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Abstract

Disease progression models infer group-level temporal trajectories of change in
patients’ features as a chronic degenerative condition plays out. They provide
unique insight into disease biology and staging systems with individual-level clini-
cal utility. Discrete models consider disease progression as a latent permutation
of events, where each event corresponds to a feature becoming measurably ab-
normal. However, permutation inference using traditional maximum likelihood
approaches becomes prohibitive due to combinatoric explosion, severely limiting
model dimensionality and utility. Here we leverage ideas from optimal transport to
model disease progression as a latent permutation matrix of events belonging to
the Birkhoff polytope, facilitating fast inference via optimisation of the variational
lower bound. This enables a factor of 1000 times faster inference than the current
state of the art and, correspondingly, supports models with several orders of mag-
nitude more features than the current state of the art can consider. Experiments
demonstrate the increase in speed, accuracy and robustness to noise in simulation.
Further experiments with real-world imaging data from two separate datasets, one
from Alzheimer’s disease patients, the other age-related macular degeneration,
showcase, for the first time, pixel-level disease progression events in the brain and
eye, respectively. Our method is low compute, interpretable and applicable to any
progressive condition and data modality, giving it broad potential clinical utility.

1 Introduction

The main aim of disease progression modelling is to learn a hidden underlying disease trajectory from
‘snapshots’ (sets of observations at a single time) of individuals at hidden points along the trajectory.
The classical approach is to treat the problem dynamically, using either discrete [1–9] or continuous
[10–18] models with latent variables to describe the hidden disease stage or time. An abundance of
such models have been proposed (see [19] for a comprehensive review) and have found extensive
success in providing unique interpretability and utility across a wide range of progressive diseases,
including Alzheimer’s disease (AD) [1, 20, 5, 12, 21, 22], Huntington’s disease [23–26], multiple
sclerosis [27, 28], Parkinson’s disease [29], prion disease [30], amyotrophic lateral sclerosis [31],
and chronic obstructive pulmonary disorder [32].

However all previous approaches make a compromise: they are either i) interpretable in feature
space but sacrifice computational tractability [33, 1, 34, 2, 5, 13, 35, 6, 36–39]; or ii) are made
computationally tractable by encoding to a latent space but sacrifice direct interpretability [40, 41].
Models of type (i) often require preprocessing or dimensionality reduction to extract a modest number
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of interpretable features from high dimensional data, e.g., deriving features of anatomical regions
from medical images, because computation time scales super-linearly with the number of features.
The preprocessing introduces uncertainty and is often computationally burdensome in itself.

Here we introduce the variational event-based model (vEBM), which enables high dimensional
interpretable models through a new computationally efficient approach that avoids the need for
dimensionality reduction or manual feature extraction. For example, with image-based models, it
enables models that express progression at the pixel-level rather than regional level. To achieve
this we reformulate disease progression modelling as the ‘transport’ of latent disease events to their
‘optimal’ location in a continuous latent permutation, unlocking benefits from recent advancements in
the field of computational optimal transport [42]. Our approach generalises discrete generative models
of disease progression, e.g., [1, 20, 5, 36–39, 43], which it obtains as a limit; and it directly infers a
continuous probability over events, while the others require costly sampling methods. Crucially, it
also facilitates variational inference of the posterior, allowing for substantial gains in computational
tractability and hence larger models.

Related work. The closest direct comparisons to the model we propose here are the sequence-based
models proposed by [33, 1]. These models underpin both a range of direct applications [20, 5, 23,
24, 12, 21, 25, 27, 29], as well as providing components in higher level models [5, 36, 38, 39]. Like
ours, these models require data with only a single time-point per individual. They assume monotonic
progression in order to learn a latent sequence of events from such cross-sectional data. However, the
models in [33, 1] are severely limited by their computational tractability, and can typically only use
a few 100 features at most. In contrast, our new formulation enables this type of model to include
several orders of magnitude more features enabling, for example, pixel-level temporal models as we
demonstrate here.

Deep-learning based sequence models, using e.g. transformer architectures have recently become
popular for models of high dimensional temporal sequences e.g., [41]. However, as with other deep
state-space models, e.g., [44, 6] these approaches require vast amounts of data with multiple time
points to train, unlike our approach which can be trained on modest datasets (order 100 subjects with
observations from a single time-point). Furthermore, the computational power required to train the
upstream foundation model, plus the downstream model itself, is order of magnitudes higher than our
model, which can run on a single CPU in a matter of minutes.

1.1 Contributions

Here we address the problem of how to learn interpretable high dimensional disease progression
models efficiently, which is longstanding in the machine learning community.

• We leverage ideas from optimal transport to derive a new generative latent variable model of
disease progression, the variational event-based model (vEBM). The vEBM characterises
the disease process by a continuous latent permutation of event probabilities, permitting
direct inference of event distributions and model uncertainty from mixed feature datasets.

• We define a differentiable variational evidence lower bound (ELBO) and devise a suitable
inference scheme to learn the vEBM efficiently from high dimensional data.

• We use synthetic data to demonstrate that the vEBM achieves a factor of 1000× faster
inference than baselines, provides better inference accuracy, and is robust to noise.

