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Abstract

As reinforcement learning agents become increasingly deployed in real-world scenar-
ios, predicting future agent actions and events during deployment is important for
facilitating better human-agent interaction and preventing catastrophic outcomes.
This paper experimentally evaluates and compares the effectiveness of future action
and event prediction for three types of RL agents: explicitly planning, implicitly
planning, and non-planning. We employ two approaches: the inner state approach,
which involves predicting based on the inner computations of the agents (e.g., plans
or neuron activations), and a simulation-based approach, which involves unrolling
the agent in a learned world model. Our results show that the plans of explicitly
planning agents are significantly more informative for prediction than the neuron
activations of the other types. Furthermore, using internal plans proves more robust
to model quality compared to simulation-based approaches when predicting actions,
while the results for event prediction are more mixed. These findings highlight the
benefits of leveraging inner states and simulations to predict future agent actions
and events, thereby improving interaction and safety in real-world deployments.

1 Introduction

As reinforcement learning (RL) becomes increasingly applied in the real world, ensuring the safety
and reliability of RL agents is paramount. Recent advancements have shown that agents can exhibit
complex behaviors, making it crucial to understand and anticipate their actions. This is especially
important in scenarios where misaligned objectives (Di Langosco et al., 2022) or unintended conse-
quences could result in suboptimal or even harmful outcomes. For instance, consider an autonomous
vehicle controlled by an RL agent that might unpredictably decide to run a red light to optimize
travel time. Predicting this behavior in advance would enable timely intervention to prevent a
potentially dangerous situation. This capability is also beneficial in scenarios that require effective
collaboration and information exchange among multiple agents (Dragan et al., 2015; Daronnat et al.,
2020; Ahrndt et al., 2016). For example, if passengers and other drivers know whether a self-driving
car will turn left or right, it becomes much easier and safer to navigate the roads. Thus, the ability
to accurately predict an agent’s future behavior can help reduce risks and ensure smooth interaction
between agents and humans in real-world situations.

In this paper, we explore the task of predicting future actions and events when deploying a trained
agent, such as whether an agent will turn left in five seconds. The distribution of future actions
and events cannot be computed directly, even with access to the policy, because the future states
are unknown. We consider two methods for predicting future actions and events: the inner state
approach and the simulation-based approach. We apply these approaches to agents trained with
various RL algorithms to assess their predictability.

In the inner state approach, we assume that we have full access to the inner state of the agent during
deployment. Here, the inner state refers to all the intermediate computations required to determine
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the final action executed by the agent, such as the simulation of the world model for explicit planning
agents or the hidden layers for agents parametrized by deep neural networks. We seek to answer
the following questions: (i) How informative are these inner states for predicting future actions and
events? (ii) How does the predictability of future actions and events vary across different types of
RL agents with different inner states?

As an alternative to the inner state approach, we explore a simulation-based approach by unrolling
the agent in a learned world model and observing its behavior. Assuming we have a sufficiently
accurate world model that resembles the real environment, this simulation should provide valuable
information for predicting future actions and events in the real environment. We seek to answer the
following question: (iii) How do the performance and robustness of the simulation-based approach
compare to the inner state approach in predicting future actions and events across different agent
types?

We conduct extensive experiments to address the above research questions. To summarize, the main
contributions of this paper include:

1. To the best of our knowledge, this is the first work to formally compare and evaluate the
predictability of different types of RL agents in terms of action and event prediction.

2. We propose two approaches to address this problem: the inner state approach and the
simulation-based approach.

3. We conduct extensive experiments to evaluate the effectiveness and robustness of these
approaches across different types of RL agents, demonstrating that the plans of explicitly
planning agents are more informative for prediction than other types of inner states.

