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Abstract

A generative neural network based non-convex optimization algorithm using a
one-step implementation of the policy gradient method is introduced and applied
to electromagnetic design. We demonstrate state-of-the-art performance of electro-
magnetic devices called grating couplers, with key advantages over local gradient-
based optimization via the adjoint method.

1 Introduction

There has been a recent surge in research syncretizing electromagnetics (EM) and machine learning
(ML), including photonic analog accelerators [1–8], physics emulators [9–15], and ML-enhanced
EM design techniques [15–35]. While local gradient-based optimization with the adjoint method
has been successfully applied to many EM design problems [36–60], EM design leveraging ML
techniques promises superior computational performance, advanced data analysis and insight, and
improved device optimization. Pursuing the lattermost topic, we propose a generative neural network
(NN) based optimization method leveraging a policy gradient update, called PHORCED = PHotonic
Optimization using REINFORCE Criteria for Enhanced Design.

While the target application discussed below is EM design, the method underlying PHORCED is
applicable to non-convex optimization in general and is relevant to a broad class of science and
engineering disciplines, such as fluid mechanics [61]. Indeed, PHORCED does not require a gradient
evaluation of the target physical performance function and is compatible with any external objective
function or physics solver (with or without built-in capability for the adjoint method or automatic
differentiation). Furthermore, we will show, through the example of grating coupler optimization
(key components in integrated photonics systems), that PHORCED exhibits fewer overall simulation
evaluations – the limiting computational bottleneck in many engineering design problems – relative
to competing generative NN based approaches previously proposed for EM design [24, 25].
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Our contributions
1. We demonstrate state-of-the-art grating coupler performance after optimization with PHORCED,

with resilience to choice of initial condition (in contrast to local gradient-based optimization).

2. We show that PHORCED is amenable to transfer learning, reducing overall simulation
requirements for similar EM design optimizations by a factor 10⇥ relative to the original training.

3. We contrast PHORCED with a related algorithm called GLOnet [24–26]. Related work in
alternative disciplines may be found in Refs. [61–64].

2 Neural network generators for optimization: GLOnet vs. PHORCED

Let us assume we need to optimize a function f : Rn ! R with respect to its n-dimensional input
vector p = [p1, p2, ..., pn�1, pn]T 2 Rn, that is, we need to find p⇤ = argmaxp f(p).

2.1 GLOnet

GLOnet [24, 25] uses a NN generator h✓ : Rd ! Rn to produce a candidate solution p = h✓(z)
from a noise vector z ⇠ D sampled from a noise distribution D. The NN generator reward function
F (✓) is the expected value of f(p) when z is drawn from D. F (✓) and @

@✓j
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These reward gradients are used to update the NN parameters ✓ iteratively. We note that one needs to
compute the derivatives of the original objective function, @f(p)

@p , in this method.

2.2 PHORCED

We propose PHORCED, which uses a NN generator ⇡✓(p|z) that again takes a noise vector z ⇠ D as
input but instead produces as output the mean and variance of a Gaussian distribution over candidate
solutions. The NN generator reward function G(✓) is the expected value of f(p) over samples of z
and p. G(✓) and @

@✓j
G(✓) (derived in the appendix) are:
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These reward gradients are used to update the NN parameters ✓ iteratively. A key advantage of this
method is that we do not need to compute the derivatives of the original objective function, @f(p)

@p .

2.3 Advantages of PHORCED
1. PHORCED works even in situations where it is infeasible to compute gradients of the merit

function with respect to its arguments.
2. In problems where gradients can be computed but require significant effort, PHORCED can reduce

the computational load because it avoids computing them altogether. This is demonstrated by
application to EM design in the next section.

3 Electromagnetic optimization example: grating coupler design

Here, we optimize a grating coupler (Fig. 1(a)-Fig. 1(b)), an integrated photonic device used in
scientific research and high-speed data communications, which diffracts light (1550nm central
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Figure 1: PHORCED and GLOnet outperform conventional gradient-based optimization, with
contrasting simulation evaluation requirements. A 3D illustration of an integrated photonic grating
coupler is provided in (a). The grating coupler is simulated with the 2D geometry given in (b).
Optimizations were performed on Seed 1 (c) and Seed 2 (d), illustrated above the plots. Insets depict
zoomed-in views of the peak efficiencies attained by PHORCED and GLOnet after BFGS refinement.