• We use the vEBM with data from Alzheimer’s disease (AD) and age-related macular
degeneration (AMD) to obtain, for the first time, pixel-level disease progression events in
the brain and eye, and mixed-feature models combining imaging and clinical test score data.

2 Variational event-based model

To derive the variational event-based model (vEBM), we first derive a generative latent variable
model of disease progression in terms of a latent permutation matrix of events (Section 2.1). Our key
methodological contribution is reformulating the generative model in the context of optimal transport;
we introduce the relevant mathematical tools to do this in Section 2.2, which we use to derive the
limit relationship between the classical EBM and the vEBM in Appendix Section A.3. We then define
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Figure 1: Schematic of the variational event-based model for a toy 4-feature dataset. A. The dataset
contains snapshots from I individuals, with j, k = {1, 2, 3, 4} features and latent events; the features
can be of any type and can be incomplete. B. Before inference, probabilistic models of normality
and abnormality are fit to the dataset, giving the likelihood look-up tables P (Y |θp,c) (Section 2.1);
these are fixed throughout inference, as denoted by the inner box outside the training loop. To infer
the permutation matrix S (Section 2.2), the ELBO (Section 2.3) is optimised and S is updated each
iteration using the Sinkhorn-Knopp algorithm (Section 2.4). C. The resulting hard permutation, s,
i.e., the disease event sequence, is obtained from S, using the Hungarian algorithm. We note that S
represents the full distribution of event probabilities, which can be sampled to obtain uncertainty.

our model in a variational inference setting (Section 2.3), devise a suitable inference scheme (Section
2.4), and provide a method for probabilistic individual-level staging using the trained model (Section
2.5). Figure 1 1 provides schematic overview of the vEBM.

2.1 Model of disease progression

Consider a generative latent variable model with observed data Y and latent variables Z = {S, k, θ},
where S ∈ RN×N

+ is a latent permutation matrix of N events; k ∈ ZN
+ is the latent state of an

individual; and θ = {θ(1), θ(2), θ(3), ..., θ(J)} are additional model parameters. We write the joint
probability as a hierarchical Bayesian model using the chain rule (see Appendix Figure 9 for the
graphical model),

P (Z, Y ) = P (Z) · P (Y |Z) = P (S) · P (θ) · P (k|S) · P (Y |S, k, θ). (1)

Each element in the permutation matrix, S, defines an ‘event’, which corresponds to a feature
becoming measurably abnormal with respect to a reference distribution. Following [1, 20], we
parameterise the data likelihood by probability distributions of ‘abnormality’ (typically from patients,
p), and ‘normality’ (typically from controls, c) for each feature, and choose to model the distributions
for feature j using univariate Gaussian mixture models with mean, µj , standard deviation, σj , and
mixture weights, wj , so that

P (Yj |θp,cj ) ∼ N (µp,c
j , σp,c

j , wp,c
j ). (2)

However any probabilistic characterisation that defines a reference group to anchor the progression is
permissible. To enable S to be inferred using data from different individuals at a single time-point
(‘snapshots’), we make two key assumptions: i) monotonic progression of events at the group level;
and ii) a consistent event permutation across the whole population. We note that assumption ii) could
be relaxed to permit multiple event permutations (i.e., clusters) within the same population. Then for
individuals i = {1, 2, 3, ..., I} with observed features j = {1, 2, 3, .., J}, the model likelihood can
be written as (see Appendix A.2 for a full derivation),

P (Y |S; θ) =
I∏

i=1

 N∑
ki=0

P (ki|S)
ki∏
j=1

P (Yi,j |S, ki, θps(j))
J∏

j=ki+1

P (Yi,j |S, ki, θcs(j))

 . (3)
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Here s ∈ Perm(N) is a discrete permutation of N events, corresponding to the hard permutation
obtained from S (see the next section); and θs(j) = θps(j) ∪ θcs(j) are the patient, p, and control, c,
distribution parameters generating the data for feature j at position s(j) in the permutation. Note that
if data are missing, the two likelihoods on the RHS of Equation 3 can be set equal and factorised,
i.e., the data can be treated as missing at random. In order to impose no prior information on the
permutation ordering, we chose the prior over latent stages to be uniform, P (ki|S) ∼ Unif(0, k).

2.2 Optimal transport for permutations

Under the definition of disease progression given by Equation 3 and using Bayes rule, our posterior
is a probability distribution over the sequence of events. Given that permutations are factorial in N ,
the challenge is to make inference of S computationally tractable when the number of features - and
hence the number of events - is large (of order N > 100). To address this, we propose to frame the
learning problem in terms of the ‘transport’ of disease events to their ‘optimal’ location in the disease
event sequence, s, defined by the permutation matrix S. Our key methodological contribution is the
translation of the model likelihood (Equation 3) to the context of optimal transport; here we provide
the necessary background theory to enable us to derive the relationship between s and S in our model.

Optimal transport aims to identify the mass-conserving coupling between two distributions (‘transport
plan’) that minimises the cost required to move (or transform) one into the other [45]. The minimum
cost defines a distance between distributions (the Wasserstein distance) and induces a rich underlying
geometry on the space of distributions, providing benefits over classical learning techniques such as
maximum likelihood. While optimal transport requires solving a computationally expensive linear
problem, recent advances have resolved this by substituting the original problem with an entropy
regularised version [46], paving the way for its use in learning generative models.

