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Abstract001

We introduce LM-LEXICON, a definition mod-002
eling approach that incorporates data clustering,003
semantic expert learning, and model merging004
using a sparse mixture-of-experts architecture.005
By decomposing the definition modeling task006
into specialized semantic domains, where small007
language models are trained as domain experts,008
LM-LEXICON achieves substantial improve-009
ments (+7% BLEU score compared with the010
prior state-of-the-art model) over existing meth-011
ods on five widely used benchmarks. Empir-012
ically, we demonstrate that 1) the clustering013
strategy enables fine-grained expert specializa-014
tion with nearly 10% improvement in definition015
quality; 2) the semantic-aware domain-level016
routing mechanism achieves higher expert effi-017
cacy (+1%) than conventional token-level rout-018
ing; and 3) further performance gains can be019
obtained through test-time compute and seman-020
tic expert scaling. Our work advances defini-021
tion modeling while providing insights into the022
development of efficient and targeted language023
models for semantic-intensive applications.024

1 Introduction025

Defining terms is the first step towards building026

a lexicon for a language (Pustejovsky and Bogu-027

raev, 1993). Precise definition should be formed as028

highly summarized and human-readable sentences029

that capture the major sense of the term. Conven-030

tionally, the labor involved in constructing such031

a lexicon manually is overwhelming (Ahlswede,032

1985) and most lexicons are designed to omit words033

with usage limited to specific, isolated, or informal034

contexts (Michel et al., 2011). However, as illus-035

trated in Fig.1, a lexicon needs to be updated to036

include new terms, novel senses, meaning shifts of037

existing terms, and domain knowledge (Hogeweg038

and Vicente, 2020). As such, definition modeling039

(DM) is a plausible solution to this problem where040

definitions are generated, conditioned, and changed041

diachronically on the target term and the context in042

Space Needle

A prominent Seattle landmark, 
an iconic observation tower.

The Space Needle is not used 
for broadcasting purposes.

Stratosphere

A Stable, clear atmospheric 
layer ideal for aircraft.

The stratosphere is composed 
of stratified temperature zones.

Colorful

Having a rich mixture of hues 
or a vivid appearance.

Colorful refers to the quality of 
possessing prominent colors.

Julie Delpy

French-American actress,
known for “Before” trilogy.

Julie Delpy Explains Before 
Midnight, Feminism, …

Figure 1: Four examples of the term, context (input),
and definition (output) for definition modeling task.

which they occur (Hill et al., 2015; Noraset et al., 043

2017; Fedorova et al., 2024, inter alia). 044

While previous work on DM yields reasonable 045

results, they fail to capture more subtle and rare 046

senses, lacking semantic completeness (Huang 047

et al., 2021; Giulianelli et al., 2023; Periti et al., 048

2024). Recently, acquiring definitions of terms 049

using large language models (LLMs) has attracted 050

increasing interest. LLMs can produce high-quality 051

definitions comparable to the lexicon but often lead 052

to under-specific and over-specific issues (Jhirad 053

et al., 2023; Yin and Skiena, 2023; Almeman et al., 054

2024). Moreover, existing methods struggle in ef- 055

fectively modeling lexical resources across multi- 056

ple domains and genres, due to their semantic het- 057

erogeneity and idiosyncrasy (Huang et al., 2021; 058
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Zhang et al., 2022; Kong et al., 2022; Giulianelli059

