defence

Inception V3 Adv 0.00 0.26 0.38 0.13 0.13 0.90
EfficientNet B7 Adv 0.00 0.38 0.90 0.51 0.51 1.15
Ensemble IncRes V2 0.00 0.13 1.03 0.13 0.00 1.15

White-box Targeted-Top5

ViT-B 2.44 6.67 92.44 89.74 94.87 94.87

Transferability

VGG19 1.03 1.41 1.79 1.28 1.41 3.33
ResNet 152 0.64 1.67 3.33 1.03 1.67 4.74
DenseNet 161 0.64 1.67 4.87 2.18 1.67 5.51
Inception V3 0.77 1.41 2.95 1.54 0.90 3.08
EfficientNet B7 0.90 1.92 2.69 1.28 1.15 3.08

Adversarial Defence

Inception V3 Adv 0.51 1.92 3.21 0.64 0.90 3.46
EfficientNet B7 Adv 0.26 1.79 3.08 1.67 1.41 3.85
Ensemble IncRes V2 0.51 1.41 3.08 1.28 0.90 3.21

White-box Targeted-Top10

ViT-B 3.46 8.97 95.13 92.05 95.51 95.51

Transferability

VGG19 1.79 2.69 3.46 2.05 2.82 4.49
ResNet 152 1.28 1.92 5.77 2.05 2.82 7.69
DenseNet 161 1.15 2.82 6.92 3.08 4.23 8.59
Inception V3 1.28 2.05 4.87 1.79 1.92 5.00
EfficientNet B7 1.54 2.95 4.49 2.44 3.21 5.64

Adversarial Defence

Inception V3 Adv 0.77 2.18 5.13 2.44 2.05 5.26
EfficientNet B7 Adv 0.38 2.31 5.51 2.82 3.33 6.03
Ensemble IncRes V2 0.90 2.31 4.87 2.31 2.56 5.00
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Table 13: Attack success rates (%) on ImageNet classifiers, with ConvNext serving as the white-box
victim (surrogate) classifier.

NCF ACA DiffAttack ProbAttack OURS (CONS) OURS (AGGR)

White-box Targeted-Top1

ConvNext 1.03 5.38 83.59 60.38 94.74 94.74

Transferability

VGG19 0.00 0.26 1.28 0.26 0.00 1.15
ResNet 152 0.00 0.38 1.54 0.51 0.13 1.67
DenseNet 161 0.00 0.26 1.54 0.51 0.13 2.31
Inception V3 0.13 0.26 0.77 0.38 0.00 1.28
EfficientNet B7 0.00 0.26 0.51 0.00 0.13 1.03

Adversarial Defence

Inception V3 Adv 0.00 0.26 0.90 0.26 0.00 1.03
EfficientNet B7 Adv 0.00 0.51 0.77 0.38 0.38 1.28
Ensemble IncRes V2 0.00 0.26 0.51 0.51 0.00 1.28

White-box Targeted-Top5

ConvNext 2.95 9.36 91.15 78.85 98.59 98.59

Transferability-Top5

VGG19 1.15 1.54 3.46 2.05 1.79 4.10
ResNet 152 1.15 1.79 6.92 2.69 2.44 7.56
DenseNet 161 1.15 1.92 6.67 3.33 3.21 9.62
Inception V3 0.90 1.41 3.08 2.18 1.15 4.23
EfficientNet B7 1.28 1.79 2.05 1.41 1.28 3.72

Adversarial Defence

Inception V3 Adv 0.90 1.41 3.21 1.67 0.90 3.59
EfficientNet B7 Adv 0.26 1.28 2.44 2.05 1.54 5.51
Ensemble IncRes V2 0.64 1.28 2.82 1.67 0.77 4.49

White-box Targeted-Top10

ConvNext 3.97 11.67 93.97 81.54 98.72 98.72

Transferability

VGG19 2.44 2.69 6.67 2.95 3.08 6.15
ResNet 152 2.05 3.08 11.92 4.49 5.13 12.82
DenseNet 161 1.92 3.46 10.90 5.13 7.18 16.41
Inception V3 1.28 2.18 5.00 2.82 2.18 6.15
EfficientNet B7 2.05 2.82 4.36 2.95 3.46 6.28

Adversarial Defence

Inception V3 Adv 1.41 1.92 5.13 3.08 2.18 6.15
EfficientNet B7 Adv 0.38 2.18 3.72 3.21 2.69 8.21
Ensemble IncRes V2 1.15 2.18 4.23 2.82 2.05 6.54
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Table 14: Attack success rates (%) on ImageNet classifiers, with ResNet-50 Adv serving as the
white-box victim (surrogate) classifier.