Table 1: Optimized results

Optimization # of EM simulations Final efficiency

BFGS, seed 1 144 86.4%
GLOnet, seed 1 20,023 87.4%
PHORCED, seed 1 10,327 87.8%
BFGS, seed 2 214 69.9%
GLOnet, seed 2 20,029 86.4%
PHORCED, seed 2 10,057 87.0%

wavelength) from an on-chip waveguide to an external optical fiber. The grating coupler consists of
periodically spaced corrugations on the silicon waveguide in the center of Fig. 1(a) and Fig. 1(b). The
EM objective function is light coupling efficiency into a Gaussian beam mode (diameter 10.4µm)
[44, 52, 65], propagating 8� relative to the waveguide normal. The grating coupler has 60 designable
parameters: the width of and spacing between 30 waveguide corrugations (Fig. 1(b)). Individual
grating coupler simulations of this geometry require ~4 seconds with 30 concurrent MPI processes
(where EMopt [43, 66] was employed for forward and adjoint simulations).

We compare BFGS, GLOnet, and PHORCED with two initial designs, Seed 1 (Fig. 1(c)), and Seed 2
(Fig 1(d)). Seed 1 has a length-wise linearly increasing corrugation duty cycle; Seed 2 has a uniform
duty cycle of 90%. Both designs have pitch that satisfies the grating equation [44, 52] for 8� scattering.
These seeds were chosen to explore algorithm robustness to “good” and “poor” initialization. Seed 1
satisfies physical intuition and already has an efficiency of 56%, while Seed 2 has a low efficiency
of 1%. We use these two cases as a proof-of-concept to demonstrate that PHORCED and GLOnet

3



Figure 2: Transfer learning applied on original grating coupler (8�, black star) to nearby scattering
angles (color-coded circles) can drastically lower overall simulations needed to match performance
of control cases (gray diamonds).

can boost EM performance even when the initial condition is not inspired by physical intuition, as is
common in high-dimensionality problems.

The standard approach to optimize EM designs is local gradient-based optimization via the ad-
joint method where the EM merit function gradient, @f(p)

@p , can be calculated with just two EM
simulations regardless of the dimension of p 2 Rn. We implemented this approach using BFGS
with default settings from the SciPy optimize module. GLOnet and PHORCED were implemented
in PyTorch. GLOnet uses a convolutional NN and an exponentially-weighted EM performance
function originally recommended by Jiang and Fan [24, 25]. PHORCED uses a fully-connected
NN that outputs the parameters of a multivariate, isotropic Gaussian distribution. GLOnet was
initialized by adding the design vector representing Seed 1/Seed 2 to the direct neural network
output. PHORCED was initialized by adding the design vector to the mean of the output Gaussian.
In both methods, we ran 1,000 total optimizer iterations, with 10 devices sampled per iteration.
GLOnet requires an adjoint simulation for each device but PHORCED does not. The # of EM simu-
lations in the table is computed as: # of optimizer iterations ⇥ # of devices sampled per iteration ⇥
# of simulations per device + # refinement simulations. Note that fewer # EM simulations is desired
for computational feasibility. Hyperparameters were individually tuned for GLOnet and PHORCED,
but our hyperparameter search was limited by the prohibitive EM simulation computation require-
ments (training required ~12 and ~36 hours for PHORCED and GLOnet respectively). The outputs
of the GLOnet and PHORCED optimizations were further refined using BFGS. The results are shown
in Table 1 and plotted in Fig. 1(c) and Fig. 1(d).

PHORCED and GLOnet clearly outperform BFGS for both initial conditions. In fact, PHORCED
approaches an estimated theoretical upper bound of 88% as suggested by an optical thin-film
calculation [55, 67]. While GLOnet had comparable performance to PHORCED, PHORCED needed
2⇥ fewer EM simulations because it does not require adjoint gradient calculations. Continued
future effort towards decreasing the number of simulations for NN based optimization methods will
be critical to computational tractability and broader applicability in the engineering and scientific
optimization disciplines. The next subsection shows how transfer learning can be leveraged for this
objective.