et al., 2023). Hence, we argue that dense language060

model-based methods may not be able to handle061

the semantics in the over-superposition condition062

(Elhage et al., 2022; Bricken et al., 2023) and fur-063

ther predict definitions precisely for terms across064

various domains.065

To mitigate these issues, we propose LM-066

LEXICON (Language Model as Lexicon), which067

learns to perform definition modeling covering mul-068

tiple domains, enabling the model to adapt diverse069

genres of definitions with a mixture-of-experts ar-070

chitecture. Unlike recent work (Sukhbaatar et al.,071

2024; Zhu et al., 2024a), our method efficiently072

combines MoE and data clustering together and073

obtains significant performance gains in DM. As074

shown in Figure 2, instead of directly fine-tuning075

on the raw definition corpora, our method allows076

the training of each expert in the branch and merg-077

ing them by composing their specialized weights.078

In summary, we contribute:079

• LM-LEXICON-DENSE and LM-LEXICON-080

MOE: The best LMs for definition modeling.081

• We introduce a new method for DM, where082

specialized semantic experts can be integrated083

for domain updates, enabling adaptation and084

generalization to new domains, or collapsing085

back to a single expert for efficient inference.086

Our method has the potential to be extended to087

underrepresented domains in the future, such088

as finance, law, and biomedicine.089

• We conduct a comprehensive evaluation for090

testing current proprietary large language091

models in zero-, few-, and many-shot se-092

tups with diverse in-context learning strate-093

gies. Empirically, we unveil that these frontier094

large language models may struggle to gen-095

erate appropriate definitions even with many-096

shot settings in a semantic-intensive scenario.097

2 Related Work098

Instruction Tuning (IT). LMs can better align099

with human intents through supervised instruction100

tuning (Wei et al., 2021; Sanh et al., 2021; Ouyang101

et al., 2022; Zhou et al., 2024, iter alia). IT has102

empowered many tasks in NLG such as machine103

translation (Li et al., 2024a; Zhu et al., 2024b; Pan104

et al., 2024), summarization (Fetahu et al., 2023;105

Pu et al., 2023; Zhang et al., 2024), and dialogue106

generation (Chen et al., 2023; Zheng et al., 2024; Yi107

et al., 2024), it has not widely used in DM task yet. 108

As the first task-focusing study, Giulianelli et al. 109

(2023) used FLAN-T5 with continual IT to conduct 110

DM in multiple domains but focusing on perfor- 111

mance gains in distribution shift across datasets. 112

Upcycling to Mixture-of-Experts (MoE). On 113

the model efficiency and expressiveness aspect, 114

Shazeer et al. (2017); Fedus et al. (2022); Jiang 115

et al. (2024); Shao et al. (2024) focus on designing 116

efficient sparse MoE architecture with token-level 117

routing policy. On the expert specialization aspect, 118

Li et al. (2022) introduced Branch-Train-Merge 119

(BTM), that learns Expert LMs specialized to dif- 120

ferent domains and Sukhbaatar et al. (2024) devel- 121

oped Branch-Train-MiX (BTX), which composes 122

a set of specialized LMs by their feed-forward net- 123

works. In addition, Zoph et al. (2022); Jiang et al. 124

(2024); Petridis et al. (2024) revealed the efficacy 125

of expert specialization at the lexicon, structured 126

syntactic, and semantic domain level, respectively. 127

Definition Modeling (DM). Several early studies 128

on DM (Noraset et al., 2017; Ni and Wang, 2017; 129

Gadetsky et al., 2018; Ishiwatari et al., 2019, inter 130

alia) leveraged pre-trained word embeddings as 131

global, local, or both global and local contexts of a 132

term, to generate definitions of given target. Then 133

Huang et al. (2021); Kong et al. (2022); Zhang 134

et al. (2022); Giulianelli et al. (2023); Periti et al. 135

(2024) propose a series of methods for this task 136

based on transformer seq2seq LMs (e.g., T5) and 137

Causal LMs. In the era of LLM, Jhirad et al. (2023); 138

Yin and Skiena (2023) used large language models 139

such as GPT-3.5 and GPT-4 to discover DM with 140

in-context learning tailored to diverse domains. 141

3 LM-LEXICON 142

Task Formulation. Given a set of golden ref- 143

erences of definition d, the target of DM is to 144

maximize the log-likelihood P of the generated 145

hypothesis d̂, which is conditioned on the input 146

concatenated by a term of words t and a con- 147

text c from the training set D. Hence, we have 148

(c, t, d) ∼ D, where the training set D contains 149

a series of example triplets in the <c, t, d> form. 150

A concatenated sequence will be formatted with 151

the given prompt template p(·, ·) as input to adapt 152

the instruction-tuned LMs. For LMs with ICL, 153

given a set of in-context pair-wise exemplars E := 154

{ei ≜ (p (ci, ti)⊕ di) | i ∈ I} ⊆ D, s.t. ∀i, j ∈ 155

I, (ci ̸= cj) ∧ (ti ̸= tj) ∧ (di ̸= dj), we define 156
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Figure 2: Diagram of LM-LEXICON training pipeline.

the input {ei⊕p(cj , tj) | ei ∈ E , (p(cj , tj)⊕dj) /∈157

E}, s.t. ∀i ̸= j that combine a set of demonstration158

exemplars E to a templated prompt to aid gener-159

ation across context1. Formally, for models with160

in-context learning, the causal generation proce-161

dure of each d is computed autoregressively using162

the joint conditional likelihood (Eq. 1).163

P(d̂ | E , p(c, t)) =
|d̂|∏
i=1

P
(
d̂i | d̂0:i−1

)
(1)164

LM-LEXICON fine-tuned on D are optimized by165

the negative log-likelihood loss deriving from Eq.166

1, which serves as causal language modeling objec-167

tive that represents the average log-probability of a168

token, conditioned on previous tokens.169

LDM = −E(p,c,t)∼D

[
logP(d̂ | p(c, t)) · 1

]
(2)170

where 1(xi ∈ d̂) is an indicator function that is 1171

if xi from d̂ is not a prompt token and 0 otherwise.172

Data Clustering. Commonly, two distinct strate-173

gies are proposed for clustering on data: 1) lexical-174

based and 2) semantic-based methods. The lexi-175

cal approach encompasses a straightforward, yet176

illustrative method: term frequency-inverse docu-177

ment frequency (TF-IDF) (Sparck Jones, 1972). In178

1⊕ indicates concatenating two strings with a blank.

contrast, the semantic approach involves comput- 179

ing embeddings to represent the semantic mean- 180

ing of a sequence (Zhang et al., 2019). As de- 181

scribed in Equation 3, we follow the semantic- 182

based paradigm to use balanced k-means (Mali- 183

nen and Fränti, 2014) to construct our semantic- 184

specialized experts via n-centroid clustering. 185

min
{c1,c2,...,cK}

N∑
i=1

K∑
k=1

1(zi = k) ·∥f(xi)−ck∥2 (3) 186

where f(·) denotes the selected embedder, zi de- 187

notes the assigned cluster of data point xi, and ci 188

represents the centroid of k-th cluster. 1(zi = k) 189

is an indicator that equals 1 if the data point xi is 190

assigned to cluster k with index zi, and 0 otherwise. 191

Model Architecture. For a deep transformer 192

decoder, M (Vaswani et al., 2017), let X = 193

(x1, . . . ,xn) ∈ Rn×d denote the hidden states of 194

input sequence in a transformer layer, where n de- 195

notes the number of tokens in a sequence, and d is 196

the hidden dimension. LM-LEXICON consists of 197

k experts, each of them has a multi-head attention 198

(MHA) and a multi-layer perception (MLP) mod- 199

ule in layer ℓi, where ℓi ∈ L := {ℓ0, ℓ1, . . . , ℓn}. 200

An MHA module divides the hidden state vec- 201

tors into nh different heads with a head dimension 202

dh = d / nh. For each head h from a layer ℓ, differ- 203
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ent weight matrices W ℓ
h,q,W

ℓ
h,k,W

ℓ
h,v ∈ Rdh×dh204

are used to project the inputs into queries Qℓ
h, keys205

Kℓ
h, and values V ℓ

h . The attention scores and out-206

puts in layer ℓ for the i-th token are computed as:207

ahij =
exp(qh

i k
h
j
⊤
/
√
dh)∑i

t=1 exp(q
h
i k

h
t
⊤
/
√
dh)

, ohi =

i∑
j=1

ahijv
h
j .

(4)208

The outputs of all heads from layer ℓi are con-209

catenated and linearly transformed to produce the210

final output Omha ∈ Rn×d from each expert.211

Omha = Wo[o
1
i ;o

2
i ; · · · ;o

nh
i ] (5)212

where Wo ∈ Rd×dhnh , i ∈ {1, 2, · · · , n}, and ;213

denotes the vector concatenation.214

Let X := Omha be the MLP inputs, the outputs215

of each expert ei are routed by the gating layer Gi.216

We then compute MLP output Omlp as follows:217

Omlp =
n∑

i=1

Softmax(TopK(X ·WG))i ·X (6)218

where TopK is the routing function that decides the219

activation of k selected experts for each token.220

Algorithm 1 Compose MHA and MLP modules
for each decoder layer ℓi in LM-LEXICON.