2 Background and Notation

We consider a Markov Decision Process (MDP) defined by a tuple (S, A, P, R, γ, d0), where S is a set
of states, A is a finite set of actions, P : S × A × S → [0, 1] is a transition function representing the
dynamics of the environment, R : S ×A → R is a reward function, γ ∈ [0, 1] is a discount factor, and
d0 : S → [0, 1] is an initial state distribution. Denoting the state, action, and reward at time t by St,
At, and Rt respectively, P (s, a, s′) = Pr(St+1 = s′|St = s, At = a), R(s, a) = E[Rt|St = s, At = a],
and d0(s) = Pr(S0 = s), where P and d0 are valid probability mass functions. An episode is a
sequence of (St, At, Rt), starting from t = 0 and continuing until reaching the terminal state, a
special state where the environment ends. Letting Gt =

∑∞
k=t γk−tRk denote the infinite-horizon

discounted return accrued after acting at time t, an RL algorithm attempts to find, or approximate,
a policy π : S × A → [0, 1], such that for any time t ≥ 0, selecting actions according to π(s, a) =
Pr(At = a|St = s) maximizes the expected return E[Gt|π].

In this paper, planning refers to the process of interacting with an environment simulator or a
world model to inform the selection of subsequent actions. Here, a world model is a learned and
approximated version of the environment. We classify an agent, which is defined by its policy, into
one of the following three categories based on the RL algorithm by which it is trained:

Explicit Planning Agents. In explicit planning agents, an environment simulator or a world
model is used explicitly for planning. We consider two explicit planning agents in this paper, MuZero
(Schrittwieser et al., 2020) and Thinker (Chung et al., 2024), given their superior ability in planning
domains. MuZero is a state-of-the-art model-based RL algorithm that combines a learned model with
Monte Carlo Tree Search (MCTS) (Kocsis & Szepesvári, 2006; Coulom, 2006) for planning. During
planning, MuZero uses the learned model to simulate future trajectories and performs MCTS to select
the best action based on the predicted rewards and values. Thinker augments the environment with
a world model and introduces new actions designed for interacting with the world model. MuZero
represents a handcrafted planning approach, while Thinker represents a learned planning approach.
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Implicit Planning Agents. In implicit planning agents, there is no learned world model nor an
explicit planning algorithm, yet these agents still exhibit planning-like behavior. A notable example
is the Deep Repeated ConvLSTM (DRC) (Guez et al., 2019), which excels in planning domains.
The authors observe that the trained agents display planning-like properties, such as improved
performance with increased computational allowance, and so argue that the agent learns to perform
model-free planning.

Non-planning Agents. In non-planning agents, there is neither a learned world model nor an
explicit planning algorithm, and these agents do not exhibit planning-like behavior. Typically, these
agents perform poorly in planning domains. Examples include most model-free RL algorithms, such
as the actor-critic and Q-learning. In this paper, we focus exclusively on IMPALA (Espeholt et al.,
2018), a variant of the actor-critic algorithm, chosen for its computational efficiency and popularity.

3 Problem Statement

Given a fixed policy π, we aim to estimate the distribution of a function of the future trajectory.
For example, we may want to estimate the probability of an agent entering a particular state or
performing a specific action within a certain horizon. Mathematically, let Ht = (St, At, Rt) denote
the transition at step t, and let Ht:T = {Ht, Ht+1, . . . , HT } denote the future trajectory from step
t to the last step T . Let H denote the set of all possible future trajectories. We are interested
in estimating the distribution of a random variable f(Ht:T ) conditioned on the current state and
action:

P(f(Ht:T ) | St, At), (1)

where f : H → Rm is a function specifying the variables to be predicted.

This paper focuses on predicting two particular types of information. The first type is future
action prediction, where we want to predict the action of the agent in L steps, i.e., f(Ht:T ) =
(At+1, At+2, . . . , At+L) and the problem becomes estimating:

P(At+1, At+2, . . . , At+L | St, At). (2)

An example of action prediction is whether an autonomous vehicle is going to turn left or right in the
next minute. The second type is future event prediction, where we want to estimate the probability
of a binary indicator g : (S, A) → {0, 1} being active within L steps, and the problem becomes
estimating:

P

(
L⋃

k=1
g(St+k, At+k) = 1

∣∣∣∣∣St, At

)
, (3)

which is equivalent to the case f(Ht:T ) = max{ g(St+k, At+k)}k=1,...,L. In other words, (3) is the
probability of the event defined by g occurring within L steps. An example of event prediction is
predicting whether an autonomous vehicle will run a red light within a minute.