When the couplings are restricted to be permutation matrices, we can leverage the machinery of
entropy regularised optimal transport to provide computationally tractable solutions to inferring
latent permutations [47]. Here we are interested in learning a latent permutation matrix, S, with a
corresponding discrete permutation, s, such that,

∀(i, j) ∈ Z+, Si,j =

{
1/n, if j = si
0, otherwise.

(4)

In the context of permutation matrices as couplings, S belongs to the Birkhoff polytope,

BN = {S : Si,j ≥ 0,
N∑
j

Si,j = 1,
N∑
i

Si,j = 1}. (5)

The Birkhoff-von Neumann theorem states that BN is the convex hull of the set of doubly stochastic
(soft) permutation matrices, and that its vertices are the (hard) permutation matrices [48]. The
row-column normalisation equality constraints in Equation 5 demand efficient algorithms to solve
for S. Following [46], we use the Sinkhorn-Knopp algorithm with an entropy regularisation term,
H(S) = −

∑
i,j Si,j log(Si,j), as an approximation to solving the optimal transport problem,

K(X/τ) = argmax
S∈BN

⟨S,X⟩F + τH(S). (6)

Here K(·) is the Sinkhorn-Knopp operator, which maps the positive orthant on to BN by iteratively
normalising rows and columns [49, 50]; X is the unnormalised assignment probability (transportation
cost) matrix; and τ is a temperature parameter, analogous to the temperature-dependent softmax
function for discrete categories [51]. In our context, X corresponds to the event likelihood distribu-
tions given by Equation 2; as such, we are looking to find the permutation matrix, S, that transports
event probabilities to their optimal location in the event sequence, s. Alternatively, we can think
of relationship as S being the transport plan that permutes event likelihoods in X to their optimal
position in the latent event sequence.

To obtain a hard permutation from S, we use a result from [47], who showed that M(X), the hard
permutation matrix of discrete matches (i.e., the matrix of basis vectors corresponding to the vertices
of the Birkhoff polytope), can be obtained as the limit τ → 0 of the Sinkhorn-Knopp operator,

M(X) =

 es(0)
...

es(N)

 = lim
τ→0

K(X/τ). (7)
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Here en are basis (one-hot) vectors of size N with a value of 1 in the n-th position and 0 everywhere
else. In practice we compute the hard permutation matrix M(X) from S using the Hungarian
algorithm [52, 53], which solves the minimum bipartite matching problem in cubic time. We use the
relation in Equation 7 to show that the original EBM can be obtained as the temperature limit of the
vEBM (see Appendix A.3). To facilitate inference, the value of τ must be chosen to balance between
the limit of a hard permutation, where the gradients are discontinuous (and hence non-differentiable),
and a uniform soft permutation, where the gradients are flat (and hence non-informative). A parametric
analysis of τ , τprior, and the number of Sinkhorn-Knopp iterations, ns, is presented in Appendix A.8.

2.3 Variational permutation inference

We approximate the posterior probability, obtained from applying Bayes rule to Equation 3, using
variational inference [54], and define the evidence lower bound (ELBO). To enable differentiability
of the ELBO, we parameterise our variational prior and posteriors using the Gumbel-Sinkhorn
distribution, G(X, τ), with a matrix, ϵ, of i.i.d. Gumbel noise,

G(X, τ) ∼ K((X + ϵ)/τ). (8)
The Gumbel-Sinkhorn distribution effectively implements the reparameterisation trick [55] for
permutations, and in the limit τ → 0 it has been shown to converge to the Gumbel-Matching
distribution, the equivalent of the Gumbel-Sinkhorn distribution for hard matchings [47]. We
choose a uniform prior over permutations, G(X = 0, τprior), and for the posterior, G(X, τ ;ϕ), with
parameters ϕ. We seek to optimise the corresponding ELBO,

logP (Y ) ≥ L(ϕ; θ) = Eqϕ(Z|Y )[logPθ(Y |Z)− KL(qϕ(Z|Y )∥P (Z))]

= Eqϕ(Z|Y )[logPθ(Y |Z)− KL(Gϕ(X, τ)∥G(X = 0, τprior))].
(9)

The Kullback-Leibler (KL) divergence term on the RHS of Equation 9 is intractable, but can be
rewritten as KL((X + ϵ)/τ∥ϵ/τprior) by substituting (X + ϵ)/τ for Z and estimated using random
sampling [47]. For completeness, we restate the full term derived by [47] in Appendix A.4.

2.4 Inference scheme

To optimise the ELBO we use Adam [56] with nopt = 200 iterations and a learning rate of 0.1.
Temperature hyperparameters τ and τprior were set to 1 for all experiments, except the mixed events
(Section 3.3.3), where τ = 1E3. We found setting ϵ = 0 during inference gave the fastest and
most accurate estimate of S, at the expense of not allowing for direct propagation of uncertainty.
While uncertainty estimation is not the focus of this paper, we do provide some examples of setting ϵ
non-zero in Appendix A.7. Pseudo-code for the full inference scheme is given in Appendix Algorithm
1.