Transfer learning

Unlike alternative optimizers, NN generators can be subjected to transfer learning to optimize related
problems with accelerated convergence. As a proof-of-concept, in Fig. 2, we use transfer learning to
re-train the generator originally obtained for the 8� case using Seed 1 to instead produce devices at
nearby scattering angles, {2�, 4�, 6�, 10�, 12�, 14�}. We characterize the improvement of transfer
learning relative to the original optimization and control cases in terms of # simulation calls to reach
80% grating coupler efficiency, a desirable benchmark in commercial photonics. We observe that
devices with similar physics to the original optimization (6� and 10�) exhibit over 10⇥ reduction
in required simulation evaluations, while there is only temperate improvement for 12� and 14�,
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and no improvement for 2� and 4�. These latter two cases are expected because grating couplers
become plagued by parasitic back-reflection at small diffraction angles [44, 52], and it is possible
the optimizer struggles to adapt to these previously un-encountered physics. In another work [68],
we showed that transfer learning can instead be applied adiabatically, resulting in both improved
computational speed and grating coupler efficiency for all the above scattering angles.

4 Analysis and Conclusion

Perhaps the most important result in Fig. 1 is that both PHORCED and GLOnet proved to be robust to
choice of initialization. Indeed, while BFGS provided a competitive result for Seed 1, it failed for Seed
2. PHORCED and GLOnet, on the other hand, attained results within 1% coupler efficiency for both
seeds. Thus, we claim generative NN based optimization offers the possibility of global optimization
effort in EM design problems, with resiliency to missing human intuition, at the cost of additional
simulations. Moreover, we demonstrated that PHORCED can reduce overall simulation requirements
compared to competing global optimizers by (1) removing gradient calculations and (2) applying
transfer learning to physically similar design problems (Fig. 2). We showed elsewhere [68] that
transfer learning further improves speed when the computational stringency of a device optimization
is turned on adiabatically. Furthermore, we believe that our implementation of PHORCED has
significant room for improvement. For example, one could leverage concepts from reinforcement
learning such as importance sampling [63, 69], or complementary model-based methods that utilize a
physics surrogate/inverse model to reduce the number of costly full simulations needed for training
[13, 19, 28, 32]. We anticipate that further cross-pollination of physical design and reinforcement
learning could open the floodgates for new possibilities in scientific optimization.
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in nanophotonics,” Nature Photonics, vol. 12, no. 11, pp. 659–670, Nov. 2018. DOI: 10.1038/
s41566-018-0246-9.

[46] T. W. Hughes, M. Minkov, I. A. D. Williamson, and S. Fan, “Adjoint Method and Inverse
Design for Nonlinear Nanophotonic Devices,” ACS Photonics, vol. 5, no. 12, pp. 4781–4787,
Dec. 2018. DOI: 10.1021/acsphotonics.8b01522.

[47] Y. Liu et al., “Very sharp adiabatic bends based on an inverse design,” Opt. Lett., vol. 43,
no. 11, pp. 2482–2485, 2018. DOI: 10.1364/OL.43.002482.

[48] N. M. Andrade, S. Hooten, S. A. Fortuna, K. Han, E. Yablonovitch, and M. C. Wu, “Inverse
design optimization for efficient coupling of an electrically injected optical antenna-LED to a
single-mode waveguide,” Optics Express, vol. 27, no. 14, pp. 19 802–19 814, Jul. 2019. DOI:
10.1364/OE.27.019802.

[49] D. Vercruysse, N. V. Sapra, L. Su, R. Trivedi, and J. Vučković, “Analytical level set fabrication
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Appendix for: Generative Neural Network Based Non-Convex Optimization
Using Policy Gradients with an Application to Electromagnetic Design

In this Appendix, we discuss how generative neural networks can be used for non-convex optimiza-
tion, and how the choice of deterministic-output neural networks (GLOnet) or probabilistic-output
neural networks (PHORCED) for generation of design vectors affects the associated expressions for
backpropagation.

Let us assume we need to optimize a function f : Rn ! R with respect to its n-dimensional input
vector p = [p1, p2, ..., pn�1, pn]T 2 Rn, that is, we need to find p⇤ = argmaxp f(p). Please note
that this is an oversimplification – in EM optimization the mapping from geometrical parameters
to the objective must satisfy Maxwell’s Equations. Please refer to Refs. [1–4] for a more extensive
discussion of the adjoint method applied to electromagnetic device optimization.