Input: Domain Experts E := {e1, e2, e3, e4}.
Output: LM-LEXICON-MOE (M)

1: procedure MODULES-COMPOSER(E)
2: M← ∅ ▷ INIT STATE DICT

3: for ei ∈ E do ▷ ITERATE EACH EXPERT

4: i← GetExpertIdx(ei)
5: /* Retrieve MHA and MLP weights */
6: θmha, θmlp ← HookWeights(ei)
7: for θ ∈ {θmha, θmlp} do
8: if IsRouterLayer(θ) then
9: /* Get formatted layer name */

10: n← FormatName(θ, i)
11: M[n]← θ
12: else ▷ AVERAGE θ OF MODULE

13: M[n]←M.get(n,0)+ θ/|E|
14: returnM

Model Merging. Under the abstraction above,221

the MHA and MLP modules are composed of an222

expert to gather the parametric domain capability,223

as detailed in algorithm 1. Experts from E rep-224

resent parallelly tuned seed models for data par-225

titions. In the composition procedure, we first226

initialize a state dictionary for ℓi; subsequently, 227

we iterate each expert and retrieve the MHA and 228

MLP modules. We assign it as weights directly 229

if the current weight serves as part of the router; 230

otherwise, we average θ of modules , such as the 231

embedding layer and LM head, and sum it up with 232

the previous weights of modules of the same type. 233

To obtain semantic-aware experts after merging, 234

we continue to train the gate layer Gi and experts 235

to coordinate them in the same semantic represen- 236

tation space. See the details in Appendix §A. 237

4 Experimental Setup 238

Datasets. We now describe the datasets (see Ta- 239

ble 1) that we used to train LM-LEXICON. We 240

use the benchmarks introduced in Ishiwatari et al. 241

(2019), which consist of four datasets and 3D-EX 242

from Almeman et al. (2023) (see details in §A). 243

• WordNet (Noraset et al., 2017) is an online 244

dataset2 of terms, definitions, and examples. 245

• Oxford (Gadetsky et al., 2018) is built on the 246

widely used online oxford dictionary3. 247

• Wikipedia4 (Ishiwatari et al., 2019) is intro- 248

duced to focus testing the model capacity on 249

phrases description, instead of words. 250

• Urban (Ni and Wang, 2017)5 majorly con- 251

tains terms of internet slang and urban words. 252

• 3D-EX (Almeman et al., 2023) is the largest 253

English definition modeling dataset6 which 254

includes plenty of well-known DM resources. 255

For p(c, t) in Eq. 1 and 2, we follow Giulianelli 256

et al. (2023) to use p := <BOS>“{{c}}” WHAT IS 257

THE DEFINITION OF “{{t}}”<EOS> as the prompt 258

template. We perform clustering only for 3D-EX 259

and used the other four datasets as the natural clus- 260

ters for our semantic experts training and merging. 261

Evaluation Metrics. To test performance of our 262

methods and baselines, we employ six similarity- 263

based metrics to evaluate the minimized expecta- 264

tion of difference between prediction d̂ and refer- 265

ence d: min
πθ

E(ci,ti,di)∼D[logPπθ
[d̂i | p (ci, ti)] − 266

logPref [di | p (ci, ti)]], where πθ is the weight of 267

2https://wordnet.princeton.edu
3https://en.oxforddictionaries.com
4https://www.wikidata.org
5https://www.urbandictionary.com
6https://github.com/F-Almeman/3D-EX
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WordNet Oxford Wikipedia Urban 3D-EX

genre formal formal web idiom misc.
domain synset lexicon encyclopedia slang multi
publish year 2017 2018 2018 2017 2023

# St
train 13, 883 97, 855 887, 455 411, 384 1, 309, 312

# St
valid 1, 752 12, 232 44, 003 57, 883 513, 789

# St
test 1, 775 12, 232 57, 232 36, 450 450, 078

# glo. per term 1.75± 1.19 2.99± 4.41 5.86± 78.25 2.11± 2.92 6.00± 53.78
# tok. per term 1.00± 0.00 1.00± 0.00 1.85± 0.93 1.44± 0.72 1.45± 0.78
# tok. per ctx. 5.79± 3.44 19.02± 9.18 19.68± 6.31 11.36± 6.02 18.82± 9.99
# tok. per glo. 6.64± 3.78 11.41± 7.13 5.97± 4.51 11.02± 6.86 8.97± 6.76

% overlap rate 0.00 / 0.00 80.72 / 0.09 0.00 / 0.00 20.62 / 20.56 0.00 / 0.00

Table 1: For datasets used in this paper, we report the mean and standard deviation of per-term, per-context, and
per-gloss statistics. We report the number of terms of samples denoted St∗ for train, valid, and test splits in each
dataset. The lexical overlap of each dataset is computed with |Sttrain∩ Sttest| / |Sttest|. Specifically, the % is computed
by intersection rate of term occurrence and the % is computed by intersection rate of pair-wise “term ⊕ gloss”.

[Scientific]

marrow,
stratosphere,
continental shelf,
…

[Person Name]

ben roberts,
hugh o'bryant,
jack richardson,
…

[Adjective]

short,
brave,
friendly,
…

[Proper Noun]

emi records,
combtooth blenny,
hong kong island,
…

Visualized Sharded 3D-EX 
(Four-centroid Clusters)

Figure 3: Four-cluster UMAP plot of 10K random defi-
nitions of terms in 3D-EX (§4). Each cluster is assigned
manually with a [label] by their major constituents.

modelM and triplet (ci, ti, di) ∈ D. Specifically,268

at the lexical level, we used three generation met-269

rics: BLEU (BL) (Papineni et al., 2002), ROUGE-L270

(RL) (Lin, 2004), and METEOR (MT) (Lavie and271

Agarwal, 2007). At the semantic level, we use272

BERTSCORE (BS) (Zhang et al., 2019), MOVER-273

SCORE (MS) (Zhao et al., 2019), and MAUVE274

(MA) (Pillutla et al., 2021).275

Compared Baselines. We select three types of276

strong baseline methods for comparison purposes.277

• Supervised Seq2seq LM: We first replicate278

strong baselines finetuned on T5-base mod-279

els (Raffel et al., 2020), including Reranked- 280

T5 (Huang et al., 2021), Contrast-T5 (Zhang 281

et al., 2022), SimpDefiner (Kong et al., 2022), 282

MDM-T5 (Zhang et al., 2023), and Flan-T5- 283

Definition (Giulianelli et al., 2023). 284

• Supervised Causal LM: We report the in- 285

distribution results of LlamaDictionary (Periti 286

et al., 2024) and assess the out-of-distribution 287

performance for the unseen datasets. 288

• Frontier Causal LM: We test LLM including 289

GPT-4-Turbo (Achiam et al., 2023), Gemini- 290

1.5-Pro (Reid et al., 2024), and Claude-3-Opus 291

(Anthropic, 2024) with specific ICL strategy. 292

To compare with these baselines broadly, we repli- 293

cate the setups used by prior work and reuse their 294

reported results whenever possible. 295

5 Results and Analysis 296

5.1 Main Results 297

Following the training settings in §A, our major 298

experimental results show that LM-LEXICON per- 299

forms well in various metrics based on golden ref- 300

erences (Table 2). The overall results show LM- 301

LEXICON outperform significantly compared with 302

the many-shot frotier models and strong supervised 303

methods. Our best model (LM-LEXICON-MOE 304

achieves the highest performance in Wordnet, Wiki, 305

7We observe and heuristically develop ad-hoc model-
adapted parsers for prompt-based methods (proprietary models
& ours) to extract our focused part of the generation.
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WordNet Oxford Wiki Slang 3D-EX

BLEU ROUGE BLEU ROUGE BLEU ROUGE BLEU ROUGE BLEU ROUGE
Avg.