Event prediction shares resemblance to the generalized value function (Sutton et al., 2011), where
f(Ht:T ) =

∑∞
k=0 γkg(St+k, At+k) and we estimate its expectation E[f(Ht:T ) | St, At]. When g is

a binary indicator, this expectation is equivalent to the discounted sum of the probabilities of the
event defined by g. This is arguably harder to interpret than (3); for example, it can be larger than
1 and thus is not a valid probability.

To learn these distributions, we assume access to a limited number of transitions generated by the
policy π. Specifically, we have N transitions as training data. The transitions may come from
multiple episodes. In the case of future event prediction, we assume that g(St, At) is also known for
each transition. We further assume that the policy π and the inner computation for each action At

within π is known.

In this work, we assume that π is already a trained policy and is fixed. This is the case where the
agent is already deployed, and transitions during the deployment are collected. In cases where the
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training environment and deployment environment are similar, we can also use the transitions when
training the agent as training data for predicting future actions and events, but this is left for future
work.

4 Methods

Since we already have the state-action (St, At) and the target output f(Ht:T ) in the training data,
we can treat the problem as a supervised learning task.1 In particular, We can train a neural network
that takes the state-action pair as input to predict f(Ht:T ). This network is trained using gradient
descent on cross-entropy loss.

Besides the state-action, there can be additional information that may help the prediction. For
example, the inner computation of the policy π may contain plans that are informative of the agent’s
future actions, especially in the case of an explicit planning agent. We refer to this information that
is available before observing the next state St+1 as auxiliary information and denote it as It. We
will consider two types of auxiliary information: inner states and simulations.

4.1 Inner state approach

In the inner state approach, we consider choosing the agent’s inner state as the auxiliary information.
Here, the inner state refers to all the intermediate computations required to compute the action At.
As inner states are different across different types of agents and may not all be useful, we consider
the following inner state to be included in the auxiliary information:

1. MuZero: Since MuZero uses MCTS to search in a world model and selects action with the
largest visit count, we select the most visited rollout as the auxiliary information.

2. Thinker: We select all rollouts and tree representations during planning as the auxiliary
information. We do not choose a particular rollout because, unlike MCTS, in Thinker, it is
generally unknown which action the agent will select at the end.

3. DRC: We select the hidden states of the convolutional-LSTM at every internal tick as the
inner state, as it was proposed that the hidden state contains plans to guide future actions
(Guez et al., 2019).

4. IMPALA: We select the final layer of the convolutional network as the inner state, as it is
neither too primitive which may only be processing the state, nor too refined which may
only contain information for computing the current action and values.

Rollouts here refer to the simulation of the world model and are composed of a sequence of transitions
(Ŝt+l, Ât+l, R̂t+l)1≤l≤L.

4.2 Simulation-based approach

As an alternative to the inner state approach, we can train a world model concurrently with the
agent. Once trained, we can simulate the agent in this world model using the trained policy π to
generate rollouts. These rollouts can then be utilized as auxiliary information for the predictor.

If the learned world model closely resembles the real environment, we expect these rollouts to yield
valuable information for predicting future actions and events, as the agent’s behavior in the world
model should be similar to its behavior in the actual environment. In the ideal case where the world
model perfectly matches the true environment dynamics, we could compute the exact future action
and event distribution without needing any prediction. However, we do not consider this scenario
in the paper, as this assumption is impractical for most settings.

1Temporal-difference methods are not directly applicable here, as both the action and event prediction tasks involve
a limited horizon L and do not sum over variables.
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5 Related Works

Safe RL: Our work is related to safe RL, where we try to train an agent to maximize rewards while
satisfying safety constraints during the learning and/or deployment processes (Garcıa & Fernández,
2015). A wide variety of methods have been proposed in safe RL, such as shielding, where one
manually prevents actions that violate certain constraints from being executed (Alshiekh et al.,
2018), and Constrained Policy Optimization (CPO), which performs policy updates while enforcing
constraints throughout training (Achiam et al., 2017). In contrast to the works in safe RL, we are
solely interested in predicting future actions and events of trained agents. The actions or events do
not necessarily need to be unsafe. In the case of unsafe action or event prediction, our work allows
for preemptive interruption of the deployed agent, which can be used as a last resort in addition to
the above safety RL works.