2.5 Probabilistic staging

We can use the trained model to obtain an individual-level likelihood distribution over stages, i.e., the
likelihood at each state k given by Equation 3, where stage k = n corresponds to the first n events
occurred and the remaining N −n events not occurred. Here we simply take the maximum likelihood
stage for each individual, but alternative summary statistics could be used.

3 Experiments

3.1 Baselines

We consider two baselines; i) the original EBM [1]; and the Alzheimer’s Disease Probabilistic
Cascades (ALPACA) model [33], both of which use maximum likelihood to estimate the ordered
sequence, s. The EBM learns s using gradient descent and Markov Chain Monte Carlo (MCMC)
sampling. The ALPACA model instead defines s as the central permutation of a Mallows model [57],
with a density over permutations given by p(s) ∼ exp(−λd(s, s0)), where λ scales the spread around
the central ordering, s0, and d(s, s0) = ΣN

i=1|s(i) − s0(i)| is the distance between permutations.
The ALPACA model learns s using expectation-maximisation (EM) and Gibbs sampling. We use
the default parameters; for the EBM, 103 gradient descent iterations with 10 initial seeds, and 106

MCMC samples; for ALPACA, 10 EM iterations and 100 Gibbs samples.
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3.2 Synthetic data

To enable comparison between our model and the baselines, we simulate data generated by an ordered
sequence, s, according to the limit version of Equation 3 (see Appendix A.3). In brief, s is randomly
initialised and individuals are assigned a stage with uniform probability, reflecting that individuals can
be observed at any disease stage. Individuals are assigned as either controls or patients according to an
arbitrary threshold on the disease stage (here we choose the lowest 20% stages as controls). Feature
data for each individual are then generated from the Gaussian models of normal and abnormal feature
values, depending on their stage, with zero means for the control distributions, random uniform
means for the case distributions, and variable standard deviations for both controls and cases set to
achieve a desired level of noise. Exact parameter values and code to generate synthetic data is given
in the GitHub repository. Here we repeat performance evaluation over 10 simulated datasets for each
experiment to support statistical significance tests.

3.2.1 Faster inference

Figure 2 shows the runtime for the vEBM and baselines for three experiments (I = 100, J = 10;
I = 1000, J = 100; I = 2000, J = 200). We do not consider J > 200 here, as the baselines
become intractable, but Figure 2 clearly illustrates the unique computational ability of the vEBM to
work with much larger J , as we demonstrate throughout this section. The vEBM is a factor of 1000
times faster for the J = 200 experiment; this factor would only increase for larger models.

3.2.2 Improved accuracy and robustness to noise

Figure 2: Speed of inference as a function of model
size, for the vEBM and baselines. Note that there
is no datapoint for ALPACA at J = 200 due to
computational intractability.

Figure 3 shows the effect of increasing aleatoric
(measurement) noise levels on inference accu-
racy, as measured by the Kendall’s tau [58] be-
tween the true and inferred sequences. The
vEBM outperforms or is comparable to the base-
lines in all datasets and noise settings, except
for I = 100, J = 1000 and σ = 0.1; this
is expected, because at low noise and smaller
numbers of features the EBM’s MCMC sam-
pling should find the global minimum, while
the vEBM will always have some uncertainty
due to its variational approximation. Statistical
significance was obtained at p < 0.001 using
unpaired t-tests (note that only one datapoint
is shown for ALPACA at J = 100, and none
at J = 200, due to computational intractabil-
ity). We highlight that the metric is sensitive to
any departure from the correct ordering, even
by a single sequence position; accordingly the
visual correlation between the true and inferred
sequence remains high, e.g., even at the highest noise (σ = 1, corresponding to a 1:1 signal:noise
ratio), as the relationship is still approximately diagonal. Additional examples in other datasets and
when setting the Gumbel noise, ϵ, non-zero are given in Appendix A.6, A.7.

3.3 Alzheimer’s disease data

We use pre-processed tensor-based morphometry (TBM) data from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) study, a longitudinal observational study of AD. TBM data are derived
from structural magnetic resonance imaging (MRI) data and represent voxel-level maps of intensity
gradients with respect to a reference healthy brain template, providing a standardised measure of
voxel-level volume loss (or gain) between individuals. The TBM dataset we use here is comprised
of cross-sectional TBM maps from 816 individuals (299 controls, 399 mild cognitive impairment,
188 AD) [59]. In Section 3.3.3 we also use three cognitive test scores – Mini-Mental State Exam-
ination (MMSE); Clinical Rating Dementia scale Sum of Boxes (CDRSB); Rey Auditory Verbal
Learning Test (RAVLT). Both datasets are available to download for users with an ADNI account
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Figure 3: Accuracy of inference as a function of aleatoric noise, obtained by the vEBM from synthetic
data with low, medium, and high noise levels (left: σ = 0.1; middle: σ = 0.5; right: σ = 1). Top
row: Kendall’s tau distance between the inferred and true sequences as a function of model size
(number of features). Standard errors of the mean are shown, from 10 repeats per experiment. Bottom
row: example positional variance diagrams. The vertical axis lists the sequence of events inferred by
the vEBM with the earliest event (order position 1) at the top. The true sequence is overlaid as red
squares. Datasets have I = 2000 individuals and J = 200 features.