Results

Rerank-T5 (2021)♣ 30.91 30.99 25.56 28.00 55.61 57.25 17.77 18.25 34.43 38.57 32.85 / 34.61
Contrast-T5 (2022)♣ 30.81 26.27 22.51 28.18 55.26 42.27 17.53 16.34 34.27 37.62 32.07 / 30.13
SimpDefiner (2022)♣ 28.91 20.47 23.48 29.59 44.03 49.26 13.54 15.37 32.08 31.57 28.40 / 29.25
MDM-T5 (2023)♣ 31.18 32.55 24.16 27.68 54.33 55.83 17.53 17.18 32.67 32.38 31.97 / 33.12
Flan-T5-Def (2023)♣ 31.96 40.45 21.34 32.39 13.82 23.97 5.33 10.61 26.43 25.12 19.77 / 26.50
LlamaDict (2024)♣ 33.86 43.50 22.77 36.46 14.38 25.29 15.70 14.51 24.56 26.11 22.50 / 29.17

GPT-4-TURBO

↪→ + Random-ICL 30.95 32.61 21.93 30.82 31.63 45.89 11.08 12.19 25.93 34.48 24.30 / 31.19
↪→ + Retrieval-ICL 27.46 29.74 20.44 34.35 35.40 40.68 22.53 26.53 29.73 37.66 27.11 / 33.79
CLAUDE-3-OPUS

↪→ + Random-ICL 28.63 27.84 19.99 34.21 23.30 35.22 1.59 3.08 18.57 28.49 18.41 / 25.76
↪→ + Retrieval-ICL 18.57 21.76 15.51 25.99 14.59 15.83 5.93 7.19 17.46 24.67 14.41 / 19.08
GEMINI-1.5-PRO

↪→ + Random-ICL 23.42 26.27 25.51 35.97 36.87 48.13 8.44 9.59 29.4 38.02 24.72 / 31.59
↪→ + Retrieval-ICL 25.24 27.88 28.10 36.98 35.59 43.71 8.85 9.18 32.99 39.14 26.15 / 31.37

LM-LEXICON-DENSE (8B)
↪→ + Zero-shot 36.99∗0.59 37.83∗0.45 26.09 0.60 34.55∗0.57 57.9∗2.44 59.56∗1.50 26.09∗0.27 28.35∗0.28 35.01∗0.22 43.32∗0.27 34.63∗ / 38.79∗

↪→ + BoN-Oracle† 47.90 0.30 44.19 0.80 30.07 0.06 42.78 0.11 62.07 0.11 68.62 0.19 36.16 0.69 38.87 0.47 48.78 0.89 49.71 2.21 44.99 / 48.83
↪→ + BoN-ORM 37.73∗0.26 37.94∗0.38 26.74∗0.18 35.18∗0.59 59.33∗0.12 59.46∗0.37 26.73∗0.29 28.54∗0.46 34.83∗0.20 42.68∗0.13 37.07∗ / 40.76∗

LM-LEXICON-MOE (4×8B)
↪→ + Zero-shot 40.09∗0.12 40.51∗0.28 23.35 0.25 32.94∗0.49 60.31∗0.55 55.52 0.33 31.26∗0.85 33.81∗2.26 45.38∗1.25 45.21∗1.06 40.06∗ / 41.09∗

↪→ + BoN-Oracle† 47.39 0.16 40.31 0.23 30.87 0.24 43.24 0.25 51.62 1.14 61.88 0.30 35.23 0.42 35.69 0.26 54.84 0.12 50.50 0.11 43.99 / 46.32
↪→ + BoN-ORM 40.33∗0.18 40.69∗0.26 24.18 0.37 33.79∗0.64 60.88∗0.55 57.66 0.73 31.08∗0.17 33.26∗0.22 45.46∗0.38 45.73∗0.26 40.38∗ / 42.22∗

Table 2: Main results on five benchmarks7. We highlight the highest scores among LM-LEXICON and compared
methods; * denotes the significance test, where p < 0.005 between our method and Rerank-T5 (prior SoTA). ♣
denotes that we reproduce the in-distribution results with supervised training, and † indicates that the lines of results
are not directly comparable with other settings. All *-ICL settings employ the best setting with a 32-shot in practice.

Slang, and 3D-EX, and achives the best average306

performance across all five benchmarks. Moreover,307

to consider the compute and performance gains308

tradeoff, we discuss the computational cost of our309

methods versus compared baselines in §B.310

5.2 Additional Evaluation311

LM-LEXICON Outperforms Larger Model A312

comparison of LM-LEXICON to other models313

in Figure 4 demonstrates that our method sur-314

passes significantly larger dense models super-315

vised by general instruction tuning, such as316

LLAMA-3.3-70B-INSTRUCT and LLAMA-3.1-317

405B-INSTRUCT, by +30.21% and +26.13% in318

BLEU, as well as +2.1% and +1.7% in BERT319

SCORE, respectively. In practice, we test two large320

dense models using the best 32-shot ICL settings.321

These results suggest merely scaling the model size322

may not enhance performance effectively in DM,323

and the efficacy of model specialization with our324

semantic-oriented sparsifying upcycling method.325

Impact of Test-time Compute In light of Sti-326

ennon et al. (2020); Cobbe et al. (2021), we are327

curious on how to spur LM-LEXICON to achieve328

higher performance via test-time scaling, notably329

ground truth-based (Oracle) and Best-of-N (BoN)330

sampling with a outcome verifier (ORM). For ora-331

cle verifier, it uses reference as verification to pro-332

vide binary feekbacks. When the verifier operates333
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Figure 4: Test performance of BLEU on 3D-EX (LM-
LEXICON versus larger dense models). We assess
LLAMA-3.x models and report their 32-shot results.