NCF ACA DiffAttack ProbAttack OURS (CONS) OURS (AGGR)

White-box Targeted-Top1

ResNet-50 Adv 0.90 5.13 81.79 61.28 94.23 94.23

Transferability

VGG19 0.13 0.38 1.67 0.51 0.00 2.31
ResNet 152 0.00 0.51 2.56 1.03 0.38 2.56
DenseNet 161 0.00 0.38 2.31 0.77 0.38 3.97
Inception V3 0.00 0.26 1.28 0.77 0.00 2.18
EfficientNet B7 0.00 0.38 0.51 0.00 0.26 1.67

Adversarial Defence

Inception V3 Adv 0.00 0.51 1.67 0.51 0.00 1.79
EfficientNet B7 Adv 0.00 0.90 1.15 0.64 0.51 2.56
Ensemble IncRes V2 0.00 0.51 0.64 1.15 0.00 2.31

White-box Targeted-Top5

ResNet-50 Adv 2.82 9.62 89.74 75.00 98.08 98.08

Transferability

VGG19 1.03 2.31 5.77 3.33 2.82 6.15
ResNet 152 1.15 2.69 11.28 4.49 3.85 11.79
DenseNet 161 1.15 2.82 10.00 5.38 5.26 15.38
Inception V3 0.77 1.92 4.36 3.46 1.79 6.67
EfficientNet B7 1.15 2.31 2.56 1.92 1.79 5.51

Adversarial Defence

Inception V3 Adv 0.90 1.92 5.13 3.46 1.41 6.15
EfficientNet B7 Adv 0.26 1.79 3.33 3.59 2.56 10.00
Ensemble IncRes V2 0.64 1.92 4.36 3.08 1.15 7.95

White-box Targeted-Top10

ResNet-50 Adv 3.85 11.67 92.95 77.56 98.97 98.97

Transferability

VGG19 2.18 3.72 8.97 4.62 4.36 10.77
ResNet 152 2.05 4.87 18.97 7.44 8.08 19.49
DenseNet 161 1.92 5.00 16.28 7.95 11.15 25.13
Inception V3 1.03 3.21 6.92 4.62 3.08 8.72
EfficientNet B7 1.92 3.85 5.64 4.36 4.87 8.72

Adversarial Defence

Inception V3 Adv 1.41 2.69 8.21 5.38 3.59 10.51
EfficientNet B7 Adv 0.38 3.08 5.00 5.38 3.85 14.74
Ensemble IncRes V2 1.03 3.08 6.15 4.74 2.82 11.41
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Q.2 SIMILARITY AND IMAGE QUALITY

Due to cost constraints, only the ResNet-50 results reported in the main text include the user study.

Table 15: Quantitative comparison of similarity to the original images and no reference image qual-
ity metrics for unrestricted adversarial examples with ResNet-50 serving as the victim (surrogate)
classifier.

Clean NCF ACA DiffAttack ProbAttack OURS (CONS) OURS (AGGR)

Similarity
↑ User Study N/A 0.1859 0.2808 0.7577 0.8041 0.9654 0.8808
↑ Avg. Clip Score 1.0 0.8728 0.7861 0.8093 0.8581 0.8283 0.8043

Image Quality
↑ HyperIQA 0.7255 0.5075 0.6462 0.5551 0.6675 0.6947 0.6809
↑ DBCNN 0.6956 0.5096 0.6103 0.5294 0.6161 0.6572 0.6399
↑ ARNIQA 0.7667 0.5978 0.6879 0.6909 0.7009 0.7335 0.7154
↑ MUSIQ-AVA 4.3760 3.8135 4.2687 4.0734 4.3130 4.5305 4.5250
↑ NIMA-AVA 4.5595 3.7916 4.4511 4.0589 4.5168 4.7575 4.7401
↑ MUSIQ-KonIQ 65.0549 50.5022 59.0840 52.5399 58.1563 63.7486 62.2217
↑ TReS 93.2127 64.7050 85.8435 74.1167 84.3131 90.4488 88.0836

Table 16: Quantitative comparison of similarity to the original images and no reference image qual-
ity metrics for unrestricted adversarial examples with MN-V2 serving as the victim (surrogate) clas-
sifier.