Predictability for Human-Agent Interaction: Recent research has highlighted the importance
of predictability in enhancing human-agent interaction and collaboration. The agents in these studies
are not necessarily RL agents but are often hardcoded to follow certain rules. Daronnat et al. (2020)
demonstrated that higher predictability in agent behavior facilitates better human-agent interaction
and collaboration, particularly in real-time scenarios. Dragan et al. (2015) found that legible motion,
which makes an agent’s intent clear, leads to more fluent human-robot collaboration. Kandul et al.
(2023) found that humans are better at predicting human performance than agent performance,
raising concerns about human control over agents in high-stakes environments. Finally, Ahrndt
et al. (2016) discussed the significance of mutual predictability in human-agent teamwork. These
works support the motivation that predictability of agents is important for human-agent interaction.

6 Experiments

We conduct three sets of experiments to evaluate the effectiveness and robustness of the discussed
approaches. First, we apply the inner state approach to predict future actions and events. We
compare it to the case where only state-action information is provided to the predictor so as to
evaluate the benefits of the proposed inner state in the prediction. Second, we apply the simulation-
based approach and compare it with the inner state approach to evaluate the benefits of these two
different types of auxiliary information. Finally, we consider a model ablation setting, where we
deliberately make the world model inaccurate to see how the different approaches perform under
such conditions.

We consider the Sokoban environment, where the goal is to push all four boxes into the four red-
bordered target spaces as illustrated in Fig 1. We choose this environment because (i) a wide range
of levels in Sokoban make action and event prediction challenging, and we can evaluate the predictors
on unseen levels to evaluate their generalization capability; (ii) there are multiple ways of solving a
level; (iii) Sokoban is a planning-based domain, so it may be closer to situations where we want to
discern plans of agents in more complex settings.

Figure 1: Example levels of Sokoban, where the goal is to push all four boxes into the four red-
bordered target spaces. A box can only be pushed, not pulled, making the level irrecoverable if the
boxes get stuck. We paint a random empty space blue (which still acts as an empty tile) and predict
whether the agent will stand on the blue location within 5 steps.
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We choose the prediction horizon L to be 5 in all experiments. For action prediction, we try to predict
the next five actions At+1, At+2, ..., At+5. For event prediction, we randomly select an empty tile in
the level and paint it blue. That blue tile acts as an empty tile to the agent and serves no special
function. We define the event g that is to be predicted as the case where the agent stands on the
blue location. In other words, we try to predict whether the agent will go to that blue location
within L steps.

We train four different agents using MuZero, Thinker, DRC, and IMPALA. All agents are trained for
25 million transitions. We train a separate world model for each agent. For DRC and IMPALA, the
world model is not needed for the policy and will only be used in the predictors in the simulation-
based approach.

After training the agents, we generate 50k transitions, where part or all of it will be used as the
training data for the predictors. We evaluate the performance of predictors with varying training
data sizes: 1k, 2k, 5k, 10k, 20k, 50k. We also generate 10k transitions as a testing dataset. For
simplicity, we use greedy policies, where we select the action with the largest probability instead of
sampling. The predictor uses a convolutional network to process all image information, including
the current state and states in rollouts (if they exist). The encoded current state, along with other
auxiliary information such as encoded states, rewards, and actions in rollouts (if they exist), will be
passed to a three-layer Transformer encoder (Vaswani et al., 2017), and the final layer predicts the
next L actions or the probability of the event within L steps. More details about the experiments
can be found in Appendix A.