Deterministic-output (GLOnet)

Let z ⇠ D be a random vector drawn from a (d-dimensional) distribution D. This noise vector serves
as an input for a neural network that deterministically generates geometrical parameter vectors (p) for
simulation, based on programmable weights denoted by ✓. Specifically, let h✓ : Rd ! Rn represent
this NN generator such that for given ✓ and sampled z ⇠ D we have:

p = h✓(z) (1)
By virtue of z being a random variable, p is also random but drawn from an unknown distribution
parameterized by ✓. Consequently, the NN reward function for GLOnet training becomes:

E
p=h✓(z), z⇠D

[f(p)] = E
z⇠D

[(f � h✓)(z)] (2)

where E[·] is the expected value operator and “�” denotes function composition. In the right-hand
side we simplified the expression by replacing p = h✓(z). Intuitively, our intention is to optimize
the average value of the EM merit function over the distribution of devices generated by the neural
network. Note that because of this exchange, the variable(s) that may be explicitly controlled by the
user or optimization algorithm are the programmable weights, ✓. Consequently, the optimization
problem for GLOnet may be written:

GLOnet Optimization: ✓⇤ = argmax
✓

E
z⇠D

[(f � h✓)(z)] (3)

Optimizing Eq. 3 requires the partial derivatives of the expected value with respect to the neural
networks weights.

Let the probability density function of z be denoted pdf(z). Then, we may write:

E
z⇠D

[(f � h✓)(z)] =

Z
(f � h✓)(z)pdf(z)dz (4)

Furthermore, let p = h✓(z) be the output of the neural network for given input z. Then for scalar
weight ✓j 2 ✓ in our neural network, the partial derivative of the reward is given by:

@

@✓j
E

z⇠D
[(f � h✓)(z)] =

Z
@ [f (h✓(z))]

@✓j
pdf(z)dz (5)

=

Z
@f(p)

@p

����
p=h✓(z)

· @h✓(z)

@✓j
pdf(z)dz (6)

@

@✓j
E

z⇠D
[(f � h✓)(z)] = E

z

"
@f(p)

@p

����
p=h✓(z)

· @h✓(z)

@✓j

#
(7)

where in the second step we applied the chain rule, and in the last step we re-wrote the integral as
an expected value. Note that we are using @f/@p as equivalent notation for rpf(p), and the “·”
operator is the vector dot product. This concludes the derivation. Observe that @f(p)/@p is the
adjoint method gradient of the electromagnetic performance function, and therefore requires two
simulations to compute per output vector p = h✓(z) of the neural network. The additional term
@h✓(z)/@✓ may be evaluated using automatic differentiation.

Note that in their original GLOnet paper, Jiang and Fan [5, 6] emphasized taking the exponential
value of the electromagnetic merit function, f ! exp{f/�}, where � is a hyperparameter; for the
GLOnet results in Fig. 1 we used this exponential form of the objective with hyperparameter � = 0.6.

1



Probabilistic-output (PHORCED)

As mentioned in the main text, PHORCED is qualitatively similar to GLOnet in the sense that we
wish to use a generative neural network to suggest geometrical degrees-of-freedom. However, by
contrast to GLOnet where p is provided deterministically from the neural network, in PHORCED we
treat p as a random vector sampled from a conditional probability distribution, ⇡✓:

p ⇠ ⇡✓(p|z) (8)
where z ⇠ D is once again an input vector, which in this case conditions the distribution. Note
that, for given z, the distribution defined by ⇡✓ is not static and is in fact programmable by virtue
of the neural network weights ✓ that determine its statistical parameters. In the main text of this
paper we chose ⇡✓(p|z) to be a multivariate Gaussian, with mean and covariance matrix defined by a
generative neural network with weights ✓.