as an ORM, it employs scalar feedback to select the 334

optimal generation from candidates. As depicted 335

in Table 2 (BoN-ORM), interestingly, it is observed 336

that the oracle verifier is able to boost task perfor- 337

mance (avg. ∆BLEU > 2) for LM-LEXICON- 338

DENSE. However, it exhibits more limitations for 339

LM-LEXICON-MOE; we speculate that this is be- 340

cause of the diversity dimishment of models, as 341

illustrated in (Brown et al., 2024). Intuitively, op- 342

timal results are achived via oracle verifier (Fig. 343

5) through repeated sampling with 128 comple- 344

tions per test case. Collaborating with the ORM or 345

Oracle verifiers, LM-LEXICON’s generation qual- 346

ity shows consistent improvements across the five 347

benchmarks with the increase in the number of 348
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Figure 5: Repeated sampling results (BLEU) on five
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generations. This outcome aligns with the similar349

findings in mathematical reasoning tasks (Cobbe350

et al., 2021; Brown et al., 2024).351

Scaling In-Context Learning To explore the352

ability and limitations of LLMs in definition model-353

ing, we evaluated three strong models on WordNet354

performed across zero-, few-, and many-shot ICL.355

As depicted in Figure 6, lexical similarities, in-356

cluding BLEU and ROUGE-L, improve with an357

increasing number of shots. Moreover, the se-358

mantic similarities among BERTSCORE, MOVER-359

SCORE, and MAUVE exhibit the same trend. How-360

ever, both GPT-4 and CLAUDE-3 begin to strug-361

gle with following task instructions when more362

<input, output> pairs are fed. In a particular range363

(k ≤ 32), task performance improves as the ex-364

emplar number increases. However, it turns to de-365

grade when k > 32, which indicates too many ex-366

emplars hurt performance, even causing model367

collapse owing to increasing in-context semantic368

contradictions. Hence, the optimization of DM369

with scaled ICL is limited. This finding is contrary370

to recent wisdom, which claims that many-shot371

prompting can continuously improve the model372

performance on many tasks (Agarwal et al., 2024;373

Bertsch et al., 2024; Li et al., 2024b).374

5.3 Ablation Studies375

We conduct ablation to study the crucial factors376

used in LM-LEXICON. In particular, we controlled377

for three keys: 1) the data partition method, 2) the378

routing policy, and 3) the number of experts.379

Data Partition. Since LM-LEXICON integrates380

the knowledge acquired by experts from various381

data partitions, our first focus is on the impact of382

data partition methods. To this end, we considered 383

three settings: (i) no split, (ii) random split, and 384

(iii) lexical split. For random split, we follow Li 385

et al. (2022) to slice the data into four balanced 386

subsets and specialise an expert for each of them. 387

For lexical split, we perform partition by TF-IDF. 388

As plotted in Table 3, we observed that the origi- 389

nal setting with semantic embedding clustering out- 390

performs with about +7% gains in BLEU and +1% 391

gains in ROUGE compared with lexical-based parti- 392

tion. The results imply that learning from semantic- 393

targeted data clusters may help capture more pre- 394

cise senses and use more appropriate words to com- 395

pose definitions. Lastly, it helps LM-LEXICON 396

specialise robuster experts for each domain. 397

Model BLEU ROUGE p-value

LM-LEXICON 45.38±0.3 45.21±0.1 −

+ w/o split 35.13±0.2 43.46±0.3 2.9e−5

+ w/ random split 36.24±1.4 43.58±0.8 1.6e−5

+ w/ lexical split 38.13±0.5 44.12±0.6 1.3e−4

Table 3: Ablation on data partition method. Comparison
results with the one-sided p-value in WordNet of various
settings. The results are averaged over three runs.

Routing Policy. To obtain an in-depth compre- 398

hension on the routing policies and seek more ef- 399

fective semantic routing mechanism. Other than 400

top-2 token-level routing, we experiment on (i) top- 401

1 token-level; (ii) sequence-level; and (iii) domain- 402

level. For token-level routing, we followed the 403

implementation of (Fedus et al., 2022) and (Jiang 404

et al., 2024). For sequence-level routing, we fol- 405

low Pham et al. (2023). For domain-level routing, 406

we implemented it inspired by Fan et al. (2021) 407

and Gururangan et al. (2022). Table 4 presents

Model BLEU ROUGE p-value

LM-LEXICON 45.38±0.3 45.21±0.1 −

+ w/ top-1 token-level 43.12±0.4 43.79±0.5 1.9e−3

+ w/ domain-level 45.69±0.2 46.07±0.1 8.6e−1

+ w/ sequence-level 44.47±0.2 44.82±0.3 2.7e−3

Table 4: Ablation on different routing policies. Results
are averaged over three runs. We provide a one-sided p-
value to inspect whether they satisfy t-test assumptions.

408
that the domain-level routing are the most effcient, 409

even surpassing the top-2 token-level routing (LM- 410

LEXICON), indicating semantic-routing by spec- 411

ified domain cluster may be more beneficial for 412

vii
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semantic-intensive tasks.413

Number of Semantic Experts. Except for the414

aforementioned four-experts LM-LEXICON-MOE415

model, to investigate the impact of the number416

of semantic experts, we conduct experiments by417

adjusting the number of semantic experts (N =418

1, 2, 4, 8) in LM-LEXICON. Notably, when N = 1,419

LM-LEXICON collapses back to a dense model and420

expands to the sparse model with N > 1 experts.421

As shown in Figure 7, we find that across all 422

settings of N , our model consistently increases and 423

outperforms the others, which are composed of 424

fewer experts. For example, the model of N = 1 425

returns 41.38% while N = 8 yields 46.86% in 426

BLEU. This tendency implies the effectiveness and 427

scalability of our method utilizing more semantic 428

experts. This increasing trend can potentially be 429

extended by integrating more fine-grained semantic 430

experts, as illustrated by Dai et al. (2024) and He 431

(2024), but we leave this direction for future work. 432

6 Conclusion 433

In this paper, we present LM-LEXICON, an ap- 434

proach that explores, specializes, and combines 435

domain experts upcycling to a sparse MoE model, 436

which can generate appropriate definitions of terms 437

for various domains and genres. Empirically, we 438

show that LM-LEXICON significantly outperform 439

current frontier LLMs and a series of strong super- 440

vised baselines by data clustering and sparse up- 441

cycling. We hope LM-LEXICON could be promis- 442

ingly extended to more domains and semantic- 443

intensive tasks in the future. 444
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Limitations445