6.1 Inner state approach

Figure 2 presents the final accuracy of action prediction and the F1 score of event prediction using
the inner state approach. The error bars represent the standard deviation across three independently
trained predictors. The accuracy here refers to the percentage of correctly predicting all the next
five actions, with no credits awarded if any action is predicted incorrectly. The graph also shows the
performance of the predictors when they only receive the current state St and action At as inputs,
as indicated by ‘baseline’. Several observations can be made.

First, when access to the plans is available, the prediction accuracy for both action and event is
significantly higher for explicit planning agents. This is perhaps not surprising, as these explicit
planning agents tend to follow the plans either by construction or by learning. Second, the case for
implicit planning agents (DRC) and non-planning agents (IMPALA) is more nuanced. For action
prediction accuracy, both receive a moderate improvement from accessing the hidden state. There
are two possible explanations: (i) plans of the agents are stored in the learned representations that
are informative of future actions; (ii) the hidden states or hidden layers contain a latent represen-
tation that is easier to learn from, compared to the raw states. To discern between the two cases,
interpreting the nature and the underlying circuit of the inner states is required, which is left for
future work. Third, in contrast to action prediction, the inner state does not improve event predic-
tion for DRC and IMPALA, likely because the blue location in the environment does not affect the
reward, and the agent may ignore it in its representation. This suggests an advantage of explicit
planning agents, as in explicit planning agents, we explicitly train the world model and can train it
to attend not just to the reward-relevant features but to all features (or features we deem useful) in
the environment.

6.2 Simulation-based approach

We now consider applying the simulation-based approach to both implicit planning (DRC) and non-
planning agents (IMPALA). We unroll the world model for L = 5 steps using the current policy and
input this rollout as auxiliary information to the predictors. We can use a single rollout, as both
the policy and the chosen world model are deterministic, so all rollouts will be the same.
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Figure 2: Final accuracy of action prediction and F1 score of event prediction with inner state
approach on the testing dataset. The error bar represents two standard errors across 9 seeds.

We do not apply the simulation-based approach to explicit planning agents because (i) rollouts
already exist as an inner state within the agent and can be input to the predictor, and (ii) it requires
training a world model that can be unrolled for 2L steps instead of only L steps, as the agent needs
to perform planning on every step in the simulated rollout. For a fair comparison, we assume we
can only train a world model that is unrolled for L steps in all setups.

Figure 3 shows the final accuracy of action prediction and the F1 score of event prediction for the
simulation-based approach of DRC and IMPALA. For easy comparison, we also include the result
of the inner state approach of explicit planning agents in the figure.
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Figure 3: Final accuracy of action prediction and F1 score of event prediction with simulation-based
approach (DRC and IMPALA) on the testing dataset. The absolute performance can be found in
Appendix C. The error bar represents two standard errors across 9 seeds.

We observe that the predictors for DRC and IMPALA agents in the simulation-based approach
perform very well, with performance surpassing that of the explicit planning agents with the inner
state approach. This is because the world model we trained is very close to the true environment,
so the behavior in the rollout is almost equivalent to that in the real environment. The high-quality
world model also enables accurate prediction of when the agent will stand on the blue location,
resulting in excellent event prediction performance.
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6.3 World Model Ablation

Learning an accurate world model may not be feasible in some settings, such as auto-driving in the
real world. To investigate how the quality of the world model may affect the prediction performance,
we designed three different settings where learning an accurate world model is challenging. In the
first setting, we use a world model with a much smaller size, making it more prone to errors. In
the second setting, we randomly replace the agent’s action with a no-operation 25% of the time,
introducing stochastic dynamics into the environment. However, since the world model we use
is deterministic, it cannot account for such stochastic transitions and will yield errors. In the
third setting, we consider a partially-observable Markov decision process (POMDP) case, where we
randomly display the character at a position within one step of the true character location.

Figure 4 shows the change in the final accuracy of action prediction and the F1 score of event
prediction for the model ablation settings compared to the default setting. We observe that in
terms of action prediction, the accuracy generally drops less in the inner state approach of explicit
planning agents than in the simulation-based approach of the two other agents. This is likely because
planning does not necessitate an accurate world model, as plans can still be made without the ability
to perfectly predict the future. For example, in MCTS, only values and rewards need to be predicted
well, but not the state.