Because p is now explicitly a random vector (not merely random just by virtue of z being random)
the reward of PHORCED is modified relative to GLOnet (from Eq. (3)):

PHORCED Optimization: ✓⇤ = argmax
✓

E
(p,z)⇠pdf(p,z)

[f(p)] (9)

where the subtle difference is we now wish to improve the expected value of the electromagnetic
merit function under the joint probability of sampling random vectors p and z 1. Noting that the joint
probability density function of (p, z) can be written as

pdf(p, z) = ⇡✓(p|z)pdf(z), (10)
we have,

E
(p,z)

[f(p)] =

ZZ
f(p)⇡✓(p|z)pdf(z)dpdz (11)

Then for scalar weight ✓j 2 ✓ in our neural network, the partial derivatives of this expected value are
given by:

@

@✓j
E

(p,z)
[f(p)] =

ZZ
f(p)

@⇡✓(p|z)
@✓j

pdf(z)dpdz (12)

where we applied the Leibniz integral rule followed by the product rule. Observe the very important
fact that neither p nor f are explicitly related to ✓j , and therefore a term of the form @f

@✓j
is zero in the

product rule derivative. Indeed, only the policy distribution, ⇡✓, is modeled by the neural network,
and therefore is the only quantity subject to the derivative. Moreover, we note that by the ”log trick”
we may write:

@⇡✓(p|z)
@✓j

= ⇡✓(p|z)
@

@✓j
log ⇡✓(p|z) (13)

Upon substitution of Eq. 13 into Eq. (12), we obtain:
@

@✓j
E

(p,z)
[f(p)] = E

(p,z)


f(p)

@ log ⇡✓(p|z)
@✓j

�
(14)

which concludes the derivation. The informed reader should recognize Eq. 14 as a one-step imple-
mentation of REINFORCE, with continuous action- and state-spaces represented by p and random
vector z respectively. Eq. 14 should be contrasted with the Eq. 7, in that our optimization reward
in the two cases was identical but the gradients required for backpropagation are drastically dif-
ferent. We observe that PHORCED requires no evaluation of the gradient of the electromagnetic
performance function: @f/@p. Indeed, the first term within the expectation, f(p), requires only “for-
ward simulation” evaluations while the latter term, @ log ⇡✓/@✓, may be computed using automatic
differentiation.

Note that to produce the results in Fig. 1 of the main text, we included a “baseline subtraction” term,
where we subtract the sample average of the electromagnetic performance function, averagep[f(p)],
from the electromagnetic function each iteration of the optimization routine. This heuristic is well-
known in the reinforcement learning to reduce model variance without affecting bias in expectation
(Ref. [7]).

1In the general reinforcement learning literature, the merit function within the expected value may be a
function of both p and z, but this situation was excluded because it is non-applicable here.
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Equivalence of methods

We now show that GLOnet optimization (Eq. 7) is equivalent to PHORCED (Eq. 14) if PHORCED is
restricted to outputting Dirac delta distributions:

GLOnet and PHORCED equivalence condition: ⇡✓(p|z) = �(p� h✓(z)) (15)

where � is the Dirac delta distribution, and h✓(z) is the direct output of the neural network given
z ⇠ D. Substituting Eq. 15 into Eq. 12, we find:

@

@✓j
E

(p,z)
[f(p)] =

ZZ
f(p)

@�(p� h✓(z))

@✓j
pdf(z)dpdz (16)

=

ZZ
f(p)

@�(p� h✓(z))

@h✓(z)
· @h✓(z)

@✓j
pdf(z)dpdz (17)

=

ZZ
�f(p)

@�(p� h✓(z))

@p
· @h✓(z)

@✓j
pdf(z)dpdz (18)

=

Z ✓Z
�f(p)

@�(p� h✓(z))

@p
dp

◆
· @h✓(z)

@✓j
pdf(z)dz (19)

=

Z ✓Z
�(p� h✓(z))

@f(p)

@p
dp

◆
· @h✓(z)

@✓j
pdf(z)dz (20)

=

Z
@f(p)

@p

����
p=h✓(z)

· @h✓(z)

@✓j
pdf(z)dz (21)

@

@✓j
E

(p,z)
[f(p)] = E

z

"
@f(p)

@p

����
p=h✓(z)

· @h✓(z)

@✓j

#
(22)

where we expanded the derivative of the delta function using the chain rule (Eq. (17)), re-expressed
the delta derivative in terms of a derivative with respect to p (Eq. (18)), clubbed the p terms together
(Eq. (19)), integrated by parts with respect to p to move from the product of f and the gradient of �
to the product of � and the gradient of f (Eq. (20)), and evaluated the inner p integral using the delta
function (Eq. (21)). Equation (22) recognizes that the integral in Eq. (21) is an expectation value.
This concludes the proof.
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