(https://adni.loni.usc.edu/data-samples/access-data/, data collections: “TBM Jaco-
bian Maps MDT-SC”; “Tadpole Challenge”).

3.3.1 Pixel-level disease progression events in AD

We apply the vEBM to TBM data from ADNI to reveal the first pixel-level sequence of disease
events in AD (Figure 4). We do not include the baselines here due to computational intractability
(as demonstrated in Section 3.2). The pattern of volume change represented by the vEBM sequence
recapitulates known large-scale changes due to AD; initial change in the ventricles, followed by
other sub-cortical changes, then changes across the cortex [60]. Moreover, the vEBM finds a detailed
pattern of grey and white matter changes throughout the sequence, providing new small-scale insights
into AD aetiology that have not previously been possible, which we explore further in the next section.

Figure 4: Pixel-level disease progression sequence in AD obtained by the vEBM. White pixels
correspond to events that have occurred by the corresponding point of the sequence. The figure
shows 10 sequence positions at uniform steps of 100 across the total of 1344, with the top left figure
corresponding to position 50 (the first 50 events have occurred) and the bottom right to position 950.
Images were made from the vEBM output using 3D Slicer (https://www.slicer.org/).
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3.3.2 Segmentation-based interpretation of pixel-level events

To evaluate our ADNI pixel-level model with respect to previous analyses that have used segmented
regional brain volumes, we map the vEBM pixel-level events post hoc to pixel-level labels obtained
from the FreeSurfer segmentation of the reference template (Figure 5). Note that the regions shown
are a subset of the total regions available from the FreeSurfer segmentation tool, which were chosen
according to those that were sufficiently represented in terms of number of pixels in the 2D slice that
was used to train the model (N > 10). Also note that the number of points on each trajectory / line
corresponds to the number of pixels available in each region; e.g., there are few pixels in “Putamen”
(N = 11), an intermediary number in “Thalamus-Proper” (N = 43), and many in “Cerebral-Cortex”
(N = 299), corresponding to their relative sizes (areas) in the 2D slice.

Our findings are in broad agreement with previous results; sub-cortical changes (Thalamus-Proper,
Putamen, Hippocampus) are earliest, followed by cortical (Cerebral-Cortex) and white matter
(Cerebral-White-Matter), and finally ventricular change (Lateral-Ventricle, VentralDC). However, our
model provides much more fine-grained insights than, e.g., [20], we now obtain continuous trajectories
of change, which capture interesting non-linearities, e.g., in the Thalamus-Proper, Brain-Stem, and
Lateral-Ventricle; this contrasts with the more linear changes in the Hippocampus, Cerebral-Cortex,
and Cerebral-White-Matter.

Figure 5: Trajectories of regional brain volumes in our ADNI cohort, obtained by mapping the vEBM
pixel-level events to pixel-level labels obtained from the FreeSurfer segmentation of the reference
template. The horizontal axis shows the event number (from 0 – 1344), and the vertical axis shows
the fraction of pixel-events that have occurred in each regional brain volume at the corresponding
event number, as defined by the vEBM event sequence.

3.3.3 Mixed feature disease progression events in AD

The vEBM is not limited to modelling only image-based features, which we demonstrate by including
three cognitive test score features (MMSE, CDRSB, RAVLT) and re-training the model. Figure
6 represents the spatio-(pseudo)-temporal pixel event topology obtained by the vEBM as a 2D
histogram, and shows the position of the cognitive events by vertical lines. We calculate the spatial
distribution of pixel events according to their Euclidean distance from the centre of the image. The
colour denotes the number of pixel events in each histogram bin, e.g., in the first bin of events (the
first column), we can see the density of pixel events occurring as a function of the distance from the
centre. The pixel event topology shows the earliest events near the centre of the brain, as expected
[60], before spreading out across the brain; these events are interleaved with cognitive events, which
occur across the latter two thirds of the progression. This interleaving suggests that the vEBM could
be used to provide fine-grained staging in between cognitive events, e.g., for stratification in clinical
trials. Interestingly, the pixel event topology is asymmetric about the central axis of the brain in the
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early stages, suggesting that the vEBM can identify subgroups of individuals who display asymmetric
progression, which has previously been reported in small groups of people with AD, e.g., [61].

Figure 6: Mixed pixel and cognitive
feature event topology in AD found
by the vEBM. The vertical axis
shows the distance from the centre
of the image to the pixel event, and
the horizontal axis shows the event
ordering obtained by the vEBM.
Note that the cognitive events, de-
noted by vertical lines, are assigned
an arbitrary distance of zero.

3.4 Age-related macular degeneration data

We use pre-processed optical coherence tomography (OCT) data from the Duke University (DU)
Ophthalmology 2013 dataset, a cross-sectional study of AMD [62]. The OCT data represent thickness
maps for retinal pigment epithelium and drusen complex (RPEDC), a marker of AMD progression.
The OCT dataset is comprised of 384 individuals (115 controls, 269 AMD), and is publicly available to
download: https://duke.app.box.com/s/l80j6ziooeyy1eeo7edy0il32zbyyzbg. To select
only pixels with disease signal, we remove pixels with an effect size less than 4 on a pixel-wise t-test
between the control and AMD groups.