In contrast, the results for event prediction are more nuanced, with the inner state approach some-
times performing better and the simulation-based approach performing better at other times. We
conjecture that because the world model is not accurate, the event under consideration is often not
predicted correctly. As such, more informative plans that can predict future actions do not help in
event prediction, leading to mixed results.
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Figure 4: Change in the final accuracy of action prediction and F1 score of event prediction for the
world model ablation settings. The error bar represents two standard errors across 3 seeds.

7 Conclusion

In this paper, we investigated the predictability of future actions and events for different types of
RL agents. We proposed and evaluated two approaches for prediction: the inner state approach
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and the simulation-based approach. Our experiments highlight the benefits of leveraging auxiliary
information to predict future actions and events. Enhanced predictability could lead to more reliable
and safer deployment of RL agents and better human-agent interaction.
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A Agent Details

In this section, we describe the details of how we trained the four types of agents discussed in the
paper. Most of them follow the procedure outlined in the original paper:

1. MuZero: We use the same agent configuration as in the original paper, except for the world
model, where we adopt the architecture and training method proposed in Thinker. This is
to ensure that the results are not affected by the choice of the world model. We conducted
100 simulations for each search2.

2. Thinker: We use the same default agent as described in the original paper.

3. DRC: We use the DRC(3,3) described in the original paper.

4. IMPALA: We use the large architecture but omit the LSTM component described in the
original paper.

All the hyperparameters are consistent with those in the original paper, and the agents are all
trained using 25 million transitions. For each RL algorithm in the default model case, we train three
separate agents with different seeds. For the model ablation case, we train only one agent due to
computational cost.

World Model: The world model utilizes the dual network architecture proposed in Thinker, as it
enables the prediction of raw states, values, and policies, allowing its use in both simulation-based
approaches and planning in MuZero and Thinker. We also found that using the dual network results
in better performance in the environment than the original network proposed in MuZero, likely due
to the addition of learning signals from predicting the raw state. In the small model ablation case,
we reduced all channel sizes in the RNN block from the default 128 to 32.

We follow the training procedure discussed in Thinker to train the world model, except that we
added an additional loss based on L2-distance between the predicted raw state and the true raw
state. This ensures that the world model focuses on all features of the raw states, not just those
relevant to rewards. Consequently, non-reward-affecting features, such as the blue location, can still
be encoded and predicted by the world model. We found that the addition of this loss does not
negatively impact the agent’s performance in the environment. It should be noted that we do not
assume we have knowledge about the incident g when training the world model or the agent. We
train a separate world model following the same training procedure for each agent.

2We count each node traversal as one simulation, as opposed to one new node expansion
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Figure 5 shows examples of model outputs for both the default setting and the model ablation setting.
In the default case, the model predicts the states accurately, albeit with slight blurring. In the small
model case, the agent erroneously pushes the box across the wall, which should not be allowed, and
the blue location is missing, likely due to the model’s limited capacity preventing it from fitting
into the representation. In the stochastic case, the agent gradually fades due to the uncertainty
of its position. Lastly, in the POMDP case, the agent is completely missing, attributable to the
difficulty of ascertaining the agent’s true position. These three model ablation cases thus showcase
the different failure modes of the model.
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Figure 5: The predicted states output by the trained world model, where the starting state is shown
in the leftmost column and the input action is five consecutive UP actions.

Learning Curve: The learning curves of the agents in both the default setting and the model
ablation setting can be found in Figure 6. We observe that in the default setting, the Thinker agent
performs the best, with results closely replicating those of the original paper. The MuZero agent
here outperforms the MuZero agent in the Thinker’s paper due to the use of a dual network as the
world model. In the small model setting, the performance of the DRC and baseline agents is similar
to that in the default case, as the world model is not used in the policy. In the POMDP case,
all agents perform poorly, likely because they cannot be certain of their own location, making the
problem too challenging.