Stronger Verifier. Our results from Section 5446

highlight the importance of improving sample veri-447

fication methods tailored for definition modeling,448

and even more general language generation, which449

are currently unavailable. Most existing verifica-450

tion methods have been developed only to solve451

complex reasoning tasks, such as mathematical,452

programming, and logical reasoning problems. We453

believe that equipping models with the ability to454

assess their own generations will allow test-time455

compute methods to be scaled further.456

Ethics Statement457

This research was conducted with careful consid-458

eration of ethical implications. All data used in459

this study was collected from public sources with460

appropriate permissions. We have taken measures461

to ensure privacy protection and prevent misuse of462

our model. The computational resources were used463

responsibly, and we have documented all poten-464

tial biases and limitations. Our annotation process465

followed fair labor practices with appropriate com-466

pensation for annotators.467
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A Additional Experiment Details908

This is a section in the appendix. Introduce dataset909

components, hyperparameter settings, and other910

experimental details.911

Data Processing Raw 3D-EX (see fig. 8) con-912

sists of ten lexicon sources of <t, c, d> triplets, we913

use the word-level split on each of the sources to914

train, validate and test our models in this paper. We915

developed the following steps to undergo the pre-916

processing procedure for the raw 3D-EX dataset.917

• We filter out all instances from the subsets918

including Hei++, MultiRD, and Webster’s919

Unabridged, since they do not have any us-920

able example context for each term of words.921

• We discard instances that do not meet any of922

the following conditions: ① TERM must be of923

string type, ② DEFINITION must be of string924

type, ③ EXAMPLE must not be empty, and ④925

DATASET_NAME must not be empty.926

• To enhance the model’s ability to interpret927

words in various contexts, we split the sample928

entries with multiple example contexts into929

separate data instances for each context. This930

approach increases the number of samples the931

model sees during training.932

In addition, we observed many examples in the933

existing datasets that share the same term-context934

pair but with different definitions, which may cause935

negative effects on model learning if there exist936

many semantics-divergent examples. To summa- 937

rize and display the potential impacts, we report the 938

salient statistics about this finding of these datasets 939

shown in the following Table 5. 940

941

Wikipedia
31.32%

CHA
24.6%

MultiRD
20.95%

Hei++ 0.02%

CODWOE 2.14%

WordNet 1.45%
Webster’ Dict.

4.68%Urban 4.76%

Sci-definition 5.44% Wiktionary 4.65%

3D-EX Constituents Dist. (%)

942

Figure 8: 3D-EX constituents distribution.

Dataset Split # All # Div. % Div. / All

WordNet
Strain 13,883 2,723 19.61
Svalid 1,752 368 21.00
Stest 1,775 333 18.76

Oxford
Strain 82,479 34 0.04
Svalid 10,285 2 0.02
Stest 10,306 0 0.00

Wikipedia
Strain 887,455 186 0.02
Svalid 44,003 16 0.04
Stest 57,232 14 0.02

Urban
Strain 411,382 1,424 0.35
Svalid 57,883 152 0.26
Stest 38,371 122 0.32

3D-EX
Strain 1,309,312 35,632 2.72
Svalid 513,789 12,551 2.44
Stest 450,078 7,599 1.69

Table 5: Divergent examples statistics of each dataset.
# All: number of all examples; # Div.: number of all
divergent examples; % Div. / All: ratio of divergent
examples in all examples.

Cluster Settings Compared with Gururangan 943

et al. (2023), we consider to mine the intrinsit 944

semantic meaning of term associated with their 945

context, instead of using lexical statistics clus- 946

tering method, like TF-IDF. We argue that the 947

method building on dense semantic clustering 948

would help upcycling models to learn specialized 949
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sense interpretation-oriented experts, towards ro-950