3.4.1 Pixel-level disease progression events in AMD

We apply the vEBM to OCT data from the DU cohort to reveal the first pixel-level sequence of
disease events in AMD (Figure 7). The density of RPEDC spread around the centre of the eye reflects
previous observations [62], and the vEBM provides a much finer-detailed progression pattern.

Figure 7: Pixel-level disease progression sequence in AMD obtained by the vEBM. White pixels
correspond to events that have occurred by the corresponding point of the sequence. We have selected
10 sequence positions at uniform steps of 50 across the total of 537 in the full sequence, with the top
left figure corresponding to position 80 and the bottom right to position 530. Images were made from
the vEBM output using 3D Slicer (https://www.slicer.org/).

3.5 Prediction of AD and AMD stage

Figure 8 shows the stage distribution for individuals in the ADNI and DU cohorts using the vEBM
trained on mixed and pixel-only data, respectively. We find a fine-grained distribution of individual-
level stages that reflects the clinical labels, demonstrating the utility of the vEBM for stratification
tasks, e.g., to select cohorts for clinical trials [63].
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Figure 8: Individual stages obtained by the vEBM in AD (left) and AMD (right). CN: control; MCI:
mild cognitive impairment; AD: diagnosed AD; AMD: diagnosed AMD.

4 Discussion

We introduced the vEBM, a novel optimal transport formulation for discrete disease progression
models that scales to hitherto impossible numbers of events. It allows pixel-level visualisation of the
order of pathology appearance in chronic disease, as demonstrated for the first time in AD and AMD.

4.1 Limitations

Here we did not fully explore model uncertainty, which as a Bayesian model, the vEBM can estimate
directly; we reserve this for future work. We acknowledge that a model ordering several thousand
events is not fully identifiable with only a few hundred snapshots, but the orderings we obtain are
still highly meaningful, as demonstrated by our results in AD and AMD. Moreover, our optimal
transport formulation naturally lends itself to feature-sparsification [64], allowing redundant events
to be grouped together. While the vEBM can in principal be directly applied to raw image data,
pre-processing of images to a common reference frame (i.e., image registration) is necessary to
facilitate comparison between individuals; however pre-processing is necessary for any data type to
be in a common reference frame (or scale). We do not explicitly account for feature-wise covariance
in the model, e.g., in image-based data we would expect a high degree of collinearity between
neighbouring pixels; this could be addressed by including an additional term that imposes local
structure, e.g., a Markov random field [35]. Finally, we note that the main limitation on the current
formulation is not computational tractability but computer memory due to dense matrix operations,
which could be alleviated using, e.g., sparse matrix representation.

4.2 Broader impacts

The vEBM enables disease progression modelling at scale in multiple areas of medical imaging, not
only the modalities demonstrated in this paper; such as other MRI modalities e.g., diffusion weighted
imaging, microstructure modelling, connectivity; other imaging modalities, e.g., positron emission
tomography, computed tomography, X-rays, ultrasound; and non-radiological imaging modalities,
e.g., microscopy. Furthermore, the vEBM can run quickly on a relatively low-spec computer without
the need for GPU infrastructure, making it accessible to research labs – and potentially clinics – that
have limited resources, while further minimising its carbon impact by reducing compute time. In
addition, it provides a new, more powerful, model for each component of mixture subtype models,
e.g., [5], which currently uses a variant of the basic EBM. Such models are highly influential in
stratifying patients into disease subgroups for more precise clinical trials and treatment deployment.
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A Appendix / supplemental material

A.1 Compute information

The analyses presented here were performed either on a laptop PC with a single AMD Ryzen 7
PRO 6860Z CPU with 32GB RAM, or a desktop PC with a single AMD Ryzen Threadripper PRO
5975WX CPU with 270GB RAM (we note that we also provide a GPU implementation of the code,
but we do not use it here to allow fair comparison with the baselines). Model training for the synthetic
data analysis took 48 hours (wall-clock time) in total for all experiments. Model training for the AD
analysis took 5 minutes. Model training for the AMD analysis took 1 minute. No pre-training of the
model was performed. Approximately 48 hours CPU compute, and less than one hour on a GPU, was
performed for code testing and preliminary experiments that are not included in this paper. Python
code to reproduce all results presented here is available from the first author’s GitHub repository1.

A.2 Derivation of vEBM

Starting from the joint probability (Equation 1), we use the assumption of independence between
measured features j = {1, 2, 3, ..., J} to write the model likelihood,

P (Yi|ki, S, θ) =
J∏

j=1

P (Yi,j |ki, θs(j), S). (10)

Using the chain rule, the joint probability distribution over Y and k can be factorised as,

P (Yi, ki|S, θ) = P (ki|S)
J∏

j=1

P (Yi,j |ki, θs(j), S). (11)

For the likelihood model (Equation 10), here we choose a two-component Gaussian mixture model
(though as noted in the main text, any probabilistic model can be chosen),

J∏
j=1

P (Yi,j |ki, θs(j), S) =
ki∏
j=1

P (Yi,j |ki, θps(j), S)
J∏

j=ki+1

P (Yi,j |ki, θcs(j), S). (12)

Substituting Equation 12 into Equation 11 and marginalising over ki, we have,

P (Yi|S, θ) =
N∑

ki=0

P (ki|S, π)
ki∏
j=1

P (Yi,j |ki, θps(j), S)
J∏

j=ki+1

P (Yi,j |ki, θcs(j), S). (13)

Here we chose the prior over latent stages, parametrised by hidden variable π, to be uniform and
constant, P (ki|S;π) ∼ Unif(0, k). Finally, assuming independence between measurements from
different individuals i, we can write the following expression for the total likelihood,

P (Y |S, θ) =
I∏

i=1

 N∑
ki=0

P (ki|S, π)
ki∏
j=1

P (Yi,j |ki, θps(j), S)
J∏

j=ki+1

P (Yi,j |ki, θcs(j), S)

 . (14)

Bayes’ theorem can now be used to obtain the posterior over S.