Clean NCF ACA DiffAttack ProbAttack OURS (CONS) OURS (AGGR)

Similarity
↑ Avg. Clip Score 1.0 0.8783 0.7756 0.8197 0.8693 0.8229 0.7988

Image Quality
↑ HyperIQA 0.7255 0.5002 0.6486 0.5471 0.6808 0.6998 0.6865
↑ DBCNN 0.6956 0.5040 0.6175 0.5236 0.6310 0.6577 0.6402
↑ ARNIQA 0.7667 0.5972 0.6909 0.6872 0.7112 0.7328 0.7142
↑ MUSIQ-AVA 4.3760 3.7912 4.3042 4.0496 4.3236 4.6125 4.5700
↑ NIMA-AVA 4.5595 3.7879 4.4532 4.0549 4.5317 4.8172 4.7778
↑ MUSIQ-KonIQ 65.0549 49.9072 59.5258 51.9209 59.7813 63.5363 61.6641
↑ TReS 93.2127 63.7643 86.2644 73.0392 86.4376 90.7757 88.9947

Table 17: Quantitative comparison of similarity to the original images and no reference image qual-
ity metrics for unrestricted adversarial examples with ViT-Base serving as the victim (surrogate)
classifier.

Clean NCF ACA DiffAttack ProbAttack OURS (CONS) OURS (AGGR)

Similarity
↑ Avg. Clip Score 1.0 0.8733 0.7681 0.8040 0.8586 0.8222 0.8104

Image Quality
↑ HyperIQA 0.7255 0.5006 0.6324 0.5475 0.6796 0.7077 0.6961
↑ DBCNN 0.6956 0.5027 0.5842 0.5222 0.6254 0.6652 0.6526
↑ ARNIQA 0.7667 0.5879 0.6765 0.6844 0.7120 0.7351 0.7195
↑ MUSIQ-AVA 4.3760 3.7822 4.3131 4.0400 4.2450 4.5401 4.5345
↑ NIMA-AVA 4.5595 3.7666 4.4775 4.0321 4.4918 4.7706 4.7747
↑ MUSIQ-KonIQ 65.0549 50.0413 57.6105 52.0604 59.3605 64.2536 62.4264
↑ TReS 93.2127 64.1109 83.6834 73.4362 85.8749 91.7463 89.7815
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Table 18: Quantitative comparison of similarity to the original images and no reference image qual-
ity metrics for unrestricted adversarial examples with ConvNeXT serving as the victim (surrogate)
classifier.

Clean NCF ACA DiffAttack ProbAttack OURS (CONS) OURS (AGGR)

Similarity
↑ Avg. Clip Score 1.0 0.8621 0.7542 0.7964 0.8467 0.8139 0.8011

Image Quality
↑ HyperIQA 0.7255 0.4928 0.6281 0.5392 0.6703 0.6933 0.6810
↑ DBCNN 0.6956 0.4951 0.5784 0.5179 0.6201 0.6531 0.6405
↑ ARNIQA 0.7667 0.5835 0.6710 0.6801 0.7066 0.7294 0.7118
↑ MUSIQ-AVA 4.3760 3.7511 4.2814 4.0206 4.2314 4.5116 4.5030
↑ NIMA-AVA 4.5595 3.7524 4.4433 4.0215 4.4830 4.7464 4.7492
↑ MUSIQ-KonIQ 65.0549 49.3812 57.0114 51.7324 58.9012 63.1025 61.3571
↑ TReS 93.2127 62.9011 82.7410 72.1109 85.2442 90.9211 88.7724

Table 19: Quantitative comparison of similarity to the original images and no reference image qual-
ity metrics for unrestricted adversarial examples with ResNet-50 Adv. serving as the victim (surro-
gate) classifier.

Clean NCF ACA DiffAttack ProbAttack OURS (CONS) OURS (AGGR)

Similarity
↑ Avg. Clip Score 1.0 0.8556 0.7485 0.7877 0.8367 0.8059 0.7945

Image Quality
↑ HyperIQA 0.7255 0.4854 0.6221 0.5297 0.6617 0.6875 0.6750
↑ DBCNN 0.6956 0.4908 0.5718 0.5070 0.6078 0.6473 0.6342
↑ ARNIQA 0.7667 0.5764 0.6654 0.6683 0.6932 0.7231 0.7070
↑ MUSIQ-AVA 4.3760 3.7435 4.2637 4.0130 4.2223 4.5031 4.4966
↑ NIMA-AVA 4.5595 3.7453 4.4342 4.0113 4.4676 4.7399 4.7351
↑ MUSIQ-KonIQ 65.0549 49.3740 57.0028 51.7202 58.1513 63.0946 61.3527
↑ TReS 93.2127 62.8961 82.7340 72.1034 84.3081 90.4438 88.0786
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