bust system for definition modeling. We run k-951

means++ clustering of the Elkan variation method952

with 1, 000 max iteration, 1e−8 tolerance of con-953

vergence, and a fixed seed of 42. Considering the954

computation and memory bounds, we first use 4 as955

the number of clusters to form and the number of956

centroids to generate. We further ablate this factor957

in the section §5.3.958

Training Details LM-LEXICON was trained for959

3 epochs with a global batch size of 4,096 tokens960

(gradient accumulation 1, batch size per device961

8, max sequence length 128) on 4 × H100-PCIe-962

80GB GPUs and a learning rate of 1e-6, minimum963

learning rate of 3e-7 with a cosine annealing sched-964

uler, as well as the warm-up steps with 6% ratio of965

the total training steps. We used a global dropout of966

0.2 (Srivastava et al., 2014) and a weight decay of967

0.1 with AdamW optimizor (Loshchilov and Hut-968

ter, 2018), and performed early stopping to obtain969

the best model by the highest validation bleu.970

Moreover, We run three times for each training971

setup to report the mean results and their standard972

deviation of metrics, with seed si ∈ {21, 42, 84},973

respectively. We use Hugging Face Transformers974

(Wolf et al., 2020) and Pytorch (Paszke et al., 2019)975

to develop the training pipeline.976

We run the branch training on each cluster of977

data points obtained from the clustering results. As978

depicted in tab. 8, We set up the following hyper-979

parameters to train LM-LEXICON and vanilla fine-980

tuned LLAMA-3-8B models in this paper. We used981

the standard negative log-likelihood (NLL) loss to982

train LM-LEXICON. Contrary to Shi et al. (2024),983

to avoid the loss of the input sequence tokens over-984

shadowing the actual output token loss, the loss985

is only computed over the result tokens (Eq. 2),986

limiting the potential to overfit to the input prompt987

and context. This loss calculation method resulted988

in faster training and robuster results overall.989

Given a definition generation problem p(c, t)990

and its golden reference d, we define a outcome re-991

ward model as the following: ORM (P ×D → R)992

assigns a single value to s to indicate whether pre-993

dicted d̂ is correct. Given a specific dataset D,994

we follow Cobbe et al. (2021) to use a negative995

log-likelihood loss (Eq. 7) to frame the reward996

modeling as a binary classification objective.997

LORM = − log σ (rϕ(x, yw)− rϕ(x, yl)) (7)998

Where yw is the preferred generation (i.e., cho-999

sen response) and yl is the alternate generation 1000

(i.e., rejected response) conditioned on the input 1001

x := p(c, t). To train a ORM built on training set, 1002

we leverage the golden reference d as the preferred 1003

definition yw and one of the model generations as 1004

the alternate definition yl to express preferences for 1005

each x, denoted as yw ≻ yl | x, where yw and yl 1006

denotes the preferred and dispreferred completion, 1007

respectively. σ is the sigmoid function and rϕ(·, ·) 1008

represents the parameterized reward function for 1009

the concatenated input x and generation y∗. To 1010

enhance computing efficiency, we employ the ratio 1011

of 1 : 32 to conduct repeated sampling and rerank 1012

the generations by their log-likelihood (aka. confi- 1013

dence) to acquire the top-eight items as a candidate 1014

set of alternate generations for each input x. 1015

Inference Settings As shown in Table 2, for each 1016

setting in “Zero-shot”, “BoN-Oracle”, and “BoN- 1017

ORM”, we orchestrate three separate runs for each 1018

setting, using the same decoding parameters but 1019

with different random seeds to ensure robustness 1020

and consistency in the results. Specifically, for the 1021

models LM-LEXICON-DENSE and LM-LEXICON- 1022

MOE, specifically, we use the temperature of 0.6, 1023

top-k of 50, top-p of 0.9, and repetition penalty of 1024

1.05, ensuring uniformity across all evaluations. 1025

For all benchmarks included in our test, as the 1026

number of samples increases, the coverage metric 1027

corresponds to the use of an oracle verifier. This 1028

verifier checks which fraction of DM problems in 1029

the test set can be approximated using any of the 1030

samples that were generated to be as similar as pos- 1031

sible to the ground truth. The selection of the most 1032

similar generation is achieved through an iterative 1033

comparison with the golden definition, ensuring a 1034

robust matching process. In the case of the ora- 1035

cle verification process by the oracle verifier, we 1036

validate whether any output chosen prediction is 1037

the most similar by comparing it with golden ref- 1038

erences of the sample in the test set. In contrast, 1039

for the verification process of ORM verifier, the 1040

selection of the most similar generation is then per- 1041

formed solely by the ORM verifier itself, without 1042

relying on external feedback, ground-truth compar- 1043

ison, or oracle input. 1044

Miscellaneous We developed our MoE language 1045

modeling codebase based on Leeroo-AI (2024) and 1046

implemented several routing policies and proposed 1047

MoE architectures. Aiming at more efficent evlau- 1048

ation, we follow (Huang et al., 2021) and refactor 1049

their implementation with concurrent metrics com- 1050
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putation to boost the inference procedure in large1051

models, please see the details in our released code.1052

B Carbon Footprint1053

The cost of fine-tuning large language models is1054

lower than that of pre-training them. Nevertheless,1055

we think it is critical to quantify and record the1056

environmental consequences of our research. Table1057

6 lists the materials required for a single run of1058

our experiments. Each experiment was conducted1059

using our own infrastructure. We calculated the car-1060

bon footprint estimation using a carbon intensity of1061

0.141 kg/kWh and 700 W consumption per GPU8.1062

Model Hardware FLOPs Time (h) CO2eq (kg)

M-LEXICON-DENSE 8×H100 4.2e18 36.4 11.4

M-LEXICON-MOE 8×H100 5.4e18 32.8 14.6

Table 6: Details about the training required resources.

C Additional Evaluation Results1063

As depicted in Figure 9, 10, 11, and 12, we provide1064

a cherry-picked example for each domain cluster1065

as shown in Figure 3 in definition modeling.1066

Cluster-1 Example:
[Term] Combtooth Blenny
[Query] “the crested blenny is a species of Combtooth
Blenny found around New South Wales, Australia, and

New Zealand to depths of between ...” What is the defi-

nition of “Combtooth Blenny”?

[Source] Wikipedia

[Reference] Combtooth Blenny: perciform marine fish

of the family blenniidae.

Figure 9: Example of C1 (proper noun) from 3D-EX.

Cluster-2 Example:
[Term] brave
[Query] “familiarity with danger makes a brave man

braver but less daring - herman melville ...” What is the

definition of “brave”?

[Source] WordNet

[Reference] brave: possessing or displaying courage;

able to face and deal with danger or fear without flinch-

ing.

Figure 10: Example of C2 (adjective) from 3D-EX.

8Statistics: https://app.electricitymaps.com/map.

Cluster-3 Example:
[Term] Michael Maclennan
[Query] “Godiva’s is a Canadian television comedy-

drama series created by Michael Maclennan with Julia

Keatley of Keatley Entertainment ...” What is the defini-

tion of “Michael Maclennan”?

[Source] Wikipedia

[Reference] Michael Maclennan: Canadian playwright,

screenwriter, and producer of television shows.

Figure 11: Example of C3 (person name) from 3D-EX.

Cluster-4 Example:
[Term] Lymphedema-distichiasis Syndrome
[Query] “two patients with Lymphedema-distichiasis
Syndrome illustrate that both Milroy’s disease and

late-onset hereditary lymphedema are sometimes asso-

ciated with distichiasis ...” What is the definition of

“Lymphedema-distichiasis Syndrome”?

[Source] Sci-definition

[Reference] Lymphedema-distichiasis Syndrome:

lymphedema distichiasis syndrome is a condition that

affects the normal function of the lymphatic system (part

of the immune system that produces and transports fluids

and immune cells throughout the body).

Figure 12: Example of C4 (scentific) from 3D-EX.

D Code for 1067

We use the Alg. 2 and 3 provided below to train 1068

LM-LEXICON-MOE on the 3D-EX and the other 1069

four legacy datasets used in this paper. We exposed 1070

this Pytorch-style code as an implementation to 1071

extend our method to any potential domain. Ad- 1072

ditionally, to illustrate the differences and novelty 1073

of our method, we provide a comparison with the 1074

relative methods as shown in Table 7. 1075
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Algorithm 2 Pytorch code for semantic experts merger.

def merge_semantic_experts(experts, router_layers):
"""
Merge expert models into a unified model.

Args:
- experts (ModuleList): Experts to merge.
- router_layers (ModuleList): Router layers.

Returns:
- state_dict (Dict[str, Tensor]): Merged model weights.

"""
state_dict = dict()
expert_nums = len(experts)
count_total_router_layers = 0

for idx, expert in enumerate(experts):
# load each expert model
model_id = expert["model_id"]
model = load_base_model(model_id)

if hasattr(model, "_tied_weights_keys"):
tied_weights_keys.extend(model._tied_weights_keys)
count_router_layers = 0
count_averaged_layers = 0

# iterate over all the layers of the model
for layer_name, param in model.state_dict().items():

is_merge_layer = True
for router_layer in router_layers:

if is_layer_suitable_for_router(router_layer, layer_name):
is_merge_layer = False
wb = layer_name.split(".")[-1]
new_layer_name = layer_name.split(f"{wb}")[0]
new_layer_name = f"{new_layer_name}experts.{ix}.{wb}"
assert new_layer_name not in state_dict
state_dict[new_layer_name] = param
count_total_router_layers += 1
count_router_layers += 1

if is_merge_layer:
# average the rest of layers by mean of weights
prev_weight = state_dict.get(layer_name)

if prev_weight is None:
prev_weight = torch.tensor(0)

else:
if not prev_weight.shape == param.shape:

# adjust the shape of weight
prev_weight, param = shape_adjuster(

prev_weight, param, idx
)

try:
# sometimes data is empty / non weights
state_dict[layer_name] = prev_weight + (param / expert_nums)

except Exception as _:
print(layer_name, param)
state_dict[layer_name] = param

count_averaged_layers += 1

return state_dict
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Algorithm 3 Pytorch code for modeling LM-LEXICON-MOE Layer

class SemanticMoeLayer(nn.Module):
def __init__(

self,
in_features: int,
out_features: int,
bias: bool,
num_experts: int,
num_experts_per_tok: int = 2,
routing_policy: str,

):
"""Semantic Mixture-of-Experts Layer.