A.3 Posterior limit

We use the limit relation in Equation 7 to reparametrise the model likelihood (Equation 3) in terms of
a discrete permutation, s,

P (Y |s, θ) = lim
τ→0

P (Y |S, θ; τ). (15)

1https://github.com/pawij/vebm
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kiπ

Yi,jθj

Figure 9: Graphical model of the variational event-based model
(vEBM). Hidden variables are denoted by circles and observations
by squares. S: event permutation matrix; π: initial probability vector
(fixed to uniform distribution); ki: disease state for individual i; θj :
distribution parameters for biomarker j; Yi,j : observed data.

To see this, we take the first likelihood term in the RHS of Equation 3 and write it in matrix form,

P (Yi,j |s, θps(j)) =

p(Y0,0|θps(0)) . . . p(Y0,J |θps(J))
...

. . .
...

p(YI,0|θps(0)) . . . p(YI,J |θps(J))


=

 es(0)
...

es(N)

 ·
p(Y0,0|θp0) . . . p(Y0,J |θpJ)

...
. . .

...
p(YI,0|θp0) . . . p(YI,J |θpJ)


= M(X) · P (Yi,j |θpi )
= lim

τ→0
K(X/τ) · P (Yi,j |θps(j)),

(16)

where we have used the limit relation from Equation 7 between lines three and four. The same steps
can be applied to the second likelihood term on the RHS of Equation 3, P (Yi,j |S, θcs(j)), to obtain
the full likelihood reparametrisation in s.

A.4 Kullback-Leibler divergence

For completeness, we restate the KL divergence term derived by [47],

KL(X + ϵ)/τ∥ϵ/τprior) = N2(log(τ/τprior)− 1 + γ(τprior/τ − 1)) + S1τprior/τ + S2Γ(1 + τprior/τ),
(17)

where S1 = Σi,jxi,j and S2 = Σi,jexp(−xi,jτprior/τ). Full a full derivation see [47], Supplementary
Methods B.3.

A.5 Inference scheme

Pseudo-code for the vEBM inference scheme is given in Algorithm 1.

A.6 Positional variance diagrams

Figures 10 and 11 show positional variance diagrams for datasets with I = 100, J = 10, and
I = 1000, J = 100, individuals and features, respectively.

A.7 Uncertainty estimation

Figures 12, 13, 14 show equivalent positional variance diagrams to Figures 3, 10, 11, but with the
Gumbel noise term, ϵ, set to non-zero. The corresponding uncertainty obtained from 1000 random
samples of the posterior is shown by greyscale shading on the positional variance diagrams.
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Algorithm 1: Pseudo-code of the variational event-based model (vEBM) inference scheme. For
the experiments in this paper we use ns = 20 Sinkhorn-Knopp iterations, unless otherwise stated.
Input :Y , τ , τprior, nopt, ns, ϵ, learning rate
Output :θ, s
// fit mixture models
Compute P (Y |θp,c)← EM(Y, θp,c);
// infer permutation matrix
Initialise S;
for nopt do

Sample ϵ; // matrix of Gumbel noise
for ns iterations do

Update S ← K(X + ϵ/τ); // Sinkhorn-Knopp algorithm

end
Compute Eqϕ(Z|Y )[logPθ(Y |Z)− KL(qϕ(Z|Y )∥P (Z))]; // ELBO
Update S ← ∇ϕL(ϕ);

end
// compute sequence
Compute s← S · [0, 1, 2, ..., N ]T ;

Figure 10: Example positional variance diagrams obtained by the vEBM from synthetic data with
low, medium, and high noise levels (left: σ = 0.1; middle: σ = 0.5; right: σ = 1). The vertical axis
lists the sequence of events inferred by the vEBM with the earliest event (order position 1) at the top.
The true sequence is overlaid as red squares. Datasets have I = 100 individuals and J = 10 features.

A.8 Hyperparameter study

Tables 1,2,3 show evaluation metrics for varying combinations of the temperature hyperparameter, τ ,
and its prior, τprior. Table 4 shows the same metrics for constant τ, τprior and extreme values for the
number of Sinkhorn-Knopp iterations, ns. Synthetic data with noise, σ = 0.5, were used.