B Predictor Details

Predictor architecture : The raw states and predicted states (if they exist) are processed by a
separate convolutional encoder with the same architecture. The encoder shares the same architecture
as follows:

• Convolution with 64 output channels and stride 2, followed by a ReLu activation.
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Figure 6: Running average solving rate over the last 200 episodes in Sokoban in both the default
setting and the model ablation settings. For the default case, the shaded area represents two standard
errors across 3 seeds.

• 1 residual blocks, each with 64 output channels.

• Convolution with 128 output channels and stride 2, followed by a ReLu activation.

• 1 residual blocks, each with 128 output channels.

• Average pooling operation with stride 2.

• 1 residual blocks, each with 128 output channels.

• Average pooling operation with stride 2.

All convolutions use a kernel size of 3. The resulting output shape is (128, 6, 6). The output
is then flattened and passed to a linear layer with an output size of 128. The encoded state is
then concatenated with the action selected on that state to form an embedding. For the inner
state approach of Thinker, we also concatenate the tree representation (Chung et al., 2024) to the
embedding.

For the simulation-based approach applied to all agents and the inner state approach used by explicit
planning agents, the embedding of the current state combined with the rollouts forms a sequence
of embeddings of size 1 + total rollout length. For the inner state approach on the DRC agent, we
encode the hidden state of each internal tick using the same convolutional encoder mentioned above,
but without average pooling. Since there are four internal ticks (t = 0, 1, 2, 3) in DRC(3,3), they
form a sequence of embeddings of size four. This sequence is concatenated with the current state
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embedding to form a sequence of five embeddings. Similarly, for the inner state approach on the
IMPALA agent, we encode the hidden layer using the same convolutional encoder but also without
average pooling. This is concatenated with the current state embedding to form a sequence of two
embeddings. Note that the embedding of the current state is always positioned at the first slot in
the sequence.

In all cases, the sequence of embeddings passes through a three-layer Transformer encoder with a
dimension of 512. The output from the Transformer encoder at the first token is then passed to a
linear layer, which predicts the required probabilities using either softmax or sigmoid output units.

Training: We generate 50,000 training samples, 10,000 evaluation samples, and 10,000 testing
samples using the trained agents. We perform stochastic gradient descent on the cross-entropy loss
to train both the action predictors and incident predictors. We utilize a batch size of 128 and an
Adam optimizer with a learning rate of 0.0001. Training is halted when the validation loss fails to
improve for 10 consecutive steps. For each agent with a unique seed, we train three independent
predictors. As we have three separately trained agents for the default model case, this leads to a
total of 9 runs.

C Experiment Details

Figure 7 shows the final accuracy of action prediction and the F1 score of incident prediction for the
model ablation settings. The change in performance shown in Figure 4 is computed as the difference
between the performance in the default model case and the performance shown here in Figure 7.
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Figure 7: The final accuracy of action prediction and F1 score of incident prediction for the world
model ablation settings. The error bar represents two standard errors across 3 seeds.
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D Related Works in Multi-agent Setting

In a multi-agent setting, modeling the opponent’s behavior may be beneficial in both competitive
and cooperative scenarios. He et al. (2016) use the opponent’s inner state to better predict Q-values
in a multi-agent setting. Foerster et al. (2017) update an agent’s policy while accounting for its
effects on other agents, and Raileanu et al. (2018) predict the other agent’s actions based on the
same network that outputs the agent’s own action. In contrast to these works, our research involves
predicting agent actions multiple steps ahead and does not involve a multi-agent setting or learning
a policy.

Limitation

The paper only evaluates the proposed approaches in a limited set of environments. Including addi-
tional environments would provide a better understanding of agent predictability, but this requires
finding or designing new benchmark environments with diverse states. Additionally, the paper fo-
cuses on only four different RL algorithms. Evaluating a broader range of RL algorithms could allow
for better comparisons of their predictability.

Broader Impact Statement

This work involves predicting the actions and events of trained agents during deployment. It is
important to consider the risk of false alarms, where the predictor may indicate an unsafe action or
event that will not actually occur.