Args:
- in_features (int): Input Features
- out_features (int): Output Features
- bias (bool): Use bias or not.
- num_experts (int): Total numbers of experts that Router Layer would handle
- num_experts_per_tok (int): Number of active experts per token.
- routing_policy (str): Routing Policy.

"""
super().__init__()
self.routing_policy = routing_policy
if routing_policy == "token-level":

# top-k token-level routing
self.gate = nn.Linear(in_features, num_experts, bias=False)
self.experts = nn.ModuleList(

[nn.Linear(in_features, out_features, bias) for _ in range(num_experts)]
)
self.num_experts_per_tok = num_experts_per_tok
self.in_features = in_features
self.out_features = out_features

elif routing_policy in ["soft-sequence-level", "hard-sequence-level"]:
# soft/hard sequence-level routing
self.gate = nn.Linear(in_features, num_experts, bias=False)
self.num_experts = num_experts
self.experts = nn.ModuleList(

[nn.Linear(in_features, out_features) for _ in range(num_experts)]
)

elif routing_policy == "domain-level":
# domain-level routing
self.gate = nn.Linear(in_features, num_experts, bias=False)
self.num_experts = num_experts
self.experts = nn.ModuleList(

[nn.Linear(in_features, out_features) for _ in range(num_experts)]
)

def forward(self, inputs: torch.Tensor, domain_labels: torch.Tensor):
if self.routing_policy == "token-level":

gate_logits = self.gate(inputs)
weights, selected_experts = torch.topk(

gate_logits, self.num_experts_per_tok
)
weights = F.softmax(weights, dim=2, dtype=torch.float).to(inputs.dtype)
results = torch.zeros(

(inputs.shape[0], inputs.shape[1], self.out_features),
device=inputs.device,
dtype=inputs.dtype,

)

# continue this table as below ...
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# continue the above table ...

weights = weights.to(inputs.device)
for ix, expert in enumerate(self.experts):

batch_idx, tok_idx, expert_idx = torch.where(selected_experts == ix)
results[batch_idx, tok_idx] += expert(

inputs[batch_idx, tok_idx]
) * weights[batch_idx, tok_idx, expert_idx].unsqueeze(-1)

elif self.routing_policy == "soft-sequence-level":
# soft sequence-level routing
gate_logits = self.gate(inputs)
gate_logits_mean = gate_logits.mean(dim=1)
weights = F.softmax(gate_logits_mean, dim=-1)
results = torch.zeros(

(inputs.shape[0], inputs.shape[1], self.out_features),
device=inputs.device,
dtype=inputs.dtype,

)
for ix, expert in enumerate(self.experts):

results += expert(inputs) * weights[:, ix].unsqueeze(-1)
elif self.routing_policy == "hard-sequence-level":

# hard sequence-level routing (only one selected expert is responsible for the
entire sequence)

gate_logits = self.gate(inputs)
gate_logits_mean = gate_logits.mean(dim=1)
_, selected_experts = torch.topk(gate_logits_mean, 1)
results = torch.zeros(

(inputs.shape[0], inputs.shape[1], self.out_features),
device=inputs.device,
dtype=inputs.dtype,

)
for ix, expert in enumerate(self.experts):

results += expert(inputs) * (selected_experts == ix).float().unsqueeze(
-1

)
elif self.routing_policy == "domain-level":

# domain-level routing (only one selected expert is responsible for the entire
sequence)

gate_logits = self.gate(inputs)
results = torch.zeros(

(inputs.shape[0], inputs.shape[1], self.out_features),
device=inputs.device,
dtype=inputs.dtype,

)
for ix, expert in enumerate(self.experts):

results += expert(inputs) * (domain_labels == ix).float().unsqueeze(-1)

return results

MOE (2017)
(Vanilla)

BTM (2022)
(Merge)

BTX (2024)
(Linear router)

LM-LEXICON
(Ours)

♢ Dense experts are
trained independently (upcycling) ✘ ✔ ✔ ✔

♢ Experts are specialized
in different domains ✘ ✔ ✔ ✔

♢ Experts are chosen by
a learned router per input token ✔ ✘ ✔ ✔

♢ Adaptive router via
domain-wise routing ✘ ✘ ✘ ✔

♢ Semantic experts
adapted to diverse domains ✘ ✘ ✘ ✔

Table 7: A comprehensive comparison of the most relative sparse mixture-of-experts frameworks in recent years,
including MoE (Vanilla), BTM (Merge), BTX (Linear Router), and LM-LEXICON. Our method demonstrates
advancements in semantic-centric specialized expert and adaptability across domains.
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Computing Infrastructure
8 × H100-80GB GPU (PCIe)

Hyperparameter Assignment

Base model LM-Lexicon-Dense
(Llama-3-8B)

Training strategy DS ZERO-3
Epochs 3
Global batch size 524,288 tokens
Max sequence length 128
Max learning rate 5e− 6
Optimizer AdamW
Adam beta weights 0.9, 0.95
Learning rate schedule Cosine decay to 0
Weight decay 0.01
Warm-up ratio 10%
Gradient clipping 1.0
Global dropout 0.1
Random seeds {21, 42, 84}

Hyperparameter Assignment

Base model LM-Lexicon-MoE
(4 × Llama-3-8B)

Training strategy NAIVE PP
Epochs 1
Global batch size 131,072 tokens
Max sequence length 128
Max learning rate 1e− 6
Optimizer AdamW
Adam beta weights 0.9, 0.95
Learning rate schedule Cosine decay to 0
Weight decay 0.01
Warm-up ratio 10%
Gradient clipping 1.0
Global dropout 0.1
Random seeds {21, 42, 84}

Table 8: Hyper-parameters of LM-LEXICON-DENSE and LM-LEXICON-MOE training. DS ZERO-3 (left-hand
table) denotes stage-3 ZeRO parallelism implemented by DeepSpeed (Rajbhandari et al., 2020). NAIVE PP (right-
hand table) denotes naive pipeline parallelism implemented by ugging Face Transformers (Wolf et al., 2020).
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