Table 1: τ hyperparameter study, for τprior = 1; learning rate = 0.1; ns = 10; nopt = 100.
τ = 0.1 τ = 10.0

I × J 100× 10 1000× 100 2000× 200 100× 10 1000× 100 2000× 200

Kendall’s tau 0.69 0.01 0.05 1.0 0.81 0.54
Frac. correct 0.8 0.06 0.03 1.0 0.84 0.62
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Figure 11: Example positional variance diagrams obtained by the vEBM from synthetic data with
low, medium, and high noise levels (left: σ = 0.1; middle: σ = 0.5; right: σ = 1). The vertical axis
lists the sequence of events inferred by the vEBM with the earliest event (order position 1) at the
top. The true sequence is overlaid as red squares. Datasets have I = 1000 individuals and J = 100
features.

Figure 12: Example positional variance diagrams obtained by the vEBM from synthetic data with
low, medium, and high noise levels (left: σ = 0.1; middle: σ = 0.5; right: σ = 1). The vertical axis
lists the sequence of events inferred by the vEBM with the earliest event (order position 1) at the top.
The matrix shows uncertainty in the ordering: dark squares on the diagonal indicate high certainty of
event position; lighter colors and off-diagonal squares indicate uncertainty in the event position. The
true sequence is overlaid as red squares. Datasets have I = 100 individuals and J = 10 features.

Table 2: τ hyperparameter study, for τprior = 0.1; learning rate = 0.1; ns = 10; nopt = 100.
τ = 0.1 τ = 10.0

I × J 100× 10 1000× 100 2000× 200 100× 10 1000× 100 2000× 200

Kendall’s tau 1.0 0.87 0.5 1.00 0.79 0.14
Frac. correct 1.0 0.94 0.54 1.00 0.8 0.24

Table 3: τ hyperparameter study, for τprior = 10.0; learning rate = 0.1; ns = 10; nopt = 100.
τ = 0.1 τ = 10.0

I × J 100× 10 1000× 100 2000× 200 100× 10 1000× 100 2000× 200

Kendall’s tau 0.07 0.1 0.01 0.69 -0.09 0.08
Frac. correct 0.1 0.0 0.01 0.8 0.06 0.04
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Figure 13: Example positional variance diagrams obtained by the vEBM from synthetic data with
low, medium, and high noise levels (left: σ = 0.1; middle: σ = 0.5; right: σ = 1). The vertical axis
lists the sequence of events inferred by the vEBM with the earliest event (order position 1) at the top.
The matrix shows uncertainty in the ordering: dark squares on the diagonal indicate high certainty of
event position; lighter colors and off-diagonal squares indicate uncertainty in the event position. The
true sequence is overlaid as red squares. Datasets have I = 1000 individuals and J = 100 features.

Figure 14: Example positional variance diagrams obtained by the vEBM from synthetic data with
low, medium, and high noise levels (left: σ = 0.1; middle: σ = 0.5; right: σ = 1). The vertical axis
lists the sequence of events inferred by the vEBM with the earliest event (order position 1) at the top.
The matrix shows uncertainty in the ordering: dark squares on the diagonal indicate high certainty of
event position; lighter colors and off-diagonal squares indicate uncertainty in the event position. The
true sequence is overlaid as red squares. Datasets have I = 2000 individuals and J = 200 features.

Table 4: ns hyperparameter study, for τ, τprior = 1.0; learning rate = 0.1; ns = 10; nopt = 100.
ns = 1 ns = 100

I × J 100× 10 1000× 100 2000× 200 100× 10 1000× 100 2000× 200

Kendall’s tau 0.07 0.16 0.07 1.0 0.79 0.94
Frac. correct 0.4 0.19 0.12 1.0 0.83 0.95

19



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly show in Figure 2 that our method is at least a factor of 1000 times
faster than the baselines, and in Figures 4, 6, 7 the novel application of our method to
Alzheimer’s disease and age-related macular degeneration data.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We explicitly discuss limitations of our method in the Section 4.1.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Most of the results can be reproduced exactly using the code provided (upon
publication) and either synthetic data or open access data (Duke University ophthalmology
dataset). The experiments involving the ADNI dataset are reproducible but require that
the user gains access to the ADNI dataset, which is granted upon request via their website
(https://adni.loni.usc.edu/data-samples/access-data/).
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Complete details are given for accessing the code (upon publication) and all
datasets. Scripts will be provided in the code repository to reproduce a subset of experiments
that use open access data.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Full information on all experimental details and datasets is provided in the
main text, Sections 3.2, 3.3, 3.4. Additional information is included in the Appendix Section
A.5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We run multiple tests with synthetic data (10 per experiment) to support
significance testing, using an unpaired t-test, as described in Section 3.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have provided compute information in Appendix Section A.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed and agree with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The broader impacts of our work are discussed in Section 4.2.
Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: The software presented in this paper could be misused in a medical setting,
which is not recommended as the software has not been designed to be a medical grade
device. To protect against this we will provide usage guidelines on the GitHub repository
for the code.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We credit all creators of the supporting software used in this paper, specifically:
Python, 3D Slicer.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will release the code for the variational event-based model (vEBM) open
source with an MIT license upon publication of the paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [No]
Justification: All data used in this paper were previously collected by the study coordinators
(ADNI and Duke University), who provided the relevant information to participants in order
to obtain their consent to enter the study [59, 62].
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: All data used in this paper were previously collected by the study coordinators
(ADNI and Duke University), who obtained informed consent from all participants [59, 62].
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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